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Abstract

White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter
fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in
segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways,
which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the
variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography,
including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain
streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation
protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols
for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across
protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including
variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine
clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although
external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards
reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and
well-chosen constraints and decisions in the dissection process.

Keywords: tractography, bundle segmentation, white matter, fiber pathways, dissection

Introduction

Diffusion MRI fiber tractography [1, 2] offers unprecedented insight into
the structural connections of the human brain. In a process that parallels
post-mortem microdissection, tractography — in combination with a set
of rules, constraints, and procedures to dissect and segment major white
matter fascicles of the brain — allows noninvasive visualization and
quantification of the shape, location, connectivity, and biophysical
properties of white matter bundles. This process of in vivo “virtual
dissection” [3, 4], also called bundle segmentation, has led to new insight
into how structural connectivity underlies brain function, cognition, and
development, in addition to dysfunction in neurological diseases, mental
health disorders, and aging [5]. Additionally, bundle segmentation is used
routinely to provide critical clinical information in both pre-operative and
intra-operative mapping of brain tumor resections [6, 7].

Despite widespread use in clinical and research domains, there are a large
number of variations in workflows for bundle segmentation that have
been adopted by the neuroimaging community. Normally, workflows
either generate bundles of streamlines, i.e., digital representations of fiber
trajectories, or dissect subsets of streamlines from an ensemble of
streamlines throughout the whole brain. These protocols typically differ
in the rules and constraints used to isolate a given pathway, ranging from
manual delineation of inclusion and exclusion regions of interest, to fully

automated segmentations based on shape, location, or connectivity.
Contributing to this variability, agreements on the anatomical definitions
of pathways in the human brain are far from settled [8-11], in part
hindered by the lack of a consistent framework for defining tracts.
Descriptive tract definitions have traditionally focused on the shape and
area of convergence of axons deep in the white matter, but may also focus
on the specific regions to which these fibers connect [9, 11-15].
Consequently, and coming full circle, differences and disagreements in
anatomical definitions and their interpretation may lead to further
variations in protocols used in the virtual dissection process.

For these reasons, the process of bundle segmentation has been described
as existing somewhere between science and art [16]. Variation in
protocols can result in different segmentations which can lead to different
scientific conclusions or clinical decisions [17]. This inter-protocol
variability adds “noise” to the literature when it comes to the process of
bundle segmentation [18, 19], a variability that prevents a direct
comparison of the outcomes of different studies, and hinders the
translation of these techniques from the research laboratory to the clinic.
Yet, an estimate of the variability that exists across different protocols
remains unclear. In order to ultimately harmonize the anatomical
definition of tracts and standardize the bundle segmentation process, we
propose a first step is to quantify this variability, and understand the

Figure 1. Variation in white matter bundle segmentation. Four example segmentations of the corticospinal tract (green) and arcuate fasciculus
(cyan) show variability in the size, shape, densities, and connections of these reconstructed white matter pathways.


https://doi.org/10.1101/2020.10.07.321083
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.321083; this version posted March 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Schilling al., 22 Mar 2021 — preprint

Probabilistic

Figure 2. Summary of teams and submissions. Location of the teams’ affiliated lab (top). In total, 42 teams submitted 57 unique sets of bundle
dissections, 28 utilized the provided deterministic streamlines, and 29 utilized probabilistic. Map icons are colored based on the set of streamlines
utilized, with the same color-scheme as bar plots. Example submissions are shown for 14 pathways (bottom) along with a pie chart indicating the

number of submissions for each bundle. Acronyms: see text.

similarities and differences in bundle segmentation results across
protocols.

Towards this end, the aims of this study are twofold: (1) to understand
how much variability exists across different protocols for bundle
segmentation, and (2) to quantify which fascicles exhibit the most
agreement/disagreement across protocols. To do this we take a “many
analysts, one dataset” approach previously used to study workflows for
diffusion analysis [20], hippocampus segmentation [21], fMRI analysis
[19, 22], and psychology research [23]. Through an open call to the
community, we invited collaborations from expert scientists and
clinicians who use tractography for bundle segmentation, provided them
all with the same sets of tractography streamlines, and gave them the task
of segmenting 14 white matter pathways from each dataset. This enabled

streamline-based and volume-based quantification of inter-protocol
agreement and disagreement for each fiber pathway and the results
highlight the problem of variation of definitions and protocols for bundle
segmentation.

Results

Submissions

We surveyed the protocols for bundle segmentation of 14 white matter
bundles: Superior Longitudinal Fasciculus (SLF), Arcuate Fasciculus
(AF), Optic Radiation (OR), Corticospinal Tract (CST), Cingulum (CG),
Uncinate Fasciculus (UF), Corpus Callosum (CC), Middle Longitudinal
Fasciculus (MdLF), Inferior Fronto-Occipital Fasciculus (IFOF), Inferior
Longitudinal Fasciculus (ILF), Fornix (FX), Anterior Commissure (AC),
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Posterior Commissure (PC), and Parieto-Occipital Pontine Tract
(POPT).

To isolate the effects of bundle segmentation from all other sources of
variation, we directly provided six sets of whole-brain streamlines (both
deterministic and probabilistic) to all collaborators, derived from 3
subjects with scan-rescan data acquired from the Human Connectome
Project test-retest database [24]. Collaborators were given the choice of
utilizing streamlines generated from one of two commonly used
tractography methods, a deterministic or a probabilistic algorithm, which
are known to generate different representations of white matter bundles
and have different uses and applications as described in the literature [25,
26].

In total, this collaborative effort involved 144 collaborators from 42
teams (Figure 2, top). 57 unique sets of protocols were submitted, of
which 28 submissions used the deterministic streamlines and 29 used
probabilistic. A total of 3138 bundle tractograms were submitted.
Because collaborators did not have to submit all bundles, pathways
showed varying representation across submissions (Figure 2, bottom),
ranging from as low as 16 protocols for the PC, up to 50 protocols for the
CST.

Qualitative Results

Example visualizations of randomly selected segmentations from a single
subject are shown for exemplar projection, association, and commissural

Schilling et al., 22 March 2021 — preprint

pathways (CST, AF, CC) in Figure 3. These are visualized as both
streamlines directly, and also as 3D streamline density maps. The primary
result from this figure is that there are many ways to segment these
structures that result in qualitatively different representations of the same
white matter pathways. These examples demonstrate visibly apparent
variations in the size, shape, and connectivity patterns of streamlines. In
contrast, different protocols result in similar patterns of high streamline
density in the deep white matter and midbrain, with similar overall shape
and central location. Similar visualizations, for all submitted pathways,
both probabilistic and deterministic, are provided in supplementary
documentation. These observations apply to all dissected pathways,
however the commissural AC and PC contained very few streamlines,
with little-to-no agreement across protocols.

Pathway-Specific results

To understand the variability that exists across protocols for a given
pathway, we visualize volume-based and streamline-based overlaps
among the protocols and show boxplots of agreement measures that
quantify inter-protocol, intra-protocol, and inter-subject variation. The
volume overlap is displayed as the volume of voxels in which a given
percent of protocols agree that the voxel was occupied by a given
pathway, where a streamline overlap is displayed as the individual
streamlines in which a given percent of protocols agree that streamline is
representative of a given pathway. For quantitative analysis, we use
several measures to describe similarity and dissimilarity of streamlines,
streamline density, and pathway volume (Figure 4). This includes (1)

Figure 3. Variation in protocols for bundle segmentation of example pathways (CST, AF, and CC) on the same subject from the same set of
whole-brain streamlines. Eight randomly selected bundle segmentation approaches for each pathway are shown as segmented streamlines and
rendered as 3D streamline density maps. Variations in size, shape, density, and connectivity are qualitatively apparent. Probabilistic streamlines are
shown, see supplementary material for Deterministic submissions. Random selections generated independently for each pathway. Streamlines are colored

by orientation and all density maps are windowed to the same range.
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Figure 4. Similarity and dissimilarity metrics to assess reproducibility. Example SLF datasets are used to illustrate a range of similarity values
between bundles A and B (top) and between bundles A and C (bottom). Dice overlap is a volume-based measure calculated as twice the intersection of
two bundles (magenta) divided by the union (red and blue). Density correlation is calculated as the correlation coefficient between the voxel-wise streamline
densities (shown as a hot-cold colormap ranging from 0 to maximum streamline density) of the two bundles being compared. Bundle adjacency is
calculated by taking the average distance of disagreement (not including overlapping voxels in blue) between bundles (distances shown as hot-cold
colormap). Finally, streamline Dice is taken as the intersection of common streamlines divided by the union of all streamlines in a bundle and requires
input bundles to be segmented from the same set of underlying streamlines (intersection shown in figure).

volume Dice overlap which describes the overall volume similarity, (2)
density correlation which describes insight into similarity of streamline
density, (3) bundle adjacency which describes the average distance of
disagreement between two bundles, and (4) streamline Dice which
describes the overlap of streamlines common between protocols (which
can only be calculated because bundles come from the same original set
of streamlines). We calculate geometric measures of pathways including
number of streamlines, mean length, and volume, as well as
microstructural measures of the average fractional anisotropy (FA) of the
entire pathway volume and the FA weighted by streamline density
(WFA).

For simplicity, we show results of the CST, AF, and CC. Analysis was
conducted on all tracts, and results are provided in supplementary
documentation.

Corticospinal Tract (CST)

Figure 5 shows the results for the CST, and Appendix A summarizes the
descriptive definitions and decisions made in the bundle segmentation
workflow. Looking at the volume of agreement on a single subject, nearly
all methods agree on the convergence of axons through the internal
capsule and midbrain, with some disagreements on cortical terminations,
and only a minority of protocols suggesting lateral projections of this
tract. Streamline-based agreements show similar trends. The most
striking result is that there were not any streamlines which were common
to at least 75% of either the deterministic or probabilistic protocols.

Quantitative analysis indicates fairly low agreement across protocols.
Inter-protocol Dice overlap coefficients largely fall between 0.4 and 0.6
(median Dice of 0.47 and 0.51 for probabilistic and deterministic,
respectively), with a larger tail towards much lower Dice values
indicating some outlier protocols that are substantially different from
others. Protocols show moderate density correlation coefficients (median
correlations of 0.51 and 0.67), and an average difference between
protocols of >4mm (median bundle adjacency of 4.3mm and 3.9mm).

Reproducibility within protocols is much higher, resulting in higher Dice
coefficients, higher density correlations, and lower bundle adjacency.
The variation across protocols is even greater than the variation across
subjects when quantified using Dice overlap. However, the density
correlation across protocols is higher than that across subjects, indicating
that while the volume overlap decreases, measures of bundle density are
more consistent across protocols. Finally, bundle adjacency is higher for
inter-protocol analysis than inter-subjects, suggesting that volume-based
differences across protocols are greater than volume-based differences
across subjects. The quantitative index FA shows a coefficient of
variation across protocols of 7% relative to its average value and the
density weighted FA shows a variation of 4%.

Arcuate Fasciculus (AF)

Figure 6 shows the results of the inter-protocol analysis for the AF, and
Appendix B summarizes the descriptive definitions and decisions made
in the bundle segmentation workflow. A majority of the extracted
bundles agree on the volume occupied by the bundle, with both
deterministic and probabilistic submissions showing the characteristic
arching shape as the pathway bends from the frontal to temporal lobes.
The volume of the 75% agreement is significantly smaller and much more
specific than that of the 25% of agreement, occupying only the deep white
matter core of this trajectory. Similar results are shown for streamlines.
Very few streamlines were agreed upon by 75% of protocols for
deterministic tractography, and no single streamline was observed in 75%
of probabilistic submissions. Cortical connections show significant
variation. Qualitatively, as we become more strict with agreement, the
connections become much more refined to the frontal and temporal lobes
only, with fewer connections to the parietal cortex.

Quantitative analyses of similarity and agreement closely follow that of
the CST. The Dice overlap indicates relatively poor inter-protocol
agreement (median values 0.46 and 0.43 for probabilistic and
deterministic, respectively), with a much higher intra-protocol agreement
(median of 0.66 and 0.74). However, the inter-protocol overlap is similar
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Figure 5. Corticospinal Tract (CST) inter-protocol variability. Renderings show 25%, 50%, and 75% agreement on volume and streamlines for
deterministic and probabilistic tractograms. Box-and-whisker plots of Dice overlap, density correlation, and bundle adjacency quantify inter-protocol,
intra-protocol, and inter-subject variability (deterministic: red; probabilistic: blue). Each data-point in the plots is derived from the summary statistic of a
single submission. Note that there were no streamlines which were common to at least 75% of the protocols.

to the variation across subjects (0.40 and 0.53). Similar trends are
observed for density correlations. In this case, the inter-subject variation
is lower than inter-protocol for deterministic, but higher for probabilistic,
although both measures are lower than within protocol agreement.
Finally, differences across protocols are on average >5mm of distance,
whereas the disagreement is much less within protocols and even
between subjects. Finally, the coefficient of variation of FA and wFA
across protocols is 10% and 5% that of the average FA and wFA,
respectively.

Corpus Callosum

Figure 7 shows the results of inter-protocol analysis of the CC, and
Appendix C presents a summary of the descriptive definitions and
decisions made in the bundle segmentation workflow. Most protocols
generally agree that this structure takes up a large portion of the cerebral
white matter in both hemispheres. While many streamlines were
consistent across methods, when looking at the 75% agreement, many

submissions do not include lateral projections — although they exist
within the dataset — as well as fibers of the splenium (or forceps major)
connecting to the occipital lobe and connections to temporal cortex.

Quantitative analysis shows much higher reproducibility than for the AF
and CST, with mean Dice values across protocols of 0.66 and 0.72, which
are again lower than intra-protocol reproducibility, but in this case, both
slightly higher than that across subjects. The density correlation shows
similar trends. Finally, bundle adjacency is higher across protocols than
across subjects, with measures indicating that disagreement is generally
3mm or greater across protocols. Even though this structure is quite
expansive throughout the white matter, variation across quantitative FA
measures are still on the order of 8% and 4% for FA and wFA,
respectively.
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Figure 6. Arcuate Fasciculus (AF) inter-protocol variability. Renderings show 25%, 50%, and 75% agreement on volume and streamlines for
deterministic and probabilistic tractograms. Box-and-whisker plots of Dice overlap, density correlation, and bundle adjacency quantify inter-protocol,
intra-protocol, and inter-subject variability (deterministic: red; probabilistic: blue). Note that there were no streamlines which were common to at least

75% of the protocols.

Inter-protocol variability

To understand which pathways exhibit the most agreement/disagreement
across protocols, intra-protocol volume-based variation measures of Dice
overlap, density correlation, bundle adjacency, and Dice streamlines are
plotted in Figure 8.

There is a fairly large variation across pathways in the overall protocol
agreement as measured by Dice volume overlap (Figure 8A). Volume-
wise, the most reproducible were the CC, the CST, and the IFOF.
Reproducible results from the CC were expected due to its large size and
unambiguous location of the CC proper, while the CST is arguably one
of the most well-studied tracts. The IFOF, while one of the more
controversial fasciculi [8, 9, 27, 28], likely results in higher overlap
because it is a long anterior-posterior directed pathway spanning from the

occipital to frontal lobe, passing through the temporal stem, a tight and
small bottleneck region [29] and most protocols agree that nearly any
streamline spanning this extent through a ventral route, will belong to this
pathway. In all cases, the overlap across protocols is fairly low, with
median values of the CC of 0.66 and 0.72 being the highest among all
pathways studied.

The least reproducible structures are those of the commissures, AC and
PC, which are largely defined only by a single location along the midline
with very little information on their routes or connections. The FX
represented a unique case. Many groups submitted the left FX as
expected, while others considered the left and right FX as a single
structure due to its commissural component. Thus, while it is indeed a
small structure, the quantitative value of overlap is overly critical based
on qualitative observations.
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In agreement with qualitative results, the density correlations (Figure
8B) are moderate to high for most pathways, meaning that areas of high
streamline density and low streamline density are generally in agreement
across protocols. Pathways such as the CC, IFOF, CG, CST, and UF have
high agreement in streamline densities, whereas pathways with generally
lower number of streamlines and hence lower densities (i.e., PC, and FX)
show lower density correlations.

Similar results are observed for dissimilarity (Figure 8C). Again, AC,
PC, show very large distances of disagreement, along with the FX and in
this case the MdLF. For nearly all pathways, the range of disagreements
across protocols are most typically on the order of 4-6mm. Looking at
Dice overlap of the streamlines (Figure 8D), it is immediately apparent
that the overlap is very low in all cases, much lower than overlap of
volume. For all pathways, a large majority of all comparisons yield
streamline Dice coefficients less than 0.2, with many indicating no

overlap at all. A trend observed in the streamline comparisons is that the
overlap is generally greater for deterministic than probabilistic
algorithms.

Figure 9 shows protocol variability for pathway-specific measures of the
mean fractional anisotropy, weighted fractional anisotropy, pathway
volume, and pathway length across all protocols. In agreement with
results on the CST, AF, and CC, the FA derived from different protocols
varies by more than 8-12%, an effect greater than that observed in the
literature across study cohorts [30-32]. Weighted-FA (wFA), however,
varies much less across protocols (4-7%) and is of greater overall
magnitude than the unweighted metric. The volume measurements show
that different protocols can result in an order of magnitude difference in
pathway volume, an effect observed for all pathways. Finally, pathways
with more variation in average streamline length (Figure 9) agree well
with those with more variation in overlap measures. For example, AC,
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Figure 8. Inter-protocol variability. Dice overlap coefficients, density correlation, bundle adjacency, and Dice streamlines for all studied pathways.

Deterministic results shown in red, probabilistic in blue.

PC, and FX result in large differences in average length, while protocols
on the IFOF consistently agree on the length of this structure.

Variability within and across pathways

To assess similarity and differences in submissions without a priori user-
defined metrics of similarity, we utilized the Uniform Manifold
Approximate and Projection (UMAP) [33] technique to visualize all
bundle segmentation techniques in a low-dimensional space. The UMAP
is a general nonlinear dimensionality reduction that is particularly well
suited for visualizing high-dimensional datasets, in this case, on a 2D
plane. Figure 10 shows all submissions, for all pathways, projected on a
2D plane. While there are differences across protocols for a given
pathway, all submissions for a given pathway generally cluster together
and show similar low-order commonalities, for both probabilistic and
deterministic. However, overlap between different pathways does occur
in some instances, for example between the SLF and AF (Figure 10, A),
POPT and CST (Figure 10, B), and MLF, ILF, and OR (Figure 10, C).

This suggests similar low-order representation of some submissions in
these pathways.

Discussion

These results identify and quantify differences and the significant
heterogeneity of white matter structures introduced by the use of different
protocols for bundle segmentation with tractography. This variability
may present difficulties interpreting differences in bundle segmentation
results obtained by different labs, or meta-analyses extending and
comparing findings from one study to other studies. Additionally, this
variation in protocols can lead to variability in quantitative metrics that
are greater than true biological variability across populations or subjects
and may hinder translation of these techniques from the research
laboratory to the clinic.

We propose that a major source of this variation stems from a lack of
consensuses on the anatomical definition of pathways [8-11]. There is no
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Figure 9. Inter-protocol variation in mean FA, weighted-FA, volume (mm3), and pathway length (mm) for all studied pathways. Note that CC volume is
an order of magnitude larger than all other pathways and is shown on a 10° mm?® scale.
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Figure 10. UMAP dimensionality reduction projected bundles onto an un-scaled 2D plane. Object color and shape represent pathways, and object
size designates deterministic/probabilistic. While variation exists within pathways and within deterministic/probabilistic streamlines, the white matter
pathways generally cluster together in low dimensional space. Insets visualize data points as streamline renderings, and highlight areas where similarity

and/or overlap is shown across different pathways.

standard framework for defining a tract, with some descriptive definitions
focusing on the shape and locations of convergence of axons in the deep
white matter, while others may focus on specific regions to which fibers
connect [9, 11-15]. Consequently, differences, misconceptions, and
ambiguities in anatomical definitions and their interpretation may lead to
different rules used in the dissection process. For example, workflows
used to dissect a bundle range from manual to automated delineation of
regions through which streamlines must pass, to shape-based, signal-
based, or connection-based methods of segmentation. Importantly, the
appropriateness and usefulness of the chosen reconstruction method is
application dependent, and no single method is clearly wrong and/or
better than the others.

This study was not intended to detract from the value of tractography and
bundle segmentation, but rather the aim was to clearly define a current
inherent problem and its scope. Looking forward, with a number of well-
validated and valuable tools, pipelines, software, and processes at our
disposal, it becomes fairly straightforward to modify bundle
segmentation protocols to match what we would ultimately strive for in
a “consensus definition” of white matter bundles. Thus, instead of
describing these results as revealing a problem, we see this as an
opportunity, or a call-to-action to harmonize the field of bundle
segmentation — both in the nomenclature and definition of white matter
pathways, and in the best way to virtually segment these using
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tractography. Moreover, optimistically, it may be quite useful to have a
supply of tools available to dissect and investigate the same white matter
bundle in different ways depending on the research question, or the
anatomy or functional system under investigation.

Our first main result is that the inter-protocol agreement is generally
poor across protocols for many pathways, with limited agreement on the
brain volume occupied by the pathway. With few exceptions, the average
Dice coefficients from both deterministic and probabilistic streamlines
were below 0.5, with many considerably lower. For most streamlines, the
inter-protocol bundle adjacency is between 4-6 mm, meaning that when
protocols disagree, they do so by an average of ~3-5 voxels. Shape and
geometry-based measures (i.e., length and volume) of the streamline
bundles vary by an order of magnitude across protocols. Consequently,
quantitative metrics calculated based on this volume will vary, for
example the average FA within a bundle varies by ~8-12% across
protocols. Because our analysis was based on the same set of streamlines,
these results represent a best-case measure of inter-protocol agreement,
and would almost certainly result in increased variability if participants
performed their own reconstruction and streamline generation
procedures.

Our second main result is that bundle segmentation protocols have better
agreement in areas with high streamline densities. Measures of
streamline density correlation coefficients across submissions are on
average >0.5, with few exceptions, which suggests that high density areas
in tractograms generally correspond to high density areas of other
tractograms, while low density areas correspond to low-density areas (or,
in fact, regions with no streamlines). This agrees with observations of 3D
density maps where areas of high streamline density are consistently
observed in the same location across submissions. These areas of higher
streamline density correspond to the core or stem of most of the bundles,
generally located in the deep white matter of the brain. Because of this,
weighting quantification by streamline density will reduce variability
across protocols, for example, wFA varied by ~4-7% across protocols.

Third, we find that the variability across protocols is greater than the
variability within protocols, and more importantly, similar to (or greater
than) the variability across subjects. These results are in agreement with
previous studies showing high overlap, high density correlations, and low
disagreements within a protocol [34-36]. Most importantly, in our study,
this represents a worst-case intra-protocol measure. It includes sources of
variability related to acquisition (and associated noise and artifacts),
registration, reconstruction, and streamline generation — sources of
variation which are shown to be still smaller than that across protocols.
Thus, while there is little consensus on bundle dissection protocols, a
study that uses a consistent protocol has been shown to have the power
to reliably detect consistent differences within and across populations;
however, there may be limitations in how the findings from a given study
can be extended, applied, or compared to others with different protocols.

Fourth, we find that there is variability per bundle in how much
agreement there is across protocols. The commissural CC has a higher
reproducibility due to its large size and very clear anatomical definition,
despite more ambiguous definitions of its cortical terminations. However,
the PC and AC commissures showed very poor agreement, despite
having a very clear location along the midline. This is in part due to
smaller sizes, but also scarce literature on the location and connections of
the bundles that pass through these regions. CST and IFOF also show
moderate agreement across protocols, in part due to their length and at
least one location that is moderately specific to these bundles (i.e., the
pyramids of the medulla for the CST and the floor of the external capsules
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for the IFOF). Even here, the Dice overlap across protocols is 0.6 or less,
on average. The MdLF and CG show relatively poor agreement. The
MALF is much less studied, and a relatively recent addition to the
literature [37, 38], with some disagreement on parietal terminations [11].
The CG is a tract that is likely composed of both longer fibers extending
throughout the whole tract, as well as multiple short fibers across its
structure which may be both hard for tractography to entirely delineate
the long fibers, and hard to capture and constrain segmentation of the
shorter fibers that enter and leave throughout [39, 40]. The POPT showed
relatively higher agreement. This bundle was included as a relatively
ambiguous nomenclature (seen in the literature) of pontine tracts.
Whereas both occipito-pontine and parieto-pontine fibers exist, they are
not usually defined as a specific tract or fasciculus. Finally, some of the
more commonly delineated structures (OR, ILF, SLF, UF) show inter-
protocol variabilities somewhere in between, but still exhibit poor-to-
moderate volume and streamline overlaps.

For many applications, end-users of bundle segmentation technologies
are interested in gross differences in connectivity and location, and what
matters is not so much that tracts are reconstructed in their entirety, but
that they are not confused with one another. For example,
misunderstanding or inapt nomenclature, and/or non-specific constraints
in the bundle segmentation process could lead to misidentification of the
desired pathway (possibly as another pathway or subset of another
pathway) and would lead to confusion in the literature. Based on our
results, an experienced neuroanatomist or neuroimager can easily classify
the submitted pathways based on visual inspection of the streamlines.
Thus, these inter-protocol bundle segmentations represent the same
basic structure, even if some variability in spatial extent and connections
is observed. This is confirmed using an unsupervised data exploration
tool for dimensionality reduction, where within-pathway submissions are
clearly clustered (for both probabilistic and deterministic algorithms) in
low dimensional space. However, there are a few exceptions. Notably,
several AF and SLF submissions overlap significantly, which is not
unexpected because these have often been defined and/or used
interchangeably in the literature [41]. Relatedly, several submissions of
the POPT contain a subset of streamlines often assigned as CST, which
is again expected because both are often (or can be) described as having
parietal connections in common. Finally, several ventral longitudinal
systems of fibers (MdLF, OR, ILF, and IFOF) are not clearly separated
in this space, suggesting that in many instances they share similar spatial
overlap and densities of streamlines across submissions.

Finally, while there is low volume-based agreement, streamline-based
agreement is lower still. In fact, many protocols did not agree on a single
streamline belonging to a pathway of interest. Protocols agreed on
consistently 20% or less of deterministic streamlines and less than 10%
of probabilistic streamlines. Put another way, given a set of streamlines
from which to select, very few streamlines were consistently determined
to be a part of a given pathway across all groups performing the
segmentation. With the wide variety of workflows to select streamlines,
few streamlines met inclusion criteria associated with cortical
connectivity, shape and spatial location, and survived possible exclusion
criteria such as filtering based on length, curvature, or diffusions signal,
as well as personal preference of the person performing dissection (for
example eliminating streamlines to reduce complexity of manual
segmentation). Thus, the final main result is that the measured variability
depends on the scale upon which the variability is analyzed. Protocols
show little-to-no agreement in assigning individual streamlines to a
pathway, whereas protocols show higher agreement in assessing spatial
overlap of pathway, and even higher agreement when taking into account
density of streamlines over a volume. This means that while selected
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streamlines may occupy the same volume, the streamlines that make up
this volume are different.Thus, the effects of this variability are
dependent upon how these bundles are ultimately utilized in practice, and
there are a number of ways in which these bundles are used and applied.
For this reason, we state that no submissions are inherently “wrong”, and
instead emphasize that they are simply “different from one another”.

We have identified variability in the protocols for bundle segmentation,
which parallels variability in the literature of other techniques that have
been used to elucidate the structure and function of the brain for the last
20 years. These types of disagreements and the challenge in advancing
science beyond them are not new to computational neuroanatomy.
Indeed, as we look at the history of brain science differences in opinions
and associated results can be traced back a long way. Key examples of
the inherent variability in anatomical and functional definitions and
associated disagreements include the definition and functional
specialization of cortical areas [42-44]. Hence, our findings here
highlight the complexity of the scientific concepts and the difficulty in
making progress towards understanding. The fact that the engineering of
new methods needs to be refined because we still have (and have had for
over hundreds of years in neuroanatomy) substantial variability in results
does not necessarily mean that science is not progressing.

We postulate that the problem stems from two sources (1) the anatomical
definition of a white matter pathway and (2) the constraints used to
dissect this pathway. The descriptions of the white matter pathways given
in the appendix highlight the problem of “definition”. Pathways may be
defined by their shape, their endpoints, or by regions through which they
pass. Descriptions and definition approaches may vary based on the
pathway itself (i.e., some may lend themselves more easily to
descriptions of shape rather than endpoints), by the system or functions
under investigation, by the training and/or occupation of the
researcher/clinician, or by the modality used to define the tract. For
example, cadaveric microdissection may facilitate description of
fascicular organization and regional descriptions over highly specific
lobular connectivity descriptions provided by histological tracers.
Further, definitions do not always facilitate binary decision making in the
bundle dissection process due to biological reasons. The brain is a
complex structure, there are not always hard or unique borders between
cortical or subcortical regions, and the location of endpoints or regions
may not always be precisely determined. The goal of tractography bundle
segmentation then is to recreate these definitions in the bundle dissection
process [45]; however, certain algorithms, software packages, and
manual pipelines lend themselves more naturally to one type of constraint
than the other, and may implement them in different ways or with
different levels of precision. Even if a definition has been entirely met, a
sensitivity/specificity tradeoff is possible, influenced by potentially every
step in the fiber tractography process from acquisition and reconstruction
to the final constraints and streamline filtering techniques [46-48].

The question becomes “whose problem is this?””. We propose that there
may be shared responsibility on the part of classical anatomists, those
developing tractography algorithms, and those implementing or
performing segmentations. The endeavor to digitally segment the white
matter is predicated upon there being some consensus of what structures
are there to be segmented, this is the task of classical neuroanatomists.
Next, tractography providers must endeavor to create candidate
tractomes that resemble the white matter of the brain as closely as
possible, as the resultant tractomes must contain viable anatomy for
extraction. Finally, those who perform digital segmentations must decide
an appropriate level of precision (sensitivity/specificity) and be clear and
precise as they describe the methods of their segmentations as this will
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permit comparison and refinement between segmentations. This must be
an iterative process, utilizing orthogonal information in the form of non-
human model brains, micro-dissection, and alternative neuroimaging
contrasts, in order to validate the existence and location or connections
of a pathway, validate the rules and constraints that allow accurate
dissection of this pathway, then iteratively refining the location and/or
connections based on knowledge gained through the bundle segmentation
process. Thus, we hope that this paper acts as a call to action on two
efforts of consensus: both standardization of the anatomical definition (in
addition to nomenclature) and the adoption of protocols to fulfill this
definition.

Even without a consensus, there could be a convergence towards
appropriate, or more specific, nomenclature and clustering of
streamlines, or alternative accepted definitions. Additionally, a consensus
on the healthy, young adult, individual may not lead to satisfactory results
on developing, aging, or diseased populations. The eftect of protocols
and their adherence to definitions should be investigated in the presence
of tumors, on the pediatric and elderly populations, and also with varying
acquisition, reconstruction, and streamline generation conditions. While
we cannot currently give a recommended dissection protocol for a given
pathway, we can recommend good practices to be used in all studies.
First, we suggest transparency and explicit descriptions of pathway
definition, dissection protocol, and ROIs [3, 49]. Second, understanding
and quantifying the intra-protocol variability, for both automatic and
manual approaches, is a necessary prerequisite to determine
quantification variability and subsequent statistical power. Third, with
the knowledge that the dense core of the pathway is consistent across
protocols, weighting by density (or a focus on deep white matter, as is
common in many statistical analyses [50, 51]) will be more appropriate
for evaluating inter-subject difference in microstructural properties,
given its smaller inter-site and inter-lab differences. Finally, the results
obtained by (and inferences made from) tractography must be interpreted
with appropriate level of coarseness, by considering the existence of
inter-protocol variability and coarse spatial scale of diffusion MRI
measurements. Since some of statistical properties of tractography
(streamline counts and densities, and geometry/volume of tracts) have
dependency on method selections at this point, it is important to
encourage studies by independent groups testing how much conclusions
in a single original paper can be generalizable to a different segmentation
protocol or datasets.

This study has several limitations which constrain the generalizability of
the results. First, there is a low number of subjects and low number of
repeats. While automated methods can be run on several hundred subjects
using only CPU-hours, this study would have become prohibitive for
manual or semi-automated methods with more than 14 pathways over six
datasets (84 total possible dissections), and many of these methods would
have been under-represented. Next, we did not include a number of
pathways with functional relevance in the literature, but chose a sample
representative of the commonly studied projection, association, and
commissural bundles, and, again, a compromise was made between the
number of pathways requested and expected time and effort. Future
studies should consider studying pathway sub-divisions specifically, as
well as additional major white matter pathways and superficial U-fibers
[52]. Further, because we wanted to isolate the effect of bundle
segmentation protocols, we forced the use of our own generated
streamlines. This may not be optimal for a given segmentation process
where streamlines are generated using different parameters or
propagation methods, and filtered or excluded in various ways. However,
allowing the creation of different streamlines would only increase the
variability seen across protocols. Finally, there is no “right” measure to
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quantify variability [36]. No single measure can paint a complete picture
of the similarities and differences of this complex technology across all
applications. The measures used in this study were chosen as intuitive
quantifications of volume-based, voxel-wise, and streamline-based
agreement, as well as measures based on binary volumes and streamline
densities. We also quantified measures of geometry which are often used
in quantification or to modulate connectivity measures, as well as
measures of microstructure within pathways (both weighted and
unweighted by densities). Finally, the UMAP approach represents an
analysis that is not dependent on user-defined criteria, and allows an
intuitive visualization of primary components that explain the data. The
best measure of bundle variability is ultimately dependent on how the
bundle is used.

Materials and Methods

We surveyed the protocols for bundle segmentation of 14 white matter
bundles, chosen to represent a variety of white matter pathways studied in
the literature, including association, projection, and commissural fibers,
fibers with clinical and neurosurgical relevance, as well as covering arange
from frequently to relatively infrequently studied and/or described in the
literature.

We made available the same datasets to be analyzed by a large number
of groups in order to uncover variability across analysis teams. To isolate
the effects of bundle segmentation from all other sources of variation, we
directly provided six sets of whole-brain streamlines (both deterministic and
probabilistic) to all collaborators, derived from 3 subjects with scan-rescan
data acquired from the Human Connectome Project test-retest database
[24]. We extended invitations for collaboration, disseminated data and the
protocol with clearly defined tasks, and received streamlines from
collaborators for analysis. In addition to streamlines, we requested a
written “definition” of the pathways and a description of the constraints
used to dissect it. Importantly, this dataset allows us to quantify and
compare variability across protocols (inter-protocol), variability within
protocols (intra-protocol), and variability across subjects (inter-subject).
Detailed procedures are provided in supplementary material.

Data and Protocol

The diffusion data for this study were selected from the Human
Connectome Project test-retest database [24]. A total of three subjects
(HCP IDs: 144226, 103818, 783462) were chosen that had repeat diffusion
MRI scans, resulting in six high-quality datasets, free of any significant
artifacts. This dataset was chosen as a compromise between quantification
and inclusivity - the use of this small database still provides enough
information to detect and quantify the variability among results with great
enough participation across laboratories and scientists.

Collaborators were not informed that the six datasets represented only
three subjects in order to not bias intra-protocol analysis. Distortion, motion
correction and estimation of nonlinear transformations with the MNI space
was performed using the HCP preprocessing pipelines [24]. Whole-brain
tractograms were generated using the DIPY-based Tractoflow processing
pipeline [53, 54], producing both deterministic and probabilistic sets of
streamlines to be given to participants. Importantly, to be as inclusive as
possible to all definitions and constraints, streamlines were not filtered in
any way. Streamlines were separated into left, right, and commissural
fibers in order to minimize file sizes. Also provided were the b0 images,
Fractional Anisotropy (FA) maps [55], directionally-encoded color maps
[565], T1 weighted images, and masks for the cerebrospinal fluid, gray
matter, and white matter [55].

The task given to collaborators was (see supplementary material) to
dissect 14 major white matter pathways on the left hemisphere on the six
diffusion MRI datasets provided. Collaborators were free to choose either
deterministic or probabilistic streamlines, and free to utilize any software
they desired. In order to maximize the quality of submitted results,
investigators did not have to provide segmentations for all pathways if they
did not have protocols or experience in some areas.

Submissions

For submission, we asked for a written definition of the white matter
bundles, a description of the protocol to dissect these pathways, all code
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and/or temporary files in order to facilitate reproducibility of methods, and
finally the streamline files themselves. Quality assurance was performed
on file organization, naming conventions, and streamline spatial attributes,
and visual inspection was performed for all streamlines of all subjects.
Tools for quality assurance (QA) can be found at
(https://github.com/scilus/scilpy).

Pathway-specific Analysis

For all pathways, we focused on quantifying volume-based and streamline-
based similarities and differences in the dissected bundles across
protocols. Qualitatively, we assessed volume overlap and streamline
overlap. Volume overlap was displayed as the volume of voxels in which
25%, 50%, and 75% of all protocols agreed that a given voxel was
occupied by the pathway under investigation. Similarly, we viewed the
individual streamlines in which 25%, 50%, and 75% of all protocols agreed
that this streamline is representative of a given pathway. These qualitative
observations were shown as volume-renderings or streamlines
visualizations directly.

Next, quantitative analysis used three voxel-based measures (based on
volume and streamline density) and one streamline-based measure [36].
The Dice overlap coefficient, density correlation coefficient, bundle
adjacency, and streamline Dice overlap are illustrated in Figure 4. Dice
overlap measures the overall volume similarity between two binarized
bundles (i.e., all voxels that contain a streamline), by taking twice the
intersection of two bundles divided by the union of both bundles. A value
of 1 indicates perfect overlap, a value of 0 indicates no overlap. The density
correlation coefficient is a measure of the Pearson’s correlation coefficient
obtained from the streamline density maps. This provides insight into not
only overlap, but also agreement in streamline density. Bundle adjacency
is a volume-based metric that describes the average distance of
disagreement between two bundles. This was calculated by taking all non-
overlapping voxels from one bundle, and calculating the nearest distance
to the second bundle (and repeating from the second to the first bundle)
and taking the average of these distances. By defining this metric, we are
using a convenient symmetric distance between two binary volumes, which
is a modification of the Hausdorff distance. A value of 3mm, for example,
indicates that when the bundles disagree, they are an average of 3mm
apart. Finally, streamline Dice is the streamline-equivalent of Dice overlap.
Because all submissions for a given subject were derived from the same
set of whole-brain streamlines, we had the ability to quantify whether an
individual streamline was common to both submitted bundles. Streamline
Dice was calculated by taking the total amount of streamlines common to
both protocols (i.e., intersection) divided by the total number of unique
streamlines in both bundles (i.e., union). Again, a value of 1 indicates that
all streamlines are exactly the same, a value of 0 indicates no overlap in
streamlines. Note that this final measure can be calculated only for
datasets that are derived from the same original set of streamlines.

Quantifying variability across protocols

The measures introduced above were used to quantify variability across
protocols (inter-protocol), variability within protocols (intra-protocol), and
variability across subjects (inter-subject), with separate analyses for
deterministic and probabilistic results. Below, we describe these three
levels of variability assuming there were “N” submissions for a given
pathway.

For inter-protocol variability, each bundle was compared to its counterpart
as produced by each of the other N-1 protocols, and the results averaged,
representing the average similarity/dissimilarity of that protocol with all
others. This was done for all N submissions, for all 3 subjects, resulting in
Nx3 data-points for each pathway.

For intra-protocol variability, we aimed to compare the same protocol
performed on the same subject. For each of the N submissions, we
calculated the similarity/dissimilarity measures with respect to the same
submission on the repeated scan. This was repeated for all subjects,
resulting in again Nx3 data-points for each pathway. A “precise” measure
of intra-protocol variability would have been possible if the same set of
streamlines had been provided twice for each subject. Instead, the study
used scan/re-scan data to measure not only intra-protocol variability, but
the variability of everything up to, and including protocol. Thus, this
measure includes acquisition variability (i.e., noise and possible artifacts),
registration (to a common space), reconstruction, and generation of whole
brain streamlines.
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Finally, for inter-subject variability, we sought to characterize how
similar/dissimilar a bundle is across subjects within a single protocol. All
streamlines were normalized to MNI space using nonlinear registration
(antsRegistrationSyn) [56] of the T1 image to the MNI ICBM 152
asymmetric template [57]. For each of N protocols, the agreement
measures were calculated from subject 1 to subject 2, from subject 2 to
subject 3, and from subject 1 to subject 3, again resulting in Nx3 data-
points for each pathway.

Appendix A: Cortico Spinal Tract (CST)

The CST is the major descending tract that mediates voluntary skilled
movements [58, 59]. At its most basic, this tract is a pathway of fibers
coursing primarily from the motor cortex down the spinal cord. Despite
this apparent simplicity, dissecting this tract can be quite variable.
Moderately increasing the complexity of the definition, the CST can be
(unanimously) described as starting from the cortex, traveling through
the corona radiata, converging into the internal capsule, continuing into
the brainstem through the medulla, and finally extending to the spinal
cord. Decisions to be made include choosing specific cortical
terminations (which span both frontal and parietal lobes) and how these
are delineated, selecting regions through which the streamlines must pass
(“cortex to medulla” or “cortex to lower brainstem” or “motor cortex to
medulla”), and implementing additional inclusion and exclusion regions
throughout the extent of the pathway to further refine where it goes and
where it does not go. Adding further ambiguity, the CST together with
the corticobulbar tract make up the pyramidal tract, and because these are
not easily (or not possibly) separated due to inherent tractography
limitations and field of view restrictions, these have sometimes been used
interchangeably and/or incorrectly in the literature. In this study, the CST
was divided into precentral and postcentral divisions based on endpoints,
hand-foot-face divisions based on regions of interest, anterior-posterior-
central-cingulate divisions based on endpoints, combined/separated with
ascending pathways with thalamic synapses, as well as
combined/separated with the peri-Rolandic component based on
endpoints, and divided into lateral and anterior components based on
definition (but not dissected).

Appendix B: Arcuate Fasciculus (AF)

The AF plays a key role in language processing. This is an association
tract that is well-understood to connect Wernicke’s area (somewhere in
the posterior temporal lobe) to Broca’s area (located in the inferior frontal
lobe). It gets its name (Latin for curved bundle) from the distinctive arch
shape it makes as it curves from the anterior-posterior direction in the
frontal-parietal cortex ventrally into the temporal cortex around the
Sylvian fissure (lateral sulcus) [60, 61]. This description of the AFs shape
is generally agreed upon. A third area (inferior parietal lobule) is also
traditionally included in this tract’s connections, representing the
pathway that Geschwind postulated to be damaged in conduction aphasia
[60]. For this reason, many descriptions include multiple segments of the
AF - a direct pathway traversing the entire tract from temporal to frontal
lobes, and an indirect pathway of shorter fibers connecting temporal to
parietal to frontal lobes. Consequently, the AF can be described as
connecting a number of areas of the perisylvian cortex of the frontal,
parietal, and temporal lobes. To further complicate the literature, because
the AF is a dorsal longitudinal system of tracts, it is occasionally
considered to be part of the SLF system of tracts [41, 62] and considered
synonymous or used interchangeably in the literature [41]. For these
reasons, we hypothesized that we would see large variability when giving
collaborators the task to “segment the arcuate fasciculus”. Variability is
observed due to differences in defining the location and method of
delineating Wernicke’s and Broca’s areas, or selection of regions to
capture the arch-like shape. Approximately 1/5 of submissions indicated
dividing the AF into the long direct segment (often described as more
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medially located), and the anterior and posterior indirect segments
(described as laterally located shorter segments).

Appendix C: Corpus Callosum (CC)

The CC is the largest, and arguably most easily recognizable, white
matter structure of the brain. This structure is not a single tract, but rather
a commissure, composed of axons coursing in the left-right orientation at
the midline, and interconnecting the cerebral cortex of the two
hemispheres. Many subdivisions of the CC have been proposed [63] with
most partitioning the CC based on axon location in the mid-sagittal
section. Most commonly, subcomponents are rostrum, genu, body,
isthmus, splenium, and (sometimes) tapetum, although others include
genu, splenium, and callosal body, or anterior, mid-anterior, central, mid-
posterior, and posterior based on (FreeSurfer) parcellation schemes.
Alternative subdivisions included separating according to the major lobes
of the brain (frontal, parietal, occipital, and temporal) or numerical
subdivisons (ranging between 5 and 12) based on cadaveric and
histological dissections [64], or homologous connections, or clusters of
fibers. Common to all protocols is the large, easily distinguishable region
near the midline. Constraints, decisions, and filters include choices of
where these bundles cannot go (various temporal lobe regions, through
or near subcortical structures, cingulum and parahippocampal gyri, etc),
filtering by connection regions or lengths, or rules enforcing homologous
connections.
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