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Real-time rendering of closed-loop visual environments is necessary for next-generation 
understanding of brain function and behaviour, but is prohibitively difficult for non-experts to 
implement and is limited to few laboratories worldwide. We developed BonVision as an easy-to-use 
open-source software for the display of virtual or augmented reality, as well as standard visual 
stimuli. As the architecture is based on the open-source Bonsai graphical programming language, 
BonVision benefits from native integration with experimental hardware. BonVision therefore 
enables easy implementation of closed-loop experiments, including real-time interaction with deep 
neural networks and communication with behavioural and physiological measurement and 
manipulation devices. 
 

Introduction 
Understanding behaviour and its underlying 
neural mechanisms requires the ability to 
construct and control environments that immerse 
animals and human subjects in complex 
naturalistic environments that are responsive to 
their actions. However, most vision research has  
been performed in non-immersive environments 
with standard two-dimensional visual stimuli, 
such as grating patterns or simple figures, using 
platforms including PsychToolbox1 or PsychoPy2,3. 
Pioneering efforts to bring gaming-driven 
advances in computation and rendering have 
driven the development of immersive closed-loop 
visual environments4–6: STYTRA provides visual 
stimuli for larval zebrafish in python7, ratCAVE is a 
specialised augmented reality system for rodents 
in python5, FreemoVR provides virtual reality in 
Ubuntu/Linux4, and ViRMEn provides virtual 
reality in Matlab6. But these new platforms are 
not readily amenable to research paradigms 
where precise calibration and timing are required. 
For example, they do not specify an image in 

egocentric units of visual angle, lack transparent 
interaction with external hardware, and require 
advanced programming expertise. 
 
Our initial motivation was to create a visual 
display software with three key features. First, a 
integrated, standardised platform that could 
rapidly switch between traditional visual stimuli 
(such as grating patterns) and immersive virtual 
reality. Second, the ability to replicate 
experimental workflows across different physical 
configurations (for example, when moving from 
one to two computer monitors, or moving from 
flat-screen to spherical projection). Third, the 
ability for rapid and efficient interfacing with 
external hardware (needed for experimentation) 
without development of complex multi-threaded 
routines. We needed these advances to be 
provided in an environment such that users with 
minimal training in programming were able to 
construct and run complex, closed-loop 
experimental designs. 
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We therefore developed BonVision, an open-
source software package for the Bonsai graphical 
programming language8, which can generate and 
display well-defined visual stimuli in 2D and 3D 
environments. Bonsai is a high-performance 
event-based language widely used for 
neuroscience experiments, capable of real-time 
interfacing with most types of external hardware. 
BonVision extends Bonsai by providing pre-built 
GPU shaders and resources for stimuli used in 
vision research, including movies, along with an 
accessible, modular interface for composing 
stimuli and designing experiments. The definition 
of stimuli in BonVision is independent of the 
display hardware, allowing for easy replication of 
workflows across different experimental 
configurations. Additional unique features 
include the ability to automatically detect and 
define the relationship between the observer and 
the display from a photograph of the 
experimental apparatus, and to use the outputs 
of real-time inference methods to determine the 

position and pose of an observer online, thereby 
generating augmented reality environments. 
 
Results  
To provide a framework that allowed both 
traditional visual presentation and immersive 
virtual reality, we needed to bring these very 
different ways of defining the visual scene into the 
same architecture. We achieved this by mapping 
the 2D retino-centric coordinate frame (i.e. 
degrees of the visual field) to the surface of a 3D 
sphere using the Mercator projection (Fig 1A, 
Suppl. Fig 1). The resulting sphere could therefore 
be rendered onto displays in the same way as any 
other 3D environment. We then used “cube 
mapping” to specify the 360° projection of 3D 
environments onto arbitrary viewpoints around 
an experimental observer (human or animal; Fig 
1B). Using this process, a display device becomes 
a window into the virtual environment, where 
each pixel on the display specifies a vector from 
the observer through that window. The vector 
links pixels on the display to pixels in the ‘cube 

     

Figure 1: BonVision adaptable display and render configurations. A. Illustration of how two-dimensional 
textures are generated in BonVision using Mercator projection for sphere mapping, with elevation as latitude 
and azimuth as longitude. B. Three-dimensional objects were placed at the appropriate positions and the visual 
environment was rendered using cube-mapping. C-E. Examples of the same two stimuli, a checkerboard + grating 
(middle row) or four three-dimensional objects (bottom row), displayed in different experimental configurations 
(top row): two angled LCD monitors (C), a head-mounted display (D), and demi-spherical dome (E). 
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map’, thereby rendering the corresponding 
portion of the visual field onto the display.  
 
Our approach has the advantage that the visual 
stimulus is defined irrespectively of display 
hardware, allowing us to independently define 
each experimental apparatus without changing 
the preceding specification of the visual scene, or 
the experimental design (Fig 1C-E, Suppl. Fig 1, 2). 
Consequently, BonVision makes it easy to 
replicate visual environments and experimental 
designs on various display devices, including 
multiple monitors, curved projection surfaces, 
and head-mounted displays (Fig 1C-E). To 
facilitate easy and rapid porting between 
different experimental apparatus, Bonvision 
features a fast semi-automated display 
calibration. A photograph of the experimental 
setup with fiducial markers9 measures the 3D 
position and orientation of each display relative 
to the observer (Fig 2 and Suppl. Fig. 3). 
BonVision’s inbuilt image processing algorithms 
then estimate the position and orientation of 
each marker to fully specify the display 
environment.  

Virtual reality environments are easy to generate 
in BonVision. BonVision has a library of standard 
pre-defined 3D structures (including planes, 

spheres and cubes), and environments can be 
defined by specifying the position and scale of the 
structures, and the textures rendered on them 
(e.g. Suppl. Fig. 2 and Fig. 5F). BonVision also has 
the ability to import standard format 3D design 
files created elsewhere in order to generate more 
complex environments. This allows users to 
leverage existing 3D drawing platforms (including 
open source platform ‘Blender’) to construct 
complex virtual scenes. 

BonVision can define the relationship between 
the display and the observer in real-time. This 
makes it easy to generate augmented reality 
environments, where what is rendered on a 
display depends on the position of an observer 
(Fig 3A). For example, when a mouse navigates 
through an arena surrounded by displays, 
BonVision enables closed-loop, position-
dependent updating of those displays. BonVision 
can track markers to determine the position of 
the observer, but it also has turn-key capacity for 
real-time live pose estimation techniques – using 
deep neural networks10,11 – to keep track of the 
observer’s movements. This allows users to 
generate and present interactive visual 
environments (Suppl. Video 1, Fig 3B-C).  

Figure 2: Automated calibration of display position. 
A. Schematic showing the position of two 
hypothetical displays of different sizes, at different 
distances and orientation relative to the observer. B. 
How a checkerboard of the same visual angle would 
appear on each of the two displays. C. Example of 
automatic calibration of display position. Standard 
markers are presented on the display, or in the 
environment, to allow automated detection of the 
position and orientation of both the display and the 
observer. The superimposed red cubes show the 
position and orientation of these, as calculated by 
BonVision. D. How the checkerboard would appear 
on the display when rendered, taking into account 
the precise position of the display. E-F. Same as C-D, 
but for another pair of display and observer 
positions. 
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BonVision is capable of rendering visual 
environments near the limits of the hardware (Fig 
4). This is possible because Bonsai is based on a 
just-in-time compiler architecture such that there 
is little computational overhead. To benchmark 
the responsiveness of BonVision in closed-loop 
experiments, we measured the delay (latency) 
between an external event and the presentation 
of a visual stimulus. We first measured the closed-
loop latency for BonVision when a monitor was 
refreshed at a rate of 60Hz (Fig 4A). We found 
delays averaged 2.11 ± 0.78 frames (35.26 ± 
13.07ms). This latency was slightly shorter than 
that achieved by PsychToolbox13 on the same 
laptop (2.44 ± 0.59 frames, 40.73 ± 9.8ms; 
Welch’s t-test, p < 10-80, n=1000). The overall 
latency of BonVision was mainly constrained by 
the refresh rate of the display device, such that 
higher frame rate displays yielded lower latency 
(60Hz: 35.26 ± 13.07ms; 90Hz: 28.45 ± 7.22ms; 
144Hz: 18.49 ± 10.1ms; Fig 4A). That is, the 
number of frames between the external event 
and stimulus presentation was fairly constant 
across frame rate (60Hz: 2.11 ± 0.78 frames; 90Hz: 
2.56 ± 0.65 frames; 144Hz: 2.66 ± 1.45 frames; Fig 
4C). We used two additional methods to 
benchmark visual display performance relative to 
other frameworks (we did not try to optimise 
code fragments for each framework) (Fig 4B-C). 

BonVision was able to render up to 576 
independent elements and up to 8 overlapping 
textures at 60Hz without missing (‘dropping’) 
frames, broadly matching PsychoPy2,3 and 
Psychtoolbox1. BonVision also supports video 
playback, either by preloading the video or by 
streaming it from the disk. The streaming mode, 
which utilises real-time file I/O and 
decompression, is capable of displaying both 
standard definition (SD: 480p) and full HD (HD: 
1080p) at 60Hz on a standard computer (Fig 4D). 
At higher rates, performance is impaired for Full 
HD videos, but is improved by buffering, and fully 
restored by preloading the video onto memory 
(Fig 4D). We benchmarked BonVision on a 
standard Windows OS laptop, but BonVision is 
now also capable of running on Linux.  

To confirm that the rendering speed and timing 
accuracy of BonVision is sufficient to support 
neurophysiological experiments, which need high 
timing accuracy, we mapped the receptive fields 
of neurons early in the visual pathway12, in the 
primary visual cortex and superior colliculus. The 
stimulus (‘sparse noise’) consisted of small black 
or white squares briefly (0.1s) presented at 
random locations (Fig 5A). This stimulus, which is 
commonly used to measure receptive fields of 
visual neurons, is sensitive to the timing accuracy 

Figure 3: Using BonVision to generate an 
augmented reality environment. A. 
Illustration of how the image on a fixed 
display needs to adapt as an animal moves 
around an environment. The displays 
simulate windows from a box into a virtual 
world outside. B. The virtual scene (from: 
http://scmapdb.com/wad:skybox-skies) that 
was used to generate the example images 
and Supplementary Video 1. C. Two 
snapshots of scene rendering for instances 
when the animal was on the left or the right 
of the environment (from Supplementary 
Video 1). The inset image shows the video 
used to determine the viewpoint of the 
observer: the mouse’s head position was 
inferred on-line (at a rate of 40 frames/s) by 
a network trained using DeepLabCut6. 
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of the visual stimulus, meaning that errors in 
timing would prevent the identification of 
receptive fields. In our experiments using 
BonVision, we were able to recover receptive 
fields from electrophysiological measurements13, 
both in the superior colliculus and primary visual 
cortex of awake mice (Fig 5B-C), demonstrating 
that BonVision meets the timing requirements for 
visual neurophysiology. 

To assess whether BonVision could create 
immersive virtual reality environments we first 
asked human observers to discriminate the size of 
objects presented at different depths on a head-
mounted display14. BonVision uses positional 
information (obtained from the head-mounted 

display) to update the view of the world that 
needs to be provided to each eye, and returns two 
appropriately rendered images. On each trial, the 
observer identified the larger of two non-
overlapping cubes that were placed at different 
virtual depths (Fig 5D-E). The display was updated 
in closed-loop to allow observers to alter their 
viewpoint by moving their head. Distinguishing 
objects of the same retinal size required 
observers to use depth-dependent cues15, and we 
found that all observers were able to identify 
which cube was larger (Fig 5E). We next projected 
a simple environment onto a dome that 
surrounded a head-fixed mouse (as shown in Fig 
1E). The mouse was free to run on a treadmill, and 

Figure 4: Closed-loop latency and performance 
benchmarks. A. Latency between sending a 
command (virtual key press) and updating the 
display (measured using a photodiode). (A.i - 
A.ii) Latency depended on the frame rate of the 
display, updating stimuli with a delay of 1-3 
frames. (A.iii - A.iv). B-C. Benchmarked 
performance of BonVision with respect to 
Psychtoolbox and PsychoPy. B. When using non-
overlapping textures BonVision and 
Psychtoolbox could present 576 independent 
textures without dropping frames, while 
PsychoPy could present 16. C. When using 
overlapping textures PsychoPy could present 16 
textures, while BonVision and Psychtoolbox 
could present 8 textures without dropping 
frames. D. Benchmarks for movie playback. 
BonVision is capable of displaying standard 
definition (480p) and high definition (1080p) 
movies at 60 frames/s on a laptop computer 
with a standard CPU and graphics card. We 
measured display rate when fully pre-loading 
the movie into memory (blue), or when 
streaming from disk (with no buffer: orange; 1-
frame buffer: green; 2-frame buffer: red; 4-
frame buffer: purple). When asked to display at 
rates higher than the monitor refresh rate (>60 
frames/s), the 480p video played at the 
maximum frame rate of 60fps in all conditions, 
while the 1080p video reached the maximum 
rate when pre-loaded. Using a buffer slightly 
improved performance. 
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the treadmill’s movements were used to update 
the mouse’s position on a virtual platform (Fig 5F). 
Mouse locomotion speed increased with 
repeated exposure (Fig 5F-G), suggesting 
habituation to the virtual environment. Strikingly, 
mouse speed varied with position on the virtual 
platform (Fig 5F-G), reducing rapidly at the end of 
the platform, where the environment provided a 
virtual cliff. This suggests that BonVision is 
capable of eliciting naturalistic behaviours in a 
virtual environment. BonVision was also able to 
produce instinctive avoidance behaviours in 
freely-moving mice (Fig 5H-I). We displayed a 
small black dot slowly sweeping across the 
overhead visual field. Visual stimuli presented in 

BonVision primarily elicited a freezing response, 
which similar experiments have previously 
described10 (Fig 5I). Together these results show 
that BonVision provides sufficient rendering 
performance to support human and animal visual 
behaviour. 

Discussion  
BonVision is a single software package to support 
experimental designs that require visual display, 
including virtual and augmented reality 
environments. BonVision is easy and fast to 
implement, cross-platform and open source, 
providing versatility and reproducibility.  

    
s 

Figure 5: Illustration of BonVision across a range of vision research experiments. A. Sparse noise 
stimulus, generated with BonVision, is rendered onto a demi-spherical screen. B-C. Receptive field 
maps from recordings of local field potential in the superior colliculus (B), and spiking activity in the 
primary visual cortex (C) of mouse. D. Two cubes were presented at different depths in a virtual 
environment through a head-mounted display to human subjects. Subjects had to report which cube 
was larger: left or right. E. Subjects predominantly reported the larger object correctly, with a slight 
bias to report that the object in front was bigger. F. BonVision was used to generate a closed-loop 
virtual platform that a mouse could explore (top: schematic of platform). Mice naturally tended to 
run faster along the platform, and in later sessions developed a speed profile, where they slowed 
down as they approached the end of the platform (virtual cliff). G. The speed of the animal at the 
start of the platform and at the end of the platform as a function training. H. BonVision was used to 
present visual stimuli overhead while an animal was free to explore an environment (which included 
a refuge). The stimulus was a small dot (5° diameter) moving across the projected surface over several 
seconds. I. The speed of the animal across different trials, aligned to the time of stimulus appearance. 
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BonVision addresses several persistent barriers to 
reproducibility in visual experiments. First, 
BonVision is able to reproduce and deliver visual 
stimuli on very different experimental apparatus. 
This is possible because BonVision’s architecture 
separates specification of the display and the 
visual environment. Second, BonVision includes a 
library of workflows and operators to standardize 
and ease the construction of new stimuli and 
virtual environments. For example, it has 
established protocols for defining display 
positions (Suppl. Fig 3), mesh-mapping of curved 
displays (Fig 1E), and automatic linearization of 
display luminance (Suppl. Fig 4), as well as a 
library of examples for experiments commonly 
used in visual neuroscience. In addition, the 
modular structure of BonVision enables the 
development and exchange of custom nodes for 
generating new visual stimuli or functionality 
without the need to construct the complete 
experimental paradigm. Third, BonVision is based 
on Bonsai8, which has a large user base and an 
active developer community, and is now a 
standard tool for open-source neuroscience 
research. BonVision naturally integrates Bonsai’s 
established packages in the multiple domains 
important for modern neuroscience, which are 
widely used in applications including real-time 
video processing16,17, optogenetics16–18, fibre 
photometry19,20, electrophysiology (including 
specific packages for Open Ephys13,21 and high-
density silicon probes22,23), and calcium imaging 
(e.g. UCLA miniscope24,25). Bonsai is specifically 
designed for flexible and high-performance 
composition of data streams and external events, 
and is able to monitor and interconnect multiple 
sensor and effector systems in parallel, thus 
making it particularly easy to implement closed-
loop experiments.  

In summary, BonVision can generate complex 3D 
environments and retinotopically defined 2D 
visual stimuli within the same framework. Existing 
platforms used for vision research, including 
PsychToolbox1, PsychoPy2,3, STYTRA7, or RigBox26, 
focus on well-defined 2D stimuli. Similarly, 
gaming-driven software, including FreemoVR4, 

ratCAVE5, and ViRMEn6, are oriented towards 
generating virtual reality environments. 
BonVision combines the advantages of both these 
approaches in a single framework 
(Supplementary Table 1), while bringing the 
unique capacity to automatically calibrate the 
display environment, and use deep neural 
networks to provide real-time control of virtual 
environments. Experiments in BonVision can be 
rapidly prototyped and easily replicated across 
different display configurations. Being free, open-
source and portable, BonVision is a state-of-the-
art tool for visual display that is accessible to the 
wider community. 

Code availability 
BonVision is an open-source software package 
available to use under the MIT license. It can be 
downloaded through the Bonsai (bonsai-rx.org) 
package manager, and the source code is 
available at: github.com/bonvision/BonVision. 
Installation instructions, demos and learning tools 
are available at: bonvision.github.io/.  
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Supplementary Table 1: Features of visual display software 
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Free and Open-Source (FOSS) ✓✓ ✓# ✓✓ ✓# ✓ ✓✓ ✓ 
Rendering of 3D environments ✓✓ ✓ ✓ ✓✓ ✓✓ ✓✓ ✓✓ 

Dynamic rendering based on 
observer viewpoint ✓✓   ✓ ✓✓ ✓✓ ✓ 

Import 3rd party 3D scenes ✓✓ ✓ ✓    ✓✓ 
Interfacing with cameras, sensors, 
and effectors ✓✓ ✓✓ ~ ✓✓  ~ ~ 

Real-time hardware control ✓✓ ~ ~ ✓ ✓✓ ✓ ✓ 
Traditional visual stimuli ✓✓ ✓✓ ✓✓     
Auto-calibration of display position 
and pose ✓✓       

Integration with deep learning 
pose estimation ✓✓       

✓✓ easy and well-supported 
✓    possible or not well-supported 
~     difficult to implement 
#      based on MATLAB (requires a license) 

 

Supplementary Video 1: Augmented reality using BonVision. This video is an example of a 
deep neural network, trained with DeepLabCut, being used to estimate the position of a 
mouse’s head in an environment in real-time, and updating a virtual scene presented on the 
monitors based on this estimated position. The first few seconds of the video display the 
online tracking of specific features (nose, head, and base of tail) while an animal is moving 
around (shown as a red dot) in a three-port box (Soares, Atallah & Paton, 2016). The inset 
shows the original video the simulation is based on. The rest of the video demonstrates how 
a green field landscape (source: http://scmapdb.com/wad:skybox-skies) outside the box is 
displayed on the three displays within the box. The three displays simulate windows into the 
world beyond the box. The position of the animal was updated at 40 frames/s. 
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Supplementary Figures 
 

 

Supplementary Fig 1 (related to Figures 1 and 2): Mapping stimuli onto displays in various 
positions.  
A. Checkerboard stimulus being rendered. B. Projection of the stimulus onto a sphere using 
Mercator projection. C. Example display positions (dA-dF) and (D) corresponding rendered 
images. 
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Supplementary Fig 2 (related to Figure 1): Modular structure of workflow and example 
workflows.  
A. Description of the modules in BonVision workflows that generate stimuli. Every BonVision 
stimuli includes a module that creates and initializes the render window, shown in “BonVision 
window and resources”. This defines the window parameters in Create Window (such as 
background colour, screen index, VSync), and loads predefined (BonVision Resources) and 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.03.09.983775doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.09.983775
http://creativecommons.org/licenses/by-nd/4.0/


12 
 

 

user defined textures (Texture Resources, not shown), and 3D meshes (Mesh Resources). This 
is followed by the modules: “Drawing region”, where the visual space covered by the stimuli 
is defined, which can be the complete visual space, 360° x 360°. “Draw stimuli” and “Define 
scene” are where the stimulus is defined, “Map Stimuli”, which maps the stimuli into the 3D 
environment, and “Define display”, where the display devices are defined. B-C. Modules that 
define the checkerboard + grating stimulus (B) shown in the middle row of Fig 1, and 3D world 
(C) with 5 objects shown in the bottom row of Fig 1. The display device is defined separately 
and either display can be appended at the end of the workflow. This separation of the display 
device allows for replication between experimental configurations. D. The variants of the 
modules used to display stimuli on a head-mounted display. The empty region under “Define 
scene” would be filled by the corresponding nodes in B and C. 
 
 

 
Supplementary Figure 3 (related to Figure 2):  Automated workflow to calibrate display 
position. The automated calibration is carried out by taking advantage of ArUco markers5 that 
can be used to calculate the 3D position of a surface. Ai. We use one marker on the display 
and one placed in the position of the observer. We then use a picture of the display and 
observer position taken by a calibrated camera. This is an example where we used a mobile 
phone camera for calibration. Aii. The detected 3D positions of the screen and the observer, 
as calculated by BonVision. Aiii. A checkerboard image rendered based on the precise position 
of the display. B-C. same as A-C for different screen and observer positions: with the screen 
tilted towards the animal (B), or the observer shifted to the right of the screen (C).  
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Supplementary Figure 4: Automated gamma-calibration of visual displays. BonVision 
monitored a photodiode (Photodiode v2.1, https://www.cf-hw.org/harp/behavior) through a 
HARP microprocessor, to measure the light output of the monitor (Dell Latitude 7480). The 
red, green and blue channels of the display were sent the same values (i.e. grey scale). A. 
Gamma calibration. The input to the display channels was modulated by a linear ramp (range 
0-255). Without calibration the monitor output (arbitrary units) increased exponentially (blue 
line). The measurement was then used to construct an intermediate look-up table that 
corrected the values sent to the display. Following calibration, the display intensity is close to 
linear (red line). Inset at top: schematic of the experimental configuration. B. Similar to A, but 
showing the intensity profile of a drifting sinusoidal grating. Measurements before calibration 
resemble an exponentiated sinusoid (blue dotted line). Measurements after calibration 
resemble a regular sinusoid (red dotted line). 
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Experimental Procedures 
 

Benchmarking 

We performed benchmarking to measure latencies and skipped (“dropped”) frames. For 
benchmarks at 60Hz refresh rate, we used a standard laptop with the following configuration: 
Dell Latitude 7480, Intel Core i7-6600U Processor Base with Integrated HD Graphics 520 (Dual 
Core, 2.6GHz), 16GB RAM. For higher refresh rates we used a gaming laptop ASUS ROG 
Zephyrus GX501GI, with an Intel Core i7-8750H (6 cores, 2.20GHz), 16GB RAM, equipped with 
a NVIDIA GeForce GTX 1080. The gaming laptop built-in display refreshes at 144Hz, and for 
measuring latencies at 90Hz we connected it to a Vive Pro SteamVR head-mounted display 
(90Hz refresh rate). All tests were run on Windows 10 Pro 64-bit. 

To measure the time from input detection to display update, as well as dropped frames 
detection, we used open-source HARP devices from Champalimaud Research Scientific 
Hardware Platform. Specifically we used the HARP Behavior device (https://www.cf-
hw.org/harp/behavior) to synchronise all measurements with the extensions: ‘Photodiode 
v2.1’ to measure the change of the stimulus on the screen, and ‘Mice poke simple v1.2’ as the 
nose poke device to externally trigger changes. To filter out the infrared noise generated from 
an internal LED sensor inside the Vive Pro HMD, we positioned an infrared cut-off filter 
between the internal headset optics and the photodiode. Benchmarks for video playback 
were carried out using a trailer from the Durian Open Movie Project (© copyright Blender 
Foundation | durian.blender.org). 

All benchmark programs and data are available at 
https://github.com/bonvision/benchmarks. 

File Formats 
We tested the display of images and videos using the image and video benchmark workflows. 
We confirmed the ability to use the following image formats: PNG, JPG, BMP, TIFF, GIF. Movie 
display relies on the FFmpeg library (https://ffmpeg.org/), an industry standard, and we 
confirmed ability to use the following containers: AVI, MP4, OGG, OGV and WMV; in 
conjunction with standard codecs: H264, MPEG4, MPEG2, DIVX. Importing 3D models and 
complex scenes relies on the Open Asset Importer Library (Assimp | http://assimp.org/). We 
confirmed the ability to import and render 3D models and scenes from the following formats: 
OBJ, Blender. 

Animal Experiments 
All experiments were performed in accordance with the Animals (Scientific Procedures) Act 
1986 (United Kingdom) and Home Office (United Kingdom) approved project and personal 
licenses. The experiments were approved by the University College London Animal Welfare 
Ethical Review Board under Project License 70/8637. The mice (C57BL6 wild-type) were 
group-housed with a maximum of five to a cage, under a 12-hour light/dark cycle. All 
behavioural and electrophysiological recordings were carried out during the dark phase of the 
cycle. 
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Innate Defensive Behaviour 
Mice (5 male, C57BL6, 8 weeks old) were placed in a 40cm square arena. A dark refuge placed 
outside the arena could be accessed through a 10cm door in one wall. A DLP projector 
(Optoma GT760) illuminated a screen 35cm above the arena with a grey background (80 
candela/m2). When the mouse was near the centre of the arena, a 2.5cm black dot appeared 
on one side of the projection screen and translated smoothly to the opposite side over 3.3s. 
10 trials were conducted over 5 days and the animal was allowed to explore the environment 
for 5-10 minutes before the onset of each trial. 

Mouse movements were recorded with a near infrared camera (Blackfly S, BFS-U3-13Y3M-C, 
sampling rate: 60Hz) positioned over the arena. An infrared LED was used to align video and 
stimulus. Freezing was defined as a drop in the animal speed below 2cm/s that lasted more 
than 0.1s; flight responses as an increase in the animal running speed above 40cm/s. 
Responses were only considered if they occurred within 3.5s from stimulus onset.  

Surgery 
Mice were implanted with a custom-built stainless-steel metal plate on the skull under 
isoflurane anaesthesia. A ~1mm craniotomy was performed either over the primary visual 
cortex (2mm lateral and 0.5mm anterior from lambda) or superior colliculus (0.5mm lateral 
and 0.2mm anterior from lambda). Mice were allowed to recover for 4-24 hours before the 
first recording session. 

We used a virtual reality apparatus similar to those used in previous studies (Schmidt-Hieber 
& Hausser, 2013; Muzzu, Mitolo, Gava & Schultz, 2018). Briefly, mice were head-fixed above 
a polystyrene wheel with a radius of 10cm. Mice were positioned in the geometric centre of 
a truncated spherical screen onto which we projected the visual stimulus. The visual stimulus 
was centred at +60° azimuth and +30° elevation and had a span of 120° azimuth and 120° 
elevation. 

Virtual reality behaviour 
5 male, 8-week old, C57BL6 mice were used for this experiment. One week after the surgery, 
mice were placed on a treadmill and habituated to the Virtual Reality (VR) environment by 
progressively increasing the number of time spent head fixed: from ~15 mins to 2 hours. Mice 
spontaneously ran on the treadmill, moving through the VR in absence of reward. The VR 
environment was a 100cm long platform with a patterned texture that animals ran over for 
multiple trials. Each trial started with an animal at the start of the platform and ended when 
it reached the end, or if 60s had elapsed. At the end of a trial, there was a 2 second grey 
interval before the start of the next trial. 

Neural Recordings 
To record neural activity, we used multi-electrode array probes with two shanks and 32 
channels (ASSY-37 E-1, Cambridge Neurotech Ltd., Cambridge, UK). Electrophysiology data 
was acquired with an OpenEphys acquisition board connected to a different computer from 
that used to generate the visual stimulus. 
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The electrophysiological data from each session was processed using Kilosort 1 (Pachitariu, 
Steinmetz, Kadir, Carandini & Harris, 2016). We synchronised spike times with behavioural 
data by aligning the signal of a photodiode that detected the visual stimuli transitions 
(PDA25K2, Thorlabs, Inc., USA). We sampled the firing rate at 60Hz, and then smoothed it 
with a 300ms Gaussian filter. We calculated receptive fields as the average firing rate or local 
field potential elicited by the appearance of a stimulus in each location (custom routines in 
MATLAB). 

Augmented reality for mice 
The mouse behaviour videos were acquired by Bruno Cruz from the lab of Joe Paton at the 
Champalimaud Centre for the Unknown, using methods similar to Soares, Atallah & Paton, 
2016. A ResNet-50 network was trained using DeepLabCut (Mathis et al, 2018). We simulated 
a visual environment in which a virtual scene was presented beyond the arena, and updated 
the scenes on three walls of the arena that simulated how the view of these objects changed 
as the animal moved through the environment. The position of the animal was updated from 
the video file at a rate of 40 frames/s on a gaming laptop: ASUS ROG Zephyrus GX501GI, with 
an Intel Core i7-8750H (6 cores, 2.20GHz), 16GB RAM, equipped with a NVIDIA GeForce GTX 
1080, using a 512x512 video. The performance can be improved using a lower pixel resolution 
for video capture, and we were able to achieve up to 80 frames/s without noticeable decrease 
in tracking accuracy using this strategy. Further enhancements can be achieved using a 
MobileNet network. The position inference from the deep neural network and the BonVision 
visual stimulus rendering were run on the same machine. 

Human Psychophysics 
All procedures were approved by the Experimental Psychology Ethics Committee at University 
College London. 4 male participants were tested for this experiment. The experiments were 
run on a gaming laptop (described above) connected it to a Vive Pro SteamVR head-mounted 
display (90Hz refresh rate). BonVision is compatible with different headsets (for example 
Oculus Rift, HTC Vive). BonVision receives the projection matrix (perspective projection of 
world display) and the view matrix (position of eye in the world) for each eye from the head 
set. BonVision uses these matrices to generate two textures, one for the left eye and one for 
the right eye. Standard onboard computations on the headset provide additional non-linear 
transformations that account for the relationship between the eye and the display (such as 
lens distortion effects).   

 
Methods References 
Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis, M.W., & Bethge M 

DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. 
Nat. Neurosci. 21, 1281–1289 (2018). 

Muzzu, T., Mitolo, S., Gava, G. P., & Schultz, S. R. . Encoding of locomotion kinematics in the 
mouse cerebellum. PLoS ONE, 13(9) (2018).  

Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M., & Harris, K. (2016). Fast and accurate 
spike sorting of high-channel count probes with KiloSort. Advances in Neural Information 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.03.09.983775doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.09.983775
http://creativecommons.org/licenses/by-nd/4.0/


17 
 

 

Processing Systems 29. NIPS Proceedings: Barcelona, Spain (2016) 

Soares, S., Atallah, B., & Paton, J.. Midbrain dopamine neurons control judgement of time. 
Science, 354(6317), 1273-1277 (2016). 

Schmidt-Hieber, C., & Hausser, M.. Cellular mechanisms of spatial navigation in the medial 
entorhinal cortex. Nat Neurosci, 16(3), 325–331 (2013). 

 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.03.09.983775doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.09.983775
http://creativecommons.org/licenses/by-nd/4.0/

