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Abstract

A hallmark of amyloid disorders, such as Alzheimer’s disease, is aggregation of secreted proteins. However, it
is largely unclear how the hundreds of secretory pathway proteins contribute to amyloid formation. We developed
a systems biology framework that integrates expression data with protein-protein interaction networks to
successfully estimate a tissue’s fitness for producing specific secreted proteins. Using this framework, we
analyzed the fitness of the secretory pathway of various brain regions and cell types for synthesizing the
Alzheimer’s disease-associated amyloid-precursor protein (APP). While none of the key amyloidogenic pathway
components were differentially expressed in AD brain, we found the deposition of AR is associated with
repressed expression of the secretory pathway components proximal to APP. Concurrently, we detected
systemic up-regulation of the secretory pathway components proximal to B- and y-secretases in AD brains. Our
analyses suggest that perturbations from 3 high confidence AD risk genes cascade through the secretory
machinery support network for APP and into the endocytosis pathway. Thus, we present a model where
amyloidogenesis is associated with dysregulation of dozens of secretory pathway components supporting APP,
which could yield novel therapeutic targets for the treatment of AD.

Introduction

No mammalian cell exists alone. Indeed, each cell dedicates >1/3 of its protein-coding genes to interact directly
with other cells and its environment (Uhlén et al., 2015, 2019), using hormones and receptors for communication,
enzymes and other proteins to modify their extracellular matrix, transporters for exchanging metabolites, etc.
The mammalian secretory pathway is tasked with the synthesis, post-translational modification (PTM), quality
control, and trafficking of these secreted proteins (secPs) (Novick et al., 1981; Reynaud and Simpson, 2002).
SecPs account for >25% of the total proteome mass(Hukelmann et al., 2016; Tan et al., 2017), and are among
the most tissue-specific genes in the human genome (Uhlén et al., 2015). The precision and efficiency of the
mammalian secretory pathway result from the concerted effort of hundreds of secretory machinery components
(secMs) including chaperones, enzymes, transporters, glycosyltransferases, metabolites and lipids within the
secretory pathway (Feizi et al., 2013, 2017; Gutierrez et al., 2018; Lund et al., 2017). Since many secPs relay
signals between cells or modify a cell’s microenvironment, each cell must carefully regulate the synthesis and
localization of each secP.
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Perturbations to the secretory pathway result in misfolded proteins, which induce ER stress and apoptosis. In
amyloid diseases, the misfolded proteins can aggregate into toxic amyloid fibrils, which ultimately lead to cell
death. AB deposition, a major pathological hallmark of Alzheimer's disease (AD), stems from the perturbed
processing of the transmembrane amyloid precursor protein (APP). In AR aggregation, alternative proteolytic
cleavage of amyloid precursor peptide by - (rather than a-secretase) releases the secreted form of APP, the
aggregation-prone ABR1-42.(De Strooper et al., 1998; Lammich et al., 1999; Vassar et al., 1999) Furthermore,
additional PTMs in the secretory pathway may affect APP cleavage (Thinakaran and Koo, 2008; Wang et al.,
2017), phosphorylation (Lee et al., 2003), glycosylation (Joshi and Wang, 2015; McFarlane et al., 1999, 2000;
Schedin-Weiss et al., 2014) and trafficking (Jiang et al., 2014; Wang et al., 2017). However, protein aggregation
could stem from the perturbation of diverse processes, but no systematic exploration of all processes supporting
proper APP processing has been done (Knowles et al., 2014). Several large-scale GWAS also identified more
than 45 AD risk loci (Dourlen et al., 2019; Jansen et al., 2019; Kunkle et al., 2019), although for many loci, it
remains unclear how they induce AB deposition. Furthermore, a large part of AD heritability remains unknown
(Dourlen et al., 2019; Ridge et al., 2016). The genetic landscape of late-onset Alzheimer's (LOAD) is highly
heterogeneous, with multiple complex molecular interactions contributing to the disease phenotype. Therefore,
the discovery of concerted expression changes in LOAD, such as the remodeling of immune-specific modules
requires systems approaches on large datasets (Zhang et al., 2013).

To unravel the molecular changes leading to AB deposition, we focused on the roles of the secretory pathway in
amyloidogenesis. The secretory pathway is responsible for the processing, quality control and trafficking of key
components of the amyloidogenic pathway (Greenfield et al., 1999; Hartmann et al., 1997), such as APP and
the secretases, so we investigated if there is a systemic dysregulation of the secMs supporting their production
and processing. To do this, we first developed a network-based approach that leverages protein-protein
interaction (PPIl) and mRNA and protein abundance data to quantify a cell or tissues’ “secretory machinery
support’. This measures the fithess of a tissue or cell for properly secreting a specific secP based on the
expression of its supporting secMs. Next, we investigated if there are disruptions in the secretory machinery
support for key players of the amyloidogenic pathway (i.e., APP and the secretases), leading to increased AR
deposition in LOAD, based on data from several large-scale clinical bulk- and single-cell RNA-Seq datasets
(Mathys et al., 2019; Wang et al., 2018). We found significant dysregulation of the secretory pathway proximal
to APP and the secretases, and this dysregulation is a major determinant of AR deposition. We further
demonstrated that the concerted expression changes in the secretory support modules for the APP, BACEL,
and PSENL1 can be linked to known AD risk genes and their regulation targets. In terms of subcellular localization,
the core perturbed network enriches for known hotspots for AR production such as ER, cytosol and endosomes.
Moreover, we found that the AD risk loci activate endocytosis via the core support network, and we identified a
candidate TF binding motif that is conserved in the promoter regions of the interaction network genes. Together,
our analyses suggest mechanisms underlying impaired protein secretion, which could propose novel therapeutic
targets for the treatment of AD. It also proposes mechanisms by which AD genetics imbalance the secretory
pathway, thus resulting in AB deposition, cell death, and cognitive impairment.
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Results

Secreted proteins and secretory machinery show similar tissue-specific expression

The secretory pathway synthesizes and transports a variety of secreted proteins, each with different
requirements for their synthesis and secretion (e.g., different physicochemical properties and post-translational
modifications). With the human secretome being one of the most tissue-specific subsets of the human proteome
(Ramskold et al., 2009; Uhlén et al., 2015), we hypothesized each tissue expresses just the secMs needed to
synthesize and process secPs from the tissue. Supporting this, we observed that clustering tissues by secP
gene expression grouped tissues similarly as when clustering by secM gene expression (Figure 1, p-value =
0.0145; Figure S1). Thus, the secMs are not merely housekeeping proteins always expressed to support any
proteins being secreted; rather, they express in a tissue-specific fashion to meet the demands of different tissues
(Feizi et al., 2017). However, the question remains if the pairings between secMs expressed in each tissue
represent those needed to specifically support the secPs they secrete.
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Figure 1. The secMs and the secPs show coordinated expression profiles across different human tissues.
The tissue similarity structures from the perspective of the secretome and the secretory pathway expression were
represented by two hierarchical clustering dendrograms, which were then compared with a tanglegram (Galili, 2015).
Gene expression of the secretory pathway and its clients show a high level of coordination across human tissues, with
precision significantly better than expected by sampling genes from each tissue (bootstrapping p-value 0.013 and 0.045
for data from GTEx (GTEx Consortium, 2015) and Human Protein Atlas (Uhlén et al., 2015) respectively).
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Tissue specific expression of secMs predict expression of their client-secreted proteins

To further dissect the pattern of secP-secM co-regulation seen across tissues, we incorporated two sources of
information: protein-protein interactions (PPIs) and secM gene expression. We harness PPIs to identify the
secMs relevant to each secP, since PPIs are one of the major modalities through which machinery proteins in
the secretory pathway assist protein secretion (Anelli and Sitia, 2008; Bonifacino and Glick, 2004; Ikawa et al.,
1997; Pearl and Prodromou, 2006). Further, secMs responsible for secP post-translational modifications are
well-captured by PPIs between the secPs and the secMs (Figure S2). To focus on spatially proximal interactions,
we filtered the PPIs for interactions between secMs and other secretory pathway-resident proteins for each secP
(see Methods), resulting in a “secM support network” consisting of 3658 genes. By overlaying secM gene
expression on this network, one can quantify the secM support for secretion of each secP. To systematically
quantify the fitness of the secM support network for producing each secP in a tissue, a machinery support score
is calculated for each secP by a random walk algorithm that integrates secM gene expression levels proximal to
each secP inits PPI network. More specifically, for each secP, we added the protein to the secM support network,
and centered the network on the secP. We then performed a random walk on the secM support network starting
from the secP. We adapted the transition probabilities of the random walk to incorporate gene expression of the
secMs so that propagation is constrained by not only PPI network topologies but also the expression of the secM
components, allowing one to contextualize cell- and disease-specific interactomes (methods and supplementary
note; Figure 2a). The algorithm assigns a component score to each protein in the network, representing its
availability to the secP of interest. The “secretory machinery support score” (i.e., the average component scores
the secretory pathway components receive from the random walk) then quantifies the overall secretory pathway
support for the given secP. Using this approach, we found the secretory machinery support score for each secP
increases in tissues wherein the secP is more highly expressed (Figure 2b, Figure S3). Further, the machinery
support score considerably improves the prediction of secP protein abundance from mRNA expression across
tissues (Figure S4 and supplementary note). Thus, by accounting for the mRNA/protein expression of PPIs
surrounding each secP, the machinery support score quantifies a tissue’s relative fitness for synthesizing and
secreting the secP of interest.
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Figure 2. Expression data can quantify a tissue or cell’s fitness for synthesizing a secreted or membrane protein.
(A) In our systems biology approach, the mRNA or protein abundance is overlaid on a PPI network surrounding a secreted
protein (secP). The secP synthesis fitness is quantified by summing the secM expression, scaled by distance from the
secP (computed by a random walk), yielding a quantitative “machinery support score”. The calculation of the support
score also provides a sub-network of proteins contributing to secP synthesis. (B) We quantified the machinery support
score for every secreted protein in all tissues in the Human Protein Atlas, and found a clear correlation between the secP
expression and the relative machinery support score. This correlation was seen for both mRNA (top, spearman correlation
coefficient, see methods) and protein (bottom, t-test) abundance. Thus, our machinery support score allows one to
quantify how fit a cell or tissue is for properly expressing and processing a secreted or membrane protein.

AR deposition in Alzheimer's disease is characterized by perturbed secretory support of amyloid
precursor protein

The co-regulation of the secP and their cognate secMs results from millions of years of evolution. Thus, the
guestion arises whether perturbations to such co-regulation could underlie the molecular pathology in AD.
Specifically, AR deposition is a major hallmark of AD-pathology. The precursor to AB, APP, is moderately to
highly expressed (high transcript levels and moderate protein levels) in the cerebral cortex. While APP
overexpression from APP duplication can cause early-onset (familial) AD (Bushman et al., 2015; Rovelet-Lecrux
et al., 2006), sporadic (non-familial) AD does not show differential transcript abundance for APP between AD
and non-AD individuals despite the increase in AB plaques (Matsui et al., 2007). However, APP does undergo
post-transcriptional processing, with pathogenic A being released from APP following sequential cleavage by
B- and y-secretases, while the a-secretase promotes the correct processing of APP.
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To test the relevance of secretory pathway expression to AD, we analyzed RNA-Seq data from 4 brain regions
in 298 AD and age-matched control subjects (from the Mount Sinai Brain Bank (Wang et al., 2018)) and single-
cell RNA-Seq from the prefrontal cortex (Brodmann area 10) of 48 individuals (Mathys et al., 2019) (Figure 3).
APP was not differentially expressed in AD brains at both the single-cell (Mathys et al., 2019) and the tissue
level (Wang et al., 2018). This is not surprising since the amyloidogenic pathway giving rise to neurotoxic AR
takes place post-translationally (De Strooper et al., 2010). Additionally, expression of neither BACE1 nor PSEN1
correlated with plague abundance in affected brain regions (Figure 3). However, each gene had significant
changes in machinery support scores correlating with severity (Figure 3b). Specifically, the supporting machinery
score for APP decreased in affected brain regions, showing suppressed scores in cells with amyloid deposition
(p<0.0066). The largest effect was in cell types that are major producers of AB, including neurons (Greenfield et
al., 1999; Hartmann et al., 1997; Laird et al., 2005), reactive astrocytes (Frost and Li, 2017; Liddelow and Barres,
2017; Phatnani and Maniatis, 2015; Sofroniew and Vinters, 2010) (Figure 3a, Figure S5), and in brain regions
affected early in the onset of AD (Figure 3b, Figure S6). However, BACE1 and PSEN1, which aid in
amyloidogenesis, showed an opposite trend, with affected cells increasing machinery support for these
secretases (Figure 3b; p-values for Brodmann area 36 (parahippocampal gyrus, BM36) and Brodmann area 44
(inferior frontal gyrus, BM44): p <0.0038 and p<0.014 for B-secretase; p<0.13 and p<0.083 for y-secretase).
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Figure 3. AD-relevant genes show perturbed secretory machinery support scores. (A) Overall, APP expression
does not correlate with plaque densities across individuals in single-cell RNA-Seq. However, support scores show a
negative correlation with plaque density, suggesting the secMs supporting proteostasis of APP are suppressed in AD.
(B) Similar trends were seen in all brain regions surveyed (BM10, BM22, BM36, BM44, Figure S5). On average, no
correlation is found between plague abundance and gene expression of APP, BACEL or PSEN1. However, secM support
score for APP shows a negative correlation while the support scores for BACE1 and PSEN1 positively correlate with

amyloid formation, suggesting AD pathogenesis involves dysregulation of the secretory pathway.
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Secretory pathway support of APP is most strongly suppressed proximal to APP

The secretory machinery support score for APP is significantly decreased in AD. However, it is unclear if the
decline in APP support score is due to a general suppression of many secMs throughout the secretory pathway
or a local repression in which only the secMs most proximal to APP are down-regulated. To test this, we defined
a core support network for APP based on network proximity and gene expression. As the abundance and
proximity to APP vary across the secMs in the network, we broke down the APP support score into the individual
component scores for each protein in the secM support network (Table S1). This quantifies each secM’s
corresponding contribution to the secretory support of APP. When the secMs are rank-ordered by their individual
component scores, their contribution to the APP support score follows a pattern of exponential decay (Figure
S7A), suggesting that the support score is mostly determined by a smaller number of proteins with high proximity
to APP (Figure 4A). While the entire APP support network is not differentially expressed between AD and healthy
brains, we wonder if this is the case with secMs that are major contributors to the support score. When we
overlaid the differential expression across brain regions and cell types and considered progressively smaller
subsets of the APP support network consisting of proteins with the highest component scores, we saw the
strongest repression at around 20-30 secMs, suggesting that the proteins nearest to APP are the most
suppressed (Figures 4A, S7B, S7C).

Changes in APP-supporting PPIs are regulated by AD risk loci

Large GWAS screens found AD risk genes impacting many pathways (Kunkle et al., 2019; Lambert et al., 2013).
Although the secretory pathway is tasked with the synthesis and processing of APP, it is not generally implicated
in LOAD pathogenesis, since secretory pathway genes are not enriched among LOAD risk genes from large-
scale GWAS studies (Kunkle et al., 2019). However, our results show transcriptional perturbations of machinery
support for key amyloidogenic genes; thus, there may be a concerted regulatory change for modules supporting
APP production and proteostasis in the secretory pathway. Thus, we tested if regulatory AD risk loci (i.e.,
transcription factors) regulate the secMs interacting with APP. While the entire APP support network does not
enrich for the AD risk genes nor their regulatory targets, we wondered if AD risk loci selectively target the secMs
more proximal to APP in the PPl network. As we assessed enrichment for AD risk gene targets in subnetworks
that were progressively closer to APP (i.e., more focused on the support network interacting most directly with
APP), we found the secMs supporting APP were increasingly enriched for targets of AD risk regulatory genes
(Figures 4B, S8, S9). The results are reproducible across multiple GWAS significance thresholds (Figure S9).
Since the enrichment of AD risk gene targets steadily increased in statistical significance with increasing
proximity to APP in the PPI network, we focused on the top 20 proteins interacting the most closely with APP
from the support network. This resulted in an APP support subnetwork where the enrichment significance for AD
risk gene targets peaks. This cutoff also coincides with the subnetwork with the strongest suppression of secM
expression (Figures 4A, S7B, S7C).
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Figure 4. The APP secM proteostasis network is not enriched for AD risk genes, but is enriched for AD risk gene
regulatory targets. The networks of secM proteins supporting APP production at two support component score cutoffs,
representing the top n = 20 / n = 100 proteins contributing the most to the APP’s support score. The top 20 proteins with
the highest component scores are labeled. (A) Starting from n=1 where the secM with the highest component score was
considered, we incrementally included secMs less proximal to APP. The sizes of the subnetworks are indicated by the x-
axis. At each iteration, we calculated the average differential expression (y-axis) between AD and healthy subjects for
each subnetwork. The strongest repression of the AD support network occurs at around n=15~30. (B) We also calculated
the degree to which the subnetwork enriched for regulatory targets of known AD risk genes above the genome-wide
significance threshold (y-axis). The regulatory targets of AD risk genes are generally depleted among the general non-
APP-specific secMs (Figure S9 for full trend across all 3685 subnetworks), but targets of AD risk genes enrich strongly
among the core secMs closest to APP.
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Core support network overlaps significantly with genomic loci with differential histone
acetylation in AD brain

Epigenetic alterations have been linked to neurodegeneration in human AD brains and AD mouse models
(Lardenoije et al., 2015; Liu et al., 2018). Thus, we analyzed data from three epigenome-wide association studies
to investigate if the core support network is overrepresented for hotspots of aberrant epigenomic reprogramming
in AD. We found that proteins proximal to APP on the support network show significant enrichment for AR related
epigenetic changes measured in H3K9ac profiles from 669 aged human prefrontal cortices (Klein et al., 2019)
(Figure 5, top row). Additionally, the enrichment around the core network is higher for H3K9ac peaks annotated
as being in enhancer domains than those in promoter domains. In another epigenome-wide association study
comparing aging- and AD-related histone acetylation changes (Nativio et al., 2020a), we found the H3K122ac,
H3K27ac and H3K9ac peaks that differ significantly were disproportionately located near the core support
network (Figure S10, top row). Interestingly, while AD and aged brains often share similar epigenetic signatures
(Nativio et al., 2018), enrichment of AD-related peaks (Figure S10, bottom row) is stronger in the core support
network than that of aging-related peaks (Figure S10, middle row). Thus, we observe considerable epigenetic
changes in human AD brain focused around the APP supporting network.

The enriched epigenetic changes were further captured in a mouse model of AD. Specifically, histone
methylation and acetylation marks were profiled in CK-p25 mice with increased A levels and controls (Gjoneska
et al., 2015). While the core network is depleted for significantly altered H3K4me3 peaks in CK-p25 mice, AD-
associated H3K27ac alterations are significantly enriched among proteins proximal to APP (Figure 5, bottom
row). This is in line with our previous observation in which the core support network is a hotspot for AD-related
acetylation marks, especially around the enhancer domains.
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Figure 5. The APP core support network is enriched for genes whose enhancer regions contain AD-specific
histone marks.
Following the notations from Figure 4, in each subplot the y-axis (odds ratio) shows the degree to which the core support
network overlaps with genomic loci with differential histone modifications is indicated evaluated at modules of various
sizes (x-axis), with a smaller n indicating a smaller subnetwork with only the proteins most proximal to APP. The subplots
are arranged based on the region in which the differentially-enriched peaks are detected (columns), and the conditions
compared (top row, AB-associated changes; bottom row, CK-p25 mice with increased AR levels vs. controls).
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AD risk loci activate endocytosis via the core support network

We analyzed the content of the core support network, and found it is enriched for genes in the amyloidogenic
pathway. Specifically, we saw interactions were concentrated in the ER, endosomes, and the cytosol (Figure
S11, FDR p<1.1e-3), consistent with the localization of amyloidogenesis. For example, the endosome hosts
intracellular AR production with its B-secretase, and is enlarged in autopsies from AD (Cataldo et al., 2000) and
stem cell models (Israel et al., 2012). To further unravel the link between endocytosis and the core support
network, we analyzed the patterns of the core network differential expression between AD and controls across
multiple cohort studies using gene regulatory networks obtained from ENCODE (ENCODE Project Consortium,
2012) and Ingenuity Pathway Analysis (IPA) (Kramer et al., 2014). Complementing our previous observation that
a significant portion of the core support network is endosome-resident, we saw significant up-regulation of genes
associated with endocytosis (p-value = 8.95e-14), mediated by the core supporting machinery (Figures 6A, S12)
across various brain regions.

We further analyzed the APP core support network and identified transcription factors (TFs) that are most
strongly associated with the perturbed secM module. The APP core support network coincides significantly with
the regulatory targets of 3 genes from AD risk loci: NR1H3, MAF and SPI1 (Dourlen et al., 2019; Jansen et al.,
2019; Kunkle et al., 2019; Lambert et al., 2013). To investigate the extent to which these AD risk genes perturb
transcription of the supporting machinery in AD, we analyzed the differentially expressed genes between AD and
controls across multiple cohort studies using gene regulatory networks obtained from ENCODE (ENCODE
Project Consortium, 2012) and Ingenuity pathway analysis (IPA) (Kramer et al., 2014).

In addition to predicting upstream transcriptional regulators associated with amyloidogenesis from gene
signatures or differentially expressed genes, we searched for conserved TF binding sites among the top-ranked
dysregulated genes of the core-network in Alzheimer’s Disease. Specifically, we conducted de novo TF binding
site motif discovery for the 20 genes in the core support network (Figure 6B; see Methods). We identified one
significant TF motif (E value= 9.8e-3) that is present in 7 of the genes in the core support network (Figure S13),
which is associated with the SP1, SP2, and SP3 transcription factors. SP1 is important in AD (Citron et al., 2015;
Santpere et al., 2006) and is predicted to bind the 3 genes from AD risk loci (NR1H3, MAF, and SPI1) with high
confidence via three elite enhancers (Fishilevich et al., 2017) GH11J047390 (GH score=2.2), GH16J079764 (GH
score=2.4), and GH11J047247 (GH score=2.1) respectively (Table S5). Furthermore, several motif binding sites
across the core support network significantly overlap with loci with major epigenetic alterations in AD (Figure 6B)
(Klein et al., 2019; Nativio et al., 2018, 2020b). For example, the motif binding site at the promoter region of
ARF1 completely overlaps with a histone acetylation mark H3K122ac that is significantly altered in AD but not
aged subjects (chr1:228259654-228280877, Wilcoxon Rank Sum P-value 0.004). Another locus of significantly
altered H3K122ac peaks in AD individuals (chr2:65353363-65359754, Wilcoxon Rank Sum P-value 0.01)
overlaps with the motif binding site at RAB1A. The motif binding site at HSP90AAL overlaps with significantly
altered peaks for H3K122ac and H3K9ac, which are repressed and upregulated respectively in AD
(chr14:102543639-102575586, Wilcoxon Rank Sum P-value 0.05 and chr14:102543639-102575586, Wilcoxon
Rank Sum P-value 0.05). Thus, a perturbation to multiple TFs could disrupt the APP core support network,
wherein both genetic risk genes (NR1H3, MAF, and SPI1) and global regulators can contribute to the
dysregulation of the core network.

Further analysis suggests the AD risk genes and the core support network genes are further co-regulated with
an activation of endocytosis in the AD pathogenesis. We further characterized the functional association of the
conserved TF motif by scanning all promoters of genes in the genome for the motif (see Methods for details).
The conserved TF motif was significantly enriched in the promoter regions of known endocytic pathway genes
(p-value=4.28e-4) and several other pathways relevant to AD pathogenesis (Table S6, Figure S11). Together,
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these results suggest a concerted change in endosomal activities and dysregulated pathways between normal
and AD brains that arises due to the differential expression of the core supporting machinery surrounding APP.
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Figure 6. The regulatory relationships surrounding the core support network.

(A) Regulatory structures of the 20 proteins from the core support network were constructed using IPA. Gene expression
profiles from the 4 brain regions (BM10, BM22, BM36, BM44) (Wang et al., 2018), the Mayo Study (Allen et al., 2016)
and the ROSMAP study (Religious Order Study and Memory and Aging Project) (De Jager et al., 2018) were averaged
and overlaid on the core support network. The endocytosis pathway is strongly activated in AD brains via the core support
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network, which in turn is regulated by 3 genes from AD risk loci-- NR1H3, MAF and SPI1. The proteins harboring binding
sites for the TF motif (shown in panel B) were outlined in red. (B) The TF motif (top panel) aligns significantly to 8 genes
from the entire support network (bottom panel), 7 of which belong to the core support network. Align. P-value, statistical
significance of the motif alignment to the promoter region of each gene; overlap w/AD epigenetic Var., whether the motif
binding site completely overlaps with significant epigenetic alterations in AD.

Discussion

In the past four decades, the Alzheimer’s research community has made huge strides towards elucidating
molecular processes contributing to amyloid deposition. However, despite involving aggregation of secreted
proteins, it remained unclear to what extent the core processes of protein secretion and proteostasis are involved.
Here we developed a systems biology approach that analyzed the interactions between key amyloidogenic
components and the secretory pathway. This approach predicted the propensity for amyloid deposition at the
single-cell level. To gain systems-level insights into LOAD, we used the framework to identify a subset of the
secretory pathway components on which concerted suppression and several regulatory elements of AD
converged. We further demonstrated that an increase in endocytic activities in LOAD can be attributed to key
AD risk genes via the core support network.

LOAD is a complex disease. The identification of three rare mutations in APP, PSEN1 and PSEN2 that occur in
early-onset familial AD and the discovery of APOE constitute our primary knowledge of the genetic landscape of
LOAD. More recently, high-throughput technologies such as GWAS and whole exome sequencing have
identified more than 45 genetic risk loci of LOAD. However, the additional risk loci exert only very small risk
effects (Bertram et al.,, 2010), and the link between genetic risk variants and amyloid deposition remains
incompletely understood. Despite the highly heterogeneous expression of APP and other key amyloidogenic
components across AD and healthy subjects, we demonstrated concerted down-regulation of secretory
machinery proximal to APP in AD patients. This highlights the secretory pathway as a determinant of amyloid
deposition, which had not been a major focus of AD research. Incidentally, the proteostasis network, with which
the secretory pathway shares a significant overlap, has been an increasingly popular target of protein
aggregation and aging studies. The human chaperone network, a major component of the proteostasis network,
undergoes continual remodeling during an organism’s lifespan (Brehme et al., 2014; Hipp et al., 2019; Walther
et al., 2017). However, in the aging AD brain, the directions of regulation of these chaperones are rather
uncoordinated across different chaperone families and even within the same family (Brehme et al., 2014). Our
observations of concerted repression of key proximal secretory pathway components show that improper
expression of the secretory pathway, of which the chaperone network is a subset, is associated with the
deposition of amyloid.

Even though the secretory pathway is in charge of post-translational processing and targeting of APP up until its
cleavage by the secretases, its implications in AD have been insufficiently researched primarily due to the lack
of AD risk genes in the pathway (MacArthur et al., 2017). Our results showed that genes contributing the most
to the APP support network in the secretory pathway are significantly enriched for targets of AD risk genes and
AD related epigenetic changes, suggesting a mechanistic link between genetic and epigenetic variants of AD
and secretory pathway dysregulation, complementing previous systems-level approaches to understanding
LOAD with a focus on immune- and microglia-specific modules (Zhang et al., 2013). To further unravel the link,
we examined the core support network consisting of secretory pathway components most proximal to APP. We
noticed 3 AD risk genes that are also transcription factors showing regulatory evidence over the core support
network according to both curated and de novo pathway analyses. More importantly, we demonstrated a
regulatory cascade originating from the 3 AD risk genes, mediated by the core support network and into the
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endocytosis pathway. The endosome, where the (-secretase is localized to and where its acidic pH is optimal
for enzymatic cleavage, is a major site of intracellular AB production. Our findings thus offer a mechanistic view
of amyloidogenesis involving the secretory pathway and the endosomes. This is in line with observations in
embryonic cortical neurons that showed increased AP levels as a result of increased endocytic pathway activities
and reuptake in APP in aged cells (Burrinha et al., 2019). We also observed significant enrichment of endosomal-
localized proteins in the core support network for APP, further lending credence to the involvement of the
secretory pathway in activating the endocytic pathway.

The dominant model of AD pathogenesis, the amyloid hypothesis (Hardy and Higgins, 1992; Hardy and Selkoe,
2002; Selkoe and Hardy, 2016), posits that AD pathogenesis and the rest of the disease process such as tau
tangle formation (Hardy et al., 1998; Lewis et al., 2001) result from the accumulation of A via the imbalance
between AB production and clearance. We examined the capacity of the secretory pathway in the context of A
production and processing, where the secretory support of APP and B- and y-secretases were analyzed. While
the concerted dysregulation of the secretory support for these key amyloidogenic components in AD brains
theoretically leads to increased AR production, the impact on AR clearance warrants further investigation. It is
worth noting that detectable AB deposition can precede the onset of AD by more than 15 years (Bateman et al.,
2012; Jack et al., 2013), which likely coincides with the onset of the decline of the proteostasis network. Our
findings highlight the roles of the secretory pathway in amyloidogenesis, which open new possibilities for early
diagnosis and treatment research on LOAD. Furthermore, our systems approach can be further applied to other
diseases in which the secretory pathway is perturbed, such as perturbed hormone secretion in endocrine
disorders, changes in hepatokine secretion nonalcoholic fatty liver disease (Gorden et al., 2015; Meex et al.,
2015), and the secretion of diverse proteins in cancer (Robinson et al., 2019).

Methods

Calculation of secretory pathway support scores

Random walk on interactome

To contextualize the secretion of a given secP, we used network propagation to quantify the influence of gene
expression across neighboring genes. Let G(V, E) denote an undirected interactome with vertex set IV containing
n proteins and an edge set E the m interactions between them. Let w;;be the edge weight (w;; =1 if G is
undirected) between edges i and j and A be the adjacency matrix of G where A;; = {w;; if {v;v;} €
E; 0 otherwise}. Let x(t) be the location of the walk at time t. Note that given the previous walk location ¢ at time
t — 1, we can represent the probability of the walker moving from location i to J in a single step as:

mn

Wi =Pr(z(t) =izt —1)=j) = ﬁ di = ZA"@'J'
' d; , where j (Eq. 1).

Summing probabilities from all inbound locations we have

Pr(z(t) = jla(t — 1)) Zw x(t—1) =1)
(Eq. 2).
In matrix notation, this is p(t) = Wp(t — 1), where W is the transition matrix and each entry Wii denotes the
aforementioned transition probability from i to J. In random walk with restarts (Page et al., 1998), at each step
the walk resets to the origin with probability «, and the last equation becomes
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Prwr(t) = (1 —a)Wprwr(t — 1) + (-VP(U), where p(0) = e denotes the initial distribution if the walker
starts at v« The restart parameter o« was set to 0.1, as advised by the linear optimal model given the size of the
network (Huang et al., 2018).

Expression-guided random walk with restarts

The transition matrix can be modified to incorporate gene expression into each step of the propagation. If we let
t = [to,... ,t”}T’ where f; is the scaled expression corresponding to node vi , 0 < ¢ < 1 the expression-
adjusted transition matrix can thus be given by Woaaj = diag(t)W  The choice of t can either be protein levels

where available or mRNA abundance. We show the validity of using mRNA abundance as input in the
supplementary notes. We can normalize the adjusted transition matrix by adding in self-loop:

Wadj = Wagj + Lixn — diag(1 nleadj), and the update rule, which we termed expression-guided random
walk with restarts (eRWR), now becomes:
Prwr(t) = (1 — a)Wprwr(t — 1) + ap(0) (gq. 4).

Calculation of support scores and component scores

We performed eRWR on each secP of interest for 20 iterations (Supplementary Notes), and the final vector of

probabilities Prwr (t = 20) represent the support component score for each gene on the network G(V, E). The
support score (0) is the average of the support component scores of the secretory pathway proteins,

Z pRWRZ(t = 20)

Context filtering of the secretory pathway support network

We used the composite consensus human interactome PCNet v1.3 (Huang et al., 2018) (NDEX UUID:
4de852d9-9908-11e9-bcaf-0acl35e8bacf) to be the static, context-agnostic network (Gy(Vy, Ey)). For each
secP, we create a subnetwork containing the secP and other essential secretory pathway genes by filtering the
network for human secretory pathway components (Feizi et al.,, 2017; Gutierrez et al., 2018) and secretory
pathway-resident proteins (Thul et al., 2017) to constrain the network spatially, resulting in a vertex-induced
subgraph G(V = {Vy N (secP U secM U secResident)}, {uv|luv € E, and u,v € V}).

Transcriptomic and proteomic data processing and support scores calculation for normal human tissues

To calculate support scores for the normal human secretome, we used two datasets, the Human Protein Atlas
(HPA) (Uhlén et al., 2015), and the deep proteome and transcriptome abundance atlas (deep proteome) (Wang
et al., 2019) for tissue-specific transcriptomes from healthy human donors in which matching proteomic data
were also available. For data from the Human Protein Atlas, we downloaded the transcriptomic data-- “RNA HPA
tissue gene data” and performed log- and sigmoid-transformation on the transcript abundance (TPM) data,
resulting in transformed gene expression profiles in the (0,1) range. For the HPA dataset, the support score was
calculated based on the tissue-median of the transformed gene expression profiles for each secP. We retained
the semi-quantitative nature of the immunohistochemistry protein abundance reporting, and we calculated the
support scores summary statistics for proteins belonging to each of the staining levels--"High", "Medium", "Low"
& "Not detected" separately.

With the fully quantitative proteomic data from the deep proteome (Wang et al., 2019), We calculated the support
scores based on the protein iBAQ values. The iBAQ abundance values were transformed in a similar fashion as
the transcript abundance from the HPA dataset. Namely, they were log- and then sigmoid-transformed into the
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(0,1) range, before being median-summarized by tissue and subsequently used in the calculation of the support
scores.

Transcriptomic and proteomic data processing and support scores calculation for AD and healthy brains

To calculate support scores for key amyloidogenic pathway components in AD and healthy brains, we used two
major transcriptomic datasets from the ROSMAP project (Religious Orders Study and Memory Aging Project)--
single-cell (Bennett et al., 2018; Mathys et al., 2019) (Synapse ID syn18485175) and bulk RNA-seq (Wang et
al., 2018) (Synapse ID syn3159438) data from individuals respectively with varying degrees of Alzheimer’s
disease pathology. The single-cell transcriptomic dataset covers 80660 cells from the prefrontal cortex of 48
individuals. While annotations for major cell types were given, we further classified astrocytes into reactive and
non-reactive astrocytes based on GFAP expression (Liddelow and Barres, 2017). The bulk RNA-seq covers 4
brain regions (Brodmann areas 10, 22, 36, 44) of 364 individuals.

To transform the count data into appropriate expression inputs to the eRWR algorithm, count data from healthy
tissue-specific transcriptomes and the AD single-cell RNA-seq data were first log-transformed to compress the
extreme values. The values were then z-score standardized and passed through a logistic function, where the
final transformed values have a range (0,1). For the AD bulk-RNA seq data, since the counts were already
normalized and transformed, they were z-score standardized and transformed by a logistic function without first
being log-transformed.

Statistical analysis

Relationship between support scores of secreted proteins and protein expression

To examine the dependencies between support scores and the transcript and protein abundances of the human
secretome, we calculated the support score for each secreted protein in the human secretome (Uhlén et al.,
2019) across various human tissues. We first calculated the spearman correlation coefficients between the
tissue-median support scores and the transcript and protein abundances across all secreted proteins. To assess
f—p n—2
the statistical significance of the spearman correlation coefficients, a t-statistic ' 1 —7? where n and r
indicate the number of paired observations and the pearson correlation coefficient respectively was computed.
P-values were then calculated by comparing the t-statistic with its null distribution (the t-statistics approximate a
t-distribution with n-2 degrees of freedom under the null hypothesis) (Kendall and Stuart, 1977).

To further quantify the statistical significance of transcript abundance and protein level in determining overall
protein abundance, a Bayesian hierarchical model was created (model equations shown below) where the
abundance of each protein across the 29 tissues is drawn from a linear combination of mRNA levels and the
support scores weighted by their respective regression coefficients. We used the rethinking R
package(McElreath, 2020) to construct the model and sample the coefficients.
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iIBAQp;oteinlis j] ~ Normal(uli, j|, o) (For each tissue-protein combo, draw protein abundance)
uli.j] = ali] + bgenkxpli] - log FPKMIi, j] + bsecsupport [£] - support.score[i, j] (7 : Proteins i = 1...13002 across tissues j = 1...29)

ali] ~ Normal(p,.,p,) (Protein 7 across tissues drawn from population abundance)

beenExpli A €. & % = g S G g § i =
L gentxp | II ~ Normal(|_*|,S) (each coef. for genExp and secSupport for Protein; in tissue j drawn from 2D Normal)
hsecSupport 4 Sn

. (e 0 [
s ( 5 ;) B ( 0 —)
R ~ LKJcorr(2)

Py € S ~ Normal(0, 1)

0, Dy, €y 55 ~ Exponential(1)

Relationship between support scores of key amyloidogenic proteins and amyloid plaque densities

We built a Bayesian hierarchical model (equations shown below) to determine the extent to which the support
scores for key amyloidogenic pathway components including APP and the secretases for each cell/ sample in
the single-cell (see the supplementary notes for adaptations to the model formula to account for sample
covariates) and bulk RNA-seq dataset affects the amount of amyloid plague measured. We regressed the scaled
amyloid plague densities corresponding to the individual from which the single-cell/ bulk RNA-seq sample was
collected against the gene expression and secretory pathway support scores of key amyloidogenic pathway
components. To regularize the coefficients of interest, their Bayesian priors are all normally distributed around
0. The coefficients were sampled using the rethinking R package (McElreath, 2020).

amyloid[i] ~ Normal(p[i], o)
uli] =a+

E beovar, - ¢[i]+ (covar. : known covariates)

cEcovar.

Z Ulg.\nl;xp‘. [1] - genExpy [i] + beecsupportkld] - support.score,[]) (4 : Brain region/ cell type sample i belongs to; Amyl C {APP, secretases})
keAmyl

a ~ Exponential(1)
a ~ Normal(0, 1)

Coefficients of interest:
hgrnﬁxm Ifl ~ -\:m'“'“I(":igrnEx])li\n ”[.{c\nl*‘,xn;\.)

bsccSupportk[7] ~ Normal( BsecSupport » FsecSupport i)
Hyper priors:
"f;.’.c‘uhlx]:;\n ‘.5>(‘(:Sup|m|t_k ~ N()l‘llml(ﬂA 1];
TgenExpy.: m;\ ~ EKP(JH()L]“R](l)
Covariates:
beovar, ~ Normal(0,1)

Characterizing the core support network

AD risk genes and enrichment analysis of regulatory components

We obtained 45 genome-wide significant risk loci identified by several AD GWAS studies as summarized
previously (Dourlen et al., 2019), resulting in 176 high-confidence AD risk genes. We compiled a separate set of
AD risk genes from GWAS summary statistics (Jansen et al., 2019; Kunkle et al., 2019) for loci above the
genome-wide suggestive threshold, where MAGMA (de Leeuw et al., 2015) was used to aggregate p-values for
SNPs to the gene-level independently for each GWAS dataset. P-values from the two datasets for each gene
were then combined using Fisher's method, resulting in 673 AD suggestive risk genes.
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The transcription factors and their targets were obtained from ENCODE (Davis et al., 2018) and ChEA
(Lachmann et al., 2010) via the Enrichr portal (Kuleshov et al., 2016). To determine whether the core support
network enriches for the regulatory targets of AD risk genes, we first calculated the level of overlap between the
core support network and the targets of each transcription factor using Fisher's exact test, where significantly
overlapping transcription factors were defined as those with p-values of less than 0.05. A secondary enrichment
was performed to quantify the level to which the significant transcription factors overlap with known AD risk
genes. As mentioned earlier, two lists of AD risk genes were used. For the 673 AD suggestive risk genes, a
traditional Fisher's exact test was performed. For the risk genes originating from the 45 risk genome-wide
significant risk loci, instead of calculating the direct overlap between the significant transcription factors and the
176 high-confidence risk genes, we mapped the significant transcription factors back to the 45 risk loci on which
Fisher’'s exact test was performed. This is motivated by the fact that many risk loci contain multiple risk genes
that cannot be further pinpointed due to complex linkage disequilibrium patterns, a risk locus is considered hit if
at least one of its mapped risk genes appears significantly enriched as a transcription factor. We performed this
two-stage enrichment analysis starting from the full static support network towards the core support network by
pruning back proteins furthest from APP in each iteration.

Enrichment analysis of subcellular compartments

We compiled lists of proteins for all subcellular structures consisting of proteins known to localize to the
compartment of interest within the cell (Thul et al., 2017). We ordered the proteins in the full support network by
the extent to which they deviate from their stationary support component score to control for network topology
while accounting for secretory-resident proteins. To determine the degree to which the proteins from certain
subcellular compartments are overrepresented in the core subnetwork, we applied Gene Set Enrichment
Analysis (GSEA) (Korotkevich et al., 2016; Subramanian et al., 2005) with the subcellular localization gene-sets
and the ranked core support network components as input, eliminating the need for a hard significance cut-off.
Subcellular compartments significantly enriched in the core subnetwork are defined as those with an FDR p-
value of 0.05 or less.

Causal gene network analysis

To robustly define the core supporting subnetwork, we iteratively constructed subnetworks from proteins most
proximal to APP and progressively include more distal proteins corresponding to different significance cutoffs.
To robustly select the cutoff for the core supporting subnetwork, we performed the two-stage enrichment analysis
on all subnetworks as detailed above (see “AD risk genes and enrichment analysis of regulatory components”).
Additionally, we calculated the average differential expression between AD and healthy individuals for each
subnetwork using fold changes from bulk and single-cell RNA Seq data depending on the source expression
from which the subnetwork is calculated. We selected 20 proteins most proximal to APP to include in the final
core subnetwork, where the cutoff coincides with the strongest enrichment of regulatory AD risk loci and the
suppression of the core subnetwork.

To determine the regulator effects, we performed two network-based analyses. We first ran the upstream
regulator analysis using the curated regulator networks from IPA (Kramer et al., 2014). The algorithm took as
inputs the core subnetwork and the differential expression fold changes and p-values. Batch-corrected
differential gene expression profiles between AD and healthy brains from the Mount Sinai study (Wang et al.,
2018), the Mayo Study (Allen et al., 2016) and the ROSMAP study (Religious Order Study and Memory and
Aging Project) (De Jager et al.,, 2018) were obtained from the AMP-AD Knowledge Portal (Synapse ID
syn14237651). “Disease & functions” having considerable overlap with the core subnetwork were added, of
which endocytosis is the most significant (p-value =2.34E-14).
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De novo TF binding site motifs discovery and known TF binding site identification

We downloaded promoter sequences (version: GRCH38) from UCSC Genome Browser(Kent et al., 2002) for
the core subnetwork. The promoter sequences are defined as sequences 1,000 bases upstream of annotated
transcription start sites of RefSeq genes with annotated 5' UTRs. To conduct de novo TF binding site motifs
discovery, we first ran motif discovery using the MEME suite(Bailey et al., 2015) with default parameters to
identify candidate TF binding site motifs within the promoter sequences by using the entire APP support network
serving as background control. Then, the MEME discovered TF binding site motifs were analyzed further for
matches to known TF binding sites for mammalian transcription factors in the motif databases, JASPAR
Vertebrates (Sandelin et al., 2004), via motif comparison tool, TOMTOM(Gupta et al., 2007). We summarized all
the enriched GO terms using ‘Revigo’(Supek et al., 2011) (Figure S13) on the 81 GoMo identified specific
enriched GO terms in the Biological Process (Table S2).

Data availability
https://github.com/LewisLabUCSD/AD secretory pathway
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