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Abstract 15 

A hallmark of amyloid disorders, such as Alzheimer’s disease, is aggregation of secreted proteins. However, it 16 

is largely unclear how the hundreds of secretory pathway proteins contribute to amyloid formation. We developed 17 

a systems biology framework that integrates expression data with protein-protein interaction networks to 18 

successfully estimate a tissue’s fitness for producing specific secreted proteins. Using this framework, we 19 

analyzed the fitness of the secretory pathway of various brain regions and cell types for synthesizing the 20 

Alzheimer’s disease-associated amyloid-precursor protein (APP). While none of the key amyloidogenic pathway 21 

components were differentially expressed in AD brain, we found the deposition of Aβ is associated with 22 

repressed expression of the secretory pathway components proximal to APP. Concurrently, we detected 23 

systemic up-regulation of the secretory pathway components proximal to β- and γ-secretases in AD brains. Our 24 

analyses suggest that perturbations from 3 high confidence AD risk genes cascade through the secretory 25 

machinery support network for APP and into the endocytosis pathway. Thus, we present a model where 26 

amyloidogenesis is associated with dysregulation of dozens of secretory pathway components supporting APP, 27 

which could yield novel therapeutic targets for the treatment of AD. 28 

 29 

Introduction 30 

No mammalian cell exists alone. Indeed, each cell dedicates >1/3 of its protein-coding genes to interact directly 31 

with other cells and its environment (Uhlén et al., 2015, 2019), using hormones and receptors for communication, 32 

enzymes and other proteins to modify their extracellular matrix, transporters for exchanging metabolites, etc. 33 

The mammalian secretory pathway is tasked with the synthesis, post-translational modification (PTM), quality 34 

control, and trafficking of these secreted proteins (secPs) (Novick et al., 1981; Reynaud and Simpson, 2002). 35 

SecPs account for >25% of the total proteome mass(Hukelmann et al., 2016; Tan et al., 2017), and are among 36 

the most tissue-specific genes in the human genome (Uhlén et al., 2015). The precision and efficiency of the 37 

mammalian secretory pathway result from the concerted effort of hundreds of secretory machinery components 38 

(secMs) including chaperones, enzymes, transporters, glycosyltransferases, metabolites and lipids within the 39 

secretory pathway (Feizi et al., 2013, 2017; Gutierrez et al., 2018; Lund et al., 2017). Since many secPs relay 40 

signals between cells or modify a cell’s microenvironment, each cell must carefully regulate the synthesis and 41 

localization of each secP.  42 

 43 
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Perturbations to the secretory pathway result in misfolded proteins, which induce ER stress and apoptosis. In 44 

amyloid diseases, the misfolded proteins can aggregate into toxic amyloid fibrils, which ultimately lead to cell 45 

death. Aβ deposition, a major pathological hallmark of Alzheimer’s disease (AD), stems from the perturbed 46 

processing of the transmembrane amyloid precursor protein (APP). In Aβ aggregation, alternative proteolytic 47 

cleavage of amyloid precursor peptide by β- (rather than α-secretase) releases the secreted form of APP, the 48 

aggregation-prone Aβ1-42.(De Strooper et al., 1998; Lammich et al., 1999; Vassar et al., 1999) Furthermore, 49 

additional PTMs in the secretory pathway may affect APP cleavage (Thinakaran and Koo, 2008; Wang et al., 50 

2017), phosphorylation (Lee et al., 2003), glycosylation (Joshi and Wang, 2015; McFarlane et al., 1999, 2000; 51 

Schedin-Weiss et al., 2014) and trafficking (Jiang et al., 2014; Wang et al., 2017). However, protein aggregation 52 

could stem from the perturbation of diverse processes, but no systematic exploration of all processes supporting 53 

proper APP processing has been done (Knowles et al., 2014). Several large-scale GWAS also identified more 54 

than 45 AD risk loci (Dourlen et al., 2019; Jansen et al., 2019; Kunkle et al., 2019), although for many loci, it 55 

remains unclear how they induce Aβ deposition. Furthermore, a large part of AD heritability remains unknown 56 

(Dourlen et al., 2019; Ridge et al., 2016). The genetic landscape of late-onset Alzheimer’s (LOAD) is highly 57 

heterogeneous, with multiple complex molecular interactions contributing to the disease phenotype. Therefore, 58 

the discovery of concerted expression changes in LOAD, such as the remodeling of immune-specific modules 59 

requires systems approaches on large datasets (Zhang et al., 2013). 60 

 61 

To unravel the molecular changes leading to Aβ deposition, we focused on the roles of the secretory pathway in 62 

amyloidogenesis. The secretory pathway is responsible for the processing, quality control and trafficking of key 63 

components of the amyloidogenic pathway (Greenfield et al., 1999; Hartmann et al., 1997), such as APP and 64 

the secretases, so we investigated if there is a systemic dysregulation of the secMs supporting their production 65 

and processing. To do this, we first developed a network-based approach that leverages protein-protein 66 

interaction (PPI) and mRNA and protein abundance data to quantify a cell or tissues’ “secretory machinery 67 

support”. This measures the fitness of a tissue or cell for properly secreting a specific secP based on the 68 

expression of its supporting secMs. Next, we investigated if there are disruptions in the secretory machinery 69 

support for key players of the amyloidogenic pathway (i.e., APP and the secretases), leading to increased Aβ 70 

deposition in LOAD, based on data from several large-scale clinical bulk- and single-cell RNA-Seq datasets 71 

(Mathys et al., 2019; Wang et al., 2018). We found significant dysregulation of the secretory pathway proximal 72 

to APP and the secretases, and this dysregulation is a major determinant of Aβ deposition. We further 73 

demonstrated that the concerted expression changes in the secretory support modules for the APP, BACE1, 74 

and PSEN1 can be linked to known AD risk genes and their regulation targets. In terms of subcellular localization, 75 

the core perturbed network enriches for known hotspots for Aβ production such as ER, cytosol and endosomes. 76 

Moreover, we found that the AD risk loci activate endocytosis via the core support network, and we identified a 77 

candidate TF binding motif that is conserved in the promoter regions of the interaction network genes. Together, 78 

our analyses suggest mechanisms underlying impaired protein secretion, which could propose novel therapeutic 79 

targets for the treatment of AD. It also proposes mechanisms by which AD genetics imbalance the secretory 80 

pathway, thus resulting in Aβ deposition, cell death, and cognitive impairment.  81 

 82 
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Results 84 

Secreted proteins and secretory machinery show similar tissue-specific expression 85 

The secretory pathway synthesizes and transports a variety of secreted proteins, each with different 86 

requirements for their synthesis and secretion (e.g., different physicochemical properties and post-translational 87 

modifications). With the human secretome being one of the most tissue-specific subsets of the human proteome 88 

(Ramsköld et al., 2009; Uhlén et al., 2015), we hypothesized each tissue expresses just the secMs needed to 89 

synthesize and process secPs from the tissue. Supporting this, we observed that clustering tissues by secP 90 

gene expression grouped tissues similarly as when clustering by secM gene expression (Figure 1, p-value = 91 

0.0145; Figure S1). Thus, the secMs are not merely housekeeping proteins always expressed to support any 92 

proteins being secreted; rather, they express in a tissue-specific fashion to meet the demands of different tissues 93 

(Feizi et al., 2017). However, the question remains if the pairings between secMs expressed in each tissue 94 

represent those needed to specifically support the secPs they secrete. 95 

 

Figure 1. The secMs and the secPs show coordinated expression profiles across different human tissues. 
The tissue similarity structures from the perspective of the secretome and the secretory pathway expression were 

represented by two hierarchical clustering dendrograms, which were then compared with a tanglegram (Galili, 2015). 

Gene expression of the secretory pathway and its clients show a high level of coordination across human tissues, with 

precision significantly better than expected by sampling genes from each tissue (bootstrapping p-value 0.013 and 0.045 

for data from GTEx (GTEx Consortium, 2015) and Human Protein Atlas (Uhlén et al., 2015) respectively). 
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Tissue specific expression of secMs predict expression of their client-secreted proteins 96 

To further dissect the pattern of secP-secM co-regulation seen across tissues, we incorporated two sources of 97 

information: protein-protein interactions (PPIs) and secM gene expression. We harness PPIs to identify the 98 

secMs relevant to each secP, since PPIs are one of the major modalities through which machinery proteins in 99 

the secretory pathway assist protein secretion (Anelli and Sitia, 2008; Bonifacino and Glick, 2004; Ikawa et al., 100 

1997; Pearl and Prodromou, 2006). Further, secMs responsible for secP post-translational modifications are 101 

well-captured by PPIs between the secPs and the secMs (Figure S2). To focus on spatially proximal interactions, 102 

we filtered the PPIs for interactions between secMs and other secretory pathway-resident proteins for each secP 103 

(see Methods), resulting in a “secM support network” consisting of 3658 genes. By overlaying secM gene 104 

expression on this network, one can quantify the secM support for secretion of each secP. To systematically 105 

quantify the fitness of the secM support network for producing each secP in a tissue, a machinery support score 106 

is calculated for each secP by a random walk algorithm that integrates secM gene expression levels proximal to 107 

each secP in its PPI network. More specifically, for each secP, we added the protein to the secM support network, 108 

and centered the network on the secP. We then performed a random walk on the secM support network starting 109 

from the secP. We adapted the transition probabilities of the random walk to incorporate gene expression of the 110 

secMs so that propagation is constrained by not only PPI network topologies but also the expression of the secM 111 

components, allowing one to contextualize cell- and disease-specific interactomes (methods and supplementary 112 

note; Figure 2a). The algorithm assigns a component score to each protein in the network, representing its 113 

availability to the secP of interest. The “secretory machinery support score” (i.e., the average component scores 114 

the secretory pathway components receive from the random walk) then quantifies the overall secretory pathway 115 

support for the given secP. Using this approach, we found the secretory machinery support score for each secP 116 

increases in tissues wherein the secP is more highly expressed (Figure 2b, Figure S3). Further, the machinery 117 

support score considerably improves the prediction of secP protein abundance from mRNA expression across 118 

tissues (Figure S4 and supplementary note). Thus, by accounting for the mRNA/protein expression of PPIs 119 

surrounding each secP, the machinery support score quantifies a tissue’s relative fitness for synthesizing and 120 

secreting the secP of interest. 121 

 122 
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Figure 2. Expression data can quantify a tissue or cell’s fitness for synthesizing a secreted or membrane protein. 
(A) In our systems biology approach, the mRNA or protein abundance is overlaid on a PPI network surrounding a secreted 
protein (secP). The secP synthesis fitness is quantified by summing the secM expression, scaled by distance from the 
secP (computed by a random walk), yielding a quantitative “machinery support score”. The calculation of the support 
score also provides a sub-network of proteins contributing to secP synthesis. (B) We quantified the machinery support 
score for every secreted protein in all tissues in the Human Protein Atlas, and found a clear correlation between the secP 
expression and the relative machinery support score. This correlation was seen for both mRNA (top, spearman correlation 
coefficient, see methods) and protein (bottom, t-test) abundance. Thus, our machinery support score allows one to 
quantify how fit a cell or tissue is for properly expressing and processing a secreted or membrane protein. 

Aβ deposition in Alzheimer's disease is characterized by perturbed secretory support of amyloid 123 

precursor protein 124 

The co-regulation of the secP and their cognate secMs results from millions of years of evolution. Thus, the 125 

question arises whether perturbations to such co-regulation could underlie the molecular pathology in AD. 126 

Specifically, Aβ deposition is a major hallmark of AD-pathology. The precursor to Aβ, APP, is moderately to 127 

highly expressed (high transcript levels and moderate protein levels) in the cerebral cortex. While APP 128 

overexpression from APP duplication can cause early-onset (familial) AD (Bushman et al., 2015; Rovelet-Lecrux 129 

et al., 2006), sporadic (non-familial) AD does not show differential transcript abundance for APP between AD 130 

and non-AD individuals despite the increase in Aβ plaques (Matsui et al., 2007). However, APP does undergo 131 

post-transcriptional processing, with pathogenic Aβ being released from APP following sequential cleavage by 132 

β- and γ-secretases, while the α-secretase promotes the correct processing of APP.  133 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2021. ; https://doi.org/10.1101/2020.08.10.243634doi: bioRxiv preprint 

https://paperpile.com/c/30jKHc/gEZZ8+nyMYg
https://paperpile.com/c/30jKHc/gEZZ8+nyMYg
https://paperpile.com/c/30jKHc/KJON6
https://doi.org/10.1101/2020.08.10.243634
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 134 

To test the relevance of secretory pathway expression to AD, we analyzed RNA-Seq data from 4 brain regions 135 

in 298 AD and age-matched control subjects (from the Mount Sinai Brain Bank (Wang et al., 2018)) and single-136 

cell RNA-Seq from the prefrontal cortex (Brodmann area 10) of 48 individuals (Mathys et al., 2019) (Figure 3). 137 

APP was not differentially expressed in AD brains at both the single-cell (Mathys et al., 2019) and the tissue 138 

level (Wang et al., 2018). This is not surprising since the amyloidogenic pathway giving rise to neurotoxic Aβ 139 

takes place post-translationally (De Strooper et al., 2010). Additionally, expression of neither BACE1 nor PSEN1 140 

correlated with plaque abundance in affected brain regions (Figure 3). However, each gene had significant 141 

changes in machinery support scores correlating with severity (Figure 3b). Specifically, the supporting machinery 142 

score for APP decreased in affected brain regions, showing suppressed scores in cells with amyloid deposition 143 

(p<0.0066). The largest effect was in cell types that are major producers of Aβ, including neurons (Greenfield et 144 

al., 1999; Hartmann et al., 1997; Laird et al., 2005), reactive astrocytes (Frost and Li, 2017; Liddelow and Barres, 145 

2017; Phatnani and Maniatis, 2015; Sofroniew and Vinters, 2010) (Figure 3a, Figure S5), and in brain regions 146 

affected early in the onset of AD (Figure 3b, Figure S6). However, BACE1 and PSEN1, which aid in 147 

amyloidogenesis, showed an opposite trend, with affected cells increasing machinery support for these 148 

secretases (Figure 3b; p-values for Brodmann area 36 (parahippocampal gyrus, BM36) and Brodmann area 44 149 

(inferior frontal gyrus, BM44): p <0.0038 and p<0.014 for β-secretase; p<0.13 and p<0.083 for γ-secretase).  150 

 151 

 
Figure 3. AD-relevant genes show perturbed secretory machinery support scores. (A) Overall, APP expression 
does not correlate with plaque densities across individuals in single-cell RNA-Seq. However, support scores show a 
negative correlation with plaque density, suggesting the secMs supporting proteostasis of APP are suppressed in AD. 
(B) Similar trends were seen in all brain regions surveyed (BM10, BM22, BM36, BM44, Figure S5). On average, no 
correlation is found between plaque abundance and gene expression of APP, BACE1 or PSEN1. However, secM support 
score for APP shows a negative correlation while the support scores for BACE1 and PSEN1 positively correlate with 
amyloid formation, suggesting AD pathogenesis involves dysregulation of the secretory pathway. 

 152 
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Secretory pathway support of APP is most strongly suppressed proximal to APP 154 

The secretory machinery support score for APP is significantly decreased in AD. However, it is unclear if the 155 

decline in APP support score is due to a general suppression of many secMs throughout the secretory pathway 156 

or a local repression in which only the secMs most proximal to APP are down-regulated. To test this, we defined 157 

a core support network for APP based on network proximity and gene expression. As the abundance and 158 

proximity to APP vary across the secMs in the network, we broke down the APP support score into the individual 159 

component scores for each protein in the secM support network (Table S1). This quantifies each secM’s 160 

corresponding contribution to the secretory support of APP. When the secMs are rank-ordered by their individual 161 

component scores, their contribution to the APP support score follows a pattern of exponential decay (Figure 162 

S7A), suggesting that the support score is mostly determined by a smaller number of proteins with high proximity 163 

to APP (Figure 4A). While the entire APP support network is not differentially expressed between AD and healthy 164 

brains, we wonder if this is the case with secMs that are major contributors to the support score. When we 165 

overlaid the differential expression across brain regions and cell types and considered progressively smaller 166 

subsets of the APP support network consisting of proteins with the highest component scores, we saw the 167 

strongest repression at around 20-30 secMs, suggesting that the proteins nearest to APP are the most 168 

suppressed (Figures 4A, S7B, S7C).  169 

Changes in APP-supporting PPIs are regulated by AD risk loci 170 

Large GWAS screens found AD risk genes impacting many pathways (Kunkle et al., 2019; Lambert et al., 2013). 171 

Although the secretory pathway is tasked with the synthesis and processing of APP, it is not generally implicated 172 

in LOAD pathogenesis, since secretory pathway genes are not enriched among LOAD risk genes from large-173 

scale GWAS studies (Kunkle et al., 2019). However, our results show transcriptional perturbations of machinery 174 

support for key amyloidogenic genes; thus, there may be a concerted regulatory change for modules supporting 175 

APP production and proteostasis in the secretory pathway. Thus, we tested if regulatory AD risk loci (i.e., 176 

transcription factors) regulate the secMs interacting with APP. While the entire APP support network does not 177 

enrich for the AD risk genes nor their regulatory targets, we wondered if AD risk loci selectively target the secMs 178 

more proximal to APP in the PPI network. As we assessed enrichment for AD risk gene targets in subnetworks 179 

that were progressively closer to APP (i.e., more focused on the support network interacting most directly with 180 

APP), we found the secMs supporting APP were increasingly enriched for targets of AD risk regulatory genes 181 

(Figures 4B, S8, S9). The results are reproducible across multiple GWAS significance thresholds (Figure S9). 182 

Since the enrichment of AD risk gene targets steadily increased in statistical significance with increasing 183 

proximity to APP in the PPI network, we focused on the top 20 proteins interacting the most closely with APP 184 

from the support network. This resulted in an APP support subnetwork where the enrichment significance for AD 185 

risk gene targets peaks. This cutoff also coincides with the subnetwork with the strongest suppression of secM 186 

expression (Figures 4A, S7B, S7C).  187 

 188 
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Figure 4. The APP secM proteostasis network is not enriched for AD risk genes, but is enriched for AD risk gene 
regulatory targets. The networks of secM proteins supporting APP production at two support component score cutoffs, 
representing the top n = 20 / n = 100 proteins contributing the most to the APP’s support score. The top 20 proteins with 
the highest component scores are labeled. (A) Starting from n=1 where the secM with the highest component score was 
considered, we incrementally included secMs less proximal to APP. The sizes of the subnetworks are indicated by the x-
axis. At each iteration, we calculated the average differential expression (y-axis) between AD and healthy subjects for 
each subnetwork. The strongest repression of the AD support network occurs at around n=15~30. (B) We also calculated 
the degree to which the subnetwork enriched for regulatory targets of known AD risk genes above the genome-wide 
significance threshold (y-axis). The regulatory targets of AD risk genes are generally depleted among the general non-
APP-specific secMs (Figure S9 for full trend across all 3685 subnetworks), but targets of AD risk genes enrich strongly 
among the core secMs closest to APP. 

 189 
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Core support network overlaps significantly with genomic loci with differential histone 190 

acetylation in AD brain 191 

Epigenetic alterations have been linked to neurodegeneration in human AD brains and AD mouse models 192 

(Lardenoije et al., 2015; Liu et al., 2018). Thus, we analyzed data from three epigenome-wide association studies 193 

to investigate if the core support network is overrepresented for hotspots of aberrant epigenomic reprogramming 194 

in AD. We found that proteins proximal to APP on the support network show significant enrichment for Aβ related 195 

epigenetic changes measured in H3K9ac profiles from 669 aged human prefrontal cortices (Klein et al., 2019) 196 

(Figure 5, top row). Additionally, the enrichment around the core network is higher for H3K9ac peaks annotated 197 

as being in enhancer domains than those in promoter domains. In another epigenome-wide association study 198 

comparing aging- and AD-related histone acetylation changes (Nativio et al., 2020a), we found the H3K122ac, 199 

H3K27ac and H3K9ac peaks that differ significantly were disproportionately located near the core support 200 

network (Figure S10, top row). Interestingly, while AD and aged brains often share similar epigenetic signatures 201 

(Nativio et al., 2018), enrichment of AD-related peaks (Figure S10, bottom row) is stronger in the core support 202 

network than that of aging-related peaks (Figure S10, middle row). Thus, we observe considerable epigenetic 203 

changes in human AD brain focused around the APP supporting network. 204 

 205 

The enriched epigenetic changes were further captured in a mouse model of AD. Specifically, histone 206 

methylation and acetylation marks were profiled in CK-p25 mice with increased Aβ levels and controls (Gjoneska 207 

et al., 2015). While the core network is depleted for significantly altered H3K4me3 peaks in CK-p25 mice, AD-208 

associated H3K27ac alterations are significantly enriched among proteins proximal to APP (Figure 5, bottom 209 

row). This is in line with our previous observation in which the core support network is a hotspot for AD-related 210 

acetylation marks, especially around the enhancer domains. 211 

 
Figure 5. The APP core support network is enriched for genes whose enhancer regions contain AD-specific 
histone marks. 
Following the notations from Figure 4, in each subplot the y-axis (odds ratio) shows the degree to which the core support 
network overlaps with genomic loci with differential histone modifications is indicated evaluated at modules of various 
sizes (x-axis), with a smaller n indicating a smaller subnetwork with only the proteins most proximal to APP. The subplots 
are arranged based on the region in which the differentially-enriched peaks are detected (columns), and the conditions 
compared (top row, Aβ-associated changes; bottom row, CK-p25 mice with increased Aβ levels vs. controls). 
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AD risk loci activate endocytosis via the core support network 212 

We analyzed the content of the core support network, and found it is enriched for genes in the amyloidogenic 213 

pathway. Specifically, we saw interactions were concentrated in the ER, endosomes, and the cytosol (Figure 214 

S11, FDR p<1.1e-3), consistent with the localization of amyloidogenesis. For example, the endosome hosts 215 

intracellular Aβ production with its β-secretase, and is enlarged in autopsies from AD (Cataldo et al., 2000) and 216 

stem cell models (Israel et al., 2012). To further unravel the link between endocytosis and the core support 217 

network, we analyzed the patterns of the core network differential expression between AD and controls across 218 

multiple cohort studies using gene regulatory networks obtained from ENCODE (ENCODE Project Consortium, 219 

2012) and Ingenuity Pathway Analysis (IPA) (Krämer et al., 2014). Complementing our previous observation that 220 

a significant portion of the core support network is endosome-resident, we saw significant up-regulation of genes 221 

associated with endocytosis (p-value = 8.95e-14), mediated by the core supporting machinery (Figures 6A, S12) 222 

across various brain regions.  223 

 224 

We further analyzed the APP core support network and identified transcription factors (TFs) that are most 225 

strongly associated with the perturbed secM module. The APP core support network coincides significantly with 226 

the regulatory targets of 3 genes from AD risk loci: NR1H3, MAF and SPI1 (Dourlen et al., 2019; Jansen et al., 227 

2019; Kunkle et al., 2019; Lambert et al., 2013). To investigate the extent to which these AD risk genes perturb 228 

transcription of the supporting machinery in AD, we analyzed the differentially expressed genes between AD and 229 

controls across multiple cohort studies using gene regulatory networks obtained from ENCODE (ENCODE 230 

Project Consortium, 2012) and Ingenuity pathway analysis (IPA) (Krämer et al., 2014).  231 

 232 

In addition to predicting upstream transcriptional regulators associated with amyloidogenesis from gene 233 

signatures or differentially expressed genes, we searched for conserved TF binding sites among the top-ranked 234 

dysregulated genes of the core-network in Alzheimer’s Disease. Specifically, we conducted de novo TF binding 235 

site motif discovery for the 20 genes in the core support network (Figure 6B; see Methods). We identified one 236 

significant TF motif (E value= 9.8e-3) that is present in 7 of the genes in the core support network (Figure S13), 237 

which is associated with the SP1, SP2, and SP3 transcription factors. SP1 is important in AD (Citron et al., 2015; 238 

Santpere et al., 2006) and is predicted to bind the 3 genes from AD risk loci (NR1H3, MAF, and SPI1) with high 239 

confidence via three elite enhancers (Fishilevich et al., 2017) GH11J047390 (GH score=2.2), GH16J079764 (GH 240 

score=2.4), and GH11J047247 (GH score=2.1) respectively (Table S5). Furthermore, several motif binding sites 241 

across the core support network significantly overlap with loci with major epigenetic alterations in AD (Figure 6B) 242 

(Klein et al., 2019; Nativio et al., 2018, 2020b). For example, the motif binding site at the promoter region of 243 

ARF1 completely overlaps with a histone acetylation mark H3K122ac that is significantly altered in AD but not 244 

aged subjects (chr1:228259654-228280877, Wilcoxon Rank Sum P-value 0.004). Another locus of significantly 245 

altered H3K122ac peaks in AD individuals (chr2:65353363-65359754, Wilcoxon Rank Sum P-value 0.01) 246 

overlaps with the motif binding site at RAB1A. The motif binding site at HSP90AA1 overlaps with significantly 247 

altered peaks for H3K122ac and H3K9ac, which are repressed and upregulated respectively in AD 248 

(chr14:102543639-102575586, Wilcoxon Rank Sum P-value 0.05 and chr14:102543639-102575586, Wilcoxon 249 

Rank Sum P-value 0.05). Thus, a perturbation to multiple TFs could disrupt the APP core support network, 250 

wherein both genetic risk genes (NR1H3, MAF, and SPI1) and global regulators can contribute to the 251 

dysregulation of the core network.  252 

 253 

Further analysis suggests the AD risk genes and the core support network genes are further co-regulated with 254 

an activation of endocytosis in the AD pathogenesis. We further characterized the functional association of the 255 

conserved TF motif by scanning all promoters of genes in the genome for the motif (see Methods for details). 256 

The conserved TF motif was significantly enriched in the promoter regions of known endocytic pathway genes 257 

(p-value=4.28e-4) and several other pathways relevant to AD pathogenesis (Table S6, Figure S11). Together, 258 
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these results suggest a concerted change in endosomal activities and dysregulated pathways between normal 259 

and AD brains that arises due to the differential expression of the core supporting machinery surrounding APP.  260 

 261 

 
Figure 6. The regulatory relationships surrounding the core support network. 
(A) Regulatory structures of the 20 proteins from the core support network were constructed using IPA. Gene expression 
profiles from the 4 brain regions (BM10, BM22, BM36, BM44) (Wang et al., 2018), the Mayo Study (Allen et al., 2016) 
and the ROSMAP study (Religious Order Study and Memory and Aging Project) (De Jager et al., 2018) were averaged 
and overlaid on the core support network. The endocytosis pathway is strongly activated in AD brains via the core support 
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network, which in turn is regulated by 3 genes from AD risk loci-- NR1H3, MAF and SPI1. The proteins harboring binding 
sites for the TF motif (shown in panel B) were outlined in red. (B) The TF motif (top panel) aligns significantly to 8 genes 
from the entire support network (bottom panel), 7 of which belong to the core support network. Align. P-value, statistical 
significance of the motif alignment to the promoter region of each gene; overlap w/AD epigenetic Var., whether the motif 
binding site completely overlaps with significant epigenetic alterations in AD. 

Discussion 262 

 263 

In the past four decades, the Alzheimer’s research community has made huge strides towards elucidating 264 

molecular processes contributing to amyloid deposition. However, despite involving aggregation of secreted 265 

proteins, it remained unclear to what extent the core processes of protein secretion and proteostasis are involved. 266 

Here we developed a systems biology approach that analyzed the interactions between key amyloidogenic 267 

components and the secretory pathway. This approach predicted the propensity for amyloid deposition at the 268 

single-cell level. To gain systems-level insights into LOAD, we used the framework to  identify a subset of the 269 

secretory pathway components on which concerted suppression and several regulatory elements of AD 270 

converged. We further demonstrated that an increase in endocytic activities in LOAD can be attributed to key 271 

AD risk genes via the core support network.  272 

 273 

LOAD is a complex disease. The identification of three rare mutations in APP, PSEN1 and PSEN2 that occur in 274 

early-onset familial AD and the discovery of APOE constitute our primary knowledge of the genetic landscape of 275 

LOAD. More recently, high-throughput technologies such as GWAS and whole exome sequencing have 276 

identified more than 45 genetic risk loci of LOAD. However, the additional risk loci exert only very small risk 277 

effects (Bertram et al., 2010), and the link between genetic risk variants and amyloid deposition remains 278 

incompletely understood. Despite the highly heterogeneous expression of APP and other key amyloidogenic 279 

components across AD and healthy subjects, we demonstrated concerted down-regulation of secretory 280 

machinery proximal to APP in AD patients. This highlights the secretory pathway as a determinant of amyloid 281 

deposition, which had not been a major focus of AD research. Incidentally, the proteostasis network, with which 282 

the secretory pathway shares a significant overlap, has been an increasingly popular target of protein 283 

aggregation and aging studies. The human chaperone network, a major component of the proteostasis network, 284 

undergoes continual remodeling during an organism’s lifespan (Brehme et al., 2014; Hipp et al., 2019; Walther 285 

et al., 2017). However, in the aging AD brain, the directions of regulation of these chaperones are rather 286 

uncoordinated across different chaperone families and even within the same family (Brehme et al., 2014). Our 287 

observations of concerted repression of key proximal secretory pathway components show that improper 288 

expression of the secretory pathway, of which the chaperone network is a subset, is associated with the 289 

deposition of amyloid.  290 

 291 

Even though the secretory pathway is in charge of post-translational processing and targeting of APP up until its 292 

cleavage by the secretases, its implications in AD have been insufficiently researched primarily due to the lack 293 

of AD risk genes in the pathway (MacArthur et al., 2017). Our results showed that genes contributing the most 294 

to the APP support network in the secretory pathway are significantly enriched for targets of AD risk genes and 295 

AD related epigenetic changes, suggesting a mechanistic link between genetic and epigenetic variants of AD 296 

and secretory pathway dysregulation, complementing previous systems-level approaches to understanding 297 

LOAD with a focus on immune- and microglia-specific modules (Zhang et al., 2013). To further unravel the link, 298 

we examined the core support network consisting of secretory pathway components most proximal to APP. We 299 

noticed 3 AD risk genes that are also transcription factors showing regulatory evidence over the core support 300 

network according to both curated and de novo pathway analyses. More importantly, we demonstrated a 301 

regulatory cascade originating from the 3 AD risk genes, mediated by the core support network and into the 302 
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endocytosis pathway. The endosome, where the β-secretase is localized to and where its acidic pH is optimal 303 

for enzymatic cleavage, is a major site of intracellular Aβ production. Our findings thus offer a mechanistic view 304 

of amyloidogenesis involving the secretory pathway and the endosomes. This is in line with observations in 305 

embryonic cortical neurons that showed increased Aβ levels as a result of increased endocytic pathway activities 306 

and reuptake in APP in aged cells (Burrinha et al., 2019). We also observed significant enrichment of endosomal-307 

localized proteins in the core support network for APP, further lending credence to the involvement of the 308 

secretory pathway in activating the endocytic pathway. 309 

 310 

The dominant model of AD pathogenesis, the amyloid hypothesis (Hardy and Higgins, 1992; Hardy and Selkoe, 311 

2002; Selkoe and Hardy, 2016), posits that AD pathogenesis and the rest of the disease process such as tau 312 

tangle formation (Hardy et al., 1998; Lewis et al., 2001) result from the accumulation of Aβ via the imbalance 313 

between Aβ production and clearance. We examined the capacity of the secretory pathway in the context of Aβ 314 

production and processing, where the secretory support of APP and β- and γ‐secretases were analyzed. While 315 

the concerted dysregulation of the secretory support for these key amyloidogenic components in AD brains 316 

theoretically leads to increased Aβ production, the impact on Aβ clearance warrants further investigation. It is 317 

worth noting that detectable Aβ deposition can precede the onset of AD by more than 15 years (Bateman et al., 318 

2012; Jack et al., 2013), which likely coincides with the onset of the decline of the proteostasis network. Our 319 

findings highlight the roles of the secretory pathway in amyloidogenesis, which open new possibilities for early 320 

diagnosis and treatment research on LOAD. Furthermore, our systems approach can be further applied to other 321 

diseases in which the secretory pathway is perturbed, such as perturbed hormone secretion in endocrine 322 

disorders, changes in hepatokine secretion nonalcoholic fatty liver disease (Gorden et al., 2015; Meex et al., 323 

2015), and the secretion of diverse proteins in cancer (Robinson et al., 2019).   324 

 325 

Methods 326 

Calculation of secretory pathway support scores 327 

Random walk on interactome 328 

To contextualize the secretion of a given secP, we used network propagation to quantify the influence of gene 329 

expression across neighboring genes. Let 𝐺(𝑉, 𝐸) denote an undirected interactome with vertex set 𝑉 containing 330 

𝑛 proteins and an edge set 𝐸 the 𝑚 interactions between them. Let 𝑤𝑖𝑗be the edge weight (𝑤𝑖𝑗 = 1 if 𝐺 is 331 

undirected) between edges 𝑖 and 𝑗 and 𝐴 be the adjacency matrix of 𝐺 where 𝐴𝑖𝑗 = {𝑤𝑖𝑗  𝑖𝑓 {𝑣𝑖 , 𝑣𝑗} ∈332 

𝐸;  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}. Let 𝑥(𝑡) be the location of the walk at time 𝑡. Note that given the previous walk location  at time 333 

, we can represent the probability of the walker moving from location  to  in a single step as: 334 

 , where  (Eq. 1). 335 

 336 

Summing probabilities from all inbound locations we have : 337 

 (Eq. 2).  338 

In matrix notation, this is , where W is the transition matrix and each entry  denotes the 339 

aforementioned transition probability from  to . In random walk with restarts (Page et al., 1998), at each step 340 

the walk resets to the origin with probability , and the last equation becomes 341 
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, where  denotes the initial distribution if the walker 342 

starts at . The restart parameter  was set to 0.1, as advised by the linear optimal model given the size of the 343 

network (Huang et al., 2018).  344 

Expression-guided random walk with restarts 345 

The transition matrix can be modified to incorporate gene expression into each step of the propagation. If we let 346 

, where  is the scaled expression corresponding to node  , , the expression-347 

adjusted transition matrix can thus be given by . The choice of  can either be protein levels 348 

where available or mRNA abundance. We show the validity of using mRNA abundance as input in the 349 

supplementary notes. We can normalize the adjusted transition matrix by adding in self-loop: 350 

, and the update rule, which we termed expression-guided random 351 

walk with restarts (eRWR), now becomes: 352 

 (Eq. 4).  353 

Calculation of support scores and component scores 354 

We performed eRWR on each secP of interest for 20 iterations (Supplementary Notes), and the final vector of 355 

probabilities  represent the support component score for each gene on the network 𝐺(𝑉, 𝐸). The 356 

support score (σ) is the average of the support component scores of the secretory pathway proteins, 357 

. 358 

Context filtering of the secretory pathway support network 359 

We used the composite consensus human interactome PCNet v1.3 (Huang et al., 2018) (NDEX UUID: 360 

4de852d9-9908-11e9-bcaf-0ac135e8bacf)  to be the static, context-agnostic network (𝐺0(𝑉0, 𝐸0)). For each 361 

secP, we create a subnetwork containing the secP and other essential secretory pathway genes by filtering the 362 

network for human secretory pathway components (Feizi et al., 2017; Gutierrez et al., 2018) and secretory 363 

pathway-resident proteins (Thul et al., 2017) to constrain the network spatially, resulting in a vertex-induced 364 

subgraph 𝐺(𝑉 = {𝑉0 ∩ (𝑠𝑒𝑐𝑃 ∪ 𝑠𝑒𝑐𝑀 ∪ 𝑠𝑒𝑐𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡)}, {𝑢𝑣|𝑢𝑣 ∈  𝐸0 𝑎𝑛𝑑 𝑢, 𝑣 ∈  𝑉}). 365 

Transcriptomic and proteomic data processing and support scores calculation for normal human tissues 366 

To calculate support scores for the normal human secretome, we used two datasets, the Human Protein Atlas 367 

(HPA) (Uhlén et al., 2015), and the deep proteome and transcriptome abundance atlas (deep proteome) (Wang 368 

et al., 2019) for tissue-specific transcriptomes from healthy human donors in which matching proteomic data 369 

were also available. For data from the Human Protein Atlas, we downloaded the transcriptomic data-- “RNA HPA 370 

tissue gene data” and performed log- and sigmoid-transformation on the transcript abundance (TPM) data, 371 

resulting in transformed gene expression profiles in the (0,1) range. For the HPA dataset, the support score was 372 

calculated based on the tissue-median of the transformed gene expression profiles for each secP. We retained 373 

the semi-quantitative nature of the immunohistochemistry protein abundance reporting, and we calculated the 374 

support scores summary statistics for proteins belonging to each of the staining levels--"High", "Medium", "Low" 375 

& "Not detected" separately. 376 

 377 

With the fully quantitative proteomic data from the deep proteome (Wang et al., 2019), We calculated the support 378 

scores based on the protein iBAQ values. The iBAQ abundance values were transformed in a similar fashion as 379 

the transcript abundance from the HPA dataset. Namely, they were log- and then sigmoid-transformed into the 380 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2021. ; https://doi.org/10.1101/2020.08.10.243634doi: bioRxiv preprint 

https://paperpile.com/c/30jKHc/BpCi5
https://paperpile.com/c/30jKHc/BpCi5
https://paperpile.com/c/30jKHc/Sjf4S+g9iV9
https://paperpile.com/c/30jKHc/YNlS
https://paperpile.com/c/30jKHc/mfcV
https://paperpile.com/c/30jKHc/bM9l0
https://paperpile.com/c/30jKHc/bM9l0
https://paperpile.com/c/30jKHc/bM9l0
https://doi.org/10.1101/2020.08.10.243634
http://creativecommons.org/licenses/by-nd/4.0/


 

 

(0,1) range, before being median-summarized by tissue and subsequently used in the calculation of the support 381 

scores. 382 

Transcriptomic and proteomic data processing and support scores calculation for AD and healthy brains 383 

To calculate support scores for key amyloidogenic pathway components in AD and healthy brains, we used two 384 

major transcriptomic datasets from the ROSMAP project (Religious Orders Study and Memory Aging Project)-- 385 

single-cell (Bennett et al., 2018; Mathys et al., 2019) (Synapse ID syn18485175) and bulk RNA-seq (Wang et 386 

al., 2018) (Synapse ID syn3159438) data from individuals respectively with varying degrees of Alzheimer’s 387 

disease pathology. The single-cell transcriptomic dataset covers 80660 cells from the prefrontal cortex of 48 388 

individuals. While annotations for major cell types were given, we further classified astrocytes into reactive and 389 

non-reactive astrocytes based on GFAP expression (Liddelow and Barres, 2017). The bulk RNA-seq covers 4 390 

brain regions (Brodmann areas 10, 22, 36, 44) of 364 individuals. 391 

 392 

To transform the count data into appropriate expression inputs to the eRWR algorithm, count data from healthy 393 

tissue-specific transcriptomes and the AD single-cell RNA-seq data were first log-transformed to compress the 394 

extreme values. The values were then z-score standardized and passed through a logistic function, where the 395 

final transformed values have a range (0,1). For the AD bulk-RNA seq data, since the counts were already 396 

normalized and transformed, they were z-score standardized and transformed by a logistic function without first 397 

being log-transformed. 398 

Statistical analysis 399 

Relationship between support scores of secreted proteins and protein expression 400 

To examine the dependencies between support scores and the transcript and protein abundances of the human 401 

secretome, we calculated the support score for each secreted protein in the human secretome (Uhlén et al., 402 

2019) across various human tissues. We first calculated the spearman correlation coefficients between the 403 

tissue-median support scores and the transcript and protein abundances across all secreted proteins. To assess 404 

the statistical significance of the spearman correlation coefficients, a t-statistic   where n and r 405 

indicate the number of paired observations and the pearson correlation coefficient respectively was computed. 406 

P-values were then calculated by comparing the t-statistic with its null distribution (the t-statistics approximate a 407 

t-distribution with n-2 degrees of freedom under the null hypothesis) (Kendall and Stuart, 1977).  408 

 409 

To further quantify the statistical significance of transcript abundance and protein level in determining overall 410 

protein abundance, a Bayesian hierarchical model was created (model equations shown below) where the 411 

abundance of each protein across the 29 tissues is drawn from a linear combination of mRNA levels and the 412 

support scores weighted by their respective regression coefficients. We used the rethinking R 413 

package(McElreath, 2020) to construct the model and sample the coefficients. 414 

  415 

 416 
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 417 

Relationship between support scores of key amyloidogenic proteins and amyloid plaque densities 418 

We built a Bayesian hierarchical model (equations shown below) to determine the extent to which the support 419 

scores for key amyloidogenic pathway components including APP and the secretases for each cell/ sample in 420 

the single-cell (see the supplementary notes for adaptations to the model formula to account for sample 421 

covariates) and bulk RNA-seq dataset affects the amount of amyloid plaque measured. We regressed the scaled 422 

amyloid plaque densities corresponding to the individual from which the single-cell/ bulk RNA-seq sample was 423 

collected against the gene expression and secretory pathway support scores of key amyloidogenic pathway 424 

components. To regularize the coefficients of interest, their Bayesian priors are all normally distributed around 425 

0. The coefficients were sampled using the rethinking R package(McElreath, 2020). 426 

 427 

 428 

 429 

 430 

Characterizing the core support network 431 

AD risk genes and enrichment analysis of regulatory components 432 

We obtained 45 genome-wide significant risk loci identified by several AD GWAS studies as summarized 433 

previously (Dourlen et al., 2019), resulting in 176 high-confidence AD risk genes. We compiled a separate set of 434 

AD risk genes from GWAS summary statistics (Jansen et al., 2019; Kunkle et al., 2019) for loci above the 435 

genome-wide suggestive threshold, where MAGMA (de Leeuw et al., 2015)  was used to aggregate p-values for 436 

SNPs to the gene-level independently for each GWAS dataset. P-values from the two datasets for each gene 437 

were then combined using Fisher's method, resulting in 673 AD suggestive risk genes. 438 
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The transcription factors and their targets were obtained from ENCODE (Davis et al., 2018) and ChEA 439 

(Lachmann et al., 2010) via the Enrichr portal (Kuleshov et al., 2016). To determine whether the core support 440 

network enriches for the regulatory targets of AD risk genes, we first calculated the level of overlap between the 441 

core support network and the targets of each transcription factor using Fisher's exact test, where significantly 442 

overlapping transcription factors were defined as those with p-values of less than 0.05. A secondary enrichment 443 

was performed to quantify the level to which the significant transcription factors overlap with known AD risk 444 

genes. As mentioned earlier, two lists of AD risk genes were used. For the 673 AD suggestive risk genes, a 445 

traditional Fisher’s exact test was performed. For the risk genes originating from the 45 risk genome-wide 446 

significant risk loci, instead of calculating the direct overlap between the significant transcription factors and the 447 

176 high-confidence risk genes, we mapped the significant transcription factors back to the 45 risk loci on which 448 

Fisher’s exact test was performed. This is motivated by the fact that many risk loci contain multiple risk genes 449 

that cannot be further pinpointed due to complex linkage disequilibrium patterns, a risk locus is considered hit if 450 

at least one of its mapped risk genes appears significantly enriched as a transcription factor. We performed this 451 

two-stage enrichment analysis starting from the full static support network towards the core support network by 452 

pruning back proteins furthest from APP in each iteration. 453 

Enrichment analysis of subcellular compartments  454 

We compiled lists of proteins for all subcellular structures consisting of proteins known to localize to the 455 

compartment of interest within the cell (Thul et al., 2017). We ordered the proteins in the full support network by 456 

the extent to which they deviate from their stationary support component score to control for network topology 457 

while accounting for secretory-resident proteins. To determine the degree to which the proteins from certain 458 

subcellular compartments are overrepresented in the core subnetwork, we applied Gene Set Enrichment 459 

Analysis (GSEA) (Korotkevich et al., 2016; Subramanian et al., 2005) with the subcellular localization gene-sets 460 

and the ranked core support network components as input, eliminating the need for a hard significance cut-off. 461 

Subcellular compartments significantly enriched in the core subnetwork are defined as those with an FDR p-462 

value of 0.05 or less. 463 

Causal gene network analysis 464 

To robustly define the core supporting subnetwork, we iteratively constructed subnetworks from proteins most 465 

proximal to APP and progressively include more distal proteins corresponding to different significance cutoffs. 466 

To robustly select the cutoff for the core supporting subnetwork, we performed the two-stage enrichment analysis 467 

on all subnetworks as detailed above (see “AD risk genes and enrichment analysis of regulatory components”). 468 

Additionally, we calculated the average differential expression between AD and healthy individuals for each 469 

subnetwork using fold changes from bulk and single-cell RNA Seq data depending on the source expression 470 

from which the subnetwork is calculated. We selected 20 proteins most proximal to APP to include in the final 471 

core subnetwork, where the cutoff coincides with the strongest enrichment of regulatory AD risk loci and the 472 

suppression of the core subnetwork. 473 

 474 

To determine the regulator effects, we performed two network-based analyses. We first ran the upstream 475 

regulator analysis using the curated regulator networks from IPA (Krämer et al., 2014). The algorithm took as 476 

inputs the core subnetwork and the differential expression fold changes and p-values. Batch-corrected 477 

differential gene expression profiles between AD and healthy brains from the Mount Sinai study (Wang et al., 478 

2018), the Mayo Study (Allen et al., 2016) and the ROSMAP study (Religious Order Study and Memory and 479 

Aging Project) (De Jager et al., 2018) were obtained from the AMP-AD Knowledge Portal (Synapse ID 480 

syn14237651). “Disease & functions” having considerable overlap with the core subnetwork were added, of 481 

which endocytosis is the most significant (p-value =2.34E-14).   482 

 483 
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De novo TF binding site motifs discovery and known TF binding site identification  484 

We downloaded promoter sequences (version: GRCH38) from UCSC Genome Browser(Kent et al., 2002) for 485 

the core subnetwork. The promoter sequences are defined as sequences 1,000 bases upstream of annotated 486 

transcription start sites of RefSeq genes with annotated 5' UTRs. To conduct de novo TF binding site motifs 487 

discovery, we first ran motif discovery using the MEME suite(Bailey et al., 2015) with default parameters to 488 

identify candidate TF binding site motifs within the promoter sequences by using the entire APP support network 489 

serving as background control. Then, the MEME discovered TF binding site motifs were analyzed further for 490 

matches to known TF binding sites for mammalian transcription factors in the motif databases, JASPAR 491 

Vertebrates (Sandelin et al., 2004), via motif comparison tool, TOMTOM(Gupta et al., 2007). We summarized all 492 

the enriched GO terms using ‘Revigo’(Supek et al., 2011) (Figure S13) on the 81 GoMo identified specific 493 

enriched GO terms in the Biological Process (Table S2). 494 

Data availability 495 

https://github.com/LewisLabUCSD/AD_secretory_pathway 496 
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