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Abstract

Immunotherapy success in colorectal cancer (CRC) is mainly limited to patients whose
tumours exhibit high microsatellite instability (MSI). However, there is variability in treatment
outcomes within this group, which is in part driven by the frequency and characteristics of
tumour infiltrating immune cells. Indeed, the presence of specific infiltrating immune cell
subsets has been shown to correlate with immunotherapy responses and is in many cases
prognostic of treatment outcome. Tumour-infiltrating lymphocytes (TILs) can undergo
distinct differentiation programs, acquiring features of tissue-residency or exhaustion, a
process during which T cells upregulate inhibitory receptors such as PD-1 and loose
functionality. While residency and exhaustion programs of CD8 T cells are relatively well-
studied, these programs have only recently been appreciated in CD4 T cells and remain largely
unknown in tumour-infiltrating natural killer (NK) cells. In this study, we use single cell RNA-
seq data to identify signatures of residency and exhaustion in CRC infiltrating lymphocytes,
including CD8, CD4 and NK cells. We then test these signatures in independent single cell data
from tumour and normal tissue infiltrating immune cells. Further, we use versions of these
signatures designed for bulk RNA-seq data to explore tumour intrinsic mutations associated
with residency and exhaustion from TCGA data. Finally, using two independent transcriptomic
data sets from patients with colon adenocarcinoma, we show that combinations of these
signatures, in particular combinations of NK activity signatures, together with tumour-
associated signatures, such as TGF- signalling, are associated with distinct survival outcomes
in colorectal cancer patients.
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Introduction

Immune checkpoint blockade (ICB) in colorectal cancer (CRC) has shown clinical benefits in a
subset of CRC patients with high microsatellite instability (MSI) or deficient mismatch repair
(dMMR), and in 10% of patients with microsatellite stable (MSS) or proficient MMR (pPMMR)
[1]. However, due the complex interplay between tumour-immune cells in the context of
cancer immunotherapy, MSI status alone is often not enough to precisely predict response to
ICB [2]. The main factors impacting the outcome of immunotherapy, and in general, survival
outcome in patients, are the frequency and the characteristics of the immune cells in the
tumour microenvironment (TME) [3-5].

Recent single cell studies in several cancer types have revealed a high level of heterogeneity
in tumour infiltrating lymphocytes [6-8]. Importantly, a subset of CD8 T cells undergo
“exhaustion”, a process that has been reported in activated T cells in response to persistent
antigen exposure in the TME, resulting in a loss of functionality and expression of co-inhibitory
receptors such as PD-1 or CTLA-4 [9]. Heterogeneity within the exhausted T cell population
ranges from progenitor or precursor cells that exhibit self-renewal capacity to terminally
differentiated cells [10-14], and this heterogeneity has been shown to impact the success of
immunotherapy [15-17].

T cell exhaustion has largely been studied in the context of melanoma and non-small cell lung
cancer (NSCLC) [7, 18, 19]. However, studies looking at T cell differentiation states and their
tumour reactivity have yielded conflicting outcomes. Li et al found high reactivity of
exhausted T cells towards tumour cells (measured by IFNy and TNFa production ex vivo) and
showed high proliferation of exhausted cells at earlier stages of their exhaustion program
[19]. Huang and colleagues, presented evidence that a subset of circulating CD8 T cells which
express markers of exhausted cells (e.g. PDCD1, CTLA4, and HAVCR2) are the most
proliferative T cells following ICB therapy, and that high ratio of exhausted CD8 T cell
reinvigoration to tumour burden is prognostic in head and neck cancer patients [20]. Others
have reported a low ratio of exhausted T cells to early activated cells to be associated with
better response to ICBs [16].

Perhaps the most comprehensive study of CRC infiltrating immune cells was performed by
Zhang et al [8, 21]. They showed that a Tul-like CD4 T cell cluster (expressing CXCL13 and
BHLHE40) share expression with some of the exhaustion genes found in exhausted CD8 T cells
(with high LAYN transcript abundance). Interestingly, flow cytometry and single cell analyses
in several cancer types have identified the presence of CD8" FOXP3* cells, which was further
corroborated by T cell receptor (TCR) lineage tracing, suggesting a conversion between CD8
exhausted T cells and FOXP3* T cells [7, 8, 19, 22]. These factors highlight the complex
dynamics amongst TILs. In general, the presence of tissue resident memory T cells (Trm) has
been reported to be associated with beneficial survival outcome and better response to
immunotherapy in several cancer types [23-26]. While several studies have explored
residency programs (or molecular signatures associated with residency) in T cells, these
processes remain poorly understood in NK cells. Tissue-resident NK cells in steady-state are
clearly distinguishable from conventional NK cells and have been referred to as type 1 innate
lymphoid cells (ILC1s) [27]. We have previously observed ILC1s in murine tumour models and
suggested these were derived from infiltrating NK cells which differentiated into ILC1s under
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conditions of high TGF-B signalling in the TME, permitting tumour cell escape from
immunosurveillance [28].

TGF-B signalling not only plays critical roles in differentiation, development, and maintenance
of various resident immune cells [29-32], but is also one of the key drivers of epithelial-
mesenchymal transition (EMT) in cancer cells [33], which could impact the interplay between
tumour cells and infiltrating immune cells. Active TGF-B cytokine is required for the
differentiation of CD8 T cells into Trm cells in several tissues [30, 34, 35]. Some studies have
shown that TGF-B signalling is associated with T cell exclusion and tumour escape from
immunosurveillance. Specifically, TGF-B signalling in fibroblasts of metastatic urothelial
cancer patients is associated with T cell exclusion and reduced response to therapy with ICBs.
In these patients, TGF-B blockade increased T cell infiltration and resulted in reduced tumour
progression [36]. Similarly, another study in mouse models of CRC showed better ICB
response after blockade of TGF-B signalling, driven by increasing T cell infiltration of the
tumours and promotion of a Tu1l phenotype [37]. Due to the crucial roles of TGF-B signalling
in differentiation of resident cells, T cell exclusion in tumours, and its associations with
survival outcome and response to ICBs, it is of utmost importance to better understand the
relationship and interplay between TGF-B and immune or tumour cells.

This study, for the first time, attempts to tease apart transcriptional programs underpinning
lymphocyte residency and exhaustion tumor-infiltrating T and NK cells using integrated
analyses of single cell data from CRC and normal gut, as well as bulk transcriptomics data sets.
Furthermore, we identify numerous tumour intrinsic mutations associated with these
programs, in particular gene mutations associated with the NK exhaustion program, with
several genes involved in cancer immune evasion. We then use our residency and exhaustion
signatures in combination with other tumour associated programs (e.g. TGF-B signalling) to
identify patients who have better survival outcome or may benefit from ICB
immunotherapies. Specifically, we identify improved survival outcome for patients with high
exhaustion and low residency programs in NK cells, and patients with high exhaustion
programs in both CD8 and NK cells and low TGF-B signalling. This work has important
implications for cancer immunotherapy as it suggests that strategies to prevent tumor
residency may improve NK cell and CD8 T cell tumor immunity and patient outcomes.
Collectively, we propose a new model that links distinct transcriptional programs to cancer
patient survival and establish a new method that serves as valuable tool for researchers and
health care professionals in analysing genomic and transcriptomic tumour biopsy data and
interpreting tumor immune responses.
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Results

Residency and exhaustion signatures define developmental trajectories of infiltrating
immune cells

To establish residency and exhaustion signatures, we made use of Smart-seq2 data from
tumor-infiltrating CD8, CD4 and NK cells generated by Zhang et al [21]. We first defined initial
residency and exhaustion signatures by calculating the correlation between selected
canonical residency or exhaustion markers and approximately 1300 genes collected from the
literature, which were associated with these functional programs (see Methods; Supp. Figure
S1 summarises the workflow for this study). We then used these initial signatures (Supp. Table
S1) with singscore [38] to quantify the relative concordance of single-cells against these
signatures, where a high score represents higher relative expression of genes within a given
signature (Figure 1A). While residency scores for each cell type clearly separated immune cells
in peripheral blood from those infiltrating tissue (either tumour or adjacent normal samples;
across the x axis in Figure 1A), the exhaustion scores further separated cells with differences
in their relative expression of exhaustion genes (across the y axis in Figure 1A). We then
obtained genes that were differentially expressed between exhausted cells (with high
exhaustion and low residency scores) and resident cells (with high residency and low
exhaustion scores; thresholds shown in Figure 1A), and further filtered the resulting genes by
group comparisons with percentile thresholds (see Methods).

The resultant gene sets were residency (Res) and exhaustion (Exh) signatures for each of the
CD8, CD4 and NK cells that can be used for infiltrating immune cells (called CD8_Res [Ngenes
=43], CD8_Exh [Ngenes = 27], CD4_Res [Ngenes = 31], CD4_Exh [Ngenes = 83], NK_Res [Ngenes =
61] and NK_Exh [Ngenes = 19]: Supp. Table S2). We further merged all the Res signatures
together to define a general Res signature (All_Res; Ngenes = 100) and all the Exh signatures
together to define a general Exh signature (All_Exh; Ngenes = 118). The single cell scores from
these signatures could identify a subset of cells with higher evidence of Exh or Res programs
in the Zhang Smart-seq2 data (Supp. Figure S2), with exhausted NK cells largely restricted to
tumours with MSI status. In general, our results showed that Exh programs were similar
between CD8 T cells and NK cells, however, Res signatures were more similar between CD8
and CD4 cells. Zhang et al reported more similarity between Tu1 like clusters of CD4 cells
with exhausted CD8 cells [8] but in our analysis, we observed higher exhaustion scores in a
large number of tumour specific CD4 Tregs, which is more similar to the CD4 dysfunctional
Treg signature in melanoma samples reported by Li et al [19].

While HAVCR2 (encoding TIM3) was the only gene shared across the Exh signatures for all
three cell types, we identified ten overlapping genes across all the Res signatures (Supp. Table
S2). A small number of genes also overlapped between each pair of signatures. Some of the
transcription factors (TFs) that we identified in the All_Res signature included genes
associated with activating protein 1 (AP-1) TFs, which are downstream of TCR activation, NF-
kB signalling, and early growth response downstream of AP-1 and NF-kB signalling (Supp.
Table S2). Although it was identified as one of the CD8 Res markers, GPR15 is one of the less
studied GPCRs that also showed restricted expression in CD4 and NK Res cells (Supp. Figure
S3). From the full list of genes in the All_Exh (Ngenes = 118) signature, we identified three genes
associated with G-Protein coupled receptors (GPCR) signalling (e.g. CCR8) and ten
transcription factors (Supp. Table S2).
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Consistent with the idea that exhaustion signatures show a strong degree of overlap with
activation signatures, a small subset of the Exh cells from all the three cell types exhibited a
high level of proliferation. Using a proliferation signature and the Exh signatures obtained
here, we further identified signatures for proliferative Exh cells (see Supp. Figure S4 and Supp.
Table S3 for the list of DEGs).
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Figure 1. (Top row) Initial exhaustion and residency scores in each of the CD8, CD4, and NK subsets
of the Zhang Smart-seq2 data. Solid lines show the thresholds used to define Exh cells in CD8 and
CD4 cells, and dashed lines represent the thresholds used to define Res cells. (Bottom panel)
Clustering and UMAP performed on our marker genes in each of the cell populations, coloured by
Exh and Res signature scores. Lines represent the trajectory analysis performed by slingshot.

After clustering and dimensionality reduction on our cell type specific marker genes, we
performed unsupervised trajectory analyses, which could not only separate blood from tissue
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infiltrating immune cells, but also showed resident cells as an intermediate step between
naive cells (mostly in blood circulation) and exhausted cells (Figure 1B). Interestingly, while
the Exh subset of CD4 and NK cells are a down-stream lineage of Res cells in tissues, the Exh
subset in CD8 T cells seem to derive from both tissue-infiltrating Res cells as well as circulating
CD8 T cells.

To further examine the development of NK cells in tumor tissue, we assessed the expression
of the several genes defining NK cell maturation and tissue residency [39] in the NK cells
extracted from tissue and blood (Supp. Figure S5). Interestingly, we observed a population of
tissue-infiltrating NK cells (annotated as the GZMK population by Zhang et al), with expression
of naive markers (CCR7, SELL, and GPR138) as well as inhibitory markers (at least one of
PDCD1, TIGIT, HAVCR2, or CTLA4; Supp. Figure S6). Overlaying expression of these genes on
the trajectory plots identified these cells as belonging to an intermediate stage of the
trajectory (Supp. Figure S6).

To examine the association between these programs and TGF-B signalling, we also scored
single-cells against a TGF-B signature for tissue-resident memory T (Trm) cells reported by Nath
et al [32]. Our results showed higher correlations between TGF- signature scores and Res
scores in CD8 and NK cells compared to Exh scores, while we observed higher correlation
between the CD4_Exh and TGF-B program (Supp. Figure S7). Most of the CD4_Exh cells which
also have high TGF-B scores are tumour associated Tregs, and TGF- is important for the Treg
infiltration, retention, and suppressive function [40].

Transcriptional signatures identify residency and exhaustion in single cell data from CRC
and healthy tissue resident cells

Using the signature genes obtained above, we generated UMAP plots in three independent
single cell data sets, including two CRC data sets and one normal tissue data set: 10X data
from Zhang et al [21], the single-cell data from de Vries et al [41], as well as a normal human
gut data from James et al [42] (See Method section; Figure 2A). Similar to the Zhang Smart-
seq UMAPs, the first dimension of the UMAP plots in the Zhang 10X data generated using our
marker genes separated the immune cells in peripheral blood from those in the tissue. We
showed that while a subset of cells only exhibited evidence for Exh or Res, some cells
displayed a ‘hybrid’ program. In normal human gut we observed relatively more Res cells,
which confirms previous observations that showed more Res cells in normal samples [8].
Interestingly, we also observed a small subset of exhausted cells in normal gut tissue, perhaps
due to the persistent presence of microbiota-derived antigens in the gut.

As the frequency of NK cells was low in some of the test data sets, we further examined our
NK markers in ~4,000 NK cells extracted from a melanoma patient [43] (Figure 2B). Using this
data set, we found that NK cells infiltrating in a distinct tumour nodule (in the cortex of the
tumour) had the highest NK_Res score, followed by NK cells within the cortex (margin) and
centre (core) of the tumour. NK cells from peripheral blood exhibited the lowest NK_Res score
as expected. Although NK_Exh scores were also relatively higher in the NK cells extracted from
the nodule compared to the NK cells from blood, the differences between NK_Exh scores from
different sources were not as high as those in NK_Res scores. This confirms the observed
evidence of NK_Exh across NK cells extracted from different sources in the CRC single cell test
data sets (Figure 2A & B), and suggests that NK cells from different sources (blood, cortex,
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centre, and nodule) in cancer patients may exhibit features of exhaustion, similar as it has

been reported recently in patients with chronic hepatitis B [44].
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Exhaustion and residency programs are enriched in MSI/dMMR samples and CMS1/CMS4
subtypes

As tumour samples from patients include both cancer cells and non-cancer cells from the
tumour microenvironment (such as infiltrating immune cells), we further refined our
signatures to only retain genes with low expression in tumour cells. This increases our
confidence when scoring bulk tumour samples, ensuring that scores are primarily defined by
infiltrating immune cells and not tumour cells. To this end, we examined the expression of all
of our marker genes in the CRC cell lines from the Cancer Cell Line Encyclopedia (CCLE) and
CRC laser capture microdissected (LCM) cells from Tsukamoto et al (GSE21510) [45], and
retained genes that showed low expression in either of the two data sets (see Method
section). Therefore, these signatures can be used for separate immune cells from tumour
samples and are named with “Bulk” suffix (e.g. CD8_Res_Bulk; Figure 3 and Supp. Table S2).

We then used these signatures in colon cancer patient samples from two independent
datasets: RNA-seq from TCGA (Nsamples = 479, including 40 matched normal samples), and
microarray from Marisa et al [46] (Nsamples = 585, including 19 matched normal samples).
Stratifying samples based on scores and MSI/dMMR status showed relatively higher
exhaustion and residency scores in MSI-H and dMMR samples, although the difference
between MSI-H/dMMR and MSS/pMMR was relatively larger for Exh scores compared to Res
scores (Figure 4A). We then divided samples based on the four consensus molecular subtypes
(CMS), and in both tumour datasets we observed relatively higher Exh and Res scores in CMS1
and CMS4 subtypes (Figure 4B), which is consistent with the characteristic of these subtypes
(Higher number of MSI samples and higher immune activation in CMS1, CSM4 and CMS2/3,
respectively) [47, 48]. As the CMS1 subtype has higher occurrence in proximal CRC samples
(right-side), we further confirmed higher scores, specifically for NK_Exh_Bulk signature, for
proximal (right) compared to distal (left) tumours (Supp. Figure S7).

Consistent with higher Res scores in single cell data from normal gut samples (Figure 2), we
also observed relatively higher evidence of the Res program in normal bulk samples (scores
were equivalent or higher than the scores in CMS1 and CMS4), with relatively lower Exh
scores, specifically for CD8 and NK cells. These results not only are consistent with previous
research that showed higher immune infiltration in MSI-H and CMS1 samples [47, 48], they
also suggest that the presence of exhausted cells is more cancer specific, with relatively less
enrichment in normal tissues.
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Tumour intrinsic mutations associated with exhaustion and residency

In order to identify tumour intrinsic mutations associated with residency and exhaustion
programs, we used somatic mutations data from the TCGA COAD, and performed two types
of analyses. In the first analysis, we generated linear models, examining the association
between each gene mutation and each Exh_Bulk and Res_Bulk score. In general, we found
more gene mutations associated with exhaustion signatures than with residency programs
(Supp. Table S4), with the highest number related to NK_Exh_Bulk score (Ngenes = 3371),
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followed by CD8_Exh_Bulk (Ngenes = 2130). Among the residency signatures, CD8_Res_Bulk
scores were associated with the highest number of gene mutations (Ngenes = 928), followed
by NK_Res_Bulk score (Ngenes = 832).

Amongst the list of significant genes, we found several well-known CRC gene mutations.
Mutant BRAF showed significantly higher scores for all Exh_Bulk and Res_Bulk signatures,
except for CD4_Res_Bulk. APC mutations, on the other hand, were associated with lower
Exh_Bulk and Res_Bulk scores, with the difference being more profound for Exh_Bulk scores
compared to Res_Bulk scores (Figure 5). These results are consistent with previous research
that showed relatively more MSI samples with BRAF mutations and more APC mutations in
MSS samples [48, 49]. BRAF not only is associated with MLH1 methylation (responsible for
DNA mismatch repair) and developing MSI samples [50], but mutations in this gene
(specifically V60OE) can also impact tumour hypoxia across a number of cancer types [51-53].

We also identified mutations in several genes impacting on tumor antigen presentation
pathway JAK/STAT; while mutations in JAK1 were associated with both higher Exh_Bulk and
Res_Bulk scores, STAT1 mutations had significantly higher Exh_Bulk scores but not Res_Bulk
scores. Finally, our results identify novel genes associated with these programs, for example,
SPEN (a transcriptional repressor, which synergizes with RUNX2) and several dynein axonemal
heavy chain (DNAH) genes (components of microtubules, involved in ATP-dependent cell
motility; Supp. Table S4). Focusing on top gene mutations (adjusted p-value < 0.0001)
associated with the NK_Exh_Bulk program (Ngenes = 1027), we identified several GO terms,
such as actin filament-based processes, calcium ion transmembrane transport, regulation of
GTPase activity, response to oxygen levels, response to TGF-B, and stem cell proliferation
(Supp. Table S5 and Supp. Figure S9).
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Figure 5. Exh_Bulk and Res_Bulk scores for each cell types for TCGA samples with mutant and WT
forms of selected genes.
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In the second analysis, we focused on NK cell sighatures, which showed relatively higher gene
mutations associated with exhaustion. We performed elastic net regression by including all
the significant genes obtained in the first analysis (for each of the NK_Exh_ Bulk and
NK_Res_Bulk), as well as clinical factors (see Method section). This analysis resulted in 44
genes predictive of NK_Exh_Bulk; examples of these predictive genes are those associated
with antigen presentations (HLA-B, JAK1, TRRAP), POLD1, and TGM6, which is less appreciated
in this context. Mutations in all genes, except for the APC, were associated with higher
NK_Exh_Bulk scores. Additionally, the CMS3 subtype showed a significantly negative
coefficient for NK_Exh_Bulk, which further confirms that this subtype is an “immune
excluded” subtype [48]. CMS4 was one of the predictive factors for both NK_Exh_Bulk and
NK_Res_Bulk signatures. Indeed, CMS4 was the most predictive factor for NK_Res_Bulk
scores (compared to all the genes and clinical factors included as predictors), and this is of
interest as CMS4 is associated with EMT programs and TGF-B signalling, the latter playing an
important role in differentiation of tumour infiltrating resident cells [29, 30]. We found 75
genes predictive of NK_Res_Bulk (mutations in 55 genes were associated with higher scores),
of which 12 genes overlapped between the two signatures, including BRAF, APC, and HTR5A
(Supp. Table S6, Supp. Figures S10-12). Other predictive genes of NK_Res_Bulk associated
with TGF-B signalling and the mesenchymal-epithelial transition (MET) were TGFBRAP1 and
HGF, the latter is known to modulate immune response [54, 55]. Interestingly, we found PAK4
as one of the predictive genes for NK_Res_Bulk. PAK4 was recently introduced as a target in
cancer immune evasion as its expression was inversely correlated with CD8 T cell infiltration
and ICB response in melanoma, and PAK4 overexpression correlated with an activated Wnt—
B-catenin pathway [56, 57].

Combined Exh and Res scores identify patients with distinct survival outcome

As heterogeneity amongst the infiltrating immune cells has been shown to be associated with
response to immunotherapy and patient’s survival outcome, we examined whether the
Res_Bulk and Exh_Bulk signatures have associations with survival outcome in patients. We
used the overall survival (OS) data available in both TCGA and Marisa, as well as progression
free interval (PFI) in TCGA and relapse free survival (RFS) in Marisa data [46]. We also note
that these two data sets differ in their clinical definitions of survival outcomes; for example,
TCGA data defines PFl based on the date of diagnosis, whereas Marisa et al define RFS based
on the date of surgery. However, we analysed each of these data sets separately, and look for
any consistency between the two sets of results. In addition to all the CD8, CD4, NK, and All
Exh_Bulk and Res_Bulk signatures, we merged CD8 and NK Res_Bulk signatures (called
CD8NK_Res_Bulk; Ngenes = 23), and CD8 and NK Exh_Bulk signatures (called CD8NK_Exh_Bulk;
NGenes = 26) to examine the role of the combined signatures of CD8 T cells and NK cells.

Focusing on OS, we first examined whether each individual Res or Exh score was associated
with OS by dividing the samples into two groups with high and low scores based on median
values and fitting Cox multivariate models to these groups. We identified better OS for
samples with higher CD8NK_Exh_ Bulk and NK_Exh_Bulk scores compared to those with
relatively lower scores for these signatures in Marisa data (Supp. Figure S13A); however, we
did not see significant associations for these two signatures in the TCGA OS data. We then
stratified samples based on score pairs using 2-dimensional score landscape plots (Figure 6B),
including Exh_Bulk and Res_Bulk signatures, as well as a number of tumours associated
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signatures (see Methods). The multivariate Cox analysis identified poorer OS for patients with
low CD8NK_Exh_Bulk & high TGF-B signalling in both data sets (Figure 6C). Other consistent
findings across the two datasets included poorer OS for patients with low NK_Exh_Bulk & high
IL6_JAK_STAT3 signalling, and for patients with low NK_Exh_Bulk & low DDR (Figure 6A).

We then compared the progression free interval (PFl) from TCGA and relapse free survival
(RFS) from the Marisa data. Considering individual scores in multivariate Cox models, we
identified a subset of patients that scored lower for the NK_Res_Bulk signature and were
associated with better PFI in TCGA data (Supp. Figure S13B), although we did not find
significant associations between NK_Res Bulk scores and RFS in Marisa data. Stratifying
samples based on score pairs and performing Cox models, we identified High
CD8NK_Exh_Bulk & Low_NK_Res scores associated with longer PFl in TCGA, and consistent
with this, samples with low CD8NK_Exh_Bulk & High NK_Res_Bulk scores showed lower RFS
in Marisa data (Figure 7). We also found significant associations with RFS/PFl when combining
our Res_Bulk and Exh_Bulk signatures with a number of tumour-associated signatures, such
as DDR, TP53 signalling, and those involved in EMT program or metabolic processes (e.g.
oxidative phosphorylation (OXPHOS) and peroxisomes; Figure 7A). In general, we observed
better PFI/RFS for lower NK_Res_Bulk program when combined with lower scores for TP53
signalling, hypoxia/EGF-driven EMT, epithelial, or peroxisome scores. We also found poorer
RFS/PFI for samples with high CD8NK_Res_Bulk and low TP53_neg scores, or samples with
low CD8NK_Res_Bulk scores that also had lower DDR scores (Figure 7).

While Res_Bulk and Exh_Bulk scores consistently showed positive correlations with TGF-3
signaling, EMT (driven by TGF-B or hypoxia and EGF) and TP53-negative scores in both data
sets, negative correlations were observed between Res_Bulk and Exh_Bulk scores and DDR,
OXPHOS and TP53-positive scores (Supp. Figure S13C-D). However, when focusing on each of
the cancer related scores, there were differences in their correlation with Res_Bulk and
Exh_Bulk scores. For example, consistent with our findings in single cell data, we observed
higher correlation between TGF-f signalling scores and Res_Bulk scores compared to those
from TGF-P signalling scores and Exh_Bulk scores (Supp. Figure S13C-D).

For each of the OS and PFI/RFS data, we also aimed to find patients with more distinct
programs of Exh_Bulk and Res_Bulk, by subsetting the data into patients with high Exh_Bulk
and low Res_Bulk scores and those with low Exh_Bulk and high Res Bulk scores, and
performed the Cox multivariate analysis on these subsets. We found that, in both the TCGA
and Marisa data, samples with low NK_Res_Bulk & high NK_Exh_Bulk showed improved OS
and longer PFI/RFS time compared to those with high NK_Res_Bulk & low NK_Exh_Bulk scores
(Figure 8). Similarly, samples with high CD8_Exh_Bulk & low NK_Res_Bulk showed better
survival outcomes in both data sets (Supp. Figure S14). We noted that there was a relatively
small subset of samples with opposite characteristics regarding Exh and Res programs, which
is due to the positive correlations between the two signatures. Considering that there were
no genes overlapping between the two signatures, this observation highlights the true
biological associations between these two programmes. Interestingly, samples with opposite
characteristics included a mix of different CMS subtypes (Figure 8A) and different MSI status
(data not shown), suggesting that our scoring approach adds a new layer of information for
sample stratification, and Exh and Res scores are predictors of survival outcome in the COAD
patients, independent of known clinical variables.
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Figure 6. (A): Hazard ratios obtained from Cox multivariate models using score pairs (plus covariates)
in the TCGA and Marisa OS data. (B) Score landscapes comparing CD8NK_Exh_Bulk scores vs TGF-B
signalling scores in the TCGA and Marisa data, coloured by CMS subtypes. (C) Kaplan-Meier curves
demonstrating overall survival (OS) for patients stratified based on scores shown in B.
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Figure 7. (A): Hazard ratios obtained from Cox multivariate models using score (plus covariates) in
the TCGA PFl and Marisa RFS data. (B) Score landscapes comparing CD8NK_Exh_Bulk scores vs
NK_Res_Bulk scores in the TCGA and Marisa data, coloured by CMS subtypes. (C) Kaplan-Meier
curves demonstrating PFl or RFS for patients stratified based on scores shown in B.
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Discussion

In this study, for the first time to our knowledge, we have leveraged single cell and bulk
transcriptomic data to distinguish exhaustion and residency programs in both T cells and NK
cells in CRC, validated them across several independent data sets, and shown associations
with tumour genomic profiles and patient survival outcome.

Several genes in the Exh and Res signatures have been previously reported as part of the
exhausted/dysfunctional or resident T cell signatures in different cancer types [7, 8, 18, 19],
and some have received less attention in this context. We identified members of the APOBEC
family of single-stranded DNA cytosine deaminases in our CD8_Exh signatures (APOBEC3H
and APOBEC3C), which have been shown to share similar functions in the context of HIV and
cancer [58]. Indeed, some APOBEC genes are expressed in tumour infiltrating T cells and are
associated with better clinical outcome [59, 60]. GAPDH, one of our identified Exh markers,
induces the translation of IFNG and IL2 in highly glycolytic T cells and suppresses translation
of key genesin CD4 T cells following inhibition of glycolysis [61]. Additionally, GAPDH has been
previously shown to be upregulated in rapidly cycling and activated NK cells compared to
slowly cycling NK cells [62]. One of the CD4_Exh genes associated with GPCR was CCR8, and
of note, combining anti-CCR8 with other immunotherapy agents in CRC has been shown to
prevent the suppressive effect of CD4 Tregs and improve patients’ survival outcome [63].
GPR15, one of our CD8_Res markers, which also has restricted expression in Res CD4 and NK
cells, is a GPCR involved in T cell trafficking in colon, and its expression in Tregs is promoted
by TGF-B, mediating the suppression of inflammation in the colon [40]. CXCR4, identified as
one of our CD4_Res genes involved in GPCR signalling, was just recently suggested to mediate
immune suppression in pancreatic and CRC samples, and the use of anti-CXCR4 in MSS
samples increased the immune response [64].

There appears to be heterogeneity in tissue residency programs across different cancers
types. For example, we identified ZNF683 (HOBIT), a central mediator of lymphocyte tissue-
residency in mice [65], as an Exh marker with relatively higher abundances in CD8 and NK Exh
compared to their respective Res cells. This is in contrast to NSCLC where relatively high
expression has been shown in resident T cells [7, 65]. These were confirmed in studies where
ZNF683 expression was higher in Res cells in NSCLC compared to hepatocellular carcinoma
and CRC [6-8]. While we identified the NR4A family genes as Res signature genes, the NR4A
family have been previously shown to be linked to CD8 T cell exhaustion [66] and shown to
limit the function of chimeric antigen receptor (CAR) T cells in solid tumours [67]. Marquardt
et al reported the up-regulation of ZNF331 within the CD69*CD49a*CD103* resident NK cells
from normal lung tissue compared to CD69" cells [68], and we identified this gene as one of
our CD8 Res genes. While they also observed higher expression of IRF4 in the resident NK
cells, we removed this gene from our list due to a particularly high correlation with both Res
and Exh programs in NK cells. Notably, we here identified /RF8 as a TF involved in Res
programs.

The unsupervised trajectory analysis suggested that exhausted CD8 T cells drive from both
resident cells and circulating CD8 T cells. This is in line with the reported diversity in the origins
of exhausted CD8 T cells [5]. Zhang et al observed a developmental link between effector
memory T (Tem) cells and exhausted T cells in CRC patients [8], while in NSCLC, Guo et al
showed a direct link between T.m and exhausted cells [7]. Li et al showed that the
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dysfunctional (or exhausted) cells in melanoma patients drive from transitional (early effector
GZMK*) T cells through a local differentiation process, without any evidence of exhaustion in
peripheral blood [19], while Huang et al analysed exhausted CD8 T cells in peripheral blood
of patients with melanoma that were treated by anti-PD1 therapy, and had T cell clones in
common with the tumour [20]. Interestingly, the obtained trajectory of the NK and CD8 Res
cells in our results passed through an intermediate sub-population with co-expression of
GZMK, naive cell markers and some inhibitory receptors. Similarly, Galletti et al recently
reported two subsets of CCR7+ CD8 T cells, one of which expresses GZMK along with PDCD1
and TIGIT, which they termed T precursor exhausted-like cells, which commit to a terminally
dysfunctional state [69]. Therefore, this intermediate sub-population of NK cells may
represent the NK precursor exhausted cells.

Based on our mutation analysis, the NK_Exh_Bulk signature was associated with the highest
number of gene mutations. This suggests that tumour mutation burden and related neo-
antigen expression may drive tumour inflammation and consequently impact NK cell
activation and exhaustion. Another interpretation is that in the presence of highly activated
NK cells, tumour cells may undergo positive selection for cells with mutations resulting in
decreased immunogenicity to these cytotoxic lymphocytes as an immune surveillance escape
strategy [70]. This is also supported by our findings of gene mutations that were predictive of
NK_Exh_Bulk (e.g. genes associated with antigen presentations). Another predictive gene of
NK_Exh_Bulk was POLD1, mutations of which have recently received attention as biomarkers
for cancer immunotherapy due its crucial role in DNA replication and repair [71, 72]. We also
found several less appreciated genes in this context, such as TGM6, a transglutaminase, which
similar to other members of TGMs, such as TGM2, performs post-translational modification
in a Ca?* dependent manner, and may play a role in cancer [73]. We also identified calcium
ion transmembrane transport as one of the significant GO terms associated with NK_Exh_Bulk
genes, and interestingly, not only intracellular Ca?* concentration is required for cancer cell
proliferation and apoptosis, but also, the efficacy of the cytotoxic T cell and NK cell function
is dependent on Ca?* [74].

GO enrichment of the mutations associated with NK_Exh_Bulk also suggested the importance
of several actin filament-based and cytoskeletal processes, which are much less appreciated
in the context of tumour immune infiltration. Solid tumours have been shown to undergo
massive remodelling after attack by cytotoxic T and NK cells; this remodelling not only impacts
tumour cell recognition by lymphocytes, but also influences immune cell activation [75]. We
also noted that some of our Exh signature genes (such as MYO7A and AFAP1L2, shared by
CD8 and NK cells) were those associated with actin and myosin-based processes. Remodelling
of actin filaments and myosin contractibility are required for the formation of immunological
synapse as well as transportation and secretion of cytotoxic granule in T and NK cells [76], and
increased expression of some actin modulating genes was also reported in rapidly cycling NK
cells which exhibited reduced cytotoxicity [62].

Mutation and survival analyses suggested important associations of Exh/Res programs with
oxidative phosphorylation (or hypoxia), DDR, TP53 and cell cycle processes. Oxidative stress
can cause DNA damage, and if DNA damage response (DDR) is not effective, it leads to tumour
initiation and promotion in a tumour favourable microenvironment [77]. We observed
negative correlations between Exh/Res scores and DDR, suggesting that a defective DDR
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programs could lead to more neo-antigens and therefore more immune infiltration. However,
our also analysis indicated that samples with lower CD8NK_Exh_Bulk and low DDR have
relatively poor survival outcome compared to those with high CD8NK_Exh_Bulk and high DDR
scores, which may suggest that some activity of DDR could be beneficial when combined with
exhaustion programs from CD8 and NK cells. This is consistent with reports that suggest
defective DDR not only can stimulate immune response, but also can lead to
immunosuppression [78]. Further, our results also showed that active TP53 signalling, an
important mediator of the DDR, when combined with high CD8NK_Res_Bulk programs is
suggestive of a relatively poorer prognosis. This is in line with previous studies, reporting that
mutations in TP53 is associated with higher immunogenic activity in a number of cancer types
[79], which may be associated with a relatively higher Exh programs as a result. Altogether,
these results suggest that depending on the relative Exh and Res programs in tumour
microenvironment, defects in DDR and TP53 pathways could lead to a better or worse survival
outcome.

In both single cell and bulk tumour data, we observed positive correlations between TGF-3-
related signature scores and Res/Exh scores, and this correlation was higher for Res scores
compared to Exh scores. These results are not surprising considering the importance of TGF-
B in the development of resident T cells [29, 32]. In this study, we took this a step further and
demonstrated how combining TGF-B signalling scores with NK_Res_Bulk or NK_Exh_Bulk
scores could predict survival outcome. We also, for the first time, showed the importance of
the combined use of NK _Res Bulk and NK_Exh Bulk signatures for predicting survival
outcome, independent of known CRC clinical factors (e.g. age, stage, MSI and CMS). This is
particularly important considering that MSI status alone is not sufficient in predicting
response to immunotherapy or survival outcome [2, 48], ~13% of CRC patients cannot be
assigned to any of the CMS subtypes and almost all CMS subtypes include a mixture of
samples with both poor and good prognosis, the exception being CMS4 and relapsed CMS1,
which are associated with poorer survival outcomes [80]. By taking into account that: (i)
samples with lower TGF-B signalling and lower NK_Res_Bulk are associated with better
survival, while samples with lower NK_Exh_Buk and higher TGF-B signalling show poorer
outcome, (ii) TGF-B has been associated with T cell exclusion in several cancer types and
targeting TGF-B has been shown to be beneficial for response to ICIs [36], and (iii) we
observed better survival outcome for patients with high NK_Exh_Bulk and low NK_Res_Bulk
programs (compared to those with low NK_Exh_Bulk and NK_high Res_Bulk), it is tempting to
speculate that part of the suppressive biology associated with TGF-B signalling is by promoting
NK residency.

In this study, we suggested a better survival outcome for patients with higher Exh to Res
programs (specifically for NK and combined NK and CD8 signatures) by defining these
programs via non-overlapping gene signatures. However, several previous studies reported
associations between CD8 Res cells and better response to ICBs and improved survival
outcome [24-26]. While some of these could be due to in cancer types and heterogeneity in
Res cell populations, it is also at least partially due to the use of a non-specific signature or a
mixed Exh and Res gene sets in these studies, and as noted above, there is a strong degree of
overlap between T cell activation and Exhaustion markers which are difficult to distinguish in
the absence of time course data. For example, many studies defined Res cells using ITGAE
(CD103) [25, 26]. We removed this gene based on the results of the canonical correlation
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analysis on the initial Res and Exh signatures in NK and CD8, which means that the presence
of this gene was associated with both Res and Exh programs. Duhen et al identified a subset
of CD8 TILs with Trm phenotype with co-expression of ITGAE and ENTPD1 (CD39), which were
also enriched for exhausted markers (PDCD1, CTLA4, and HAVCR2) and had high expression
of CD69; they showed that these cells were associated with high tumour-reactivity and better
prognosis in head and neck cancer patients [81]. Therefore, high expression of ITGAE and
better survival outcome may not be specifically attributed to Res cells. Similarly, we removed
ITGA1 (CD49a) from the CD8 Res signature for the same reason; however, ITGA1 was a good
Res marker for CD4 cells. Another example is the Trm signature reported by Byrne et al [24],
which includes a mix of Res (e.g. CD69) and even more Exh markers (HAVCR2, PDCD1, TIGIT,
LAYN, etc). The current study not only introduces novel distinct Exh and Res programs in CRC
T cells and in particular in NK cells, but also shows the importance of such signatures and their
combinations with known genomics and molecular information in stratification of samples to
predict survival outcome and potentially their response to immunotherapy.

Methods

All analyses for this study were performed using R version 4.0.2, with Bioconductor version
3.11[82]. Alist of all the packages and tools used in this study with their versions and citations
are given in Supp. Table S7.

Deriving initial exhaustion and residency signatures

We used high-quality single cell data (Smart-seq2) from Zhang et al (2020) [21] to obtain gene
expression signatures. Transcript per million (TPM)-like data were obtained from GSE146771
on 9" of Jun 2020, with data extracted for CD8, CD4 and NK cells using pre-defined
annotations from the meta-data, and analysed each cell type separately.

In each case, we started with a selection of canonical markers associated with residency (Res)
and exhaustion (Exh) in each of the cell types. The Res canonical markers consisted of CD69,
ITGAE (CD103), ITGA1, and RGS1 for CD8_Res and CD4_Res, and we additionally included
ZNF683 (Hobit) for NK_Res. The Exh markers included: HAVCR2 (Tim-3), PDCD1 (PD-1), CTLA4,
LAYN, CXCL13 for CD8_Exh; the same genes plus LAG3 for CD4_Exh, and; HAVCR2, PDCD1,
CTLA4, TIGIT, and LAG3 for NK_Exh.

Next, we curated an extensive list of genes reported in the literature to be associated with
residency or exhaustion across different species (human & mouse), as well as conditions
(infectious disease, cancer and normal tissue) (Supp. Table S8). For each cell type, we then
calculated the Spearman’s correlation (p) between candidate Exh and Res markers and the
list of canonical markers for that cell type. For NK cells, genes with p > 0.35 with any of the
canonical Res signatures were considered to be Res genes, and those with p > 0.25 with
canonical Exh genes were counted as Exh markers. These thresholds were slightly different
for CDA4 cells due to differences in their gene expression distributions (p > 0.3 for CD4 Res and
CD4 Exh). After removing genes that were overlapping between the Res and Exh gene list, we
performed a sparse canonical correlation analysis (CCA; using PMA R package) and removed
genes with a coefficient < -0.1 in the first component in order to reduce the correlation
between the Res and Exh sets. We refer to the resultant gene sets as the ‘initial’ Res and Exh
genes; these were different for each cell subset, although there some genes were overlapping
across subsets.
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Deriving the final exhaustion and residency signatures

Using the initial Res and Exh signatures and the singscore R package, we scored the Zhang
Smart-seq2 NK, CD4 and CD8 cells. We then stratified cells based on their Res and Exh scores
and performed differential expression (DE) analyses between cells with high Res/low Exh
scores and those with high Exh and low Res scores. We used the Seurat R package to perform
DEanalyses with two different approaches: (i) Wilcoxon Rank Sum test, and; (ii) the hurdle
model from the MAST package. We retained genes that were considered as differentially
expressed using either approach (adjusted p-value < 0.05 and logFC > 0.3), and further refined
this list by comparing transcript abundance percentiles for Res vs Exh vs circulating blood
cells. Specifically, we retained Exh genes whose 65" %ile abundance in Exh cells was higher
than the 90t %ile expression in both Res and blood cells. Similar comparisons were performed
to refine Res genes, and a 75" %ile threshold was used when defining the NK_Exh signature.

Analysis of single cell data sets

For each of the single cell data sets used in this study, we considered each cell subset
independently, and therefore, the data filtration, clustering and dimensionality reductions
were also performed using slightly different parameters in each subset of a given dataset. We
refer readers to the code available on Github for details on parameter settings. For all raw
single cell data, we performed the SCTransform method from the Seurat package using the
top 5000 variable genes, regressing on the percent of mitochondrial genes. We also used the
Seurat package to perform clustering, dimensionality reduction, and DE analysis. The
slingshot R package was used to perform the trajectory analysis. For all single cell data sets,
we used the singscore package to score single cells. Blend plots were generated using the
Seurat visualisation functions with single-cell scores obtained from singscore.

Processed Zhang et al single cell RNA-seq and metadata for both Smart-seq2 and 10X data
were obtained from GSE146771 on the 9t of June 2020 [21]. No further normalisation or
processing was performed. The de Vries et al single cell RNA-seq data as well as cell
annotation information were received from the authors 23 of July 2020 [41]; we included
two cell groups annotated as proliferative cells and unclassified cells when analysing the data
for each of the NK, CD4, and CD8 T cells separately. The raw single cell RNA-seq data from the
human gut atlas by James et al were downloaded on 9t of June 2020 from the Gut Cell Atlas
(https://www.gutcellatlas.org/) [42]. We performed batch correction to remove donor
differences using the integration approach provided in the Seurat package.

Raw single cell RNA-seq data from de Andrade et al were downloaded for one melanoma
patients (CY129; with a relatively large number of infiltrating NK cells) on 15%" of Jun 2020
from GSE139249 [43]. We analysed these data in two steps: first, we ran the Seurat pipeline
and normalised the data in order to identify potential contaminating cells based on the
expression of marker genes for cells other than NK cells. To be consistent with the original
paper, we used the same marker genes for filtration (CD3D, CD3E, and CD3G for T cells;
IGHG1, IGHG2, and JCHAIN for B cells; LYZ for macrophages; and MLANA for melanoma cells).
Then we filtered these from the original raw data. From 11368 cells, we retained 4267 with
no expression for the above markers. We further filtered cells to remove those with: > 20%
mitochondrial genes, number of RNA counts > 25,000, or; a number of features < 500, which
resulted in 4195 cells. Next, we used the Seurat package to analyse these data using similar
settings provided above; we performed SCTransform for normalisation, used the first 20 PCs
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for identifying the k-nearest neighbours of each cell and performed dimensional reduction.
For running UMAP, we also specified n.neighbors = 50, min.dist = 0.4.

To obtain proliferative signatures in the Exh single cells from Zhang et al Smart-seq data, we
stratified cells based on their exhaustion and proliferation scores, and then used Seurat
package and performed DE analysis between cells with high Exh and low proliferation scores
and those with high Exh and high proliferations scores.

Refinement of the signatures based on bulk cell line and laser capture micro-dissection
data

The RNA-seq count data and meta-data for all cell lines from the cancer cell line encyclopedia
(CCLE) were downloaded from the Broad Institute Data Portal
(https://portals.broadinstitute.org/ccle/) [83] on the 7™ of Feb 2020. We downloaded gene
annotation information (e.g. gene length) from Gencode (v19) and used the edgeR
Bioconductor package to generate a DGEList object in R. We then filtered the pan-cancer data
to only retain genes with cpm > 1 in at least 5 cell lines, performed TMM normalisation and
calculated the RPKM values. The data were then subset to only visualise the expression of the
marker genes in the CRC cell lines (Figure 2). Comparing against these data, we considered
Exh and Res markers to pass the “bulk tumour threshold” if they had median logRPKM
expression < 0.

We also downloaded processed microarray data (log2 RMA normalised) from high purity CRC
samples collected with laser capture microdissection (LCM) by Tsukamoto et al [45]
(GSE21510) using the GEOquery R package in September 2020. Probes which mapped to more
than one Entrez ID were excluded, and for probes mapping to the same gene, we considered
the average expression value. In these data, we considered Exh and Res markers to pass the
“bulk tumour threshold” if they had median logRPKM expression < median expression of all
genes in the data. Finally, if a given gene passes the “bulk tumour threshold” in CCLE or LCM,
we considered that marker to be suitable for use in bulk tumour samples. The scores from
these markers have “Bulk” prefix in their names. We note that that abundance data for
MARCH3 did not exist within the CCLE data, and 14 genes (KRT86, APOBEC3H, TTC24,
MIR4435-2HG, HNRNPA1L2, HLA-DRB5, HLA-DRB1, KLRC2, ADGRES5, HSPA1A, HSPA1B, XCL2,
HSPA8, NOTO) were not present within the LCM microarray data, and therefore, could not be
validated against these data sets.

Analysis of the transcriptomics data from bulk tumour samples

Raw counts for TCGA COAD harmonized RNA-seq data [84] were downloaded using the
TCGADbiolinks R package. We only considered protein coding genes and filtered to remove
lowly-expressed genes (genes with count < 15 across 90% of the samples, applied in cancer
and normal samples separately) and data were normalized using RUV-III.

Processed data from Marisa et al were downloaded from GSE39582 on 18™ of March 2019
using the GEOquery R package, and a SummarizedExperiment object was generated using the
SummarizedExperiment Bioconductor package. Consensus molecular subtyping in both data
sets was performed using the CMScaller R package.

Single-cell and single-sample scoring, and molecular signatures


https://doi.org/10.1101/2020.12.19.423379
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.19.423379; this version posted February 16, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

We used the singscore Bioconductor package to score both single-cells and single samples
where relevant in this study. We only used signatures with known or expected up-regulated
genes, and did not centre scores, such that scores range between 0-1, where 0.25
corresponds to a median signature gene rank in the 25™ %ile by abundance, and 0.75
corresponds to a median signature gene rank in the 75" %ile by abundance. A list of tumour
related signatures that were used to score tumour data and perform survival analysis, as well
as signatures used to score single cell data are given in Supp. Table S9.

TFs and GPCRs

A transcription factor (TF) list was obtained from the Human Protein Atlas (HPA), by searching
for “Transcription factor” in gene description or protein class fields, identifying 1549 TFs. We
generated a list of genes that were GPCRs or those associated with GPCR signalling pathway
from several sources, including the HPA (searching for “coupled” in gene description and
protein class fields), GO terms (obtained from QuickGO), and uniprot (searching for “gpcr”
under the Type field), resulting in 2456 genes (Supp. Table S10).

Identification of genomic mutations associated with residency and
exhaustion

The TCGA mutation data (maf format) were downloaded using the TCGAbiolinks package on
15t of Oct 2018. We filtered the mutation data for those with low or modifier impacts, and
retained mutations with moderate or high impacts. Several mutations in the same gene for
the same sample were annotated as multi-hit (MHT), and duplicated records were removed
to retain one record of mutation in a given gene within individual samples. Using this data,
we defined the mutation load as the total number of mutated genes in a given sample.

We then subset the mutation data to keep genes mutated within at least 10 patient samples.
For each of the Exh and Res scores (from the Bulk signatures) for different cell types, we used
the tidyverse and broom R packages to generate several linear models with score as output
and presence or absence of individual gene mutations as input. The obtained p-values were
then adjusted using Benjamini-Hochberg (BH) method for multiple hypothesis testing.
Mutations with adjusted p-values < 0.01 were considered to be predictive of scores.

To perform GO analysis on the predictive genes of NK_Exh_Bulk, we first subset the significant
predictive genes to those with adjusted p-value < 0.0001 (Ngenes = 1027), and then used the
goana function from limma package. From GO biological processes (BP) with FDR < 0.01, we
removed terms with <= 20 or >= 1500 genes. Finally, we used the rrvgo R package to calculate
semantic similarities between GO terms and visualise the GO parent terms.

For the NK_Exh and NK_Res (Bulk) signatures, we also performed elastic net regression using
the glmnet R package. We performed 10-fold cross validation using the cv.glmnet function for
100 lambda values between 0.01 and 10'°to obtain the optimal lambda value, and used that
in the final elastic net model. The optimal lambda value for NK_Exh_Bulk was 0.0175 and for
NK_Res_Bulk was 0.01. Inputs to the elastic net regression included all genes with showed
significant associations against NK scores in the linear model (the above analysis), as well as
additional parameters such as: mutational load; stage; MSI status, and; CMS cluster. To
perform elastic net regression, we removed samples with NA values for the four additional
parameters, and again filtered for genes that had mutations in at least 10 samples. This
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yielded a final data set with 3238 genes and 305 samples (which were used to generate
boxplots in the Supp. Figures $10-S12). We then considered parameters with beta values >0
or < 0 to be predictive of NK scores.

Survival analysis

In each of the TCGA and Marisa data sets, for a given survival analysis (i.e. OS, PFl, and RFS),
we first performed lasso regression using the glmnet R package to select Cox model
covariates. Variables tested were age, stage, MSI status, and CMS subtype. We then selected
variables with non-zero coefficients using minimum lambda values obtained from cross-
validation (using the cv.glmnet function with the parameter family = “cox”), and used those
as covariates when performing Cox multivariate analysis with scores or score pairs. These
covariates were different in the two data sets and from one survival type to the other: for
TCGA OS and PFl: age, stage, MSI, and CMS; for Marisa RFS: age, stage, MMR, and CMS, and;
for Marisa OS: age, stage, and CMS.

To examine the associations between different scores and survival outcome (by including
relevant covariates), we first examined each individual Exh and Res scores by dividing samples
into two groups of high and low scores based on median values. We also considered median
scores when stratifying samples based on score pairs (including Exh and Res signature scores
as well as tumour related signature scores). Finally, in an attempt to compare samples with
more distinct Exh and Res programs for each of the immune cell types in cancer, we subset
the data to only retain samples with high Exh & low Res scores and those with low Exh & high
Res scores, and then generated Cox models comparing the survival outcomes of these two
groups while accounting for relevant covariates.

Code availability
The R Markdown reports, R scripts, and small data dependencies reproducing the results of
this study are on Gitlab (https://gitlab.com/huntington-immuno-lab/foroutan resexh crc).
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Figure S4. Exhausted immune cells showing the two sub-populations of proliferative and non-
proliferative cells. In order to understand the heterogeneity across the exhausted population of T
and NK cells, we stratified samples based on their exhaustion and proliferation scores, and obtained
markers that were highly expressed in proliferative exhausted cells compared to non-proliferative
exhausted cells (Suppl Table S3). Among these, 138 genes were common across the three cell types,
of which only ECT2 was involved in GPCR signalling pathway and TCF19 transcription factor (TF) were
shared across the three cell types. CALM2 was another GPCR that was shared by proliferative CD4
and NK exhausted cells. TFs that were common in exactly two cell types included: FOXM1, TFDP1,
and DNMT1 in CD8 and CD4; E2F2 in CD8 and NK; and MXD3 in CD4 and NK cells.
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Figure S6. Expression of selected genes in the CD8 (A), and NK cells (B) in Zhang et al Smart-seq data.
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annotated with their parent terms. Please see Supp. Table S5 for the full list of significant GO terms.
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Figure S10. Elastic net results — genes whose mutations are predictive of both NK_Exh_Bulk and
NK_Res_Bulk
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Figure S11. Elastic net results — genes whose mutations are predictive of NK_Exh_Bulk.
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Figure S12. Elastic net results — genes whose mutations are predictive of NK_Res_Bulk.
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Figure S13. A. Kaplan-Meier curves demonstrating overall survival (OS) for patients from Marisa data
stratified to samples with high and low scores based on median score values (multivariate Cox
proportional hazard model p-value < 0.05 for both signatures). B. Kaplan-Meier curves
demonstrating progression free interval (PFl) for patients from TCGA data stratified to samples with
high and low scores based on median score value (multivariate Cox proportional hazard model p-
value < 0.05). C & D. Pearson’s correlation coefficients between Res_Bulk or Exh_Bulk and several
cancer related signatures in TCGA (C) and Marisa (D) data.
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Figure S14. PFl and RFS for samples with high CD8_Exh_Bulk & low NK_Res_Bulk vs those with low
CD8_Exh_Bulk & high NK_Res_Bulk. Although the log-rank tests were not significant, the
multivariate Cox regression showed significant results in both datasets.
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