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The ENIGMA Toolbox: Cross-disorder integration and multiscale
neural contextualization of multisite neuroimaging datasets
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Among ’‘big data’ initiatives, the ENIGMA (Enhancing Neurolmaging Genetics through Meta-Analysis) Consortium-a
worldwide alliance of over 2,000 scientists diversified into over 50 Working Groups—has yielded some of the largest studies
of the healthy and diseased brain. Integration of multisite datasets to assess transdiagnostic similarities and differences and
to contextualize findings with respect to neural organization, however, have been limited. Here, we introduce the ENIGMA
Toolbox, a Python/Matlab ecosystem for (i) accessing 100+ ENIGMA datasets, facilitating cross-disorder analysis, (ii)
visualizing data on brain surfaces, and (iii) contextualizing findings at the microscale (postmortem cytoarchitecture and gene
expression) and macroscale (structural and functional connectomes). Our Toolbox equips scientists with tutorials to explore
molecular, histological, and network correlates of noninvasive neuroimaging markers of brain disorders. Moreover, our
Toolbox bridges the gap between standardized data processing protocols and analytic workflows and facilitates cross-
consortia initiatives. The Toolbox is documented and openly available at http://enigma-toolbox.readthedocs.io.
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INTRODUCTION
he ENIGMA (Enhancing Neurolmaging
Genetics through Meta-Analysis) Consortium is
one of the leading big data alliances that pools

1A), the ENIGMA Consortium has made important
contributions to fundamental and clinical neuroscience,

publishing some of the largest neuroimaging studies to
date*13. The success of the ENIGMA Consortium has

neuroimaging and genetic data from around the globe.
Since 1its inception, ENIGMA has grown to a
collaboration of thousands of scientists from over 45
countries®. Organized into several Working Groups (Fig.

heavily relied on standardized pipelines for data
processing, quality control, and meta-analysis of widely
used morphological measures. From these harmonized
procedures, brain metrics (such as cortical thickness and
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subcortical ~ volume) are extracted from raw
neuroimaging data at each research center within a given
Working Group and entered into site-specific linear
models to test for case vs. control differences or to assess
correlations with covariates of interest. Effect sizes and
the heterogeneity of these effects across sites are then
estimated via topic- and disease-specific meta-analyses,
with the resulting aggregated statistical information
being published and shared.

Through the sharing of these site-specific brain
metrics or ensuing aggregated statistical maps!4,
ENIGMA has set the stage for unprecedented analyses
to compare findings across Working Groups and to
contextualize findings across different scales of neural
organization. Several such cross-disorder studies are
underway, including a comparison of three
neurodevelopmental disorders across 151 cohorts
worldwide!5, and an initiative to relate structural brain
abnormalities to cell-specific profiles of gene
expression!6.

The neuroscience community, however, currently
lacks standardized tools to analyze multicenter datasets
beyond traditional structural MRI case-control meta-
and mega-analyses. To fill this gap, we developed the
ENIGMA Toolbox, an ecosystem for: (i) archiving,
accessing, and integrating different ENIGMA-derived,
or equivalently processed, datasets, (z7) visualizing data
on cortical and subcortical surface models, and (i)
contextualizing neuroimaging findings across multiple
scales of neural organization. We provide the ability to
decode brain maps with respect to postmortem gene
expression maps (based on microarray data from the
Allen Human Brain Atlas'?), postmortem cytoarchitecture
(using the von Economo-Koskinas classification of
cortical cytoarchitecture and derivatives from the
BigBrain dataset!®), and structural as well as functional
connectome properties (from the Human Connectome
Project!¥). We provide several start-to-finish tutorials to
show how these workflows can offer neurobiological and
system-level insights into how regional effects, for
example disease-related atrophy patterns, co-vary with
transcriptomic,  microstructural, and  macrolevel
properties, similar to recently published ENIGMA
studies!6, 20,

Here, we present the ENIGMA Toolbox with ready-
to-use and easy-to-follow code snippets. Our toolbox is
available in Python and Matlab—two widely used
languages in neuroimaging, neuroinformatics, and
genetics communities—and is compatible with a range
of subject-level, as well as meta- and mega-analytic
datasets. Data and codes are openly accessible

(http://github.com/MICA-MNI/ENIGMA) and
complemented with expandable online documentation
(http://enigma-toolbox.readthedocs.io).

RESULTS

The ENIGMA Toolbox is an ecosystem composed of
three modules. Each of these modules can be stand-alone
or integrated with one another, allowing for greater
flexibility, adaptiveness, and continuous development.
We provide thoroughly documented workflows that
users can easily adapt to their own datasets.

Data archiving and accessing

The ENIGMA Toolbox stores and accesses summary
statistics from several ENIGMA Working Groups in a
central repository. Given that data sharing practices can
at times be challenging, in part due to privacy and
regulatory protection, ENIGMA represents a practical
alternative for standardized data processing and
anonymized analysis of results (i.e., meta-analysis) as well
as the sharing of non-identifiable derivatives (i.e., mega-
analysis). Available datasets within our Toolbox consist
of summary statistics from several ENIGMA Working
Groups. The current release (¢1.1.0) includes 100+ case-
control summary statistics from eight Working Groups,
including: 22.q11.2 deletion syndrome, attention
deficit/hyperactivity disorder, autism spectrum disorder,
bipolar disorder, epilepsy, major depressive disorder,
obsessive-compulsive disorder, and schizophrenia (see
METHODS). These datasets, obtained from standardized
and quality-controlled protocols, represent
morphological (eg., subcortical volume, cortical
thickness, surface area) case-control effect sizes from
previously published meta-analyses*6. 9-13 and can be
retrieved using the function (Fig.
1B, C) and used for secondary analyses. Summary
statistics from other Working Groups will be
continuously added as they are published.

As many ENIGMA groups have moved beyond
meta-analysis to mega-analysis of subject-level data, the
Toolbox 1s also compatible with subject-level data. As
part of the ENIGMA Toolbox, we also provide example
data from an individual site, accessible via

Alternatively, if wusers have
generated their own summary statistics/subject-level
data that adhere to ENIGMA'’s harmonized processing
and analysis protocols
(http://enigma.ini.usc.edu/protocols/), or have in-
house parcellated or vertexwise datasets, they can import
their own data locally and take advantage of every
function our Toolbox has to offer. Online tutorials,

CODE | http://github.com/MICA-MNI/ENIGMA
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a | ENIGMA's worldwide Working Groups

b | Load summary statistics (Python)

from enigmatoolbox.datasets import load_summary_stats

mmary statistics for ENIGMA-Ep

sum_stats = load_summary_stats('epilepsy )‘

2t case-control subcortical volume and cortical thickness tables
sum_stats['SubVol_case_vs_controls_ltle']
sum_stats['CortThick_case_vs_controls_ltle']

# Extract Cohen's d values
SV['d_icv']
CT['d_icv']

(o}

=

11
Q
non

d | Cross-disorder effect (Python)
from enigmatoolbox.cross_disorder import cross_disorder_effect

# Extract and visualize shared disorder effects
components, variance, names = cross_disorder_effect()

e | Cross-disorder effect (Matlab)

s Extract and visualize shared disorder effects
[components, variance, ~, names] = cross_disorder_effect();

W 22q M EEG W MDD
Addiction EOP OCD
ADHD M Epigenetics M Parkinson's
Anorexia Epilepsy Plasticity

B Anxiety M Evolution W PTSD
ASD Frontotemporal dementia rsfMRI

B Ataxia W GWAS M Scz
Autism Hippocampal subfields Storage

W 8PD W HYV M Stroke
CNVs Irritability Sulci

M Core Laterality M T8I
DTl Lifespan Tourette's syndrome

c | Load summary statistics (Matlab)

addpath(genpath('/path/to/ENIGMA/matlab/"'))

mar) ENIGMA-Epi y
sum_stats = load_summary_stats('epilepsy');

tatistics for

subcortical volume

Get case-control and cortical
= sum_stats.SubVol_case_vs_controls_ltle;

CT = sum_stats.CortThick_case_vs_controls_ltle;
Extract Cohen's d values

SV_d = SV.d_icv;

CT_d = CT.d_icv;

f| Shared effect across disorders
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Figure 1. Data archiving and accessing. (a) World map of a subset of ENIGMA’s Working Groups (color key). Each group consists of international
teams of researchers and clinicians studying major brain diseases and conditions and contributing data to the ENIGMA consortium. Case-control
summary statistics from published studies are archived in the ENIGMA Toolbox and easily accessible via simple Python (b) and Matlab (c) scripts.
Summary statistics from the Epilepsy Working Group is shown as an example. Minimal (d) Python and (e) Matlab code snippets to identify
transdiagnostic morphometric signatures. (f) Eigenvalues of each component are displayed in the scree plot. The principal component underlying the

shared cross-disorder effect is projected to the surface template.

including those related to data importation/exportation,
are suited for all dataset types.

To vyield novel insights into brain structural
abnormalities that are common or different across
disorders, available summary statistics can also be
harnessed to conduct cross-disorder analyses. From the

function, users can explore
shared and disease-specific morphometric signatures
with two different approaches: (z) by applying a principal
component analysis (PCA) to any combination of
disease-specific summary statistics, resulting in shared
latent components that can be used for further analysis

(Fig. 1D-T), and (i) by systematically cross-correlating
patterns of brain structural abnormalities with every
other set of available summary statistics, resulting in a
correlation matrix (Fig. SIA—C). Users can also upload
local summary statistics, or equivalently processed data,
for inclusion in the PCA or comparison against our
database.

Cortical and subcortical surface data visualization

The ENIGMA Toolbox provides functions to visualize
cortical and subcortical data on surface models and
generate publication-ready figures (Fig. 2A, B). To
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a | Surface data visualization (Python)

from enigmatoolbox.utils.parcellation import parcel_to_surface
from enigmatoolbox.plotting import plot_cortical, plot_subcortical

# Map parcellated data to the surface
CT_d_fsa5 = parcel_to_surface(CT_d, 'aparc_fsa5")

# Project the results on the surface brain
plot_cortical(array_name=CT_d_fsa5, color_range=(-0.5, 0.5))
plot_subcortical(array_name=SV_d, color_range=(-0.5, 0.5))

c| Cortical thickness and subcortical volume decreases in left focal epilepsy

L-medial-R

b | Surface data visualization (Matlab)

addpath(genpath('/path/to/ENIGMA/matlab/"'))

% Map parcellated data to the surface
CT_d_fsa5 = parcel_to_surface(CT_d, 'aparc_fsa5');

% Project the results on the surface brain
figure, plot_cortical(CT_d_fsa5, 'color_range'

0.5 0.5])
figure, plot_subcortical(SV_d, 'color_range', )

, [-0.50
[-0.5 0.5]

Cohen'sd
0.5

Cohen's d
Q @ ; 0.5
L-medial-R R 05

FIGURE 2. Cortical and subcortical surface visualization. Minimal (a) Python and (b) Matlab code snippets for plotting cortical thickness and subcortical
volume deficits in individuals with left focal epilepsy. (c) Summary statistics (Cohen’s d) comparing individuals with left focal epilepsy to healthy controls
are projected to the surface templates. Profound gray matter atrophy can be visually appreciated in bilateral precentral gyrus, precuneus, thalamus,

as well as left mesiotemporal regions, including the hippocampus.

illustrate the and

functions, we projected cortical and subcortical gray
matter atrophy in individuals with left focal epilepsy
relative to healthy controls to the surface templates (Fig.
2C). Beyond the mapping of gray matter atrophy, our
surface visualization function is compatible with any
neuroimaging data type, parcellation, and surface
templates. Mapping to and from brain parcellations and
the vertex-wise surface space can also be easily achieved

using the and
functions.

Multiscale contextualization

Transcriptomics data

The emergence of open databases for human

transcriptomics yields new opportunities to associate
macroscale neuroimaging findings with spatial variations
at the molecular scale!?. 2123, The Allen Institute for
Brain Science released the Allen Human Brain Atlas
(AHBA)—a brain-wide gene expression atlas comprising
microarray-derived measures from over 20,000 genes
sampled across 3,702 spatially distinct tissue samples!?.
Using the abagen toolbox?* and following guidelines
established by Arnatkeviciute et al.2l, this large
expression dataset was collapsed into cortical and

subcortical regions of interest and combined across
donors! 21 24, Genes that were consistently expressed
across donors (720.2, ngenes=12,668), can be easily
obtained using the function (Fig. 3A—-C).
Additional details on processing and analytical choices,
including parcellation compatibility and stability
thresholds, are provided in the METHODS.

BigBrain data

The  BigBrain, an  ultra-high-resolution 3D
reconstruction of a sliced and stained human brain!8, has
supported quantitative analysis of cytoarchitecture. As
part of the ENIGMA Toolbox, we characterized
regional cytoarchitecture using statistical moments of
staining profiles (see METHODS)?. Specifically, studying
the mean intracortical staining across the mantle allows
inferences on overall cellular density, whereas analysis of
profile skewness indexes the distribution of cells across
upper and lower layers of the cortex—a critical
dimension of laminar differentiation.

In addition to statistical moments, prior work has
demonstrated robust evidence for a principal gradient of
gradual cytoarchitectural variation running from
primary sensory to limbic areas, mirroring spatial trends
in laminar differentiation and cytoarchitectural
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a | Fetch disease-related gene expression data (Python)

from enigmatoolbox.datasets import fetch_ahba, risk_genes
# Fetch gene expression data

genes = fetch_ahba()

# Get the names of ocal HS phenotype

epilepsy_genes = risk_genes('epilepsy')['focalhs']

related genes (Fc

b | Fetch disease-related gene expression data (Matlab)

addpath(genpath('/path/to/ENIGMA/matlab/"'))

Fetch gen

genes = fetch_ahba();

names of epilepsy-related genes (Focal HS phenotype)

epilepsy_genes = risk_genes('epilepsy');

epilepsy_genes = epilepsy_genes.focalhs;

# Extract e expres on data for these Focal HS gene.

epilepsy_gene_data = genes[genes.columns.intersection(epilepsy_genes)] Extr

act

g these Focal HS gene

ene expression data for t S
epilepsy_gene_data = genes(:, contains(genes.Properties.VariableNames, epilepsy_genes));

c | Microarray expression data (Allen Human Brain Atlas)

AlIBG-

Label A1BG AS1 A2M A2ML1 7773

0 L_bankssts 0.4689 0.7002 0.367 0.3888 0.4824
1 L_caudalanteriorcingulate 0.6069 0.5607 0.5191 0.6108 0.5103

2 L_caudalmiddlefrontal 0.5121 0.6098 0.5163 0.4225 0.4612

79 Rpal 0.8007 0.2205 0.8173 0.5464 0.6012
80 Rput 0.6973 0.4478 0.5898 0.5592 0.6012
81 Rthal 0.3945 0.2251 0.6799 0.5665 0.5433

d | Focal HS-related gene expression

Normalized
expression value
_—

0.6

0.4

FIGURE 3. ENIGMA-friendly gene co-expression data. Minimal (a) Python and (b) Matlab code snippets to fetch disease-related gene co-expression
data. Genes related to epilepsy, more specifically focal hippocampal sclerosis (Focal HS), are extracted as an example. (c) The complete microarray
expression data can be easily accessed from the ENIGMA Toolbox and contains data from over 15,000 genes. (d) Disease-related gene co-expression
data can be mapped to the surface templates; here, we displayed the average expression levels of Focal HS genes on the cortical and subcortical

surface templates.

variations?6-28, To expand our BigBrain
contextualization module, we also incorporated this
microstructural similarity gradient to describe a sensory-
fugal transition in intracortical microstructure (see
METHODS). Stratifying cortical findings relative to this
gradient could, for example, test whether patterns of
changes are conspicuous in cortices with marked laminar
differentiation (e.g., sensory and motor cortices) or in
those with subtle laminar differentiation (e.g., limbic
cortices).

Cytoarchitectural types

To further describe microscale cortical organization, the
ENIGMA Toolbox includes a digitized parcellation of
the von Economo and Koskinas cytoarchitectonic map
of the human cerebral cortex? 29, From this mapping, five
different structural types of cerebral cortex are recorded:
7) agranular (thick with large cells but sparse layers II and
IV), @) frontal (thick but not rich in cellular substance,
visible layers Il and IV), 7iz) parietal (thick and rich in cells
with dense layers II and IV but small and slender
pyramidal cells), ) polar (thin but rich in cells,
particularly in granular layers), and ») granular or
koniocortex (thin but rich in smalls cells, even in layer

IV, and a rarified layer V)30,

Connectivity data
Neuroimaging, particularly with functional and diffusion
MRI, has become a leading tool to characterize human

brain network organization  viwo and to identify
network alterations in brain disorders. Although ongoing
efforts in ENIGMA and beyond are beginning to
coordinate analyses of resting-state functional®!-33 and
diffusion3+36 MRI data, connectivity measures remain
sparse within the consortium. As an alternative, our
Toolbox leverages high-resolution structural (derived
from diffusion-weighted tractography) and functional
(derived from resting-state functional MRI) connectivity
data from a cohort of unrelated healthy adults from the
Human Connectome Project (HCP)!. Preprocessed
cortico-cortical, subcortico-cortical, and subcortico-
subcortical functional and structural connectivity
matrices can be easily retrieved using the and

functionalities (Fig. 4A—-C). Connectivity
matrices were parcellated according to several atlases,
including the Desikan-Killiany atlas, and can thus be
readily combined with any ENIGMA-derived, or other
parcellated, datasets!. Details on subject inclusion, data
preprocessing, and matrix generation are provided in the
METHODS.

Analytical workflows

As of the current release (v1.1.0), the ENIGMA Toolbox
comprises two neural scales for the contextualization of
findings: (1) using microscale properties, namely gene
expression and cytoarchitecture, and () using
macroscale network models, such as regional hub
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a | Load connectivity data (Python)

from enigmatoolbox.datasets import load_sc, load_fc

# Load cortico-cortical functional connectivity data
fc_ctx, fc_ctx_labels, fc_sctx, fc_sctx_labels = load_fc()

# Load cortico-cortical structural connectivity data
sc_ctx, sc_ctx_labels, sc_sctx, sc_sctx_labels = load_sc()

b | Load connectivity data (Matlab)

addpath(genpath('/path/to/ENIGMA/matlab/"'))

% Load cortico-cortical functional connectivity data
[fc_ctx, fc_ctx_labels, fc_sctx, fc_sctx_labels] = load_fc();
% Load cortico-cortical structural connectivity data
[sc_ctx, sc_ctx_labels, sc_sctx, sc_sctx_labels] = load_sc();

c| Functional and structural connectivity matrices

Functional A K Structural
connectivity A connectivity
z-score X z-score
] [— |
0 0.8 0 10

FIGURE 4. High-resolution connectivity data sharing and exploiting. Minimal (a) Python and (b) Matlab code snippets to load preprocessed functional
and structural connectivity matrices. (c) Available connectivity data within the ENIGMA Toolbox include cortico-cortical, subcortico-cortical, and
subcortico-subcortical connectivity matrices. Matrices are unthresholded and parcellated according to the Desikan-Killiany atlas’.

susceptibility analysis and disease epicenter mapping.
Albeit often restricted to individual site studies, similar
approaches have been used to study microstructural
organization in healthy?6. 37. 38 and diseased3® brains, and
to model network-level patterns of disease-related
atrophy*-42. To ease programming and maximize
transparency, analytic workflows are accompanied by
comprehensive  tutorials and  visual assessment
checkpoints. As proofs of concept, we demonstrate
ready-to-use, easy-to-follow, and validated secondary
analysis tutorials to relate patterns of gray matter atrophy
in individuals with left focal epilepsy to transcriptomic,
histological, and normative connectome properties.

Transcriptomics contextualization of findings

Motivated by the growing body of research relating gene
expression to diverse properties of macroscale brain
organization, Toolbox users can import the AHBA
microarray expression dataset and visualize brain maps
of gene expression levels. This tool can also be used to
identify genes that are spatially correlated with a given
brain map (eg, a disease-related atrophy map).
Moreover, based on reports of recently published
genome-wide association studies (GWAS)#-49, users can
extract the most likely genes associated to significant
genome-wide loci across a range of disorders. From these
sets of genes, users can generate disease-specific gene
expression maps to contextualize and decode
neuroimaging findings with transcriptomics data. To
illustrate the function, we selected genes
related to focal epilepsy with hippocampal sclerosist’ and

displayed their average expression levels on the cortical
and subcortical surface templates (Fig. 3D). In this
example, we can observe higher gene co-expression
levels of epilepsy-related genes in mesiotemporal lobe
regions, overlapping with regions of profound atrophy in
individuals with left focal epilepsy. Related efforts are
underway to map the effects of common (single
nucleotide) variants in the genome on brain structure,
using visualization platforms such as ENIGMA-Vis
(https://enigma-brain.org/enigmavis/)*  and  the
Oxford  Brain  Imaging  Genetics  browser
(http://big.stats.ox.ac.uk/).

Histological contextualization of findings
Applied conjointly with ENIGMA datasets, BigBrain-
derived intracortical profile information (i.e., the
statistical moments and the principal gradient of
microstructure differentiation) offers two complementary
approaches to situate cortical findings with respect to
histological findings. For the former approach, users can
feed a thresholded cortical map—for instance areas of
significant structural abnormalities—into the
function to contextualize
macroscale features with respect to microstructural
profiles (eg., cellular density, cellular distribution
asymmetry). This quantitative approach has been used
to guide boundary definiion and fingerprint
cytoarchitecture in studies of postmortem datad!: 52,
Alternatively, thresholded (or unthresholded) cortical
maps can be fed into the function,
which discretizes the principal microstructure similarity
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gradient into five equally-sized bins and averages surface
findings within each gradient bin. From this,
neuroimaging data can be embedded into the gradient
space, allowing users to make inferences about the
underlying microstructural hierarchy of, for instance,
atrophied regions. Contextualizing gray matter atrophy
patterns in left focal epilepsy with respect to histological
properties, we were able to demonstrate that atrophy
predominantly affected cortical regions with greater, and
more evenly distributed, cellular densities across upper
and lower layers of the cortex (Fig. S2A-D)—areas
located towards the sensory apex of the cytoarchitectural
gradient (Fig. S3A-D).

Cytoarchitectonic contextualization of findings
Integration of cytoarchitecture with i vivo neuroimaging
can consolidate microstructural differentiation with
macroscale-level effects. As part of the Toolbox, users
can also leverage a digitized cytoarchitectonic atlas from
seminal postmortem work by von Economo and Koskinas?.
From the function, users
can apply this well-established decomposition to
summarize cortex-wide effects (eg., a disease-related
atrophy map) and assess relationships to distinct
cytoarchitectonic classes. To ease interpretability,
cytoarchitectonic classification of findings are also
displayed in a spider plot. To highlight how atrophy can
vary with distinct architectonic cortical types, case-
control Cohen’s 4 measures, representing atrophy in left
focal epilepsy, were averaged within each von Economo
and Koskinas cytoarchitectonic class. Projecting the
results in a radar (spider) plot revealed that the agranular
cortex was most affected by atrophy in left focal epilepsy
(Fig. S4A-C).

Hub susceptibility model

Normative structural and functional connectomes hold
valuable information for relating macroscopic brain
network organization to patterns of disease-related
atrophy (Fig. 5A, B). Prior work studying network
underpinnings of morphological abnormalities in
neurodegenerative and psychiatric disorders has
demonstrated that hubs (ie., brain regions with many
connections) typically show greater atrophy than locally-
connected peripheral nodes5 5¢. Within the ENIGMA
Epilepsy Working Group, we recently tested this
hypothesis using data from 1,021 individuals with
epilepsy and 1,564 healthy controls, and also showed
that atrophy preferentially colocalized with highly
interconnected hub regions in the common epilepsies?.
A series of follow-up ENIGMA studies are currently

underway to assess these network-level effects in other
disorders.

Building on the above-described functions, we can
first derive weighted degree centrality maps from
functional (or structural) connectivity data by computing
the sum of all weighted cortico- and subcortico-cortical
connections for every region, with higher degree
centrality denoting hub regions (Fig. 5C). Spatial
similarity between atrophy patterns (obtained from
individuals with left focal epilepsy as an example) and
hub distributions can then be compared through
correlation analysis (and statistically assessed via spin
permutation tests; see below), revealing that profound
atrophy implicates functional cortico- and subcortico-
cortical hubs more strongly than nonhub regions (Fig.

5D).

Disease epicenter model

To further investigate whether disease-related
morphological abnormalities (eg., atrophy) follow
overarching principles of connectome organization, one
can identify disease epicenters. Disease epicenters are
regions whose functional and/or structural connectivity
profile spatially resembles a given disease-related atrophy
map?20- 9042 Hence, disease epicenters can be identified
by spatially correlating every region’s healthy functional
and/or structural connectivity profiles to whole-brain
atrophy patterns in a given disease. This approach must
be repeated systematically across the whole brain,
assessing the statistical significance of the spatial
similarity of every region’s functional and/or structural
connectivity profiles to disease-specific abnormality
maps with spatial permutation tests. Cortical and
subcortical epicenter regions can then be identified if
their connectivity profiles are significantly correlated
with the disease-specific abnormality map. Regardless of
its atrophy level, a cortical or subcortical region could
potentially be an epicenter if it is (z) strongly connected to
other high-atrophy regions and (i) weakly connected to
low-atrophy regions. Moreover, disease epicenters do
not necessarily represent hub regions, but may rather be
connected to them (ie., so-called ‘feeder nodes’, which
directly link peripheral nodes to hubs). As in prior work20,
this approach suggests that patterns of atrophy in left
focal epilepsy are anchored to the connectivity profiles of
mesiotemporal regions (Fig. SSA-C).

Statistical comparison of spatial maps

The intrinsic spatial smoothness of brain maps—where
data from neighboring regions are not statistically
independent of each other—violates the underlying
assumptions of several inferential statistical tests and
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a | Hub susceptibility model (Python)

import numpy as np

# Remove subcortical values corresponding to the ventricles

SV_d_noVent =
np.where(SV['Structure'] ==

SV_d_noVent = SV_d_noVent.reset_index(drop=True)

# Compute weighted degree centrality measures

fc_ctx_dc = np.sum(fc_ctx, axis=0)

fc_sctx_dc = np.sum(fc_sctx, axis=1)

# Perform spatial correlations between hubs and Cohen's d

fc_ctx_r = np.corrcoef(fc_ctx_dc, CT_d)
fc_sctx_r = np.corrcoef(fc_sctx_dc, SV_d_noVent)

c | Normative connectome organization

Cortico-cortical
degree centrality 0.4

Functional
egree
centrality

e | Permutation testing (Python)

from enigmatoolbox.permutation_testing import spin_test, shuf_test

# Spin permutation testing for two cortical maps
fc_ctx_p, fc_ctx_d = spin_test(fc_ctx_dc, CT_d, null_dist=True)

# Shuf permutation testing for two subcortical maps
fc_sctx_p, fc_sctx_d = shuf_test(fc_sctx_dc, SV_d_noVent, null_dist=True)

f | Permutation testing (Matlab)

addpath(genpath('/path/to/ENIGMA/matlab/"'))

% Spin permutation testing for two cortical maps
[fc_ctx_p, fc_ctx_d] = spin_test(fc_ctx_dc, CT_d);

% Shuf permutation testing for two subcortical maps
[fc_sctx_p, fc_sctx_d] = shuf_test(fc_sctx_dc, SV_d_noVent);

SV_d.drop([np.where(SV['Structure'] == 'LLatVent')[0][0],
‘RLatVent*)[0][0]])

120

Subortico-cortical
degree centrality
10

b | Hub susceptibility model (Matlab)

addpath(genpath('/path/to/ENIGMA/matlab/"'))

% Remove subcortical values corresponding the ventricles

SV_d_noVent = SV_d;

SV_d_noVent([find(strcmp(SV.Structure, 'LLatVent')); ...
find(strcmp(SV.Structure, 'RLatVent'))], :) = [];

% Compute weighted degree centrality measures
fc_ctx_dc = sum(fc_ctx);
fc_sctx_dc = sum(fc_sctx, 2);

% Perform spatial correlations between hubs and Cohen's d
fc_ctx_r = corrcoef(fc_ctx_dc, CT_d);
fc_sctx_r = corrcoef(fc_sctx_dc, SV_d_noVent);

d | Correlations between hubs and atrophy in left focal epilepsy

0.2
0.0
-0.2
-0.4

Cortical thickness
Subcortical volume

-0.6
-0.8

-1.0

10 15 20 25 30 2 4 6 8 10
Functional cortical hubs Functional subcortical hubs

g | Permutation testing for hub-atrophy spatial correlations

Shuf permutation

Spin permutation
(two subcortical maps)

(twc cortical maps)

Pro.m
L 7 sphere
sw.
subcun:al
“ﬂz\‘ Map @ qa @ % @
2 (-ba(klo_

-0.50 -0.25 0.00 0.25 0.50
Null correlations
(functional subcortical hubs)

-0.50 -0.25 0.00 0.25  0.50
Null correlations
(functional cortical hubs)

FIGURE 5. Advanced analytical workflows: hub susceptibility models and spin permutation testing. Minimal (a) Python and (b) Matlab code snippets to
assess relationships between hubs and patterns of atrophy. (c) Functional degree centrality, derived from the HCP dataset, was used to identify the
spatial distribution of hub regions. (d) Strong negative associations between cortical thickness/subcortical volume Cohen’s d values and cortico-
/subcortico-cortical degree centrality were observed, indicating that atrophy preferentially colocalized with hub regions. Minimal (e) Python and (f)
Matlab code snippets to assess statistical significance of two surface maps while preserving spatial autocorrelation. (g) A schematic of the spin and shuf
permutation frameworks for cortical and subcortical maps, respectively. The null distributions of correlations are shown; the empirical (i.e., original)
correlation coefficients and associated spin permuted p-values are indexed by the dashed line.

consequently inflates the apparent significance of their
spatial correlation, unless more sophisticated tests are
used. To overcome these shortcomings and minimize
Type I error, our Toolbox includes non-parametric
spatial permutation models to assess statistical
significance while preserving the spatial autocorrelation
of brain maps3> 3. With such functionality, for instance
spin_test(), the spatial coordinates of the surface data
are projected onto the surface spheres and randomly

rotated to generate surface maps with randomized
topography but identical spatial autocorrelation. The
empirical (i.e., real) correlation coeflicient can then be
compared against the null distribution determined by the
ensemble of correlation coefficients comparing spatially
permuted surface maps. Spatial correspondence between
two subcortical surface maps can be examined via a
standard non-parametric null model, namely
shuf_test(), where subcortical labels are randomly
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shuffled as opposed to being projected onto spheres. To
illustrate these functions, we assessed the statistical
significance of cortical and subcortical hub-atrophy
correlations in left focal epilepsy (Fig. 5E, I) and
displayed the empirical correlation coeflicients onto the
null distributions of permuted correlations (Fig. 5G).

DISCUSSION

The ENIGMA Toolbox is an integrated ecosystem that
dovetails with ENIGMA’s standardized data processing
and  meta-analysis  strategies for  integration,
visualization, and contextualization of multisite results.
Our Toolbox relies on a simple but efficient codebase for
exploring and analyzing big data, aiming to facilitate and
homogenize follow-up analyses of ENIGMA, or other,
MRI datasets around the globe. At its core, the Toolbox
is composed of three modules for (¢) archiving, accessing,
and integrating case-control meta-analytic datasets from
specialized Working Groups, (i) cortical and subcortical
surface data visualization, and () contextualizing
findings based on transcriptomics, cytoarchitecture, and
connectivity data. Owing to its comprehensive tutorials,
detailed functionality descriptions, and visual reports,
our Toolbox is accessible to researchers and clinicians
without extensive programming expertise within and

beyond ENIGMA itself.

Enriching @ wvivo morphological correlates with
postmortem microstructural information can deepen our

understanding of the molecular and cellular
underpinnings of healthy and diseased brain
organization.  To  illustrate  such  microscale

contextualization, we provide several tutorial examples
that reference ENIGMA-type maps of gray matter
atrophy in individuals with epilepsy against postmortem
gene co-expression and histological measures. Based on
the gene expression atlas from the Allen Institute for
Brain Science!’, which compiles information on
transcription of thousands of genes across the adult
brain, users can compare spatial patterns of brain-wide
gene expression to MRI-derived neuroanatomy
measures. Importantly, microarray expression data
within our Toolbox were processed according to
recommendations for best practice summarized in
Arnatkeviciuté and colleagues using the open-access
abagen toolbox
(https://abagen.readthedocs.io/en/stable/)?%,

facilitating comparisons of findings across studies. Prior
neuroimaging studies have already identified specific
transcriptomic signatures of cortical morphometry in

early brain development®’, cortical anatomy changes in
youth with known genomic dosage variations®®,
myeloarchitectural development in adolescence®, and
autism pathophysiology®, bridging microstructural and
macroscopic scales of brain organization (for a review,
see 22). Similarly, in a large-scale collaborative effort
involving six ENIGMA Working Groups, Patel and
colleagues correlated brain-wide cell-specific gene
expression with group differences in cortical thickness,
revealing shared neurobiological processes that underlie
morphological phenotypes of multiple psychiatric
disorders!6. Moreover, as part of our toolbox, we also
made the digital cell body-stained BigBrain!® and von
Economo and Koskinas cytoarchitectural atlas 29 easily
accessible and compatible with various neuroimaging
parcellations. From the 3D histological BigBrain, several
groups have made promising headway into mapping the
patterns of cortical laminar architecturet!, exploring
histological underpinnings of MRI-based thickness
gradients in sensory and motor cortices2, and identifying
a sensory-fugal axis of microstructural differentiation26.
On the other hand, histological atlases, such as the one
by von Economo and Koskinas, are invaluable for
linking brain microstructure to functional localization3°.
The digitized parcellation of von Economo and Koskinas
cytoarchitectural types, thus, enables users to speculate
on the underlying cytoarchitectural composition of, for
instance, structurally abnormal areas in specific diseases.
When combined, transcriptomic and cytoarchitectonic
decoding can embed neuroimaging findings in a rich
neurobiological context and yield potentially novel
insights into the etiology of several brain disorders.

At the macroscopic level, network connectivity offers
a vantage point to quantify brain reorganization in
diseases that are increasingly being conceptualized as
network disorderss3-65. To exemplify the potential of
macroscale network modeling, our Toolbox provides
detailed tutorials on how to relate neuroimaging surface
maps to normative connectome properties derived from
functional and diffusion MRI. Building on prior
neurodegenerative*? 5 and psychiatrict research, as well
as recent work from our group?’, Toolbox users can build
hub susceptibility models to assess the vulnerability of
highly connected network hubs to disease-related effects.
Given their role in integrative processing, as well as their
high topological value and biological cost, hub regions
have been hypothesized to be preferentially susceptible
to diverse pathological perturbations®7. 68. Consequently,
hub decoding represents an invaluable tool to interrogate

whether  heightened  connectivity, atrophy, or
metabolism properties in hubs relate to disease-specific
processes. Complementing the hub susceptibility
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approach, another network modeling functionality
available within our Toolbox i1s disease epicenter
mapping, an analysis technique originally developed to
study the spread of atrophy in neurodegenerative
diseases®®. Subsequent in vivo neuroimaging research
provided evidence that network connectivity may herald
patterns of gray matter atrophy in schizophreniato,
Parkinson’s disease*? 70, and frontotemporal dementia
syndromes*!, each linking greater atrophy to the
connectivity profiles of distinct epicenters. Also applied
to the common epilepsies as part of an ENIGMA-
Epilepsy secondary project?9, this approach identified
mesiotemporal epicenters in temporal lobe epilepsy and
subcortico-cortical epicenters in generalized epilepsy,
regions known to be involved in pathophysiology of each
syndrome’!-75. Combined, these two network models can
significantly advance our understanding of how
connectome architecture relates to morphological
abnormalities across a range of disorders. Indeed, as with
the microscale contextualization, our macroscale hub-
and epicenter-based analytic pipelines can be applied to
any neuroimaging datasets. Network models can be
further enriched with microstructural properties to inject
multiscale information into cortical and subcortical
morphometric findings’®.

To enhance interpretability and avoid ‘black-box’
solutions, datasets, codes, and functionalities within our
Toolbox are openly accessible and thoroughly
documented. We hope that these efforts accelerate
research and increase reliability and reproducibility.
Notably, the modular architecture of our Toolbox allows
for continuous development of analytical functionalities
and tutorials. Future planned releases are poised to
embrace new scientific approaches as they are published,
adapting to new datasets (eg, PsychEncode
consortium’’), modalities (e.g., resting-state functional
MRI), and analytic pipelines (e.g., structural covariance
network analysis). Extension of the ENIGMA Toolbox
to increase versatility of secondary analyses to additional
brain parcellations, as well as vertex- and voxel-wise
space, is already part of the development roadmap and
will be updated to accommodate users’ requests.
Integration of analytic methods from users around the
globe is supported and encouraged to maximize the
contribution, reusability, and adaptability of any
neuroimaging datasets.

In closing, by bridging the gap between pre-
established data processing protocols and several analytic
workflows, we hope that the ENIGMA Toolbox
facilitates neuroscientific contextualization of results and
cross-consortia initiatives. We are eager for researchers

and clinicians to test hypotheses beyond traditional case-
control comparisons. We hope that our platform will
lead to novel and harmonized analyses in global
neuroimaging initiatives.

MATERIALS AND METHODS

Code data availability

All code used for data analysis and visualization is
available on GitHub (http://github.com/MICA-
MNI/ENIGMA). The ENIGMA Toolbox Python
package relies on the following open-source
dependencies:  Matplotlib’8,  NiBabel?, nilearnso,
Numpy?!: 82) pandas®, seaborn®4, Scikit-learnss, SciPy86,
and VTKS®7. Users seeking help are encouraged to
subscribe and post their questions to the ENIGMA
Toolbox mailing list at
https://groups.google.com/g/enigma-toolbox.

ENIGMA data description

Meta-analytical comparisons (summary statistics)
ENIGMA’s standardized protocols for data processing,
quality assurance, and meta-analysis of individual subject
data were conducted at each site
(http://enigma.ini.usc.edu/protocols/imaging-
protocols/). For site-level meta-analysis, all research
centres within a given specialized Working Group tested
for case vs. control differences using linear models, where
diagnosis (e.g., healthy controls us. individuals with
epilepsy) was the predictor of interest, and subcortical
volume, cortical thickness, or surface area of a given

brain region was the outcome measure. Case-control
differences were computed across all regions using either
Cohen’s d effect sizes or t-values, after adjusting for
different combinations of age, sex, dataset/scan
site/scanner differences, intracranial volume (IVC), and
intelligence quotient (IQ) effects (see Table S1 and online
documentation for disease-specific models). Across-site
random-effects meta-analyses of Cohen’s d/¢-values were
then performed for each of the cortical and subcortical
region. These ENIGMA summary statistics can be
retrieved from the ENIGMA Toolbox and contains the
following data: effect sizes for case-control differences
(d_icv), standard error (se_icv), lower bound of the
confidence interval (low_ci_icv), upper bound of the
confidence interval (up_ci_icv), number of controls
(n_controls), number of patients (n_patients), observed p-
values (pobs), false discovery rate (FDR)-corrected p-
value (fdr_p).

Individual site or mega-analytic data
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Functionalities and tutorials within the ENIGMA
Toolbox are generalizable to individual site or mega-
analysis datasets, which pool individual-level data. Due
to restrictions of individual-level data transfer, however,
we provide an ENIGMA-derived example dataset that
includes fully anonymized data from ten healthy controls
(7 females, age£SD=33.3£8.8 years) and ten individuals
with drug-resistant temporal lobe epilepsy (7 females,
age+tSD=39.8£14.8 years). The Ethics Committee of
the Montreal Neurological Institute and Hospital
approved the study. Written informed consent, including
a statement for open sharing of collected data, was
obtained from all participants. As per ENIGMA-
Epilepsy protocols, users can fetch covariate information
(subject ID, diagnosis, sub-diagnosis, handedness, age at
onset, duration of illness, and ICV), regional volumetric
data (from 12 subcortical regions—namely bilateral
accumbens, amygdala, caudate, pallidum, putamen, and
thalamus, bilateral hippocampus, and bilateral
ventricles), and cortical thickness and surface area from
every Desikan-Killiany cortical region!. Given the
standardized ENIGMA format, users can easily replace
our example dataset with any other individual site or
mega-analysis datasets of their own.

Compatibility with other datasets

To increase generalizability and usability, every function
within the ENIGMA Toolbox is compatible with any
neuroimaging data parcellated according to the Desikan-
Killiany!, Glassers8, and Schaefer?® parcellations (other
parcellations will be added upon request).

Transcriptomics data and contextualization

As part of the ENIGMA Toolbox, users can fetch and
manipulate preprocessed microarray expression data
collected from six human donor brains and released by
the Allen Institute for Brain Sciences!’”. Microarray
expression data were first generated using abagen?t, a
toolbox that provides reproducible workflows for
processing and preparing gene co-expression data
according to previously established recommendations?!;
preprocessing steps included intensity-based filtering of
microarray probes, selection of a representative probe
for each gene across both hemispheres, matching of
microarray samples to brain parcels from the Desikan-
Killiany!, Glasser®8, and Schaefer?® parcellations,
normalization, and aggregation within parcels and
across donors. Moreover, genes whose similarity across
donors fell below a threshold (r<0.2) were removed,
leaving, for instance, a total of 12,668 genes for analysis
using the Desikan-Killiany atlas. To accommodate users,
we also provide unthresholded gene datasets with

varying stability thresholds (=0.2, r=0.4, 7=20.6, =0.8)
for every parcellation
(https://github.com/saratheriver/enigma-extra).

ENIGMA Toolbox users can furthermore query pre-
defined lists of disease-related genes (obtained from
several recently published GWAS), including gene sets
for attention deficit/hyperactivity disorder (fgenes=26)%3,
autism spectrum disorder (ngenes=30)*, bipolar disorder
(Ngenes=30),  depression  (fgenes=269)%,  common
epilepsies (fgenes=21)Y7, schizophrenia (ngenes=213)%8, and
Tourette’s syndrome (genes=958)*. These gene sets can be
subsequently mapped to cortical and subcortical regions
using the Allen Human Brain Atlas!” and projected to
surface templates using our surface visualization tools.

BigBrain data and contextualization

BigBrain is a ultra-high resolution, 3D volumetric
reconstruction of a postmortem Merker-stained and sliced
human brain from a 65-year-old male, with specialized
pial and white matter surface reconstructions (obtained
via the open-access BigBrain repository:
https://bigbrain.loris.ca/main.php)!8. The postmortem
brain was paraffin-embedded, coronally sliced into 7400
20pm  sections, silver-stained for cell bodies?, and
digitized. A 3D reconstruction was implemented with a
successive  coarse-to-fine  hierarchical procedure?!,
resulting in a full brain volume. For the ENIGMA
Toolbox, we used the highest resolution full brain
volume (100pm isotropic voxels), then generated 50
equivolumetric surfaces between the pial and white
matter surfaces. The equivolumetric model compensates
for cortical folding by varying the Euclidean distance
between pairs of intracortical surfaces throughout the
cortex, thus preserving the fractional volume between
surfaces?2. Next, staining intensity profiles, representing
neuronal density and soma size by cortical depth, were
sampled along 327,684 surface points in the direction of
cortical columns.

Following seminal histological works! 52 59 we
characterized vertex-wise cytoarchitecture by taking two
central moments of the staining intensity profiles (mean
and skewness). Finally, the Desikan-Killiany atlas was
nonlinearly transformed to the BigBrain histological
surfaces? and central moments were averaged within
each parcels, excluding outlier vertices with values more
than three scaled median absolute deviations away from
the parcel median.

The BigBrain gradient was obtained from the original
publication?6 and mapped to the Desikan-Killiany!,
Glasser®s, and Schaefer$ parcellations. In brief, the
authors derived an MPC matrix by correlating BigBrain
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intensity profiles between every pair of regions in a 1,012
cortical node parcellation, controlling for the average
whole-cortex intensity profile. The MPC matrix was
thresholded row-wise to retain the top 10% of
correlations and converted into a normalized angle
matrix. Diffusion map embedding® %, a nonlinear
manifold learning technique, identified the principal axis
of variation across cortical areas, i.e, the BigBrain
gradient. In this space, cortical nodes that are strongly
similar are closer together, whereas nodes with little to
no intercovariance are farther apart. To allow
contextualization of surface-based findings, we mapped
the BigBrain gradient to the Desikan-Killiany atlas and
partitioned it into five equally sized discrete bins.

Cytoarchitectonics data and contextualization

By adapting a previously published approach??, we
mapped the cytoarchitectonic atlas of von Economo and
Koskinas? to cortical surface templates.
Cytoarchitectonic class labels from the original five
different structural types of cerebral cortex (agranular,
frontal, parietal, polar, granular) were manually assigned
to each parcellation region?® and subsequently mapped
to vertex-wise space.

To stratify cortex-wide effects according to the five
cytoarchitectonic classes, the
function maps parcellated data (eg., disease-related
atrophy map on the Desikan-Killiany atlas) to vertex-
wise space and iteratively averages values from all
vertices within each class.

Connectivity data for macroscale connectome
models

As in prior work?, we selected a group of unrelated
healthy  adults (»=207; 83  males, mean
agetSD=28.73+3.73 years, range=22-36 years) from
the HCP dataset!9. HCP data were acquired on a
Siemens Skyra 3T and included: (i) T'1-weighted images
(magnetization-prepared ~ rapid  gradient  echo
[MPRAGE] sequence, repetition time [TR]=2,400ms,
echo time [TE]=2.14ms, field of view [FOV]=224X224
mm?, voxel size=0.7X0.7X0.7 mm, 256 slices), («)
resting-state functional MRI (gradient-echo echo-planar
imaging [EPI] sequence, TR=720 ms, TE=33.1 ms,
FOV=208X180 mm?2, voxel size=2 mm?3, 72 slices), and
(i) diffusion MRI (spin-echo EPI sequence, TR=5,520
ms, TE=89.5ms, FOV=210X180, voxel size=1.25mm3,
b-value=1,000/2,000/3,000 s/mm?2, 270 diffusion
directions, 18 b0 images). HCP data underwent the
initiative’s minimal preprocessing%. In brief, resting-
state functional MRI data underwent distortion and
head motion corrections, magnetic field bias correction,

skull removal, intensity normalization, and were mapped
to MNI152 space. Noise components attributed to head
movement, white matter, cardiac pulsation, arterial, and
large vein related contributions were automatically
removed using FIX97. Preprocessed time series were
mapped to standard gray ordinate space using a cortical
ribbon-constrained volume-to-surface mapping
algorithm and subsequently concatenated to form a
single time series. Diffusion MRI data underwent b0
intensity normalization and correction for susceptibility
distortion, eddy currents, and head motion. High-
resolution functional and structural data were
parcellated according to the Desikan-Killiany!,
Glassers, as well as Schaefer 100, 200, 300, and 40089

parcellations.

Normative functional connectivity matrices were
generated by computing pairwise correlations between
the time series of all cortical regions and subcortical
(nucleus accumbens, amygdala, caudate, hippocampus,
pallidum, putamen, thalamus) regions; negative
connections were set to zero. Subject-specific
connectivity matrices were then z-transformed and
aggregated across participants to construct a group-
average functional connectome. Available cortico-
cortical, subcortico-cortical, and subcortico-subcortical
matrices are unthresholded. Normative structural
connectivity matrices were generated from preprocessed
difftusion MRI data using MRtrix3%. Anatomical
constrained tractography was performed using different
tissue types derived from the Tl1-weighted image,
including cortical and subcortical gray matter, white
matter, and cerebrospinal fluid?®. Multi-shell and multi-
tissue response functions were estimated!® and
constrained spherical deconvolution and intensity
normalization were performed!0l. The initial tractogram
was generated with 40 million streamlines, with a
maximum tract length of 250 and a fractional anisotropy
cutoff of 0.06. Spherical-deconvolution informed
filtering of tractograms (SIFT2) was applied to
reconstruct whole-brain streamlines weighted by the
cross-section multipliers!®2. Reconstructed streamlines
were mapped onto the 68 cortical and 14 subcortical
(including hippocampus) regions to produce subject-
specific structural connectivity matrices. The group-
average normative structural connectome was defined
using a distance-dependent thresholding procedure,
which preserved the edge length distribution in
individual patients!%3, and was log transformed to reduce
connectivity strength variance. As such, structural
connectivity was defined by the number of streamlines
between two regions (z.e., fiber density).
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SUPPLEMENTARY TABLE 1. ENIGMA data description. Available case-control summary statistics. Abbreviations: FDR, false discovery rate; ICV, intracranial
volume; 1Q, intellectual quotient; GGE, idiopathic/genetic generalized epilepsy; TLE-L, left temporal lobe epilepsy; TLE-R, right temporal lobe epilepsy.
“mega-analysis, Tmean [(left+right)/2] region of interest volume, ¥p<0.0156 for FDR correction at g=0.05, $p<0.00491 for FDR correction at g=0.05.

Available
measures

ENIGMA
Working Group

Case-control comparisons

FDR-
corrected
p-values

Correction

Ref

Cortical
thickness

Surface

22011.2 area

DELETION
SYNDROME

Subcortical
volume

Cortical
thickness”

ATTENTION
DEFICIT/HYPER-
ACTIVITY DISORDER

Surface
area”

Subcortical
volume™ T

AUTISM SPECTRUM Cortical
DISORDER thickness

Cases vs. controls
+Psychosis vs. -Psychosis

Cases vs. controls
+Psychosis vs. -Psychosis

Cases vs. controls
A-D deletion vs. controls
A-B deletion vs. controls

A-B deletion vs. A-D
deletion
+Psychosis vs. -Psychosis

Cases vs. controls (all ages)
Cases vs. controls (adults;
age 22-63 years)
Cases vs. controls
(adolescents; age 15-21
years)

Cases vs. controls (children;
age 4-14 years)

Cases vs. controls (all ages)
Cases vs. controls (adults;
age 22-63 years)
Cases vs. controls
(adolescents; age 15-21
years)

Cases vs. controls (children;
age 4-14 years)

Cases vs. controls (all ages)
Cases vs. controls (adults;
age 22-63 years)
Cases vs. controls
(adolescents; age 15-21
years)

Cases vs. controls (children;
age 4-14 years)

Cases vs. controls (meta-
analysis)

Cases vs. controls (mega-
analysis)

Age, sex, data
set/site

v

Age, sex, data
set/site, ICV

Age, age?,
sex, scan site, J
ICV

Age, sex v

Age, sex, ICV V4

Age, sex, ICV,

+
site v

Age, sex, IQ N4

Sun et al.10

Sun et al.10

Ching et
5104

Hoogman et
al.6

Hoogman et
al.

Hoogman et
a].105

van Rooij et
al.1?2

CODE | http://github.com/MICA-MNI/ENIGMA

DOCUMENTATION | http://enigma-toolbox.readthedocs.io



https://doi.org/10.1101/2020.12.21.423838
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423838; this version posted March 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Lariviere et al.

ENIGMA Toolbox | 20

FDR-

ENIGMA Available . . Bonferroni
. Case-control comparisons Correction corrected . Ref
Working Group measures correction
p-values
Surface _ - - - -
area
Subcortical Cases vs. controls (meta- Age, sex, 1Q, Y B van Rooij et
volume analysis) ICV al.1?2
Cases vs. controls (adults;
age=25 years)
Type | vs. type Il (adults;
Cortical age=25 years) . s
thickness Cases vs. controls Age, sex v B Hibar et al.
(adolescents; age<25 years)
Type | vs. type Il
(adolescents; age<25 years)
Cases vs. controls (adults;
BIPOLAR DISORDER age=25 years)
Type | vs. type Il (adults;
Surface age=25 years) Age, sex, ICV N4 - Hibar et al.?
area Cases vs. controls
(adolescents; age<25 years)
Type | vs. type Il
(adolescents; age<25 years)
Subcortical Type I vs. controls Hibar et
+ Type Il vs. controls Age, sex, ICV V8 - 106
volume al.
Type Il vs. type |
All epilepsies vs. controls
GGE vs. controls
Cortical TLE-L vs. controls a Whelan et
thickness TLE-R vs. controls A, 59 IEY v AL al.’3
All other epilepsies vs.
controls
Surface
EPILEPSY - - - - -
area
All epilepsies vs. controls
GGE vs. controls
Subcortical TLE-L vs. controls 4 Whelan et
volume TLE-R vs. controls A, 59 IEY v Al al.’3
All other epilepsies vs.
controls
. Schmaal et
Cortical Cases vs. controls (adults; Age, sex, scan v - al9
thickness age>21 years) site ’
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. FDR- .
ENIGMA Available . . Bonferroni
. Case-control comparisons Correction corrected . Ref
Working Group measures p-values correction

First episode vs. controls
(adults; age>21 years)
Recurrent vs. controls
(adults; age>21 years)

First episode vs. recurrent
(adults; age>21 years)

Early onset (age of onset
<21 years) vs. controls
(adults; age>21 years)

Late onset (age of onset
>21 years) vs. controls
(adults; age>21 years)

Early onset vs. late onset
(adults; age>21 years)

Cases vs. controls
(adolescents; age<21 years)
First episode vs. controls
(adolescents; age<21 years)
Recurrent vs. controls
(adolescents; age<21 years)
First episode vs. recurrent
(adolescents; age<21 years)

Cases vs. controls (adults;
age>21 years)

MaJor First episode vs. controls
DEPRESSIVE (adults; age>21 years)
DISORDER Recurrent vs. controls

(adults; age>21 years)
First episode vs. recurrent
(adults; age>21 years)
Early onset (age of onset
<21 years) vs. controls
(adults; age>21 years)
Surface Late onset (age of onset Age, sex, scan Schmaal et
area >21 years) vs. controls site al.?
(adults; age>21 years)
Early onset vs. late onset
(adults; age>21 years)
Case vs. controls
(adolescents; age<21 years)
First episode vs. controls
(adolescents; age<21 years)
Recurrent vs. controls
(adolescents; age<21 years)
First episode vs. recurrent
(adolescents; age<21 years)

Cases vs. controls

. Early onset (age of Age, sex, ICV,
Stj/t;c:)r;t;al onset<21 years) vs. controls scanner - p<5.6x1073 SChanoa;l et
Late onset (age of onset>21 differences ‘

years) vs. controls
Early onset vs. late onset
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Available
measures

ENIGMA
Working Group

Case-control comparisons

FDR-
corrected
p-values

Bonferroni

. Ref
correction

Correction

Cortical
thickness

Surface
area

OBSESSIVE-
COMPULSIVE
DISORDER

Subcortical
volumef

First episode vs. controls
Recurrent vs. controls
First episode vs. recurrent

Cases vs. controls (adults;
age=18 years)
Medicated vs. controls
(adults; age=18 years)
Cases vs. controls
(pediatric; age<18 years)
Medicated vs. controls
(pediatric; age<18 years)

Cases vs. controls (adults;
age=18 years)
Medicated vs. controls
(adults; age=18 years)
Cases vs. controls
(pediatric; age<18 years)
Medicated vs. controls
(pediatric; age<18 years)

Cases vs. controls (adults;
age=18 years)
Medicated vs. controls
(adults; age=18 years)
Unmedicated vs. controls
(adults; age=18 years)
Medicated vs. unmedicated
(adults; age=18 years)
Early onset (age of
onset<18 years) vs. controls
(adults; age=18 years)
Late onset (age of onset=18
years) vs. controls (adults;
age=18 years)

Early onset vs. late onset
(adults; age=18 years)
With depression vs. controls
(adults; age=18 years)
Without depression vs.
controls (adults; age=18
years)

With depression vs. without
depression (adults; age=18
years)

With anxiety vs. controls
(adults; age=18 years)
Without anxiety vs. controls
(adults; age=18 years)
With anxiety vs. without
anxiety (adults; age=18
years)

Boedhoe et
al.4

Age, sex, scan
site

Boedhoe et
al.4

Age, sex, scan
site, ICV

Boedhoe et
51108

Age, sex, scan

site, ICV p<5.6x107
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. FDR- .
ENIGMA Available . . Bonferroni
. Case-control comparisons Correction corrected . Ref
Working Group measures correction
p-values
Cases vs. controls
(pediatric; age<18 years)
Medicated vs. controls
(pediatric; age<18 years)
Unmedicated vs. controls
(pediatric; age<18 years)
Medicated vs. unmedicated
(pediatric; age<18 years)
. Erp et
Cortical Cases vs. controls v - van :? €
. Age, sex al.
thickness
Erp et
Surface Cases vs. controls Age, sex v - van :? €
SCHIZOPHRENIA al.
area
Subcortical Cases vs. controls Age., sex, scan 0<5.6x10% van E1rog et
volume Cases vs. controlst site, ICV al.
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a | Cross-disorder effect (Python) c | Shared effect across disorders

from enigmatoolbox.cross_disorder import cross_disorder_effect

# Extract and visualize shared disorder effects
correlation_matrix, names = cross_disorder_effect(method='correlation')

b | Cross-disorder effect (Matlab)

addpath(genpath('/path/to/ENIGMA/matlab/"'))

% Extract and visualize shared disorder effects - Cortical correlations - Subcortical correlations
[components, variance, ~, names] = cross_disorder_effect(); Correlation coefficient (r)
-1 1

FIGURE S1. Cross-disorder effect: cross-correlation. Minimal (a) Python and (b) Matlab code snippets to systematically correlate patterns of brain structural
abnormalities across disorders. (¢) Resulting cross-correlation matrix showing similar (red) and dissimilar (blue) transdiagnostic morphometric signatures.
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a | Stratify atrophy by BigBrain statistical moments (Python) c | BigBrain statistical moments

Mean

import numpy as np
from enigmatoolbox.histology import bb_moments_raincloud

# Extract FDR-corrected p-values and find regions with p < 0.01
region_idx = np.where(CT['fdr_p'].to_numpy() <= 0.01)

# Stratify and plot results according to BigBrain statistical moments
bb_moments_raincloud(region_idx=region_idx)

Skewness

— Increased unevenness —>

b | Stratify atrophy by BigBrain statistical moments (Matlab) d | Atrophy stratified by statistical moments

addpath(genpath('/path/to/ENIGMA/matlab/"'))

Mean

% Extract FDR-corrected p-values and find regions with p < 0.01 -
region_idx = find(CT.fdr_p <= 0.01);
% Stratify and plot results according to BigBrain statistical moments » —
f = figure, <
bb_moments_raincloud(region_idx); F
-15 -1.0 -0.5 0.0 0.5 1.0 15

FIGURE S2. Advanced analytical workflows: BigBrain statistical moments. Minimal (a) Python and (b) Matlab code snippets to stratify significantly
atrophied regions according to BigBrain statistical moments. (c) Regional cytoarchitecture using two statistical moments of staining profiles: (i) mean
intracortical staining across the mantle, which allows inferences on overall cellular density, and (ii) profile skewness, which indexes the distribution of
cells across upper and lower layers of the cortex. (d) Applying this approach to individuals with left focal epilepsy revealed greater cortical atrophy in
regions with greater, and more evenly distributed, cellular densities.
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a | Stratify atrophy by the BigBrain gradient (Python) b | Stratify atrophy by the BigBrain gradient (Matlab)
import numpy as np addpath(genpath('/path/to/ENIGMA/matlab/"))

from enigmatoolbox.histology import bb_gradient_plot
% Stratify and plot results according to the BigBrain gradient

# Stratify and plot results according to the BigBrain gradient CT_d_thr(CT_d_thr == 0) = nan;
bb_gradient_plot(data=np.where(CT_d_thr == 0, np.nan, CT_d_thr), f = figure,
axis_range=(-0.6, 0.25), yaxis_label='Cohen\'s $d$') bb_gradient_plot(CT_d_thr, 'axis_range', [-0.6 0.25], ...

'yaxis_label', 'Cohen'' {\it d}');

c | BigBrain-derived gradient of d | Atrophy stratified by the BigBrain gradient
microstructure profile covariance 0.25

&
R | . =\7.:
Hile 9O = . — N

Gradient bins

£
Gradient values

profile covariance
Cohen's d

BigBrain Gradient:
parcellated
and binned

1 5 -0.60 Binl Bin2 Bin3 Bind Bin5

FIGURE S3. Advanced analytical workflows: BigBrain gradient. Minimal (a) Python and (b) Matlab code snippets to stratify significantly atrophied regions
according to the BigBrain gradient. (c) BigBrain-derived gradient of microstructural profile covariance gradient describes a sensory-fugal transition in
intracortical microstructure (top). The BigBrain gradient was then mapped to several parcellations and partitioned it into five equally sized discrete bins
(bottom). (d) Applying this approach to individuals with left focal epilepsy revealed greater cortical atrophy in areas located towards the sensory apex
(blue/green) of the cytoarchitectural gradient.
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a | Stratify atrophy by Economo-Koskinas cortical types (Python)

from enigmatoolbox.histology import economo_koskinas_spider

# Stratify cortical atrophy based on Economo-Koskinas classes
class_mean = economo_koskinas_spider(CT_d, axis_range=(-0.4, 0))

b | Stratify atrophy by Economo-Koskinas cortical types (Matlab)

addpath(genpath('/path/to/ENIGMA/matlab/"'))

% Stratify cortical atrophy based on Economo-Koskinas classes
class_mean = economo_koskinas_spider(CT_d, 'axis_range', [-0.4 0]);

c | Atrophy stratified by statistical moments

Digitized von E and Koskinas cytoarchi ics atlas
@ Frontal
Parietal
) -0.30 -0.20 -0.10 .Agranular
Polar
Granular

FIGURE S4. Advanced analytical workflows: von Economo and Koskinas cytoarchitectonic atlas. Minimal (a) Python and (b) Matlab code snippets to
stratify significantly atrophied regions according to cytoarchitectonic classes. (c) A digitized cytoarchitectonic atlas from seminal postmortem work by
von Economo and Koskinas?. Contextualizing cortical atrophy patterns in individuals with left focal epilepsy revealed greater atrophy in the agranular

cortex (purple).
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a | Disease epicenter model (Python) b | Disease epicenter model (Matlab)
import numpy as np addpath(genpath( ' /path/to/ENIGMA/matlab/"))
from enigmatoolbox.permutation_testing import spin_test
% Identify cortical epicenter values (from functional connectivity)
fc_ctx_epi = zeros(size(fc_ctx, 1), 1);
ortical epicenters (from functional connectivity) fc_ctx_epi_p = zeros(size(fc_ctx, 1), 1);
fe_ctx_s 1 for seed = 1:size(fc_ctx, 1)
fc_ctx_epip = [] seed_conn = fc_ctx(:, seed);
for seed in range(fc_ctx.shape[0]): r_tmp = corrcoef(seed_conn, CT_d);
seed_con = fc_ctx[:, seed] fc_ctx_epi(seed) = r_tmp(1, 2);
fc_ctx_epi = np.append(fc_ctx_epi, np.corrcoef(seed_con, CT_d)[0, 1]) fc_ctx_epi_p(seed) = spin_test(seed_conn, CT_d, 'surface_name', 'fsa5', 'parcellation_name', ...

fc_ctx_epi_p = np.append(fc_ctx_epi_p,
spin_test(seed_con, CT_d, surface_name='fsa5', parcellation_name='aparc', end
type='pearson’, n_rot=1000, null_dist=False))

‘aparc', 'n_rot', 1000, 'type', 'pearson’);

% Identify subcortical epicenter values (from functional connectivity)

# Identify subcortical epicenters (from functional connectivity) fc_sctx_epi = zeros(size(fc_sctx, 1), 1);
fc_sctx_epi = [] fc_sctx_epi_p = zeros(size(fc_sctx, 1), 1);
fc_sctx_epip = [] for seed = 1:size(fc_sctx, 1)
for seed in range(fc_sctx.shape[0]): seed_conn = fc_sctx(seed, :);

seed_con = fc_sctx[seed, :] r_tmp = corrcoef(seed_conn, CT_d);

fc_sctx_epi = np.append(fc_sctx_epi, np.corrcoef(seed_con, CT_d)[0, 1]) fc_sctx_epi(seed) = r_tmp(l, 2);

fc_sctx_epi_p = np.append(fc_sctx_epi_p, fc_sctx_epi_p(seed) = spin_test(seed_conn, CT_d, 'surface_name', 'fsas', 'parcellation_name', ...

spin_test(seed_con, CT_d, surface_name='fsa5', parcellation_name='aparc', ‘aparc’, 'n_rot', 1000, 'type', 'pearson');
type='pearson’, n_rot=1000, null_dist=False)) end

c | Cortical and subcortical disease epicenters

Correlation
coefficients (r)

[ __—
-0.5 05

FIGURE S5. Advanced analytical workflows: disease epicenter model. Minimal (a) Python and (b) Matlab code snippets to identify disease-specific
cortical and subcortical epicenters. (c) Applying this approach to individuals with left focal epilepsy revealed that patterns of atrophy in left focal epilepsy
were anchored to the connectivity profiles of mesiotemporal regions.
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