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Abstract 
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter 
fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in 
segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, 
which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the 
variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, 
including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain 
streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation 
protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols 
for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across 
protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including 
variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine 
clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although 
external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards 
reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and 
well-chosen constraints and decisions in the dissection process.  
 
Keywords: tractography, bundle segmentation, white matter, fiber pathways, dissection

Introduction 
Diffusion MRI fiber tractography [1, 2] offers unprecedented insight into 
the structural connections of the human brain. In a process that parallels 
post-mortem microdissection, tractography – in combination with a set 
of rules, constraints, and procedures to dissect and segment major white 
matter fascicles of the brain – allows noninvasive visualization and 
quantification of the shape, location, connectivity, and biophysical 
properties of white matter bundles. This process of in vivo “virtual 
dissection” [3, 4],  also called bundle segmentation, has led to new insight 
into how structural connectivity underlies brain function, cognition, and 
development, in addition to dysfunction in neurological diseases, mental 
health disorders, and aging [5]. Additionally, bundle segmentation is used 
routinely to provide critical clinical information in both pre-operative and 
intra-operative mapping of brain tumor resections [6, 7].  

 
Despite widespread use in clinical and research domains, there are a large 
number of variations in workflows for bundle segmentation that have 
been adopted by the neuroimaging community. Normally, workflows 
either generate bundles of streamlines, i.e., digital representations of fiber 
trajectories, or dissect subsets of streamlines from an ensemble of 
streamlines throughout the whole brain. These protocols typically differ 
in the rules and constraints used to isolate a given pathway, ranging from 
manual delineation of inclusion and exclusion regions of interest, to fully 

automated segmentations based on shape, location, or connectivity. 
Contributing to this variability, agreements on the anatomical definitions 
of pathways in the human brain are far from settled [8-11], in part 
hindered by the lack of a consistent framework for defining tracts. 
Descriptive tract definitions have traditionally focused on the shape and 
area of convergence of axons deep in the white matter, but may also focus 
on the specific regions to which these fibers connect [9, 11-15]. 
Consequently, and coming full circle, differences and disagreements in 
anatomical definitions and their interpretation may lead to further 
variations in protocols used in the virtual dissection process. 
 
For these reasons, the process of bundle segmentation has been described 
as existing somewhere between science and art [16]. Variation in 
protocols can result in different segmentations which can lead to different 
scientific conclusions or clinical decisions [17]. This inter-protocol 
variability adds “noise” to the literature when it comes to the process of 
bundle segmentation [18, 19], a variability that prevents a direct 
comparison of the outcomes of different studies, and hinders the 
translation of these techniques from the research laboratory to the clinic. 
Yet, an estimate of the variability that exists across different protocols 
remains unclear. In order to ultimately harmonize the anatomical 
definition of tracts and standardize the bundle segmentation process, we 
propose a first step is to quantify this variability, and understand the 

Figure 1. Variation in white matter bundle segmentation. Four example segmentations of the corticospinal tract (green) and arcuate fasciculus 
(cyan) show variability in the size, shape, densities, and connections of these reconstructed white matter pathways. 
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similarities and differences in bundle segmentation results across 
protocols.   
 
Towards this end, the aims of this study are twofold: (1) to understand 
how much variability exists across different protocols for bundle 
segmentation, and (2) to quantify which fascicles exhibit the most 
agreement/disagreement across protocols. To do this we take a “many 
analysts, one dataset” approach previously used to study workflows for 
diffusion analysis [20], hippocampus segmentation [21], fMRI analysis 
[19, 22], and psychology research [23]. Through an open call to the 
community, we invited collaborations from expert scientists and 
clinicians who use tractography for bundle segmentation, provided them 
all with the same sets of tractography streamlines, and gave them the task 
of segmenting 14 white matter pathways from each dataset. This enabled 

streamline-based and volume-based quantification of inter-protocol 
agreement and disagreement for each fiber pathway and the results 
highlight the problem of variation of definitions and protocols for bundle 
segmentation.  

Results 

Submissions 
We surveyed the protocols for bundle segmentation of 14 white matter 
bundles: Superior Longitudinal Fasciculus (SLF), Arcuate Fasciculus 
(AF), Optic Radiation (OR), Corticospinal Tract (CST), Cingulum (CG), 
Uncinate Fasciculus (UF), Corpus Callosum (CC), Middle Longitudinal 
Fasciculus (MdLF), Inferior Fronto-Occipital Fasciculus (IFOF), Inferior 
Longitudinal Fasciculus (ILF), Fornix (FX), Anterior Commissure (AC), 

Figure 2. Summary of teams and submissions. Location of the teams’ affiliated lab (top). In total, 42 teams submitted 57 unique sets of bundle 
dissections, 28 utilized the provided deterministic streamlines, and 29 utilized probabilistic. Map icons are colored based on the set of streamlines 
utilized, with the same color-scheme as bar plots. Example submissions are shown for 14 pathways (bottom) along with a pie chart indicating the 
number of submissions for each bundle. Acronyms: see text.  
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Posterior Commissure (PC), and Parieto-Occipital Pontine Tract 
(POPT).   
 
To isolate the effects of bundle segmentation from all other sources of 
variation, we directly provided six sets of whole-brain streamlines (both 
deterministic and probabilistic) to all collaborators, derived from 3 
subjects with scan-rescan data acquired from the Human Connectome 
Project test-retest database [24]. Collaborators were given the choice of 
utilizing streamlines generated from one of two commonly used 
tractography methods, a deterministic or a probabilistic algorithm, which 
are known to generate different representations of white matter bundles 
and have different uses and applications as described in the literature [25, 
26].   
 
In total, this collaborative effort involved 144 collaborators from 42 
teams (Figure 2, top). 57 unique sets of protocols were submitted, of 
which 28 submissions used the deterministic streamlines and 29 used 
probabilistic. A total of 3138 bundle tractograms were submitted. 
Because collaborators did not have to submit all bundles, pathways 
showed varying representation across submissions (Figure 2, bottom), 
ranging from as low as 16 protocols for the PC, up to 50 protocols for the 
CST.  

Qualitative Results 
Example visualizations of randomly selected segmentations from a single 
subject are shown for exemplar projection, association, and commissural 

pathways (CST, AF, CC) in Figure 3. These are visualized as both 
streamlines directly, and also as 3D streamline density maps. The primary 
result from this figure is that there are many ways to segment these 
structures that result in qualitatively different representations of the same 
white matter pathways. These examples demonstrate visibly apparent 
variations in the size, shape, and connectivity patterns of streamlines. In 
contrast, different protocols result in similar patterns of high streamline 
density in the deep white matter and midbrain, with similar overall shape 
and central location. Similar visualizations, for all submitted pathways, 
both probabilistic and deterministic, are provided in supplementary 
documentation. These observations apply to all dissected pathways, 
however the commissural AC and PC contained very few streamlines, 
with little-to-no agreement across protocols.    

Pathway-Specific results 
To understand the variability that exists across protocols for a given 
pathway, we visualize volume-based and streamline-based overlaps 
among the protocols and show boxplots of agreement measures that 
quantify inter-protocol, intra-protocol, and inter-subject variation. The 
volume overlap is displayed as the volume of voxels in which a given 
percent of protocols agree that the voxel was occupied by a given 
pathway, where a streamline overlap is displayed as the individual 
streamlines in which a given percent of protocols agree that streamline is 
representative of a given pathway. For quantitative analysis, we use 
several measures to describe similarity and dissimilarity of streamlines, 
streamline density, and pathway volume (Figure 4). This includes (1) 

Figure 3. Variation in protocols for bundle segmentation of example pathways (CST, AF, and CC) on the same subject from the same set of 
whole-brain streamlines. Eight randomly selected bundle segmentation approaches for each pathway are shown as segmented streamlines and 
rendered as 3D streamline density maps. Variations in size, shape, density, and connectivity are qualitatively apparent. Probabilistic streamlines are 
shown, see supplementary material for Deterministic submissions. Random selections generated independently for each pathway. Streamlines are colored 
by orientation and all density maps are windowed to the same range. 
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volume Dice overlap which describes the overall volume similarity, (2) 
density correlation which describes insight into similarity of streamline 
density, (3) bundle adjacency which describes the average distance of 
disagreement between two bundles, and (4) streamline Dice which 
describes the overlap of streamlines common between protocols (which 
can only be calculated because bundles come from the same original set 
of streamlines). We calculate geometric measures of pathways including 
number of streamlines, mean length, and volume, as well as 
microstructural measures of the average fractional anisotropy (FA) of the 
entire pathway volume and the FA weighted by streamline density 
(wFA).  
 
For simplicity, we show results of the CST, AF, and CC. Analysis was 
conducted on all tracts, and results are provided in supplementary 
documentation.   
 
Corticospinal Tract (CST) 
Figure 5 shows the results for the CST, and Appendix A summarizes the 
descriptive definitions and decisions made in the bundle segmentation 
workflow. Looking at the volume of agreement on a single subject, nearly 
all methods agree on the convergence of axons through the internal 
capsule and midbrain, with some disagreements on cortical terminations, 
and only a minority of protocols suggesting lateral projections of this 
tract. Streamline-based agreements show similar trends. The most 
striking result is that there were not any streamlines which were common 
to at least 75% of either the deterministic or probabilistic protocols.  
 
Quantitative analysis indicates fairly low agreement across protocols. 
Inter-protocol Dice overlap coefficients largely fall between 0.4 and 0.6 
(median Dice of 0.47 and 0.51 for probabilistic and deterministic, 
respectively), with a larger tail towards much lower Dice values 
indicating some outlier protocols that are substantially different from 
others. Protocols show moderate density correlation coefficients (median 
correlations of 0.51 and 0.67), and an average difference between 
protocols of >4mm (median bundle adjacency of 4.3mm and 3.9mm). 

Reproducibility within protocols is much higher, resulting in higher Dice 
coefficients, higher density correlations, and lower bundle adjacency. 
The variation across protocols is even greater than the variation across 
subjects when quantified using Dice overlap. However, the density 
correlation across protocols is higher than that across subjects, indicating 
that while the volume overlap decreases, measures of bundle density are 
more consistent across protocols. Finally, bundle adjacency is higher for 
inter-protocol analysis than inter-subjects, suggesting that volume-based 
differences across protocols are greater than volume-based differences 
across subjects. The quantitative index FA shows a coefficient of 
variation across protocols of 7% relative to its average value and the 
density weighted FA shows a variation of 4%.  
 
Arcuate Fasciculus (AF) 
Figure 6 shows the results of the inter-protocol analysis for the AF, and 
Appendix B summarizes the descriptive definitions and decisions made 
in the bundle segmentation workflow. A majority of the extracted 
bundles agree on the volume occupied by the bundle, with both 
deterministic and probabilistic submissions showing the characteristic 
arching shape as the pathway bends from the frontal to temporal lobes. 
The volume of the 75% agreement is significantly smaller and much more 
specific than that of the 25% of agreement, occupying only the deep white 
matter core of this trajectory. Similar results are shown for streamlines. 
Very few streamlines were agreed upon by 75% of protocols for 
deterministic tractography, and no single streamline was observed in 75% 
of probabilistic submissions. Cortical connections show significant 
variation. Qualitatively, as we become more strict with agreement, the 
connections become much more refined to the frontal and temporal lobes 
only, with fewer connections to the parietal cortex. 
 
Quantitative analyses of similarity and agreement closely follow that of 
the CST. The Dice overlap indicates relatively poor inter-protocol 
agreement (median values 0.46 and 0.43 for probabilistic and 
deterministic, respectively), with a much higher intra-protocol agreement 
(median of 0.66 and 0.74). However, the inter-protocol overlap is similar 

Figure 4. Similarity and dissimilarity metrics to assess reproducibility. Example SLF datasets are used to illustrate a range of similarity values 
between bundles A and B (top) and between bundles A and C (bottom). Dice overlap is a volume-based measure calculated as twice the intersection of 
two bundles (magenta) divided by the union (red and blue). Density correlation is calculated as the correlation coefficient between the voxel-wise streamline 
densities (shown as a hot-cold colormap ranging from 0 to maximum streamline density) of the two bundles being compared. Bundle adjacency is 
calculated by taking the average distance of disagreement (not including overlapping voxels in blue) between bundles (distances shown as hot-cold 
colormap). Finally, streamline Dice is taken as the intersection of common streamlines divided by the union of all streamlines in a bundle and requires 
input bundles to be segmented from the same set of underlying streamlines (intersection shown in figure). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2020.10.07.321083doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.321083
http://creativecommons.org/licenses/by/4.0/


Schilling et al., 22 March 2021 – preprint  

7 

to the variation across subjects (0.40 and 0.53). Similar trends are 
observed for density correlations. In this case, the inter-subject variation 
is lower than inter-protocol for deterministic, but higher for probabilistic, 
although both measures are lower than within protocol agreement. 
Finally, differences across protocols are on average >5mm of distance, 
whereas the disagreement is much less within protocols and even 
between subjects. Finally, the coefficient of variation of FA and wFA 
across protocols is 10% and 5% that of the average FA and wFA, 
respectively.  
 
Corpus Callosum 
Figure 7 shows the results of inter-protocol analysis of the CC, and 
Appendix C presents a summary of the descriptive definitions and 
decisions made in the bundle segmentation workflow. Most protocols 
generally agree that this structure takes up a large portion of the cerebral 
white matter in both hemispheres. While many streamlines were 
consistent across methods, when looking at the 75% agreement, many 

submissions do not include lateral projections – although they exist 
within the dataset – as well as fibers of the splenium (or forceps major) 
connecting to the occipital lobe and connections to temporal cortex.  
             
Quantitative analysis shows much higher reproducibility than for the AF 
and CST, with mean Dice values across protocols of 0.66 and 0.72, which 
are again lower than intra-protocol reproducibility, but in this case, both 
slightly higher than that across subjects. The density correlation shows 
similar trends. Finally, bundle adjacency is higher across protocols than 
across subjects, with measures indicating that disagreement is generally 
3mm or greater across protocols. Even though this structure is quite 
expansive throughout the white matter, variation across quantitative FA 
measures are still on the order of 8% and 4% for FA and wFA, 
respectively.  

Figure 5. Corticospinal Tract (CST) inter-protocol variability. Renderings show 25%, 50%, and 75% agreement on volume and streamlines for 
deterministic and probabilistic tractograms. Box-and-whisker plots of Dice overlap, density correlation, and bundle adjacency quantify inter-protocol, 
intra-protocol, and inter-subject variability (deterministic: red; probabilistic: blue). Each data-point in the plots is derived from the summary statistic of a 
single submission. Note that there were no streamlines which were common to at least 75% of the protocols.  
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Inter-protocol variability 
To understand which pathways exhibit the most agreement/disagreement 
across protocols, intra-protocol volume-based variation measures of Dice 
overlap, density correlation, bundle adjacency, and Dice streamlines are 
plotted in Figure 8. 
 
There is a fairly large variation across pathways in the overall protocol 
agreement as measured by Dice volume overlap (Figure 8A). Volume-
wise, the most reproducible were the CC, the CST, and the IFOF. 
Reproducible results from the CC were expected due to its large size and 
unambiguous location of the CC proper, while the CST is arguably one 
of the most well-studied tracts. The IFOF, while one of the more 
controversial fasciculi [8, 9, 27, 28], likely results in higher overlap 
because it is a long anterior-posterior directed pathway spanning from the 

occipital to frontal lobe, passing through the temporal stem, a tight and 
small bottleneck region [29] and most protocols agree that nearly any 
streamline spanning this extent through a ventral route, will belong to this 
pathway. In all cases, the overlap across protocols is fairly low, with 
median values of the CC of 0.66 and 0.72 being the highest among all 
pathways studied.  
 
The least reproducible structures are those of the commissures, AC and 
PC, which are largely defined only by a single location along the midline 
with very little information on their routes or connections. The FX 
represented a unique case. Many groups submitted the left FX as 
expected, while others considered the left and right FX as a single 
structure due to its commissural component. Thus, while it is indeed a 
small structure, the quantitative value of overlap is overly critical based 
on qualitative observations.  

Figure 6. Arcuate Fasciculus (AF) inter-protocol variability. Renderings show 25%, 50%, and 75% agreement on volume and streamlines for 
deterministic and probabilistic tractograms. Box-and-whisker plots of Dice overlap, density correlation, and bundle adjacency quantify inter-protocol, 
intra-protocol, and inter-subject variability (deterministic: red; probabilistic: blue). Note that there were no streamlines which were common to at least 
75% of the protocols. 
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In agreement with qualitative results, the density correlations (Figure 
8B) are moderate to high for most pathways, meaning that areas of high 
streamline density and low streamline density are generally in agreement 
across protocols. Pathways such as the CC, IFOF, CG, CST, and UF have 
high agreement in streamline densities, whereas pathways with generally 
lower number of streamlines and hence lower densities (i.e., PC, and FX) 
show lower density correlations. 
 
Similar results are observed for dissimilarity (Figure 8C). Again, AC, 
PC, show very large distances of disagreement, along with the FX and in 
this case the MdLF. For nearly all pathways, the range of disagreements 
across protocols are most typically on the order of 4-6mm. Looking at 
Dice overlap of the streamlines (Figure 8D), it is immediately apparent 
that the overlap is very low in all cases, much lower than overlap of 
volume. For all pathways, a large majority of all comparisons yield 
streamline Dice coefficients less than 0.2, with many indicating no 

overlap at all. A trend observed in the streamline comparisons is that the 
overlap is generally greater for deterministic than probabilistic 
algorithms. 
 
Figure 9 shows protocol variability for pathway-specific measures of the 
mean fractional anisotropy, weighted fractional anisotropy, pathway 
volume, and pathway length across all protocols. In agreement with 
results on the CST, AF, and CC, the FA derived from different protocols 
varies by more than 8-12%, an effect greater than that observed in the 
literature across study cohorts [30-32]. Weighted-FA (wFA), however, 
varies much less across protocols (4-7%) and is of greater overall 
magnitude than the unweighted metric. The volume measurements show 
that different protocols can result in an order of magnitude difference in 
pathway volume, an effect observed for all pathways. Finally, pathways 
with more variation in average streamline length (Figure 9) agree well 
with those with more variation in overlap measures. For example, AC, 

Figure 7. Corpus callosum (CC) inter-protocol variability. Renderings show 25%, 50%, and 75% agreement on volume and streamlines for 
deterministic and probabilistic tractograms. Box-and-whisker plots of Dice overlap, density correlation, and bundle adjacency quantify inter-protocol, 
intra-protocol, and inter-subject variability (deterministic: red; probabilistic: blue). 
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PC, and FX result in large differences in average length, while protocols 
on the IFOF consistently agree on the length of this structure.  

Variability within and across pathways 
To assess similarity and differences in submissions without a priori user-
defined metrics of similarity, we utilized the Uniform Manifold 
Approximate and Projection (UMAP) [33] technique to visualize all 
bundle segmentation techniques in a low-dimensional space. The UMAP 
is a general nonlinear dimensionality reduction that is particularly well 
suited for visualizing high-dimensional datasets, in this case, on a 2D 
plane. Figure 10 shows all submissions, for all pathways, projected on a 
2D plane. While there are differences across protocols for a given 
pathway, all submissions for a given pathway generally cluster together 
and show similar low-order commonalities, for both probabilistic and 
deterministic. However, overlap between different pathways does occur 
in some instances, for example between the SLF and AF (Figure 10, A), 
POPT and CST (Figure 10, B), and MLF, ILF, and OR (Figure 10, C). 

This suggests similar low-order representation of some submissions in 
these pathways. 

Discussion 
These results identify and quantify differences and the significant 
heterogeneity of white matter structures introduced by the use of different 
protocols for bundle segmentation with tractography. This variability 
may present difficulties interpreting differences in bundle segmentation 
results obtained by different labs, or meta-analyses extending and 
comparing findings from one study to other studies. Additionally, this 
variation in protocols can lead to variability in quantitative metrics that 
are greater than true biological variability across populations or subjects 
and may hinder translation of these techniques from the research 
laboratory to the clinic.  
 
We propose that a major source of this variation stems from a lack of 
consensuses on the anatomical definition of pathways [8-11]. There is no 

Figure 8. Inter-protocol variability. Dice overlap coefficients, density correlation, bundle adjacency, and Dice streamlines for all studied pathways. 
Deterministic results shown in red, probabilistic in blue. 

Figure 9. Inter-protocol variation in mean FA, weighted-FA, volume (mm3), and pathway length (mm) for all studied pathways. Note that CC volume is 
an order of magnitude larger than all other pathways and is shown on a 103 mm3 scale.  
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standard framework for defining a tract, with some descriptive definitions 
focusing on the shape and locations of convergence of axons in the deep 
white matter, while others may focus on specific regions to which fibers 
connect [9, 11-15]. Consequently, differences, misconceptions, and 
ambiguities in anatomical definitions and their interpretation may lead to 
different rules used in the dissection process. For example, workflows 
used to dissect a bundle range from manual to automated delineation of 
regions through which streamlines must pass, to shape-based, signal-
based, or connection-based methods of segmentation. Importantly, the 
appropriateness and usefulness of the chosen reconstruction method is 
application dependent, and no single method is clearly wrong and/or 
better than the others.  

 
This study was not intended to detract from the value of tractography and 
bundle segmentation, but rather the aim was to clearly define a current 
inherent problem and its scope. Looking forward, with a number of well-
validated and valuable tools, pipelines, software, and processes at our 
disposal, it becomes fairly straightforward to modify bundle 
segmentation protocols to match what we would ultimately strive for in 
a “consensus definition” of white matter bundles. Thus, instead of 
describing these results as revealing a problem, we see this as an 
opportunity, or a call-to-action to harmonize the field of bundle 
segmentation – both in the nomenclature and definition of white matter 
pathways, and in the best way to virtually segment these using 

Figure 10. UMAP dimensionality reduction projected bundles onto an un-scaled 2D plane. Object color and shape represent pathways, and object 
size designates deterministic/probabilistic. While variation exists within pathways and within deterministic/probabilistic streamlines, the white matter 
pathways generally cluster together in low dimensional space. Insets visualize data points as streamline renderings, and highlight areas where similarity 
and/or overlap is shown across different pathways. 
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tractography. Moreover, optimistically, it may be quite useful to have a 
supply of tools available to dissect and investigate the same white matter 
bundle in different ways depending on the research question, or the 
anatomy or functional system under investigation. 
 
Our first main result is that the inter-protocol agreement is generally 
poor across protocols for many pathways, with limited agreement on the 
brain volume occupied by the pathway. With few exceptions, the average 
Dice coefficients from both deterministic and probabilistic streamlines 
were below 0.5, with many considerably lower. For most streamlines, the 
inter-protocol bundle adjacency is between 4-6 mm, meaning that when 
protocols disagree, they do so by an average of ~3-5 voxels. Shape and 
geometry-based measures (i.e., length and volume) of the streamline 
bundles vary by an order of magnitude across protocols. Consequently, 
quantitative metrics calculated based on this volume will vary, for 
example the average FA within a bundle varies by ~8-12% across 
protocols. Because our analysis was based on the same set of streamlines, 
these results represent a best-case measure of inter-protocol agreement, 
and would almost certainly result in increased variability if participants 
performed their own reconstruction and streamline generation 
procedures.  
           
Our second main result is that bundle segmentation protocols have better 
agreement in areas with high streamline densities. Measures of 
streamline density correlation coefficients across submissions are on 
average >0.5, with few exceptions, which suggests that high density areas 
in tractograms generally correspond to high density areas of other 
tractograms, while low density areas correspond to low-density areas (or, 
in fact, regions with no streamlines). This agrees with observations of 3D 
density maps where areas of high streamline density are consistently 
observed in the same location across submissions. These areas of higher 
streamline density correspond to the core or stem of most of the bundles, 
generally located in the deep white matter of the brain. Because of this, 
weighting quantification by streamline density will reduce variability 
across protocols, for example, wFA varied by ~4-7% across protocols.  
 
Third, we find that the variability across protocols is greater than the 
variability within protocols, and more importantly, similar to (or greater 
than) the variability across subjects. These results are in agreement with 
previous studies showing high overlap, high density correlations, and low 
disagreements within a protocol [34-36]. Most importantly, in our study, 
this represents a worst-case intra-protocol measure. It includes sources of 
variability related to acquisition (and associated noise and artifacts), 
registration, reconstruction, and streamline generation – sources of 
variation which are shown to be still smaller than that across protocols. 
Thus, while there is little consensus on bundle dissection protocols, a 
study that uses a consistent protocol has been shown to have the power 
to reliably detect consistent differences within and across populations; 
however, there may be limitations in how the findings from a given study 
can be extended, applied, or compared to others with different protocols. 
  
Fourth, we find that there is variability per bundle in how much 
agreement there is across protocols. The commissural CC has a higher 
reproducibility due to its large size and very clear anatomical definition, 
despite more ambiguous definitions of its cortical terminations. However, 
the PC and AC commissures showed very poor agreement, despite 
having a very clear location along the midline. This is in part due to 
smaller sizes, but also scarce literature on the location and connections of 
the bundles that pass through these regions. CST and IFOF also show 
moderate agreement across protocols, in part due to their length and at 
least one location that is moderately specific to these bundles (i.e., the 
pyramids of the medulla for the CST and the floor of the external capsules 

for the IFOF). Even here, the Dice overlap across protocols is 0.6 or less, 
on average. The MdLF and CG show relatively poor agreement. The 
MdLF is much less studied, and a relatively recent addition to the 
literature [37, 38], with some disagreement on parietal terminations [11]. 
The CG is a tract that is likely composed of both longer fibers extending 
throughout the whole tract, as well as multiple short fibers across its 
structure which may be both hard for tractography to entirely delineate 
the long fibers, and hard to capture and constrain segmentation of the 
shorter fibers that enter and leave throughout [39, 40]. The POPT showed 
relatively higher agreement. This bundle was included as a relatively 
ambiguous nomenclature (seen in the literature) of pontine tracts. 
Whereas both occipito-pontine and parieto-pontine fibers exist, they are 
not usually defined as a specific tract or fasciculus. Finally, some of the 
more commonly delineated structures (OR, ILF, SLF, UF) show inter-
protocol variabilities somewhere in between, but still exhibit poor-to-
moderate volume and streamline overlaps.  
 
For many applications, end-users of bundle segmentation technologies 
are interested in gross differences in connectivity and location, and what 
matters is not so much that tracts are reconstructed in their entirety, but 
that they are not confused with one another. For example, 
misunderstanding or inapt nomenclature, and/or non-specific constraints 
in the bundle segmentation process could lead to misidentification of the 
desired pathway (possibly as another pathway or subset of another 
pathway) and would lead to confusion in the literature. Based on our 
results, an experienced neuroanatomist or neuroimager can easily classify 
the submitted pathways based on visual inspection of the streamlines. 
Thus, these inter-protocol bundle segmentations represent the same 
basic structure, even if some variability in spatial extent and connections 
is observed. This is confirmed using an unsupervised data exploration 
tool for dimensionality reduction, where within-pathway submissions are 
clearly clustered (for both probabilistic and deterministic algorithms) in 
low dimensional space. However, there are a few exceptions. Notably, 
several AF and SLF submissions overlap significantly, which is not 
unexpected because these have often been defined and/or used 
interchangeably in the literature [41]. Relatedly, several submissions of 
the POPT contain a subset of streamlines often assigned as CST, which 
is again expected because both are often (or can be) described as having 
parietal connections in common. Finally, several ventral longitudinal 
systems of fibers (MdLF, OR, ILF, and IFOF) are not clearly separated 
in this space, suggesting that in many instances they share similar spatial 
overlap and densities of streamlines across submissions.  
  
Finally, while there is low volume-based agreement, streamline-based 
agreement is lower still. In fact, many protocols did not agree on a single 
streamline belonging to a pathway of interest. Protocols agreed on 
consistently 20% or less of deterministic streamlines and less than 10% 
of probabilistic streamlines. Put another way, given a set of streamlines 
from which to select, very few streamlines were consistently determined 
to be a part of a given pathway across all groups performing the 
segmentation. With the wide variety of workflows to select streamlines, 
few streamlines met inclusion criteria associated with cortical 
connectivity, shape and spatial location, and survived possible exclusion 
criteria such as filtering based on length, curvature, or diffusions signal, 
as well as personal preference of the person performing dissection (for 
example eliminating streamlines to reduce complexity of manual 
segmentation). Thus, the final main result is that the measured variability 
depends on the scale upon which the variability is analyzed. Protocols 
show little-to-no agreement in assigning individual streamlines to a 
pathway, whereas protocols show higher agreement in assessing spatial 
overlap of pathway, and even higher agreement when taking into account 
density of streamlines over a volume. This means that while selected 
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streamlines may occupy the same volume, the streamlines that make up 
this volume are different.Thus, the effects of this variability are 
dependent upon how these bundles are ultimately utilized in practice, and 
there are a number of ways in which these bundles are used and applied. 
For this reason, we state that no submissions are inherently “wrong”, and 
instead emphasize that they are simply “different from one another”.  
  
We have identified variability in the protocols for bundle segmentation, 
which parallels variability in the literature of other techniques that have 
been used to elucidate the structure and function of the brain for the last 
20 years. These types of disagreements and the challenge in advancing 
science beyond them are not new to computational neuroanatomy. 
Indeed, as we look at the history of brain science differences in opinions 
and associated results can be traced back a long way. Key examples of 
the inherent variability in anatomical and functional definitions and 
associated disagreements include the definition and functional 
specialization of cortical areas [42-44]. Hence, our findings here 
highlight the complexity of the scientific concepts and the difficulty in 
making progress towards understanding. The fact that the engineering of 
new methods needs to be refined because we still have (and have had for 
over hundreds of years in neuroanatomy) substantial variability in results 
does not necessarily mean that science is not progressing. 
 
We postulate that the problem stems from two sources (1) the anatomical 
definition of a white matter pathway and (2) the constraints used to 
dissect this pathway. The descriptions of the white matter pathways given 
in the appendix highlight the problem of “definition”. Pathways may be 
defined by their shape, their endpoints, or by regions through which they 
pass. Descriptions and definition approaches may vary based on the 
pathway itself (i.e., some may lend themselves more easily to 
descriptions of shape rather than endpoints), by the system or functions 
under investigation, by the training and/or occupation of the 
researcher/clinician, or by the modality used to define the tract. For 
example, cadaveric microdissection may facilitate description of 
fascicular organization and regional descriptions over highly specific 
lobular connectivity descriptions provided by histological tracers. 
Further, definitions do not always facilitate binary decision making in the 
bundle dissection process due to biological reasons. The brain is a 
complex structure, there are not always hard or unique borders between 
cortical or subcortical regions, and the location of endpoints or regions 
may not always be precisely determined. The goal of tractography bundle 
segmentation then is to recreate these definitions in the bundle dissection 
process [45]; however, certain algorithms, software packages, and 
manual pipelines lend themselves more naturally to one type of constraint 
than the other, and may implement them in different ways or with 
different levels of precision. Even if a definition has been entirely met, a 
sensitivity/specificity tradeoff is possible, influenced by potentially every 
step in the fiber tractography process from acquisition and reconstruction 
to the final constraints and streamline filtering techniques [46-48].    
 
The question becomes “whose problem is this?”. We propose that there 
may be shared responsibility on the part of classical anatomists, those 
developing tractography algorithms, and those implementing or 
performing segmentations. The endeavor to digitally segment the white 
matter is predicated upon there being some consensus of what structures 
are there to be segmented, this is the task of classical neuroanatomists. 
Next, tractography providers must endeavor to create candidate 
tractomes that resemble the white matter of the brain as closely as 
possible, as the resultant tractomes must contain viable anatomy for 
extraction. Finally, those who perform digital segmentations must decide 
an appropriate level of precision (sensitivity/specificity) and be clear and 
precise as they describe the methods of their segmentations as this will 

permit comparison and refinement between segmentations. This must be 
an iterative process, utilizing orthogonal information in the form of non-
human model brains, micro-dissection, and alternative neuroimaging 
contrasts, in order to validate the existence and location or connections 
of a pathway, validate the rules and constraints that allow accurate 
dissection of this pathway, then iteratively refining the location and/or 
connections based on knowledge gained through the bundle segmentation 
process. Thus, we hope that this paper acts as a call to action on two 
efforts of consensus: both standardization of the anatomical definition (in 
addition to nomenclature) and the adoption of protocols to fulfill this 
definition.  
 
Even without a consensus, there could be a convergence towards 
appropriate, or more specific, nomenclature and clustering of 
streamlines, or alternative accepted definitions. Additionally, a consensus 
on the healthy, young adult, individual may not lead to satisfactory results 
on developing, aging, or diseased populations. The effect of protocols 
and their adherence to definitions should be investigated in the presence 
of tumors, on the pediatric and elderly populations, and also with varying 
acquisition, reconstruction, and streamline generation conditions. While 
we cannot currently give a recommended dissection protocol for a given 
pathway, we can recommend good practices to be used in all studies. 
First, we suggest transparency and explicit descriptions of pathway 
definition, dissection protocol, and ROIs [3, 49]. Second, understanding 
and quantifying the intra-protocol variability, for both automatic and 
manual approaches, is a necessary prerequisite to determine 
quantification variability and subsequent statistical power. Third, with 
the knowledge that the dense core of the pathway is consistent across 
protocols, weighting by density (or a focus on deep white matter, as is 
common in many statistical analyses [50, 51]) will be more appropriate 
for evaluating inter-subject difference in microstructural properties, 
given its smaller inter-site and inter-lab differences. Finally, the results 
obtained by (and inferences made from) tractography must be interpreted 
with appropriate level of coarseness, by considering the existence of 
inter-protocol variability and coarse spatial scale of diffusion MRI 
measurements. Since some of statistical properties of tractography 
(streamline counts and densities, and geometry/volume of tracts) have 
dependency on method selections at this point, it is important to 
encourage studies by independent groups testing how much conclusions 
in a single original paper can be generalizable to a different segmentation 
protocol or datasets.  
 
This study has several limitations which constrain the generalizability of 
the results. First, there is a low number of subjects and low number of 
repeats. While automated methods can be run on several hundred subjects 
using only CPU-hours, this study would have become prohibitive for 
manual or semi-automated methods with more than 14 pathways over six 
datasets (84 total possible dissections), and many of these methods would 
have been under-represented. Next, we did not include a number of 
pathways with functional relevance in the literature, but chose a sample 
representative of the commonly studied projection, association, and 
commissural bundles, and, again, a compromise was made between the 
number of pathways requested and expected time and effort. Future 
studies should consider studying pathway sub-divisions specifically, as 
well as additional major white matter pathways and superficial U-fibers 
[52]. Further, because we wanted to isolate the effect of bundle 
segmentation protocols, we forced the use of our own generated 
streamlines. This may not be optimal for a given segmentation process 
where streamlines are generated using different parameters or 
propagation methods, and filtered or excluded in various ways. However, 
allowing the creation of different streamlines would only increase the 
variability seen across protocols. Finally, there is no “right” measure to 
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quantify variability [36]. No single measure can paint a complete picture 
of the similarities and differences of this complex technology across all 
applications. The measures used in this study were chosen as intuitive 
quantifications of volume-based, voxel-wise, and streamline-based 
agreement, as well as measures based on binary volumes and streamline 
densities. We also quantified measures of geometry which are often used 
in quantification or to modulate connectivity measures, as well as 
measures of microstructure within pathways (both weighted and 
unweighted by densities). Finally, the UMAP approach represents an 
analysis that is not dependent on user-defined criteria, and allows an 
intuitive visualization of primary components that explain the data. The 
best measure of bundle variability is ultimately dependent on how the 
bundle is used. 
 
Materials and Methods 
We surveyed the protocols for bundle segmentation of 14 white matter 
bundles, chosen to represent a variety of white matter pathways studied in 
the literature, including association, projection, and commissural fibers, 
fibers with clinical and neurosurgical relevance, as well as covering a range 
from frequently to relatively infrequently studied and/or described in the 
literature.  
 
We made available the same datasets to be analyzed by a large number 
of groups in order to uncover variability across analysis teams. To isolate 
the effects of bundle segmentation from all other sources of variation, we 
directly provided six sets of whole-brain streamlines (both deterministic and 
probabilistic) to all collaborators, derived from 3 subjects with scan-rescan 
data acquired from the Human Connectome Project test-retest database 
[24]. We extended invitations for collaboration, disseminated data and the 
protocol with clearly defined tasks, and received streamlines from 
collaborators for analysis. In addition to streamlines, we requested a 
written “definition” of the pathways and a description of the constraints 
used to dissect it.  Importantly, this dataset allows us to quantify and 
compare variability across protocols (inter-protocol), variability within 
protocols (intra-protocol), and variability across subjects (inter-subject). 
Detailed procedures are provided in supplementary material.  
 
Data and Protocol 
The diffusion data for this study were selected from the Human 
Connectome Project test-retest database [24]. A total of three subjects 
(HCP IDs: 144226, 103818, 783462) were chosen that had repeat diffusion 
MRI scans, resulting in six high-quality datasets, free of any significant 
artifacts. This dataset was chosen as a compromise between quantification 
and inclusivity - the use of this small database still provides enough 
information to detect and quantify the variability among results with great 
enough participation across laboratories and scientists.  
 
Collaborators were not informed that the six datasets represented only 
three subjects in order to not bias intra-protocol analysis. Distortion, motion 
correction and estimation of nonlinear transformations with the MNI space 
was performed using the HCP preprocessing pipelines [24]. Whole-brain 
tractograms were generated using the DIPY-based Tractoflow processing 
pipeline [53, 54], producing both deterministic and probabilistic sets of 
streamlines to be given to participants. Importantly, to be as inclusive as 
possible to all definitions and constraints, streamlines were not filtered in 
any way. Streamlines were separated into left, right, and commissural 
fibers in order to minimize file sizes. Also provided were the b0 images, 
Fractional Anisotropy (FA) maps [55], directionally-encoded color maps 
[55], T1 weighted images, and masks for the cerebrospinal fluid, gray 
matter, and white matter [55].  
 
The task given to collaborators was (see supplementary material) to 
dissect 14 major white matter pathways on the left hemisphere on the six 
diffusion MRI datasets provided. Collaborators were free to choose either 
deterministic or probabilistic streamlines, and free to utilize any software 
they desired. In order to maximize the quality of submitted results, 
investigators did not have to provide segmentations for all pathways if they 
did not have protocols or experience in some areas.  
 
Submissions 
For submission, we asked for a written definition of the white matter 
bundles, a description of the protocol to dissect these pathways, all code 

and/or temporary files in order to facilitate reproducibility of methods, and 
finally the streamline files themselves. Quality assurance was performed 
on file organization, naming conventions, and streamline spatial attributes, 
and visual inspection was performed for all streamlines of all subjects. 
Tools for quality assurance (QA) can be found at 
(https://github.com/scilus/scilpy). 
 
Pathway-specific Analysis 
For all pathways, we focused on quantifying volume-based and streamline-
based similarities and differences in the dissected bundles across 
protocols. Qualitatively, we assessed volume overlap and streamline 
overlap. Volume overlap was displayed as the volume of voxels in which 
25%, 50%, and 75% of all protocols agreed that a given voxel was 
occupied by the pathway under investigation. Similarly, we viewed the 
individual streamlines in which 25%, 50%, and 75% of all protocols agreed 
that this streamline is representative of a given pathway. These qualitative 
observations were shown as volume-renderings or streamlines 
visualizations directly. 
           
Next, quantitative analysis used three voxel-based measures (based on 
volume and streamline density) and one streamline-based measure [36]. 
The Dice overlap coefficient, density correlation coefficient, bundle 
adjacency, and streamline Dice overlap are illustrated in Figure 4. Dice 
overlap measures the overall volume similarity between two binarized 
bundles (i.e., all voxels that contain a streamline), by taking twice the 
intersection of two bundles divided by the union of both bundles. A value 
of 1 indicates perfect overlap, a value of 0 indicates no overlap. The density 
correlation coefficient is a measure of the Pearson’s correlation coefficient 
obtained from the streamline density maps. This provides insight into not 
only overlap, but also agreement in streamline density. Bundle adjacency 
is a volume-based metric that describes the average distance of 
disagreement between two bundles. This was calculated by taking all non-
overlapping voxels from one bundle, and calculating the nearest distance 
to the second bundle (and repeating from the second to the first bundle) 
and taking the average of these distances. By defining this metric, we are 
using a convenient symmetric distance between two binary volumes, which 
is a modification of the Hausdorff distance. A value of 3mm, for example, 
indicates that when the bundles disagree, they are an average of 3mm 
apart. Finally, streamline Dice is the streamline-equivalent of Dice overlap. 
Because all submissions for a given subject were derived from the same 
set of whole-brain streamlines, we had the ability to quantify whether an 
individual streamline was common to both submitted bundles. Streamline 
Dice was calculated by taking the total amount of streamlines common to 
both protocols (i.e., intersection) divided by the total number of unique 
streamlines in both bundles (i.e., union). Again, a value of 1 indicates that 
all streamlines are exactly the same, a value of 0 indicates no overlap in 
streamlines. Note that this final measure can be calculated only for 
datasets that are derived from the same original set of streamlines.  
 
Quantifying variability across protocols 
The measures introduced above were used to quantify variability across 
protocols (inter-protocol), variability within protocols (intra-protocol), and 
variability across subjects (inter-subject), with separate analyses for 
deterministic and probabilistic results. Below, we describe these three 
levels of variability assuming there were “N” submissions for a given 
pathway.  
 
For inter-protocol variability, each bundle was compared to its counterpart 
as produced by each of the other N-1 protocols, and the results averaged, 
representing the average similarity/dissimilarity of that protocol with all 
others. This was done for all N submissions, for all 3 subjects, resulting in 
Nx3 data-points for each pathway.  
 
For intra-protocol variability, we aimed to compare the same protocol 
performed on the same subject. For each of the N submissions, we 
calculated the similarity/dissimilarity measures with respect to the same 
submission on the repeated scan. This was repeated for all subjects, 
resulting in again Nx3 data-points for each pathway. A “precise” measure 
of intra-protocol variability would have been possible if the same set of 
streamlines had been provided twice for each subject. Instead, the study 
used scan/re-scan data to measure not only intra-protocol variability, but 
the variability of everything up to, and including protocol. Thus, this 
measure includes acquisition variability (i.e., noise and possible artifacts), 
registration (to a common space), reconstruction, and generation of whole 
brain streamlines.  
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Finally, for inter-subject variability, we sought to characterize how 
similar/dissimilar a bundle is across subjects within a single protocol. All 
streamlines were normalized to MNI space using nonlinear registration 
(antsRegistrationSyn) [56] of the T1 image to the MNI ICBM 152 
asymmetric template [57]. For each of N protocols, the agreement 
measures were calculated from subject 1 to subject 2, from subject 2 to 
subject 3, and from subject 1 to subject 3, again resulting in Nx3 data-
points for each pathway.  

Appendix A: Cortico Spinal Tract (CST) 
The CST is the major descending tract that mediates voluntary skilled 
movements [58, 59]. At its most basic, this tract is a pathway of fibers 
coursing primarily from the motor cortex down the spinal cord. Despite 
this apparent simplicity, dissecting this tract can be quite variable. 
Moderately increasing the complexity of the definition, the CST can be 
(unanimously) described as starting from the cortex, traveling through 
the corona radiata, converging into the internal capsule, continuing into 
the brainstem through the medulla, and finally extending to the spinal 
cord. Decisions to be made include choosing specific cortical 
terminations (which span both frontal and parietal lobes) and how these 
are delineated, selecting regions through which the streamlines must pass 
(“cortex to medulla” or “cortex to lower brainstem” or “motor cortex to 
medulla”), and implementing additional inclusion and exclusion regions 
throughout the extent of the pathway to further refine where it goes and 
where it does not go. Adding further ambiguity, the CST together with 
the corticobulbar tract make up the pyramidal tract, and because these are 
not easily (or not possibly) separated due to inherent tractography 
limitations and field of view restrictions, these have sometimes been used 
interchangeably and/or incorrectly in the literature. In this study, the CST 
was divided into precentral and postcentral divisions based on endpoints, 
hand-foot-face divisions based on regions of interest, anterior-posterior-
central-cingulate divisions based on endpoints, combined/separated with 
ascending pathways with thalamic synapses, as well as 
combined/separated with the peri-Rolandic component based on 
endpoints, and divided into lateral and anterior components based on 
definition (but not dissected). 

Appendix B:  Arcuate Fasciculus (AF) 
The AF plays a key role in language processing. This is an association 
tract that is well-understood to connect Wernicke’s area (somewhere in 
the posterior temporal lobe) to Broca’s area (located in the inferior frontal 
lobe). It gets its name (Latin for curved bundle) from the distinctive arch 
shape it makes as it curves from the anterior-posterior direction in the 
frontal-parietal cortex ventrally into the temporal cortex around the 
Sylvian fissure (lateral sulcus) [60, 61]. This description of the AFs shape 
is generally agreed upon. A third area (inferior parietal lobule) is also 
traditionally included in this tract’s connections, representing the 
pathway that Geschwind postulated to be damaged in conduction aphasia 
[60]. For this reason, many descriptions include multiple segments of the 
AF - a direct pathway traversing the entire tract from temporal to frontal 
lobes, and an indirect pathway of shorter fibers connecting temporal to 
parietal to frontal lobes. Consequently, the AF can be described as 
connecting a number of areas of the perisylvian cortex of the frontal, 
parietal, and temporal lobes. To further complicate the literature, because 
the AF is a dorsal longitudinal system of tracts, it is occasionally 
considered to be part of the SLF system of tracts [41, 62] and considered 
synonymous or used interchangeably in the literature [41]. For these 
reasons, we hypothesized that we would see large variability when giving 
collaborators the task to “segment the arcuate fasciculus”. Variability is 
observed due to differences in defining the location and method of 
delineating Wernicke’s and Broca’s areas, or selection of regions to 
capture the arch-like shape. Approximately 1/5 of submissions indicated 
dividing the AF into the long direct segment (often described as more 

medially located), and the anterior and posterior indirect segments 
(described as laterally located shorter segments).   

Appendix C: Corpus Callosum (CC) 
The CC is the largest, and arguably most easily recognizable, white 
matter structure of the brain. This structure is not a single tract, but rather 
a commissure, composed of axons coursing in the left-right orientation at 
the midline, and interconnecting the cerebral cortex of the two 
hemispheres. Many subdivisions of the CC have been proposed [63] with 
most partitioning the CC based on axon location in the mid-sagittal 
section. Most commonly, subcomponents are rostrum, genu, body, 
isthmus, splenium, and (sometimes) tapetum, although others include 
genu, splenium, and callosal body, or anterior, mid-anterior, central, mid-
posterior, and posterior based on (FreeSurfer) parcellation schemes. 
Alternative subdivisions included separating according to the major lobes 
of the brain (frontal, parietal, occipital, and temporal) or numerical 
subdivisons (ranging between 5 and 12) based on cadaveric and 
histological dissections [64], or homologous connections, or clusters of 
fibers. Common to all protocols is the large, easily distinguishable region 
near the midline. Constraints, decisions, and filters include choices of 
where these bundles cannot go (various temporal lobe regions, through 
or near subcortical structures, cingulum and parahippocampal gyri, etc), 
filtering by connection regions or lengths, or rules enforcing homologous 
connections. 
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