

1 **Evolutionary and ontogenetic changes of the anatomical organization and modularity in the**
2 **skull of archosaurs**

3

4 **Short title: Evolution of network anatomy in archosaurian skulls**

5

6 Hiu Wai Lee^{1,2}, Borja Esteve-Altava^{3*}, Arkhat Abzhanov^{1,2*}

7

8 Affiliations:

9 ¹ Department of Life Sciences, Imperial College London, Silwood Park Campus,
10 Buckhurst Road, Ascot, Berkshire SL5 7PY, United Kingdom

11 ² Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom

12 ³ Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health
13 Sciences, Pompeu Fabra University, Barcelona, Spain.

14

15 * Corresponding authors: boresal@gmail.com (B.E.A.), a.abzhanov@imperial.ac.uk (A.A.)

16 **Abstract**

17 Comparative anatomy studies of the skull of archosaurs provide insights on the mechanisms of
18 evolution for the morphologically and functionally diverse species of crocodiles and birds. One of
19 the key attributes of skull evolution is the anatomical changes associated with the physical
20 arrangement of cranial bones. Here, we compare the changes in anatomical organization and
21 modularity of the skull of extinct and extant archosaurs using an Anatomical Network Analysis
22 approach. We show that the number of bones, their topological arrangement, and modular
23 organization can discriminate birds from non-avian dinosaurs, and crurotarsans. We could also
24 discriminate extant taxa from extinct species when adult birds were included. By comparing
25 within the same framework, juveniles and adults for crown birds and alligator (*Alligator*
26 *mississippiensis*), we find that adult and juvenile alligator skulls are topologically similar,
27 whereas juvenile bird skulls have a morphological complexity and anisomerism more similar to
28 those of non-avian dinosaurs and crurotarsans than of their own adult forms. Clade-specific
29 ontogenetic differences in skull organization, such as extensive postnatal fusion of cranial bones
30 in crown birds, can explain this pattern. The fact that juvenile and adult skulls in birds do share a
31 similar anatomical integration suggests the presence of a specific constraint to their ontogenetic
32 growth.

33

34 **Keywords:** Comparative Anatomy; Cranium; Anatomical Network Analysis; Birds; Crocodiles;
35 craniofacial evolution, Archosauria

36 **INTRODUCTION**

37 The skulls of archosaurs are morphologically and functionally diverse, with clade-specific
38 specialized features that set apart crurotarsans (extant crocodilians and their stem lineage) from
39 avemetatarsalians (birds and non-avian dinosaurs)¹⁻⁷, as reviewed by Brusatte and colleagues⁸.
40 The evolution and diversification of the skull of archosaurs have been associated with changes in
41 the patterns of phenotypic integration and modularity⁹⁻¹³. For more information on integration
42 and modularity in shape, see the review by Klingenberg¹⁴. Different regions of the skull may act
43 as anatomical modules that can evolve, function, and develop semi-independently from one
44 another. Bones within a same module tend to co-vary in shape and size more with each other than
45 with bones from other such variational modules¹⁵⁻¹⁸. In addition, the bones of the skull can also
46 modify their physical articulations so that some groups of bones are more structurally integrated
47 than others, and, hence, we can recognize them as distinct anatomical-network modules, which
48 had been defined by Eble as a type of organizational modules^{15,19,20}. The relationship between
49 anatomical-network modules and variational modules is not yet fully understood, but it is thought
50 that network anatomy constrain growth patterns and shape variation²¹⁻²³.

51

52 Changes in the anatomical organization of the skull in archosaurs have been concomitant with a
53 broader evolutionary trend in tetrapods toward a reduction in the number of skull bones due to
54 loses and fusions, a phenomenon known as the Williston's law²⁴⁻²⁶. Understanding how the bones
55 are globally arranged to each other allows us to measure the anatomical complexity and
56 organization of body parts, and explain how structural constraints might have influenced the
57 direction of evolution²⁵⁻²⁸. Werneburg and colleagues compared the skull network-anatomy of a
58 highly derived *Tyrannosaurus rex*, *Alligator mississippiensis* and *Gallus gallus* with that of an
59 opossum, a tuatara, and a turtle²⁹. They found that the tyrannosaur has the most modular skull
60 organization among these amniotes, with a modular separation of the snout in upper and lower
61 sub-modules and the presence of a lower adductor chamber module. However, the specific

62 anatomical changes in the organization of the archosaur skull during their evolutionary transitions
63 more generally have never been characterized. More recently, Plateau and Foth used anatomical
64 network analysis to study postnatal ontogenetic changes in the skulls of crown bird and non-avian
65 theropods³⁰. They found that early juvenile crown birds have skulls that are less integrated and
66 more modular than those of more derived birds, resembling their non-avian theropod ancestors.

67

68 Here, we compared the anatomical organization and modularity of the skull of archosaurs using
69 Anatomical Network Analysis (AnNA)³¹ to highlight how skull topology has changed in
70 evolutionary and developmental scales. We chose AnNA over more conventional methods, such
71 as geometric morphometrics, to understand how major re-organizations of the skull (i.e., loss and
72 fusion of bones) affect the overall anatomy regardless of shape. We created network models of
73 the skull for 21 species of archosaurs, including taxa representing key evolutionary transitions
74 from early pseudosuchians to crocodiles, from non-avian theropods to modern birds, and from
75 paleognath birds to neognaths (Fig. 2). Our dataset also includes a representative ornithischian, a
76 sauropodomorph, and a basal saurischian (Supplementary Information 1) for comparison. To
77 understand the significance of the ontogenetic transitions in archosaur skulls, we provided our
78 dataset with juvenile skulls for extant birds and alligator. Network models of the skull were built
79 by coding individual cranial bones and their articulations with other bones as the nodes and links
80 of a network, respectively (Fig. 1). Network modules, defined as a group of bones with more
81 articulations among them than to other bones outside the module, were identified heuristically
82 using a community detection algorithm. We compared skull architectures using topological
83 variables (i.e. network parameters) that capture whole-skull anatomical feature (modelling and
84 analysis of anatomical networks were detailed previously^{20,25,31}).

85

86 Networks and network modules and their respective complexity, integration, modularity, and
87 anisomerism could be quantified by these network parameters: density of connections, clustering

88 coefficient, path length, heterogeneity of connections, and parcellation^{20,23,31,32}. Here, complexity
89 is defined as the relationship of bones in a skull and is associated with how abundant are the
90 interactions that bones have with each other (i.e. density of connections), how interdependent or
91 integrated the bones are (i.e. clustering coefficient), and proximity between nodes (i.e. path
92 length). A more complex network would have higher density, higher clustering coefficient, and
93 shorter path length. Anisomerism is defined as a deviation among anatomical parts³³ and could be
94 observed by the specialization of bones and measured by heterogeneity of connections, i.e. how
95 each bone has a different number of connection²⁵. Modularity is measured by parcellation, which
96 is the number of modules and the consistency in the number of bones per module.

97

98

99 MATERIAL AND METHODS

100

101 Sampling

102 We sampled extinct and extant species, and for some forms included both adults and juveniles to
103 account for ontogenetic trends within archosaurs. Namely, adults *Aetosaurus ferratus*,
104 *Archaeopteryx lithographica*, *Citipati osmolskae*, *Coelophysis bauri*, *Compsognathus longipes*,
105 *Dakosaurus andiniensis*, *Desmatosuchus haplocerus*, *Dibothrosuchus elaphros*, *Dilophosaurus*
106 *wetherilli*, *Eoraptor lunensis*, *Ichthyornis dispar*, *Plateosaurus engelhardti*, *Psittacosaurus*
107 *lujiautunensis*, *Riojasuchus tenuisceps*, *Sphenosuchus acutus*, *Velociraptor mongoliensis*, *Gallus*
108 *gallus*, *Geospiza fortis* and *Nothura maculosa*; and juveniles *Gallus gallus*, *Geospiza fortis*,
109 *Nothura maculosa* and *Alligator mississippiensis*. Within our sample set, eight species represent
110 the transition from crurotarsan archosaur ancestor to modern crocodilians and 13 species
111 represent the transition from non-avian theropods to modern birds as described previously³⁴⁻⁴³.
112 Due to the sample size limitation for extinct taxa, reconstructed and type forms were used to
113 represent each taxon and intraspecific variation could not be accounted for.

114

115 **Phylogenetic Context**

116 We created a phylogenetic tree (Figure 2) based on the previous studies^{34–37,39–44}. The tree was
117 calibrated using the R package paleotree⁴⁵ by the conservative “equal” method^{46,47}; branching
118 events were constrained using the minimum dates for known internal nodes based on fossil data
119 from Benton and Donoghue⁴⁸ (listed in Table S3) and the first and last occurrences of all 21
120 species from the Paleobiology Database using the paleobioDB package⁴⁹ in R. Because there
121 were two extinct *Nothura* species in the Paleobiology Database, the last occurrence for extant
122 *Nothura* species was adjusted to 0 (Table S2).

123

124 **Network Modelling**

125 We built anatomical network models for each archosaur skull in our sample set based on detailed
126 literature descriptions and CT scans of complete skulls (see Supplementary Information 1). Skull
127 bones were represented as the nodes of the network model and their pair-wise articulations (e.g.
128 sutures and synchondroses) were represented as links between pairs of nodes (Figure 1). Skull
129 network models were formalized as binary adjacency matrices, in which a 1 codes for two bones
130 articulating and a 0 codes for absence of articulation. Bones that were fused together without
131 trace of a suture in the specimens examined were formalized as a single individual bone.

132

133 **Network Analysis**

134 Following Esteve-Altava et al²⁸, we quantified the following topological variables for each
135 network model: the number of nodes (N), the number of links (K), the density of connections (D),
136 the mean clustering coefficient (C), the mean path length (L), the heterogeneity of connections
137 (H), the assortativity of connections (A), and the parcellation (P). The morphological
138 interpretation of these topological variables has been detailed elsewhere²⁸. A summary is
139 provided here. N and K represent the direct count of the number of individual bones and

140 articulations observed in the skull. D is the number of connections divided by the maximum
141 number of possible connections (it ranges from 0 to 1); D is a proxy measure for morphological
142 complexity. C is the average number of neighboring bones that connect to one another in a
143 network (i.e., actual triangles of nodes compared to the maximum possible): a value close to 1
144 shows all neighboring bones connect to each other while a value close to 0 shows neighboring
145 bones do not connect to each other; C is a proxy measure for anatomical integration derived from
146 co-dependency between bones. L measures average number of links separating two nodes (it
147 ranges from 1 to N-1); L is a proxy measure of anatomical integration derived from the effective
148 proximity between bones. H measures how heterogeneous connections are in a network: skulls
149 composed of bones with a different number of articulations have higher H values. If all bones had
150 the same number of connections (i.e., H = 0), it means that all bones were connected in the same
151 way and the skull had a regular shape. A measures whether nodes with the same number of
152 connections connect to each other (it ranges from -1 to 1); H and A are a proxy measure for
153 anisomerism or diversification of bones. P measures the number of modules and the uniformity in
154 the number of bones they group (it ranges from 0 to 1); P is a proxy for the degree of modularity
155 in the skull. Calculating P requires a given partition of the network into modules (see next below).

156

157 Network parameters were quantified in R⁵⁰ using the igraph package⁵¹. Networks visualization
158 was made using the visNetwork package⁵² and Cytoscape⁵³.

159

160 Principal Component Analysis

161 We performed a Principal Component Analysis (PCA) of the eight topological variables with a
162 singular value decomposition of the centered and scaled measures. On the resulting PCs, we used
163 a PERMANOVA (10,000 iterations) to test whether topological variables discriminate between:
164 (1) Avialae and non-Avialae; (2) adults and juveniles; (3) extinct and extant; (4) Crurotarsi and
165 Avemetatarsalia; (5) Neornithes and non-Neornithes; (6) early flight, can do soaring flight, can do

166 flapping flight, gliding, and flightless (details in Table S5); (7) Crurotarsi, non-avian Dinosauria,
167 and Aves; and (8) carnivorous, omnivorous, and herbivorous (dietary information in
168 Supplementary Information 4). First, we performed the tests listed above for all archosaurs. Then,
169 we repeated these tests for a sub-sample that included all archosaurs, except for all modern birds.
170 Next, we repeated these tests for a sub-sample that included all archosaurs, except for adult birds.

171

172

173 **Modularity Analysis**

174 To find the optimal partition into network modules we used a node-based informed modularity
175 strategy⁵⁴. This method starting with the local modularity around every individual node, using
176 cluster_spinglass function in igraph⁵¹, then it returns the modular organization of the network by
177 merging non-redundant modules and assessing their intersection statistically using combinatorial
178 theory⁵⁵.

179

180 **RESULTS**

181

182 **Topological discrimination of skull bones**

183 A Principal Component Analysis (PCA) of the eight topological variables measured in skull
184 network models discriminates skulls with different anatomical organizations (Figs. S1-S3). When
185 all sampled skulls are compared together, the first three principal components (PCs) explain 89.4%
186 of the total variation of the sample. PC1 (57.5%) discriminates skulls by number of their bones
187 (N), density of connections (D), and degree of modularity (P). PC2 (21.3%) discriminates skulls
188 by their degree of integration (C) and anisomerism (H). Finally, PC3 (10.6%) discriminates skulls
189 by whether bones with similar number of articulations connect with each other (A).

190

191 PERMANOVA tests confirm that different skull anatomies map onto different regions of the
192 morphospace. Thus, we can discriminate: Avialae (Aves plus *Ichthyornis* and *Archaeopteryx*)
193 versus non-Avialae ($F_{1,23} = 4.124, p = 0.006699$; Fig. 3B); Neornithes plus toothless archosaurs
194 versus archosaurs with teeth ($F_{1,23} = 6.99, p = 0.0005999$; Fig. 3C); Aves (include all modern
195 birds) versus Crurotarsi versus non-avian Dinosauria ($F_{2,22} = 3.837, p = 0.000699$; Fig. 3D); and
196 extant and extinct species ($F_{1,23} = 4.304, p = 0.0017$; Fig. S1C). However, we find no statistically
197 significant difference in morphospace occupation between crurotarsans and avemetatarsalians
198 ($F_{1,23} = 1.46, p = 0.2002$, Fig. S1D).

199
200 When all avians are excluded from the comparison, the first three PCs now explain 80.6% of the
201 total variation (Figs. S4-6). PC1 (38.6%) discriminates skulls by the density of their inter-bone
202 connections (D) and effective proximity (L). PC2 (22.6%) discriminates skulls by the number of
203 bones and their articulations (N and K). Finally, PC3 (19.5%) now discriminates skulls by their
204 anisomerism (H) and whether bones with the same number of connections connect to each (A).
205 PERMANOVA tests could not discriminate between Crurotarsi and non-avian Dinosauria ($F_{1,17} =$
206 $1.235, p = 0.3022$; Fig. S4D), and between extant and extinct species ($F_{1,17} = 2.274, p = 0.06399$;
207 Fig. S4C).

208
209 When only adult birds are excluded, the first three PCs explain 79.7% of the topological variation
210 (Figs. S7-9). PC1 (35.8%), PC2 (24.5%), and PC3 (19.5%) discriminate skull similarly as when
211 all birds are excluded (see above). PERMANOVA tests also could not discriminate between
212 juvenile birds, crurotarsans, and non-avian dinosaurs ($F_{2,19} = 1.682, p = 0.09649$; Fig. S7D), and
213 between extant and extinct species ($F_{1,20} = 2.119, p = 0.06169$; Fig. S7C).

214
215 Regardless of the sub-sample compared, we found no statistically significant difference in
216 morphospace occupation between taxa stratified by flying ability and diet (Fig. S1E, see

217 Supplementary Information 4 for details). This suggests that at least for the given sample set
218 changes in cranial network-anatomy (i.e. how bones connect to each other) are independent of
219 both dietary adaptations and the ability to fly.

220

221 **Number of network modules**

222 The number of network modules identified in archosaur skulls ranged from one (i.e. fully
223 integrated skull) in adult birds *Nothura maculosa* (the spotted tinamou) and *Geospiza fortis*
224 (medium ground finch) to eight in the non-avian dinosaur *Citipati* (Table S10). The number of
225 network modules within the studied taxa decreases during evolution of both major archosaurian
226 clades: from 6 (*Riojasuchus*) to 4 (*Desmatosuchus*), and from 6 (*Dibothrosuchus*) to 4
227 (*Dakosaurus* and all adult crocodilians) modules in Crurotarsi; from 6 (*Coelophysis*) to 4
228 (*Dilophosaurus* and *Compsognathus*), and from 8 (*Citipati*) to 4 (*Velociraptor*, *Archaeopteryx*,
229 *Ichthyornis*, and juvenile modern birds) modules in theropod-juvenile bird transition (Fig. 4A and
230 4B, Table S10). We found no modular division of the skull in adult *Nothura* and *Geospiza*. This
231 is most likely because these skulls are highly integrated due to the extensive cranial bone fusion
232 in adults, which, in turn, results in a network with very few nodes. In general, skull networks are
233 partitioned into overlapping modules.

234

235

236

237 **DISCUSSION**

238

239 **Occupation of morphospace and evolution of skull architecture**

240 The two major groups of archosaurs (Crurotarsi and Avemetatarsalia) show an analogous trend
241 towards a reduction in the number of skull bones (Table S8; Supplementary Information 3), in
242 line with the Williston's Law, which states that vertebrate skulls tend to become more specialized

243 with fewer bones as a result of fusions of neighboring bones during evolution^{25,56,57}. This
244 reduction in the number of bones and articulations, together with an increase in density, is also
245 observed within aetosaurs and sphenosuchians (Table S8). Likewise, we observed fusion of
246 paired bones into new unpaired ones: for example, left and right frontals, parietals, and palatines
247 are fused through their midline suture in the more derived taxa, such as the crocodilians (Table
248 S6). Bone fusion in extant species produced skulls that are more densely connected than the
249 skulls of extinct species (Fig. S1C). It was previously suggested that the more connected skulls
250 would have more developmental and functional inter-dependences among bones, and, hence, they
251 would be more evolutionarily constrained^{22,23}. Similarly, avian cranium with its strongly
252 correlated traits has lower evolutionary rates and bird skulls are less diverse overall¹².

253

254 Bhullar et al. pointed out that avian kinesis relies on their loosely integrated skulls with less
255 contact and, thus, skulls with highly overlapping bones would be akinetic⁵⁸. This contradicts our
256 observations here in that kinetic crown birds have more complex and integrated skulls than the
257 akinetic crurotarsans and the partially kinetic *Riojasuchus*⁵⁹. The reason could be that Bhullar et
258 al. factored in how much connective tissue and number of contact points each bone has, but not
259 the total number of connections possible from the number of bones in these taxa. The total
260 number of articulations possible is the denominator used to calculate density. More recently,
261 Werneburg and colleagues showed *Tyrannosaurus*, suspected to have kinesis, also has a higher
262 density when compared to akinetic *Alligator* but lower density when compared to the more
263 derived and clearly kinetic *Gallus* skull²⁹.

264

265 When compared with modules identified by Felice et al.⁶⁰, the node-based modules, such as the
266 rostral and neurocranial modules (shown as blue and red modules in Fig. 4), are composed of
267 elements essentially similar to those described as variational modules (more details in
268 Supplementary Information 2). The supraoccipital and basioccipital bones were part of the same

269 topology-defined (Supplementary Information 2, Fig. 4) and shape-defined module in most taxa,
270 likely due to its functional importance in connecting the vertebral column with the skull⁶⁰.

271

272 **Crurotarsi**

273 The aetosaurs, *Aetosaurus* and *Desmatosuchus*, and the sphenosuchians, *Sphenosuchus* and
274 *Dibothrosuchus*, show an increase in complexity within their lineages. The more derived aetosaur
275 *Desmatosuchus* has a fused skull roof (parietal fused with supraoccipital, laterosphenoid, prootic
276 and opisthotic) and toothless premaxilla that are absent in the less derived aetosaur *Aetosaurus*^{61–}
277 ⁶³. In contrast, basal and derived sphenosuchian are more topologically similar. Their main
278 difference is that basipterygoid and epiotic are separate in *Sphenosuchus* but are fused with other
279 bones in the more derived *Dibothrosuchus*^{64,65}. When we compared aetosaurs and sphenosuchians,
280 we found that sphenosuchians have a skull roof intermediately fused condition between
281 *Aetosaurus* and *Dibothrosuchus*: interparietal sutures in both sphenosuchians are fused while
282 supraoccipital, laterosphenoid, opisthotic, and prootic remain separate.

283

284 To understand cranial topology in Thalattosuchia, a clade with adaptations specialized for marine
285 life, we included *Dakosaurus andiniensis*. These adaptations comprise nasal salt glands⁶⁶,
286 hypocercal tail, paddle-like forelimbs, ziphodont dentition, fusion of the inter-premaxillary suture,
287 a fused vomer, and a short and high snout^{67,68}. Despite these adaptations, *Dakosaurus* has a
288 cranial complexity closer to that of extant crocodylians by similarly having inter-frontal and inter-
289 parietal fusions^{67,68}. In addition to the fused frontals and parietals, both *Crocodylus* and *Alligator*
290 have a fused palate and a fused pterygoid bones.

291

292 In turn, crurotarsans first fuse the skull roof and skull base, followed by the fusion of the face
293 (more details on Table S6). Interestingly, this resonates with the pattern of sutural fusion in
294 alligator ontogeny, which cranial (i.e. frontoparietal) has the highest degree of suture closure

295 followed by skull base (i.e. basioccipital-exoccipital) and then the face (i.e. internasal)⁶⁹
296 suggesting that the same mechanism may control topological changes in both ontogeny and
297 evolution.

298

299 **Avemetatarsalia**

300 Avemetatarsalian transition is marked with a faster ontogenetic bone growth in more derived taxa,
301 indicated by higher degree of vascularization, growth marks, and vascular canal arrangement
302 (reviewed by Bailleul⁷⁰), more pneumatized skulls (reviewed by Gold⁷¹), and an increase in
303 complexity reminiscent of what is observed in crurotarsans. The basal ornithischian *Psittacosaurus*
304 *luijiautunensis* and basal saurischian *Eoraptor lunensis* are relatively close to each other on the
305 morphospace (Fig. 3), with the *Psittacosaurus* skull showing slightly more density because of
306 fused palatines, a trait which is also observed in extant crocodilians and some birds, and its extra
307 rostral bone as observed in other ceratopsians⁷².

308

309 The basal sauropodomorph *Plateosaurus engelhardti* has the lowest clustering coefficient (i.e.
310 lower integration) of archosaurs, suggesting that skulls of sauropodomorphs are less integrated
311 than those of saurischians³¹, accompanied by poorly connected bones (as seen in the network in
312 Fig. 4C). Poorly connected bones, for example epipterygoid, and some connections, such as the
313 ectopterygoid-jugal articulation, are later lost in neosauropods^{43,73}.

314

315 Within theropods, the ceratosaurian *Coelophysis* is more derived and has a slightly more complex
316 and specialized skull than the ceratosaurian *Dilophosaurus*⁴². Their positions on the morphospace
317 suggest that ceratosaurians occupy a region characterized by a higher mean path length (L), when
318 compared to other archosaurs (Fig. 3). *Compsognathus* is close to *Riojasuchus* on the
319 morphospace with a similar mean path length (Figs 3 and S4, Table S8), its facial bones are also
320 unfused, and it has a similar composition for its facial modules (see facial modules in

321 *Compsognathus* and nasal modules in *Riojasuchus* on Table S4 and Figure S10). These
322 observations suggest an ancestral facial topology (see Table S6 and S8 for more details) is
323 concomitant to the magnitude of shape change reported for compsognathids³⁴. *Compsognathus*
324 possesses an independent postorbital that is absent from *Ichthyornis* to modern birds. It also has
325 an independent prefrontal that is absent in most Oviraptorsauria and Paraves⁷⁴, including *Citipati*,
326 *Velociraptor*, and from *Ichthyornis* to modern birds. Despite its ancestral features, the back of the
327 skull and the skull base of *Compsognathus* are fused, similarly to other Paravians and modern
328 birds.

329

330 The oviraptorid *Citipati* has a skull topology that occupies a morphospace within non-avian
331 theropods, despite its unique vertically-oriented premaxilla and short beak^{34,75}. *Citipati* has an
332 independent epipyterygoid that is also present in some non-avian theropods and ancestral
333 archosaurs, such as *Plateosaurus erlenbergiensis*, but which is absent in extant archosaurs⁷⁵⁻⁷⁸.
334 *Citipati* also has fused skull roof (with fused interparietals), skull base, and face, marked with
335 fused internasal and the avian-like inter-premaxillary sutures.

336

337 Like other dromaeosaurids, *Velociraptor*'s eyes are positioned lateral to the rostrum. Its prefrontal
338 bone is either absent or fused with the lacrimal while it remains separate in other
339 dromaeosaurids⁷⁹⁻⁸¹. We observed a loss of the prefrontals from *Citipati* to modern birds, but not
340 in more ancestral archosaurs or crurotarsans. Bones forming the *Velociraptor* basicranium, such
341 as basioccipital, and basisphenoid are fused with other members of the basicranium (listed in
342 Table S6). Despite having a similar number of bones and articulations to *Citipati*, the cranial
343 bones in *Velociraptor* are more integrated with each other and are more likely to connect to bones
344 with a different number of articulations (i.e. more disparity) (Table S8). Like *Compsognathus* and
345 other primitive non-avian dinosaurs, *Velociraptor* has an ancestral facial topology with separate
346 premaxilla, maxilla, and nasal bones.

347

348 ***Archaeopteryx* and *Ichthyornis* as intermediates between non-avian theropods and modern
349 birds**

350 The skull of *Archaeopteryx* occupied a region of the morphospace closer to non-avian dinosaurs
351 and crurotarsans than to juvenile birds (Fig. 3). The distance of *Archaeopteryx* from crown birds
352 and its proximity in the morphospace to *Velociraptor* and *Citipati* along the PC1 axis (Fig. 3)
353 may reflect the evolving relationship between cranial topology and endocranial volume. In fact,
354 *Archaeopteryx* has an endocranial volume which is intermediate between the ancestral non-avian
355 dinosaurs and crown birds^{82,83} and it is within the plesiomorphic range of other non-avian
356 Paraves⁸⁴. This makes *Archaeopteryx* closer to dromaeosaurid *Velociraptor* than to oviraptor
357 *Citipati*, for both its skull anatomy and its endocranial volume⁸⁴. Modifications related to the
358 smaller endocranial volume in *Archaeopteryx* include the unfused bones in the braincase, the
359 independent reappearance of a separate prefrontal after the loss in Paraves⁷⁴, a separate left and
360 right premaxilla as observed in crocodilian snouts and ancestral dinosaurs, and the presence of
361 separate postorbitals, which might restrict the fitting for a larger brain³⁴.

362

363 Compared to *Archaeopteryx*, *Ichthyornis* is phylogenetically closer to modern birds and occupies
364 a region of the morphospace near the juvenile birds and extant crocodilians when adult birds are
365 included in the analysis (Fig. 3), but closer to extant crocodilians when all birds or when adult
366 birds are removed (Figs. S4-9). The proximity between *Ichthyornis* and juvenile birds may be
367 explained by the similar modular division (as observed in Figs. 4B and 4D; Table S4, Fig. S10),
368 presence of anatomical features characteristic of modern birds, such as the loss of the postorbital
369 bones, the fusion of the left and right premaxilla to form the beak, a bicondylar quadrate that form
370 a joint with the braincase, and the arrangement of the rostrum, jugal, and quadratojugal required
371 for a functional cranial kinetic system^{58,85-88}. The proximity between *Ichthyornis* and extant

372 crocodilians in terms of complexity (Figs. S4-9, Table S8) may be explained by the fused frontal
373 and fused parietal, and separate maxilla, nasal, pectoral and laterosphenoid (Table S6).

374

375 **Paleognath and neognath birds**

376 Juvenile birds have a skull roof with relatively less fused bones with the interfrontal, interparietal,
377 and frontoparietal sutures open, and a more fused skull base. Postorbital is already fused in all
378 juvenile birds (i.e. after hatching). Collectively, juvenile neognaths show a skull anatomy with a
379 fused cranial base, relatively less fused roof, and unfused face that resembles the anatomy of
380 ancestral non-avian theropods. Unlike what is observed in non-avian theropods, frontal, parietal,
381 nasal, premaxilla, and maxilla eventually fuse with the rest of the skull in adult modern birds.
382 However, in the palatal region not all the sutures are completely closed: the caudal ends of the
383 vomers remained unfused in adult *Nothura*, which is a characteristic common in Tinamidae⁸⁹. A
384 similar pattern of suture closure has been described in another paleognath, the emu, in which the
385 sutures of the base of the skull close first and then the cranial and facial sutures close while
386 palatal sutures remain open⁶⁹. The only difference is that in *Nothura*, where closure of major
387 cranial sutures (frontoparietal, interfrontal, and interparietal) happens after the facial sutures
388 closure. In summary, when compared with neognaths, the skull of the paleognath *Nothura* is
389 more homogeneous and complex in both juvenile and adult stages. As the skull grows, its bones
390 fuse and both its complexity and heterogeneity increase.

391

392 Within the neognaths, the skull of *Geospiza fortis* is more complex and more homogenous than
393 *Gallus gallus* in both juvenile and adult stages: bones in *Geospiza* skull are more likely to connect
394 with bones with the same number of connections than *Gallus*. These two trajectories illustrate
395 how the connectivity of each bone diversifies and becomes more specialized within a skull as
396 sutures fuse together, as predicted by the Williston's law.

397

398 As in crurotarsans, major transitions in Avemetatarsalia are associated with the fusion first of the
399 skull base, then the skull roof, and, finally, with the face (more details on Table S6). This is more
400 similar to the temporal pattern of sutural closure during ontogeny in the emu (skull base first,
401 skull roof second, facial third) than to the one observed in the alligator (cranial first, skull base
402 second, facial third)⁶⁹, thus suggesting that the same mechanism for ontogeny may have been co-
403 opted in Avemetatarsalia evolution.

404

405 **Ontogenetic differences in topology between birds and crocodilians**

406 Our comparisons on network anatomy found that juvenile birds occupy a region of the
407 morphospace that is closer to the less derived archosaurs and crurotarsans than to that occupied
408 by adult modern birds (Fig. S1B). Juvenile birds have a degree of anisomerism of skull bones and
409 skull anatomical complexity closer to that in crurotarsans and non-avian dinosaurs, while their
410 pattern of integration overlaps with that of adult birds, crurotarsans, and non-avian dinosaurs.

411 These similarities in complexity and heterogeneity may be explained by the comparably higher
412 number and symmetrical spatial arrangements of circumorbital ossification centres in early
413 embryonic stages⁷⁴. For example, both crown avians and *A. mississippiensis* have two ossification
414 centres that fuse into one for lacrimals^{74,90}. Meanwhile, ossification centres that form the
415 prefrontal and postorbital, fuse in prenatal birds but remain separate in adult non-avian
416 dinosaurs^{74,90,91}. These ossification centres later develop into different, but overlapping, number of
417 bones and their arrangement in juvenile birds (27 – 34 bones) and adult non-avian theropods (32
418 – 44 bones) with discrepancies explained by the heterochronic fusion of the ossification centres
419 (Table S8).

420

421 Following postnatal fusions and growth, modern bird skulls become more heterogeneous and
422 their bones more connected and topologically closer to each other (Figs. 3C and 5; Table S8).
423 This makes avian skull bones more diverse and functionally integrated. Simultaneously, skull

424 topology in birds diversifies with ontogeny within their lineage, as shown by the ontogenetic
425 trajectories of *Gallus*, *Nothura*, and *Geospiza* (Figs. 3C and 5). Thus, bones (1) develop from
426 ossification centres shared among crurotarsans and avemetatarsalians, (2) interact as modules
427 with heterogeneity and complexity similar to basal members at juvenile stage, and (3) then fuse
428 and diversify to produce skulls of adult birds.

429

430 The skulls of birds, crocodilians, and dinosaurs develop from ossification centres with
431 comparable spatial locations in the embryonic head⁷⁴. When both evolutionary and ontogenetic
432 cranial shape variation was compared among crocodilians, Morris and colleagues showed that at
433 mid- to late embryonic stages, cranial shapes originated from a conserved region of skull shape
434 morphospace⁹². They suggested that crocodilian skull morphogenesis at early and late embryonic
435 stages are controlled by signaling molecules that are important in other amniotes as well, such as
436 *Bmp4*, *calmodulin*, *Sonic hedgehog* (*Shh*); and *Indian hedgehog*^{92–99}. Then, from late prenatal
437 stages onward, snout of crocodilians narrows¹⁰⁰ and elongates following different ontogenetic
438 trajectories to give the full spectrum of crocodilian cranial diversity⁹².

439

440 Another major transformation in archosaurian evolution is the origin of skulls of early and
441 modern birds from the snouted theropods. This transition involved two significant heterochronic
442 shifts^{34,101}. First, avians evolved highly paedomorphic skull shapes compared to their ancestors by
443 developmental truncation³⁴. This was followed, by a peramorphic shift where primitively paired
444 premaxillary bones fused and the resulting beak bone elongated to occupy much of the new avian
445 face¹⁰¹. By comparison, the skull of *Alligator* undergoes extensive morphological change and
446 closing of the interfrontal and interparietal sutures during embryogenesis is followed by the
447 prolonged postnatal and maturation periods, with the lack of suture closure and even widening of
448 some sutures^{102,103}. Bailleul and colleagues suggested that mechanisms that inhibit suture closure,
449 rather than bone resorption, cause the alligator sutures to remain open during ontogeny¹⁰³.

450 Nevertheless, juvenile and adult alligators share the same cranial topology featuring similar
451 module compositions and both occupy a region of morphospace close to *Crocodylus* (Figs. 4D
452 and S10; Table S4 and S8). Such topological arrangement suggests that conserved molecular,
453 cellular, and developmental genetic processes underlie skull composition and topology observed
454 across crocodilians. Likewise, oviraptorid dinosaurs, as represented by *Citipati*, display their own
455 unique skull shape and ontogenetic transformation³⁴, while retaining a topology conserved with
456 other theropods. Combined, this evidence suggests that developmental mechanisms controlling
457 skull composition and interaction among skull elements are conserved among theropods.

458

459 The process of osteogenesis underlies the shape and topology of the bony skull. In chicken
460 embryo, inhibition of FGF and WNT signaling pathways prevented fusion of the suture that
461 separates the left and right premaxilla, disconnected the premaxilla-palatine articulation and
462 changed their shapes giving the distal face a primitive snout-like appearance¹⁰¹. The site of bone
463 fusion in experimental unfused, snout-like chicken premaxillae showed reduced expression of
464 skeletal markers *Runx2*, *Osteopontin*, and the osteogenic marker *Col I*¹⁰¹, implying localized
465 molecular mechanisms regulating suture closure and shape of individual cranial bones. Thus,
466 changes in gene expression during craniofacial patterning in avians^{95,96,98,104–106}, non-avian
467 dinosaurs, and crocodilians^{92,101} contribute to the clade-specific differences in skull anatomical
468 organization resulting from the similar patterns of bone fusion of bones.

469

470 Finally, we observe some network modules where some bones within the same modules in
471 juveniles will later fuse in adult birds, but not in *A. mississippiensis* (Supplementary Information
472 5; Figs. 4E and S10, Table S4). For example, in *Nothura*, premaxilla, nasal, parasphenoid,
473 pterygoid, vomer, and maxilla grouped in the same juvenile module will later fuse during
474 formation of the upper beak in the adult. In *A. mississippiensis*, premaxilla, maxilla, nasal,
475 lacrimal, prefrontal, jugal, frontal, and ectopterygoid are also in the same juvenile module, but

476 remain separate structures in adult. These findings suggest that bones within the same module
477 may be more likely to fuse together in ontogeny but doing so is a lineage-specific feature.

478

479 Comparisons of juveniles and adults for extant birds and the alligator revealed ontogenetic
480 changes linked to the evolution of the skull organization in archosaurs. Whereas the anatomical
481 organization of the skull of juvenile alligators resembles that of adults, the anatomy of juvenile
482 modern birds is closer to that of non-avian dinosaurs than to that of adult avians of the same
483 species in terms of morphological complexity and anisomerism, probably due to the spatial
484 arrangements of ossification centres at embryonic stages^{74,90,91}. More specifically, the differences
485 in skull organization between crown birds and non-avian dinosaurs could be explained by
486 postnatal fusion of bones.

487

488

489 CONCLUSION

490

491 A network-based comparison of the cranial anatomy of archosaurs shows that differences within
492 and among archosaurian clades are associated with an increase of anatomical complexity, a
493 reduction in number of bones (as predicted by the Williston's Law), and an increase of
494 anisomerism marked by bone fusion, for both crurotarsans and avemetatarsalians. Our findings
495 indicate that the anatomical organization of the skull is controlled by developmental mechanisms
496 that diversified across and within each lineage: heterotopic changes in craniofacial patterning
497 genes, heterochronic prenatal fusion of ossification centres^{74,90,91}, and lineage-specific postnatal
498 fusion of sutures. Some of these mechanisms have been shown to be conserved in other tetrapods.
499 For example, heterotopy of craniofacial patterning genes also took place between chick and mice
500 embryos^{95,96,106}. Hu and Marcucio showed that mouse frontonasal ectodermal zone could alter the
501 development of the avian frontonasal process, suggesting a conserved mechanism for frontonasal

502 development in vertebrates⁹⁶. Our findings illustrate how a comparative analysis of the
503 anatomical organization of the skull can reveal both common and disparate patterns and processes
504 determining skull evolution in vertebrates.

505

506 **ACKNOWLEDGEMENT**

507

508 We thank Jake Horton for coding the adult and juvenile matrices for *Alligator mississippiensis*
509 and *Crocodylus moreletii*, Patrick Campbell of Natural History Museum London for providing
510 reptile specimens, Alfie Gleeson and Digimorph for CT scans of crocodiles, and staff from
511 Natural History Museum library for literature search. BE-A has received financial support
512 through the Postdoctoral Junior Leader Fellowship Programme from “la Caixa” Banking
513 Foundation (LCF/BQ/LI18/11630002) and also thanks the Unidad de Excelencia María de
514 Maeztu funded by the AEI (CEX2018-000792-M). HWL’s Master Thesis that inspired this
515 project was funded by Imperial College London and Natural History Museum, London.

516

517 **AUTHOR CONTRIBUTION**

518

519 HWL, BE-A, AA designed the study.

520 HWL coded network models.

521 HWL and BE-A wrote the R scripts and performed the analyses.

522 All authors discussed the results and wrote the manuscript.

523 **Conflict of Interest:** The authors declare no conflict of interest.

524

525 **Data Availability**

526 Data and R code are available at <https://figshare.com/s/80714fb9a06e886cd412>.

527

528 **REFERENCES**

- 529 1. Gauthier, J. Saurischian monophyly and the origin of birds. *Mem. Calif. Acad. Sci.* **8**, 1–55
530 (1986).
- 531 2. Benton, M. & Clark, J. Archosaur phylogeny and the relationships of the Crocodylia. in
532 *The Phylogeny and Classification of the Tetrapods: Systematics Association Special* 295–
533 338 (1988).
- 534 3. Sereno, P. C. Basal archosaurs: phylogenetic relationships and functional implications.
535 *Soc. Vertebr. Paleontol. Mem.* **2**, 1–53 (1991).
- 536 4. Juul, L. The phylogeny of basal archosaurs. *Palaeontol. Africana* **31**, 1–38 (1994).
- 537 5. Benton, M. J. Scleromochlus taylori and the origin of dinosaurs and pterosaurs. *Philos.*
538 *Trans. R. Soc. B Biol. Sci.* **354**, 1423–1446 (1999).
- 539 6. Benton, M. J. Origin and Relationships of Dinosauria. in *The Dinosauria* (eds.
540 Weishampel, D. B., Dodson, P. & Osmólska, H.) 7–19 (University of California Press,
541 2004). doi:10.1525/california/9780520242098.003.0005
- 542 7. Irmis, R. B., Parker, W. G., Nesbitt, S. J. & Liu, J. Early ornithischian dinosaurs: The
543 triassic record. *Hist. Biol.* **19**, 3–22 (2007).
- 544 8. Brusatte, S. L., Benton, M. J., Lloyd, G. T., Ruta, M. & Wang, S. C. Macroevolutionary
545 patterns in the evolutionary radiation of archosaurs (Tetrapoda: Diapsida). *Earth Environ.*
546 *Sci. Trans. R. Soc. Edinburgh* **101**, 367–382 (2010).
- 547 9. Sadleir, R. & Makovicky, P. Cranial shape and correlated characters in crocodile evolution.
548 *J Evol. Biol.* **21**, 1578–1596 (2008).
- 549 10. Goswami, A., Weisbecker, V. & Sánchez-Villagra, M. Developmental modularity and the
550 marsupial-placental dichotomy. *J Exp Zool. B Mol Dev Evol* **312B**, 186–195 (2009).
- 551 11. Hallgrímsson, B. *et al.* Deciphering the palimpsest: Studying the relationship between
552 morphological integration and phenotypic covariation. *Evol Biol* **36**, 355–376 (2009).

553 12. Felice, R. N. &Goswami, A. Developmental origins of mosaic evolution in the avian
554 cranium. *Proc. Natl. Acad. Sci. U. S. A.* **115**, 555–560 (2018).

555 13. Felice, R. N., Tobias, J. A., Pigot, A. L. &Goswami, A. Dietary niche and the evolution of
556 cranial morphology in birds. *Proc. R. Soc. B Biol. Sci.* **286**, (2019).

557 14. Klingenberg, C. P. Morphological Integration and Developmental Modularity. *Annu. Rev.*
558 *Ecol. Evol. Syst.* **39**, 115–132 (2008).

559 15. Eble, G. Morphological modularity and macroevolution: conceptual and empirical aspects.
560 in *Modularity. Understanding the development and evolution of natural complex systems*
561 (eds. Callebaut, W. &Rasskin-Gutman, D.) 221–238 (MIT Press, 2005).

562 16. Olson, E. &Miller, R. *Morphological Integration*. (University of Chicago Press, 1958).
563 doi:10.2307/2405966

564 17. Wagner, G. P. &Altenberg, L. Complex adaptations and the evolution of evolvability.
565 *Evolution (N. Y.)* **50**, 967–976 (1996).

566 18. Wagner, G., Pavlicev, M. &Cheverud, J. The road to modularity. *Nat. Rev. Genet.* **8**, 921–
567 931 (2007).

568 19. Esteve-Altava, B., Marugán-Lobón, J., Botella, H. &Rasskin-Gutman, D. Network Models
569 in Anatomical Systems. *J. Anthropol. Sci.* **89**, 175–184 (2011).

570 20. Esteve-Altava, B. Challenges in identifying and interpreting organizational modules in
571 morphology. *J. Morphol.* **278**, 960–974 (2017).

572 21. Chernoff, B. &Magwene, P. Afterword. in *Morphological Integration: Forty years later*.
573 319–353 (University of Chicago Press, 1999).

574 22. Esteve-Altava, B., Marugán-Lobón, J., Botella, H., Bastir, M. &Rasskin-Gutman, D. Grist
575 for Riedl's mill: A network model perspective on the integration and modularity of the
576 human skull. *J. Exp. Zool. Part B Mol. Dev. Evol.* **320**, 489–500 (2013).

577 23. Rasskin-Gutman, D. &Esteve-Altava, B. Concept of Burden in Evo-Devo. in *Evolutionary*
578 *Developmental Biology* (eds. Nuño de la Rosa, L. &Müller, G.) 1–11 (Springer, Cham,

579 2018). doi:10.1007/978-3-319-33038-9_48-1

580 24. Gregory, W. K. 'Williston's law' relating to the evolution of skull bones in the vertebrates.

581 *Am. J. Phys. Anthropol.* **20**, 123–152 (1935).

582 25. Esteve-Altava, B., Marugán-Lobón, J., Botella, H. &Rasskin-Gutman, D. Structural

583 Constraints in the Evolution of the Tetrapod Skull Complexity: Williston's Law Revisited

584 Using Network Models. *Evol. Biol.* **40**, 209–219 (2013).

585 26. Esteve-Altava, B., Marugán-Lobón, J., Botella, H. &Rasskin-Gutman, D. Random Loss

586 and Selective Fusion of Bones Originate Morphological Complexity Trends in Tetrapod

587 Skull Networks. *Evol. Biol.* **41**, 52–61 (2014).

588 27. Esteve-Altava, B., Boughner, J. C., Diogo, R., Villmoare, B. A. &Rasskin-Gutman, D.

589 Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in

590 the Evolution of the Primate Skull. *PLoS One* **10**, e0127653 (2015).

591 28. Esteve-Altava, B. *et al.* Evolutionary parallelisms of pectoral and pelvic network-anatomy

592 from fins to limbs. *Sci. Adv.* **5**, (2019).

593 29. Werneburg, I., Esteve-Altava, B., Bruno, J., Torres Ladeira, M. &Diogo, R. Unique skull

594 network complexity of Tyrannosaurus rex among land vertebrates. *Sci. Rep.* **9**, 1–14

595 (2019).

596 30. Plateau, O. &Foth, C. Birds have peramorphic skulls, too: anatomical network analyses

597 reveal oppositional heterochronies in avian skull evolution. *Commun. Biol.* **3**, 1–12 (2020).

598 31. Rasskin-Gutman, D. &Esteve-Altava, B. Connecting the Dots: Anatomical Network

599 Analysis in Morphological EvoDevo. *Biol. Theory* **9**, 178–193 (2014).

600 32. Esteve-Altava, B. &Rasskin-Gutman, D. Anatomical Network Analysis in Evo-Devo. in

601 *Evolutionary Developmental Biology* 1–19 (Springer International Publishing, 2018).

602 doi:10.1007/978-3-319-33038-9_57-1

603 33. Gregory, W. K. Polyisomerism and Anisomerism in Cranial and Dental Evolution among

604 Vertebrates. *Proc. Natl. Acad. Sci.* **20**, 1–9 (1934).

605 34. Bhullar, B. A. S. *et al.* Birds have paedomorphic dinosaur skulls. *Nature* **487**, 223–226
606 (2012).

607 35. Brusatte, S., Benton, M., Desojo, J. & Langer, M. The Higher-Level Phylogeny of
608 Archosauria (Tetrapoda: Diapsida). *J. Syst. Palaeontol.* **8**, 3–47 (2010).

609 36. Galton, P. M. & Upchurch, P. Prosauropoda. in *The Dinosauria* (eds. Weishampel, D. B.,
610 Dodson, P. & Osmólska, H.) 232–258 (University of California Press, 2004).
611 doi:10.1525/california/9780520242098.003.0005

612 37. Hailu, Y. & Dodson, P. Basal Ceratopsia. in *The Dinosauria* (eds. Weishampel, D. B.,
613 Dodson, P. & Osmólska, H.) 325–334 (University of California Press, 2004).
614 doi:10.1525/california/9780520242098.003.0005

615 38. Holtz, T. R. J. & Osmólska, H. Saurischia. in *The Dinosauria* (eds. Weishampel, D. B.,
616 Dodson, P. & Osmólska, H.) 21–24 (University of California Press, 2004).
617 doi:10.1525/california/9780520242098.003.0005

618 39. Nesbitt, S. J. The Early Evolution of Archosaurs: Relationships and the Origin of Major
619 Clades. *Bull. Am. Museum Nat. Hist.* **352**, 1–292 (2011).

620 40. Norell, M. A. & Makovicky, P. J. Dromaeosauridae. in *The Dinosauria* (eds. Weishampel,
621 D. B., Dodson, P. & Osmólska, H.) 196–209 (University of California Press, 2004).
622 doi:10.1525/california/9780520242098.003.0005

623 41. Padian, K. Basal Avialae. in *The Dinosauria* (eds. Weishampel, D. B., Dodson, P.
624 & Osmólska, H.) 210–231 (University of California Press, 2004).
625 doi:10.1525/california/9780520242098.003.0005

626 42. Tykoski, R. S. & Rowe, T. Ceratosauria. in *The Dinosauria* (eds. Weishampel, D. B.,
627 Dodson, P. & Osmólska, H.) 47–70 (University of California Press., 2004).
628 doi:10.1525/california/9780520242098.003.0005

629 43. Upchurch, P., Barrett, P. M. & Dodson, P. Sauropoda. in *The Dinosauria* (eds.
630 Weishampel, D. B., Dodson, P. & Osmólska, H.) 259–322 (University of California Press,

631 2004). doi:10.1525/california/9780520242098.003.0005

632 44. Holtz, T. R. J. & Osmólska, H. Dinosaur distribution and biology. in *The Dinosauria* (eds.

633 Weishampel, D. B., Dodson, P. & Osmólska, H.) (University of California Press, 2004).

634 doi:10.1525/california/9780520242098.003.0005

635 45. Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of

636 evolution. (2012).

637 46. Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. Superiority, competition, and

638 opportunism in the evolutionary radiation of dinosaurs. *Science* (80-.). **321**, 1485–1488

639 (2008).

640 47. Lloyd, G. T., Wang, S. C. & Brusatte, S. L. Identifying heterogeneity in rates of

641 morphological evolution: Discrete character change in the evolution of lungfish

642 (Sarcopterygii; Dipnii). *Evol. Int. J. Org. Evol.* **66**, 330–348 (2012).

643 48. Benton, M. J. & Donoghue, P. C. J. Paleontological evidence to date the tree of life. *Mol.*

644 *Biol. Evol.* **24**, 26–53 (2007).

645 49. Varela, S., Hernández, J. G. & Sgarbi, L. F. paleobioDB: Download and Process Data from

646 the Paleobiology Database. (2019).

647 50. R Core Team. R: A language and environment for statistical computing. R Foundation for

648 Statistical Computing. (2018).

649 51. Csardi, G. & Nepusz, T. The igraph software package for complex network research,

650 InterJournal, Complex Systems 1695. (2006).

651 52. Almende, B., Thieurmel, B. & Robert, T. visNetwork: Network Visualization using ‘vis.js’

652 Library. (2019).

653 53. Shannon, P. *et al.* Cytoscape: A software Environment for integrated models of

654 biomolecular interaction networks. *Genome Res.* **13**, 2498–2504 (2003).

655 54. Esteve-Altava, B. A Node-based Informed Modularity Strategy to Identify Organizational

656 Modules in Anatomical Networks. *bioRxiv* 2020.07.06.189175 (2020).

657 doi:10.1101/2020.07.06.189175

658 55. Wang, M., Zhao, Y. & Zhang, B. Efficient Test and Visualization of Multi-Set
659 Intersections. *Sci. Rep.* **5**, 16923 (2015).

660 56. Sidor, C. Simplification as a trend in synapsid cranial evolution. *Evolution (N. Y.)* **55**,
661 1419–1442 (2001).

662 57. McShea, D. & Hordijk, W. Complexity by Subtraction. *Evol Biol* **2** 40, 504–520 (2013).

663 58. Bhullar, B. A. S. *et al.* How to make a bird skull: Major transitions in the evolution of the
664 avian cranium, paedomorphosis, and the beak as a surrogate hand. *Integr. Comp. Biol.* **56**,
665 389–403 (2016).

666 59. vonBaczko, M. B. & Desojo, J. B. Cranial anatomy and palaeoneurology of the archosaur
667 riojasuchus tenuisceps from the los colorados formation, La Rioja, Argentina. *PLoS One*
668 **11**, (2016).

669 60. Felice, R. N. *et al.* Evolutionary integration and modularity in the archosaur cranium.
670 *Integr. Comp. Biol.* (2019). doi:10.1093/icb/icz052

671 61. Small, B. J. The Triassic Thecodontian Reptile Desmatosuchus: Osteology and
672 Relationships. (Texas Tech University, 1985).

673 62. Small, B. J. Cranial anatomy of Desmatosuchus Haplocerus (Reptilia: Archosauria:
674 Stagonolepididae). *Zool. J. Linn. Soc.* **136**, 97–111 (2002).

675 63. Schoch, R. R. Osteology of the small archosaur Aetosaurus from the upper Triassic of
676 Germany. *Neues Jahrb. fur Geol. und Palaontologie - Abhandlungen* **246**, 1–35 (2007).

677 64. Walker, A. D. A revision of Sphenosuchus acutus Haughton, a crocodylomorph reptile
678 from the Elliot Formation (late Triassic or early Jurassic) of South Africa. *Phil. Trans. R.
679 Soc. Lond. B.* **330**, 1–120 (1990).

680 65. Wu, X.-C. & Chatterjee, S. Dibothrosuchus elaphros, a Crocodylomorph from the Lower
681 Jurassic of China and the Phylogeny of the Sphenosuchina Xiao-Chun Wu and Sankar
682 Chatterjee. *J. Vertebr. Paleontol.* **13**, 58–89 (1993).

683 66. Fernández, M. &Gasparini, Z. Salt glands in the Jurassic metriorhynchid Geosaurus:
684 implications for the evolution of osmoregulation in Mesozoic marine crocodyliforms.
685 *Naturwissenschaften* **95**, 79–84 (2008).

686 67. Gasparini, Z., Pol, D. &Spalletti, L. A. An unusual marine crocodyliform from the
687 jurassic-cretaceous boundary of Patagonia. *Science (80-.).* **311**, 70–73 (2006).

688 68. Pol, D. &Gasparini, Z. Skull anatomy of dakosaurus andiniensis (thalattosuchia:
689 Crocodylomorpha) and the phylogenetic position of thalattosuchia. *J. Syst. Palaeontol.* **7**,
690 163–197 (2009).

691 69. Bailleul, A. M., Scannella, J. B., Horner, J. R. &Evans, D. C. Fusion patterns in the skulls
692 of modern archosaurs reveal that sutures are ambiguous maturity indicators for the
693 Dinosauria. *PLoS One* **11**, 1–26 (2016).

694 70. Bailleul, A. M., O'Connor, J. &Schweitzer, M. H. Dinosaur paleohistology: Review,
695 trends and new avenues of investigation. *PeerJ* **2019**, 1–45 (2019).

696 71. Gold, M. E. L., Brusatte, S. L. &Norell, M. A. The Cranial Pneumatic Sinuses of the
697 Tyrannosaurid Alioramus (Dinosauria: Theropoda) and the Evolution of Cranial
698 Pneumaticity in Theropod Dinosaurs . *Am. Museum Novit.* **3790**, 1–46 (2013).

699 72. Sereno, P. C., Xijin, Z. &Lin, T. A new psittacosaur from inner mongolia and the parrot-
700 like structure and function of the psittacosaur skull. *Proc. R. Soc. B Biol. Sci.* **277**, 199–
701 209 (2010).

702 73. Button, D. J., Barrett, P. M. &Rayfield, E. J. Comparative cranial myology and
703 biomechanics of Plateosaurus and Camarasaurus and evolution of the sauropod feeding
704 apparatus. *Palaeontology* **59**, 887–913 (2016).

705 74. Smith-Paredes, D. *et al.* Dinosaur ossification centres in embryonic birds uncover
706 developmental evolution of the skull. *Nat. Ecol. Evol.* **2**, 1966–1973 (2018).

707 75. Norell, M. A., Clark, J. M. &Chiappe, L. M. An embryo of an oviraptorid (Dinosauria:
708 Theropoda) from the Late Cretaceous of Ukhaa Tolgod, Mongolia. *Am. Museum Novit.*

709 3315, 1–17 (2001).

710 76. deBeer, G. R. *The Development of the Vertebrate Skull*. (Oxford University Press, 1937).

711 77. Gauthier, J., Kluge, A. G. & Rowe, T. Amniote phylogeny and the importance of fossils.

712 *Cladistics* **4**, 105–209 (1988).

713 78. Clark, J. M., Norell, M. A. & Rowe, T. Cranial Anatomy of Citipati osmolskae (Theropoda,
714 Oviraptorosauria), and a Reinterpretation of the Holotype of Oviraptor philoceratops. *Am.
715 Museum Novit.* **3364**, 1–24 (2002).

716 79. Norell, M. A. *et al.* A theropod dinosaur embryo and the affinities of the Flaming Cliffs
717 dinosaur eggs. *Science (80-.).* **266**, 779–792 (1994).

718 80. Barsbold, R. & Osmolska, H. The skull of Velociraptor (Theropoda) from the Late
719 Cretaceous of Mongolia. *Acta Palaeontol. Pol.* **442**, 189–219 (1999).

720 81. Currie, P. & Dong, Z. New information on Cretaceous troodontids (Dinosauria, Theropoda)
721 from the People's Republic of China. *Can. J Earth Sci* **38**, 1753–1766 (2001).

722 82. Larsson, H. C. E., Sereno, P. C. & Wilson, J. A. Forebrain Enlargement among Nonavian
723 Theropod Dinosaurs. *J. Vertebr. Paleontol.* **20**, 615–618 (2000).

724 83. Domínguez Alfonso, P., Milner, A. C., Ketcham, R. A., Cookson, M. J. & Rowe, T. B. The
725 avian nature of the brain and inner ear of Archaeopteryx. *Nature* **430**, 666–669 (2004).

726 84. Balanoff, A. M., Bever, G. S., Rowe, T. B. & Norell, M. A. Evolutionary origins of the
727 avian brain. *Nature* **501**, 93–96 (2013).

728 85. Jollie, M. T. The head skeleton of the chicken and remarks on the anatomy of this region
729 in other birds. *J. Morphol.* **100**, 389–436 (1957).

730 86. Bock, W. J. Kinetics of the avian skull. *J. Morphol.* **114**, 1–41 (1964).

731 87. Clarke, J. Morphology, phylogenetic taxonomy, and systematicatics of Ichthyornis and
732 Apatornis (Avialae, Ornithuriae). *Bull Am Museum Nat Hist.* **286**, 1–179 (2004).

733 88. Field, D. J. *et al.* Complete Ichthyornis skull illuminates mosaic assembly of the avian
734 head. *Nature* **557**, 96–100 (2018).

735 89. Silveira, L. F. & Höfling, E. Cranial osteology in Tinamidae (Birds: Tinamiformes), with
736 systematic considerations. *Bol. Mus. Para. Emílio Goeldi. Ciências Naturais, Belém* **2**,
737 15–54 (2007).

738 90. Rieppel, O. Studies on skeleton formation in reptiles. v. Patterns of ossification in the
739 skeleton of *Alligator mississippiensis* DAUDIN (Reptilia, Crocodylia). *Zool. J. Linn. Soc.*
740 **109**, 301–325 (1993).

741 91. Maxwell, E. & Larson, H. Comparative ossification sequence and skeletal development of
742 the postcranium of palaeognathous birds (Aves: Palaeognathae). *Zool. J. Linn. Soc.* **157**,
743 169–196 (2009).

744 92. Morris, Z. S., Vliet, K. A., Abzhanov, A. & Pierce, S. E. Heterochronic shifts and
745 conserved embryonic shape underlie crocodylian craniofacial disparity and convergence.
746 *Proc. R. Soc. B Biol. Sci.* **286**, 20182389 (2019).

747 93. Abzhanov, A., Protas, M., Grant, B. R., Grant, P. R. & Tabin, C. J. Bmp4 and
748 Morphological Variation of Beaks in Darwin's Finches. *Science (80-.).* **305**, 1462–1465
749 (2004).

750 94. Abzhanov, A. *et al.* The calmodulin pathway and evolution of elongated beak morphology
751 in Darwin's finches. *Nature* **442**, 563–567 (2006).

752 95. Hu, D. & Marcucio, R. S. A SHH-responsive signaling center in the forebrain regulates
753 craniofacial morphogenesis via the facial ectoderm. *Development* **136**, 107–116 (2009).

754 96. Hu, D. & Marcucio, R. S. Unique organization of the frontonasal ectodermal zone in birds
755 and mammals. *Dev. Biol.* **325**, 200–210 (2009).

756 97. Mallarino, R. *et al.* Two developmental modules establish 3D beak-shape variation in
757 Darwin's finches. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 4057–4062 (2011).

758 98. Hu, D. & Marcucio, R. S. Neural crest cells pattern the surface cephalic ectoderm during
759 FEZ formation. *Dev. Dyn.* **241**, 732–740 (2012).

760 99. Ahi, E. P. Signalling pathways in trophic skeletal development and morphogenesis:

761 Insights from studies on teleost fish. *Dev. Biol.* **420**, 11–31 (2016).

762 100. Watanabe, A. & Slice, D. E. The utility of cranial ontogeny for phylogenetic inference: A
763 case study in crocodylians using geometric morphometrics. *J. Evol. Biol.* **27**, 1078–1092
764 (2014).

765 101. Bhullar, B. A. S. *et al.* A molecular mechanism for the origin of a key evolutionary
766 innovation, the bird beak and palate, revealed by an integrative approach to major
767 transitions in vertebrate history. *Evolution (N. Y.)* **69**, 1665–1677 (2015).

768 102. Padian, K., deRicqlès, A. J. & Horner, J. R. Dinosaurian growth rates and bird origins.
769 *Nature* **412**, 405–408 (2001).

770 103. Bailleul, A. M. & Horner, J. R. Comparative histology of some craniofacial sutures and
771 skull-base synchondroses in non-avian dinosaurs and their extant phylogenetic bracket. *J.*
772 *Anat.* **229**, 252–285 (2016).

773 104. Hu, D., Marcucio, R. S. & Helms, J. A. A zone of frontonasal ectoderm regulates
774 patterning and growth in the face. *Development* **130**, 1749–1758 (2003).

775 105. Abzhanov, A., Cordero, D. R., Sen, J., Tabin, C. J. & Helms, J. A. Cross-regulatory
776 interactions between Fgf8 and Shh in the avian frontonasal prominence. *Congenit. Anom.*
777 (*Kyoto*). **47**, 136–148 (2007).

778 106. Brugmann, S. A. *et al.* Wnt signaling mediates regional specification in the vertebrate face.
779 *Development* **134**, 3283–3295 (2007).

780 107. Prieto-Márquez, A. & Norell, M. A. Redescription of a Nearly Complete Skull of
781 Plateosaurus (Dinosauria: Sauropodomorpha) from the Late Triassic of Trossingen
782 (Germany). *Am. Museum Novit.* **3727**, 1–58 (2011).

783

784

785

786

787

788 **SUPPLEMENTARY MATERIALS**

789 Table S1. Variance distribution across principal components

790 Table S2. First and last occurrence dates used to calibrate phylogenetic tree

791 Table S3. Internal nodes used for the phylogenetic tree

792 Table S4. Composition of modules for each taxon

793 Table S5. Categories of archosaurs based on capabilities of flight

794 Table S6. List of major fusion of bones with other bones in archosaurs

795 Table S7. Variation explained by each parameter

796 Table S8. Topological network parameters measured for each taxon

797 Table S9. Network parameters categorized by diet

798 Table S10. Number of modules.

799 Fig. S1. First two PC of topological parameters for all taxa.

800 Fig. S2. Second and third PC of topological parameters for all taxa.

801 Fig. S3. First and third PC of topological parameters for all taxa.

802 Fig. S4. First two PC of topological parameters for all taxa excluding avians.

803 Fig. S5. Second and third PC of topological parameters for all taxa excluding avians.

804 Fig. S6. First and third PC of topological parameters for all taxa excluding avians.

805 Fig. S7. First two PC of topological parameters for all taxa excluding adult avians.

806 Fig. S8. Second and third PC of topological parameters for all taxa excluding adult avians.

807 Fig. S9. First and third PC of topological parameters for all taxa excluding adult avians.

808 Fig. S10. Node-based modules of archosaurs based on details listed on Table S4.

809 Supplementary Information 1 References and notes about the specimens used.

810 Supplementary Information 2 Comparison between network-modules and variational modules in

811 archosaurs.

812 Supplementary Information 3 Comparison of network parameters among Aves, Crurotarsi, and

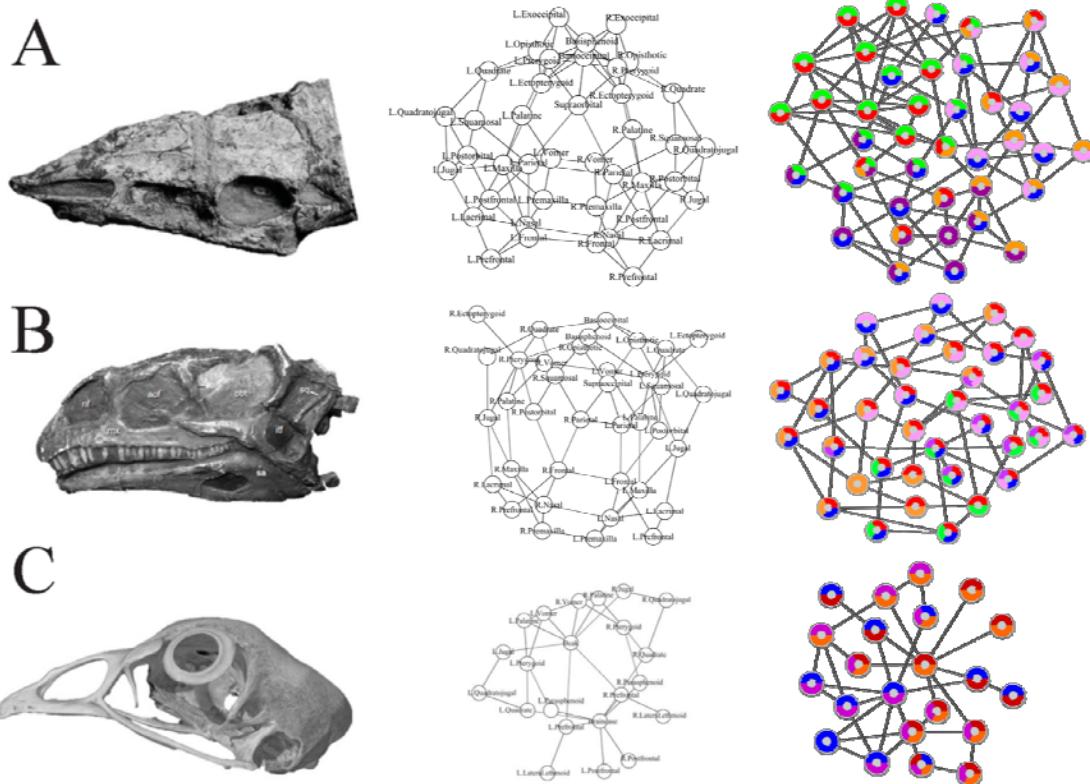
813 non-avian Dinosauria.

814 Supplementary Information 4 Comparison based on diet.

815 Supplementary Information 5 Comparison of juvenile avian modules with adult avian bones.

816 Supplementary Information 6 Supplementary Reference

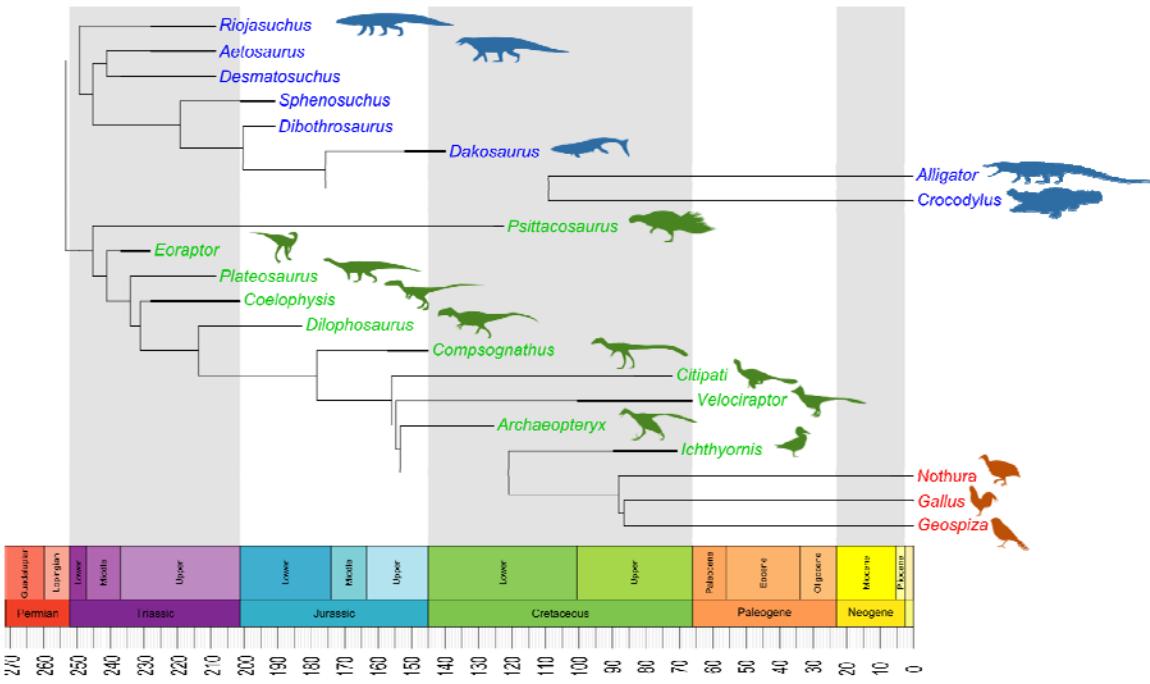
817


818

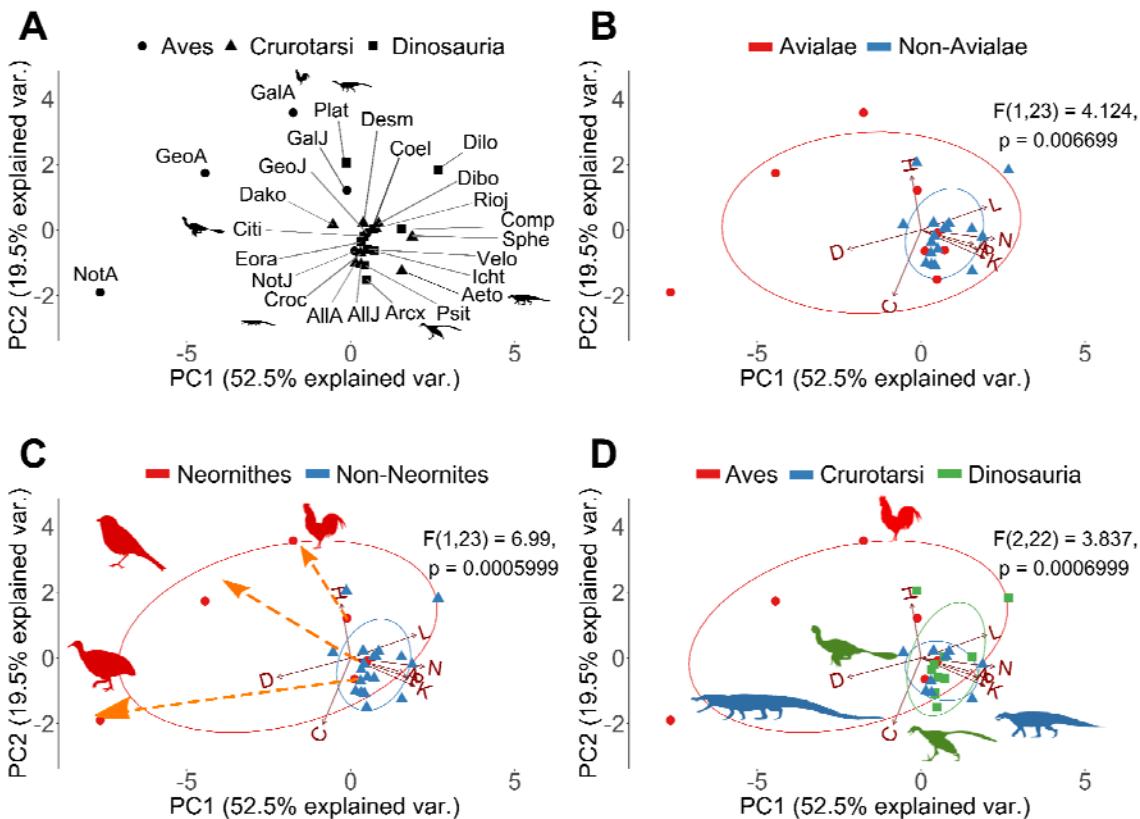
819

820

821

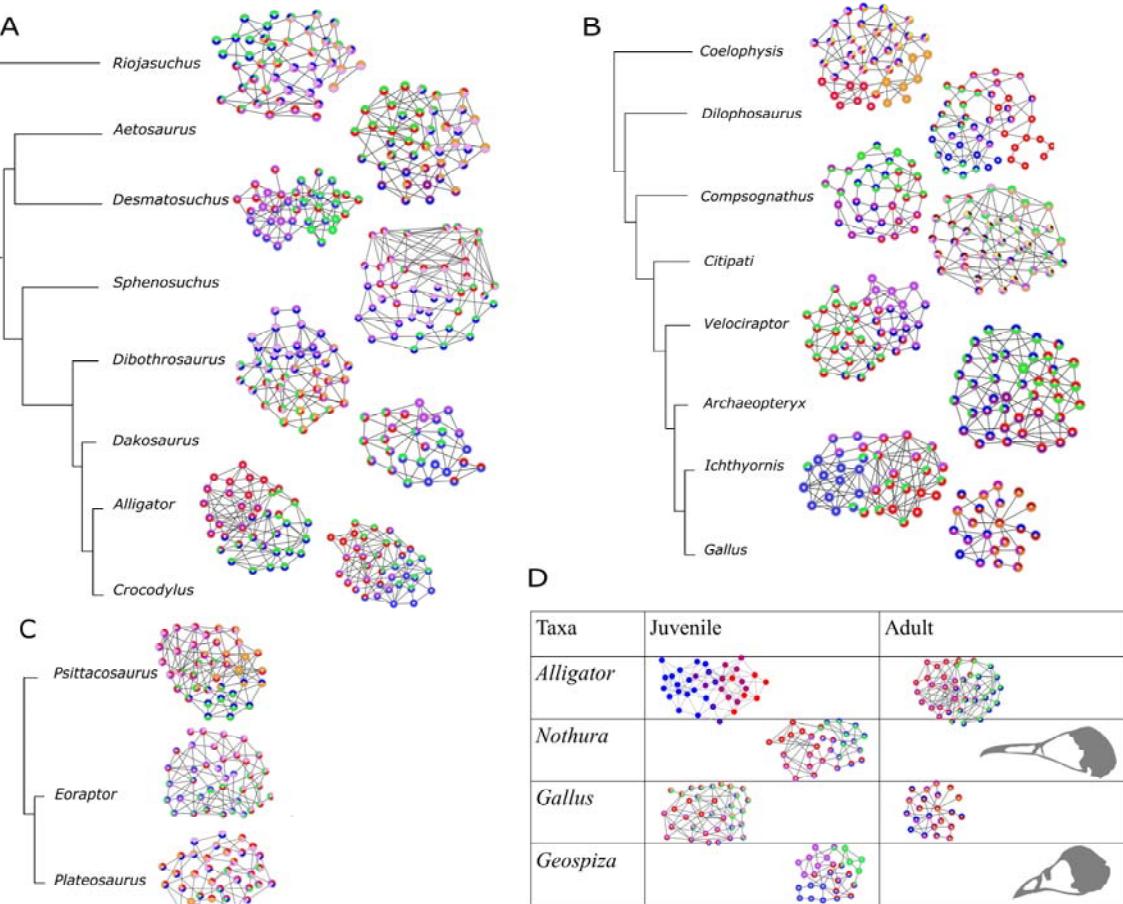

822 **FIGURE LEGENDS**

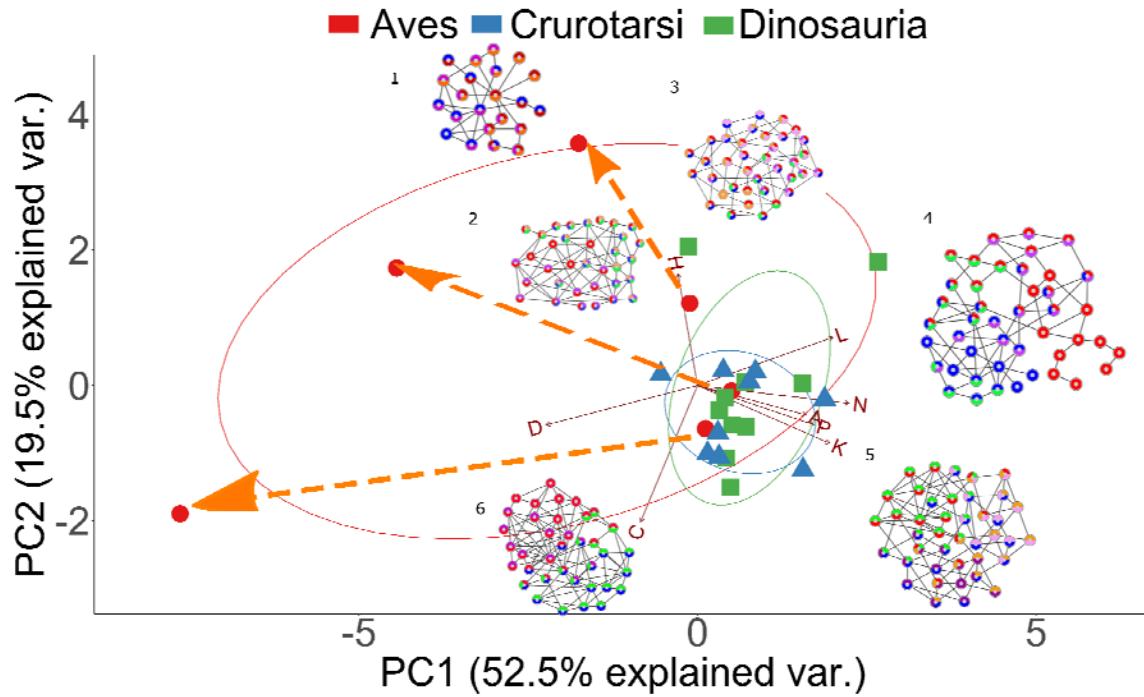
823


824 **Figure 1. Anatomical network models.** Example of the network models for three archosaurian
825 skulls: (A) *Aetosaurus* from Schoch (2007)⁶³; (B) *Plateosaurus* from Prieto-Marquez & Norell
826 (2011)¹⁰⁷; (C) *Gallus* from Digimorph. The pair-wise articulations among the bones of skulls (left)
827 are formalized as network models (middle) and later analyzed, for example, to identify the skull
828 anatomical node-based modules (right). See methods for details.

829

830


831 **Figure 2. Phylogenetic framework.** A phylogenetic tree was created based on the evolutionary
832 relations among taxa as detailed in previous work^{34–43}. Bifurcation times were calibrated based
833 on fossil dates from Benton and Donoghue⁴⁸ using the equal method in the paleotree package^{45–47}.
834 First and last occurrences were from Paleobiology Database (details listed in Table S2).
835 Silhouettes were from Phylopic.org. See methods for details.


836

837 **Figure 3. Principal components decomposition of topological variables.** (A) Skull distribution
 838 for each taxon (see labels below). (B) Comparison of Avialae versus non-Avialae shows that non-
 839 Avialae occupy part of the Avialae morphospace. (C) Comparison of Neornithes versus non-
 840 Neornithes shows that non-Neornithes overlap with part of the Neornithes morphospace. Orange
 841 dotted arrows show the ontogenetic change in modern birds from juvenile stage to adult stage. (D)
 842 Comparison of Aves, Crurotarsi, and Dinosauria shows that they occupied different morphospace.
 843 Ellipses show a normal distribution confidence interval around groups for comparison. Labels: N,
 844 Number of nodes; K, Number of links; D, Density of Connection; C, Mean clustering coefficient;
 845 H, Heterogeneity of connection; L, Mean path length; A, Assortativity of connection; P,
 846 Parcellation. Aeto, *Aetosaurus*; AllA, adult *Alligator*; AllJ, juvenile *Alligator*; Arcx,
 847 *Archaeopteryx*; Citi, *Citipati*; Coel, *Coelophysis*; Comp, *Compsognathus*; Croc, *Crocodylus*;
 848 Dako, *Dakosaurus*; Desm, *Desmatosuchus*; Dibo, *Dibothrosuchus*; Dilo, *Dilophosaurus*; Eora,

849 *Eoraptor*; GalA, adult *Gallus*; GalJ, juvenile *Gallus*; GeoA, adult *Geospiza*; GeoJ, juvenile
850 *Geospiza*; Icht, *Ichthyornis*; NotA, adult *Nothura*; NotJ, juvenile *Nothura*; Plat, *Plateosaurus*;
851 Psit, *Psittacosaurus*; Rioj, *Riojasuchus*; Sphe, *Sphenosuchus*; Velo, *Velociraptor*. Silhouettes
852 were from Phylopic.org.

853
854 **Figure 4. Visualizations of the module composition changes across phylogeny.** The number of
855 node-based modules ranged from 1 to 8. (C) shows the difference in module composition among
856 the ornithischian *Psittacosaurus*, the basal saurischian *Eoraptor*, and the sauropodomorph
857 *Plateosaurus*. (D) Comparisons of the adult and juvenile stages of extant species. Adult *Nothura*
858 and *Geospiza* are shaded in grey as one module was identified because of the small number of
859 nodes and links due to a highly fused skull. Nodes were colored based on their modules.
860 Composition of each module is listed in Supplementary Table 4.

861

862 **Figure 5. Overview of the evolution of archosaurian skull topology:** Modern birds and few
863 non-avian dinosaurs have more heterogeneous connections than crurotarsans; extant taxa have
864 fewer bones and articulations than the extinct ones; bones in juvenile modern birds fuse and
865 produce a more densely connected adult skull. Modules and networks of the following taxa are
866 shown: (1) *Gallus*, (2) juvenile *Gallus*, (3) *Plateosaurus*, (4) *Dilophosaurus*, (5) *Aetosaurus*, (6)
867 adult *Alligator*. Morphospace of Aves is significantly different from Crurotarsi and Dinosauria
868 when adult birds are included. Orange arrows show the ontogenetic changes from juvenile to
869 adult stages in neornithes. Taxa on the left side of the biplot have higher density and fewer bones,
870 such as *Gallus* and *Alligator*, than taxa on the right, such as *Aetosaurus* and *Dilophosaurus*.

871