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Abstract

The SARS-CoV-2 pandemic has challenged researchers at a global scale. The scientific
community’s massive response has resulted in a flood of experiments, analyses, hypotheses,
and publications, especially in the field of drug repurposing. However, many of the proposed
therapeutic compounds obtained from SARS-CoV-2 specific assays are not in agreement and
thus demonstrate the need for a singular source of COVID-19 related information from which
a rational selection of drug repurposing candidates can be made. In this paper, we present the
COVID-19 PHARMACOME, a comprehensive drug-target-mechanism graph generated from a
compilation of 10 separate disease maps and sources of experimental data focused on SARS-
CoV-2 / COVID-19 pathophysiology. By applying our systematic approach, we were able to
predict the synergistic effect of specific drug pairs, such as Remdesivir and Thioguanosine or
Nelfinavir and Raloxifene, on SARS-CoV-2 infection. Experimental validation of our results
demonstrate that our graph can be used to not only explore the involved mechanistic

pathways, but also to identify novel combinations of drug repurposing candidates.
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Introduction and Motivation

COVID-19 is the term coined for the pandemic caused by SARS-CoV-2. Unprecedented in the
history of science, this pandemic has elicited a worldwide, collaborative response from the
scientific community. In addition to the strong focus on the epidemiology of the virus?! 2 3,
experiments aimed at understanding mechanisms underlying the pathophysiology of the virus

have led to new insights in a comparably short amount of time#>67,

In the field of computational biology, several initiatives have started generating disease
maps that represent the current knowledge pertaining to COVID-19 mechanisms®° 1911  Such

disease maps have proven valuable before in diverse areas of research such as 12 131415,

When taken together with related work including cause-and-effect modeling®, entity
relationship graphs!®, and pathways!’; these disease maps represent a considerable amount
of highly curated “knowledge graphs” which focus primarily on COVID-19 biology. Here, we
use the term “mechanism” to describe a single, or multiple cause-and-effect relationships (i.e.
a subgraph), “pathways” to refer to a well-established series of interactions resulting in
cellular change or a defined product, and “models” for describing a collection of experimental
data or known interactions defined in the context of a particular biological process or
pathology. As of July 2020, a collection consisting of 10 models representing core knowledge
about the pathophysiology of SARS-CoV-2 and its primary target, the lung epithelium, was

shared with the public.

With the rapidly increasing generation of data (e.g. transcriptome?!8, interactome??, and
proteome?® data), we are now in the position to challenge and validate these COVID-19

pathophysiology knowledge graphs with experimental data. This is of particular interest as
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validation of these knowledge graphs bears the potential to identify those disease

mechanisms highly relevant for targeting in drug repurposing approaches.

The concept of drug repurposing (the secondary use of already developed drugs for
therapeutic uses other than those they were designed for) is not new. The major advantage
of drug repurposing over conventional drug development is the massive decrease in time
required for development as important steps in the drug discovery workflow have already

been successfully passed for these compounds?? 22,

Our group and many others have already begun performing assays to screen for
experimental compounds and approved drugs to serve as new therapeutics for COVID-19.
Dedicated drug repurposing collections, such as the Broad Institute library?®, and the even
more comprehensive ReFRAME library?*, were used to experimentally screen for either viral
proteins as targets for functional inhibition?>, or for virally infected cells in phenotypic
assays®®. In our own work, compounds were assessed for their inhibition of virus-induced
cytotoxicity using the human cell line Caco-2 and a SARS-CoV-2 isolate?’. A total of 63
compounds with IC50 < 20 uM were identified, from which 90% have not yet been previously
reported as being active against SARS-CoV-2. Out of the active compounds, 31 are approved
drugs, 23 are in phases 1-3 and 9 are preclinical candidate molecules. The described
mechanisms of action for the inhibitors included kinase signaling, PDE activity modulation,

and long chain acyl transferase inhibition (e.g. “azole class antifungals”).

The approach presented here integrates experimental results and the output from other
informatic pipelines, and combines proprietary and public data to provide a comprehensive

overview on the therapeutic efficacy of candidate compounds, the mechanisms targeted by
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these candidate compounds, and a rational approach to test the drug-mechanism associations

for their potential in combination therapy.
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Methodology

Generation of the COVID-19 PHARMACOME

Disparate COVID-19 disease maps focus on different aspects of COVID-19 pathophysiology.
Based on comparisons of the COVID-19 knowledge graphs, we found that not a single disease
map covers all aspects relevant for the understanding of the virus, host interaction and the
resulting pathophysiology. Thus, we optimized the representation of essential COVID-19
pathophysiology mechanisms by integrating several public and proprietary COVID-19
knowledge graphs, disease maps, and experimental data (Supplementary Table 1) into one

unified knowledge graph, the COVID-19 Supergraph.

To this end, we converted all knowledge graphs and interactomes into OpenBEL?, a
language that is both ideally suited to capture and to represent “cause-and-effect”
relationships in biomedicine and is fully interoperable with major pathway databases?® 39, In
order to ensure that molecular interactions were correctly normalized, individual pipelines
were constructed for each model to convert the raw data to the OpenBEL format. For
example, the COVID-19 Disease Map contained 16 separate files, each of which represented
a specific biological focus of the virus. Each file was parsed individually and the entities and
relationships that did not adhere to the OpenBEL grammar were mapped accordingly. Whilst
most of the entities and relationships in the source disease maps could be readily translated
into OpenBEL, a small number of triples from different source disease maps required a more
in-depth transformation. When classic methods of naming objects in triples failed, the
recently generated COVID-19 ontology?' as well as other available standard ontologies and

vocabularies were used to normalize and reference these entities.
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In addition to combining the listed models, we also performed a dedicated curation of
the COVID-19 supergraph in order to annotate the mechanisms pertaining to selected targets
and the biology around prioritized repurposing candidates. The resulting BEL graphs were
quality controlled and subsequently loaded into a dedicated graph database system
underlying the Biomedical Knowledge Miner (BiKMi), which allows for comparison and

extension of biomedical knowledge graphs (see http://bikmi.covid19-knowledgespace.de).

Once the models were converted to OpenBEL and imported into the database, the
resulting nodes from each mechanism-based model were compared (Figure 1). Even when
separated by data origin type, the COVID-19 knowledge graphs had very little overlap (3
shared nodes between all manually curated models and no shared nodes between all models
derived from interaction databases), but by unifying the models, our COVID-19 supergraph

improves the coverage of essential virus- and host-physiology mechanisms substantially.
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Figure 1: Venn diagrams comparing major mechanistic models in the COVID-19 supergraph. Mechanism-based
models were divided, and their entities compared within their resulting subgroups. Model abbreviations are
defined in Supplementary Table 1. a) Manual node comparison shows the overlap of entities in the models that
are knowledge-based, manually curated relationships that have been directly encoded in OpenBEL. b)
Automated node comparison shows the overlap of entities in models re-encoded into OpenBEL from other
formats (e.g. SBML models).
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Additionally, by enriching the COVID-19 supergraph with drug-target information linked
from highly curated drug-target databases (DrugBank, ChEMBL, PubChem), we created an
initial version of the COVID-19 PHARMACOME, a comprehensive drug-target-mechanism
graph representing COVID-19 pathophysiology mechanisms that includes both drug targets
and their ligands (Figure 2). In order to maximize its utility, this network includes both
experimentally validated drug-target relationships as well as a wide distribution of biological
entities and concepts (Supplementary Figure 1). The entire COVID-19 PHARMACOME was
manually inspected and re-curated; this graph database is openly accessible to the scientific

community at http://graphstore.scai.fraunhofer.de.
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Figure 2: The COVID-19 supergraph integrates drug-target information to form the COVID-19 PHARMACOME.
a) An aggregate of 10 constituent COVID-19 computable models covering a wide spectrum of pathophysiological
mechanisms associated with SARS-CoV-2 infection or harmonized to generate the mechanism-based COVID-19
supergraph. b) The COVID-19 supergraph is annotated with drug-target information from a variety of curated
sources to generate the COVID-19 PHARMACOME composed of 150662 nodes (representing proteins,
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pathologies, and other biological entities/concepts) and 573929 edges (indicating relationships or interactions
between the pair of nodes they connect).

Systematic review and integration of information from phenotypic screening

At the time of the writing of this paper, six phenotypic cellular screening experiments have
been shared via archive servers and journal publications (Supplementary Table 2). Although
only a limited number of these manuscripts have been officially accepted and published, we
were able to extract their primary findings from the pre-publication archive servers. A
significant number of reports on drug repurposing screenings in the COVID-19 context
demonstrate how appealing the concept of drug repurposing is as a quick answer to the
challenge of a global pandemic. Drug repurposing screenings were all performed with
compounds for which a significant amount of information on safety in humans and primary
mechanism of action is available. We generated a list of “hits” from cellular screening
experiments while results derived from publications that reported on in-silico screening were
ignored. Therefore, we keep a strict focus on well-characterized, well-understood candidate
molecules in order to ensure that one of the pivotal advantages of this knowledge base is its

use for drug repurposing.

Subgraph annotation

The COVID-19 PHARMACOME contains several subgraphs, three of which correspond to major
views on the biology of SARS-CoV-2 as well as the clinical impact of COVID-19:
- the viral life cycle subgraph focuses on the stages of viral infection, replication, and
spreading.
- the host response subgraph represents essential mechanisms active in host cells

infected by the virus.
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- the clinical pathophysiology subgraph illustrates major pathophysiological processes
of clinical relevance.

These subgraphs were annotated by identifying nodes within the COVID-19
PHARMACOME that represent specific biological processes or pathologies associated with
each subgraph category and traversing out to their first-degree neighbors. For example, a
biological process node representing “viral translation” would be classified as a starting node
for the viral life cycle subgraph while a node defined as “defense response to virus" would be
categorized as belonging to the host response subgraph. Though the viral life cycle and host
response subgraphs contain a wide variety of node types, the pathophysiology subgraph is
restricted to pathology nodes associated with either the SARS-CoV-2 virus or the COVID-19

pathology.

Mapping of gene expression data onto the COVID-19 PHARMACOME

Two single cell sequencing data sets representing infected and non-infected cells directly
derived from human samples®? and cultured human bronchial epithelial cells3* (HBECs) were
used to identify the areas of the COVID-19 PHARMACOME responding at gene expression level
to SARS-CoV-2 infection. Details of the gene expression data processing and mapping are

available in the supplementary material (section gene expression data analysis).

Pathway enrichment

Associated pathways for subgraphs and significant targets were identified using the Enrichr3*
feature of the gseapy Python package?. Briefly, gene symbol lists were assembled from their
respective subgraph or dataset and compared against multiple pathway gene set libraries

including Reactome, KEGG, and WikiPathways. To account for multiple comparisons, p-values
10
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were corrected using the Benjamini-Hochberg?® method and results with p-values < 0.01 were

considered significantly enriched.

Drug repurposing screening

We performed phenotypic assays to screen for repurposing drugs that inhibit the replication
and the cytopathic effects of virus infection. A derivative of the Broad repurposing library was
used to incubate Caco-2 cells before infecting them with an isolate of SARS-CoV-2 (FFM-1
isolate, see 37). Survival of cells was assessed using a cell viability assay and measured by high-
content imaging using the Operetta CLS platform (PerkinElmer). Details of the drug

repurposing screening are described in the supplemental material.

Drug combinations assessment with anti-cytopathic effect measured in Caco-2 cells
As described in Ellinger et al.,*® we challenged four combinations of five different compounds
with the SARS-CoV-2 virus in four 96-well plates containing two drugs each. Eight drug
concentrations were chosen ranging from 20 uM to 0.01 uM, diluted by a factor of 3 and
positioned orthogonally to each other in rows and columns. No pharmacological control was
used, only cells with and without exposure to SARS CoV-2 virus at 0.01 MOI.

In addition, recently published data from the work of Bobrowski et al.3?, were mapped to
the COVID-19 PHARMACOME and compared to the results of the combinatorial treatment

experiments performed here.

11
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Results

Comparative analysis of the hits from different repurposing screenings

Data from six published drug repurposing screenings were downloaded, and extensive
mapping and curation was performed in order to harmonize chemical identifiers. The curated
list of drug repurposing “hits” together with an annotation of the assay conditions is available

under http://chembl.blogspot.com/2020/05/chembl27-sars-cov-2-release.html

Initially, we analyzed the overlap between compounds identified in the reported drug
repurposing screening experiments. Figure 3A shows no overlap between experiments, which
is not surprising, as we are comparing highly specific candidate drug experiments with
screenings based on large drug repositioning libraries. However, the overlap is still quite
marginal for those screenings where large compound collections (Broad library, ReFRAME

library) have been used.
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Figure 3: Overlap of compound hits between different drug repurposing screening experiments. a) Direct
comparison of overlapping hits in drug repurposing screenings revealed no overlap between the experiments.
These experiments were performed using different cell types (Vero E6 cells and Caco2 cells). b) Protein target
space overlap between different COVID-19 drug repurposing screenings. Drug targets were identified by
confidence level >= 8 and single protein targets according to the ChEMBL database. Comparison of experiments
indicates over one hundred common protein targets.
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Mapping of repurposing hits to target proteins

In order to identify which proteins are targeted by the repurposing hits, and to investigate the
extent to which there are overlaps between repurposing experiments at the target/protein
level, we mapped all the identified compounds from the drug repurposing experiments to
their respective targets. As most drugs bind to more than one target, we increase the
likelihood of overlaps between the drug repurposing experiments when we compare them at
the protein/target space. Indeed, Figure 3B shows an overlap of 112 targets between all the
drug repurposing experiments, thereby creating a list of potential proteins for therapeutic
intervention when the compound targets are considered rather than the compounds

themselves.

The COVID-19 PHARMACOME associates pathways derived from drug repurposing targets
with pathophysiology mechanisms
A non-redundant list of drug repurposing candidate molecules that display activity in
phenotypic (cellular) assays was generated and mapped to the COVID-19 PHARMACOME.
Figure 4 shows the distribution of repurposing drugs in the COVID-19 cause-and-effect graph,
the “responsive part” of the graph that is characterized by changes in gene expression
associated with SARS-CoV-2 infection and the overlap between the two subgraphs. This
overlap analysis allows for the identification of repurposing drugs targeting mechanisms that
are modulated by viral infection.

A total number of 870 mechanisms were identified as being targeted by most of the drug
repurposing candidates (see section “Associated pathway identification” in supplementary
materials). When compared to the annotated subgraphs in the COVID-19 PHARMACOME, 201

of the 227 determined associated pathways found for the viral life cycle subgraph overlapped
13
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with those for the drug repurposing targets while the host response subgraph shared 90 of its

105 pathways.

Mapping of drug repurposing signals to hypervariable regions of the COVID-19

PHARMACOME

One of the key questions arising from the network analysis is whether the repurposing drugs
target mechanisms are specifically activated during viral infection. In order to establish this
link, we mapped differential gene expression analyses from two single-cell sequencing studies
to our COVID-19 PHARMACOMIE (see section “Differential Gene Expression” in supplementary
material). An overlay of differential gene expression data (adjusted p-value < 0.1 and abs(log
fold-change) > 0.25) on the COVID-19 PHARMACOME reveals a distinct pattern characterized
by the high responsiveness (expressed by variation of regulation of gene expression) to the

viral infection (Figure 4A).
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Figure 4: Identification of suitable targets for combination therapy by comparing subgraphs within the COVID-
19 PHARMACOME. Incorporation of gene expression data into the COVID-19 PHARMACOME resulted in a
subgraph characterized by the entities (genes/proteins) that respond to viral infection (a). Mapping of the filtered
results obtained from drug repurposing screenings (IC50 < 10 uM) to the PHARMACOME resulted in a subgraph
enriched for drug repurposing targets (b). The intersection between subgraphs presented in (a) and (b) is highly
enriched for drug repurposing targets directly linked to the viral infection response (c).

Virus-response mechanisms are targets for repurposing drugs

In the next step, we analyzed which areas of the COVID-19 graph respond to SARS-CoV-2
infection (indicated by significant variance in gene expression) and are targets for repurposing
drugs. To this end, we mapped signals from the drug repurposing screenings to the subgraph
that showed responsiveness to SARS-CoV-2 infection (Figure 4B). Figure 4C depicts the
resulting subgraph that is characterized by the transcriptional response to SARS-CoV-2
infection and the presence of target proteins of compounds that have been identified in drug

repurposing screening experiments.

15
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The COVID-19 PHARMACOME supports rational targeting strategies for COVID-19

combination therapy

We mapped existing combinatorial therapy data to the COVID-19 PHARMACOME in order to
evaluate its potential in guiding rational approaches towards combination therapy using
repurposing drug candidates. Combinatorial treatment data obtained from the results
published by Bobrowski et al.*® and Ellinger et al.*® were mapped to the COVID-19
PHARMACOME. Figure 5 provides an overview of the mapped compounds, thier protein
targets, and the interaction mechanisms. Analysis of the overlaps between the drug
repurposing screening data showed that four of the ten compounds reported in the
synergistic treatment approach by drug repurposing data were represented in our initial non-

redundant set of candidate repurposing drugs.

16
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Figure 5: Visualization of drug repurposing candidates (and their targets) used in combination treatment
experiments. The subgraph depicts the drug repurposing candidate molecules in relation to each other and their
targets. Shortest path lengths between drug combinations were calculated from this subgraph and are available
in the supplementary material (Supplementary Table 5).

Based on the association between repurposing drug candidates and the areas of the
COVID-19 PHARMACOME that respond to SARS-CoV-2 infection (Figure 4), we hypothesized
that the number of edges between a pair of drug nodes may be linked to the effectiveness of
the drug combination (Supplementary Figure 2). In order to evaluate whether the determined

outcome of a combination of drugs correlated with the distance between said drug nodes, we

compared distances for combinations of drugs within the COVID-19 PHARMACOME for which
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their effect was known (Supplementary Tables 3 & 5). Of the 47 drug combinations we were
able to check within the COVID-19 PHARMACOME, we found that the pairs of drugs known to
have a synergistic effect in the treatment of SARS-CoV-2 had an average shortest path length
of 2.43, while antagonistic combinations were found to be farther apart with an average
shortest path length of 4.0 (Supplementary Table 7). Based on our calculations, we formulated
three categories for predicting the outcome of new drug combinations on infection using the
shortest path lengths between them within the COVID-19 PHARMACOME. Drug combinations
with shortest path lengths of 2 indicate a synergistic relationship between the compounds, 3
was determined to be inconclusive as our calculations did not justify a specific outcome, and
those with a shortest path length of 4 or more were predicted to have an antagonistic
relationship.

In order to test our ability to predict the outcome of novel drug combinations, we
selected five compounds: Remdesivir (a virus replicase inhibitor), Nelfinavir (a virus protease
inhibitor), Raloxifene (a selective estrogen receptor modulator), Thioguanosine (a
chemotherapy compound interfering with cell growth), and Anisomycin (a pleiotropic
compound with several pharmacological activities, including inhibition of protein synthesis
and nucleotide synthesis). These compounds were used in four different combinations
(Remdesivir/Thioguanosine, Remdesivir/Raloxifene, Remdesivir/Anisomycin and
Nelfinavir/Raloxifene) to test the potency of these drug pairings in phenotypic, cellular assays.
Figure 6 shows the results of these combinatorial treatments on the virus-induced cytopathic

effect in Caco-2 cells.
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Figure 6: Dose-response curves (DRC) depicting viral inhibition of SARS-CoV-2 by select drug combinations. a)
A threshold effect can be seen with the Remdesivir/Anisomycin combination when Anisomycin reaches 20 pM,
well beyond Anisomycin’s IC50 alone. Remdesivir activity does not appear to be affected by Anisomycin, while
Remdesivir seems to be equally affected (de-potentiated) by low to high concentrations of Raloxifene. b) Viral
inhibition for Remdesivir/Thioguanosine can be seen only at lower Thioguanosine concentrations, at higher
concentrations the clear curve shift of Remdesivir at lower concentration (effect beyond Loewe’s additivity
formula) could not be appreciated. c) Raloxifene had an antagonistic effect on Remdesivir’s viral replication
inhibition activity. d) A clear shift in Nelfinavir’s DRC can be observed when combined with Raloxifene, but also
suggests a threshold effect when Raloxifene concentrations are higher than 2.2 uM.

Our results indicate that compound combinations acting on different viral
mechanisms, such as Remdesivir and Thioguanosine (Figure 6b) or Nelfinavir and Raloxifene
(Figure 6d), showed synergy, while compounds acting on host mechanisms, for instance
Anisomycin or Raloxifene, when combined with Remdesivir (Figure 6a and Figure 6c,
respectively), resulted in neither synergistic nor additive effects. Interestingly, our
experiments revealed that the HIV-Protease inhibitor Nelfinavir, which already appeared to
be active against viral post-entry fusion steps of both SARS-CoV4? and SARS-CoV-243, displayed

synergistic effects when combined with high concentrations of Raloxifene. This result agrees

with our predictions generated using the COVID-19 PHARMACOME in which the drug
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combination with the shortest distance, Raloxifene and Nelfinavir (Supplementary Table 5),

would have a synergistic effect on SARS-CoV-2 pathology.
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Discussion

By combining a significant number of knowledge graphs which represent various aspects of
COVID-19 pathophysiology and drug-target information we were able to generate the COVID-
19 PHARMACOME, a unique resource that covers a wide spectrum of cause-and-effect
knowledge about SARS-CoV-2 and its interactions with the human host. Based on a systematic
review of the results derived from published drug repurposing screening experiments, as well
as our own drug repurposing screening results, we were able to identify mechanisms targeted
by a variety of compounds showing virus inhibition in phenotypic, cellular assays. With the
COVID-19 PHARMACOME, we are now able to link repurposing drugs, their targets and the
mechanisms modulated by said drugs within one computable data structure, thereby enabling
us to target - in a combinatorial treatment approach - different, independent mechanisms. By
challenging the COVID-19 PHARMACOME with gene expression data, we have identified
subgraphs that are responsive (at gene expression level) to virus infection. Network analysis
along with the overview on previous repurposing experiments provided us with the insights
needed to select the optimal repurposing drug candidates for combination therapy.
Experimental verification showed that this systematic approach is valid; we were able to
identify two drug-target-mechanism combinations that demonstrated synergistic action of

the repurposed drugs targeting different mechanisms in combinatorial treatments.

We are fully aware of the fact that the COVID-19 PHARMACOME combines experimental
results generated in different assay conditions. In the course of our work, we accumulated
evidence that assay responses recorded using Vero E6 cells in comparison to Caco-2 cells may
only partially overlap. Comparative analysis of the results of both assay systems to virus

infection by means of transcriptome-wide gene expression analysis is one of the experiments
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we plan to perform next. However, for the identification of meaningful combinations of
repurposing drugs, the current model-driven information fusion approach was shown to work
well despite the putative differences between drug repurposing screening assays.

Given the urgent need for treatments that work in an acute infection situation, our
approach described here paves the way for systematic and rational approaches towards
combination therapy of SARS-CoV-2 infections. We want to encourage all our colleagues to
make use of the COVID-19 PHARMACOME, improve it, and add useful information about
pharmacological findings (e.g. from candidate repurposing drug combination screenings). In
addition to vaccination and antibody therapy, (combination) treatment with small molecules
remains one of the key therapeutic options for combatting COVID-19. The COVID-19
PHARMACOME will therefore be continuously improved and expanded to serve integrative

approaches in anti-SARS-CoV-2 drug discovery and development.

22


https://doi.org/10.1101/2020.09.23.308239
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.308239; this version posted February 12, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Acknowledgements

In part, this project is supported by the European Union’s Horizon 2020 research and

innovation program under grant agreement No 101003551, project Exscalate4CoV.

23


https://doi.org/10.1101/2020.09.23.308239
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.308239; this version posted February 12, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

References

1 Xu, B., Gutierrez, B., Mekaru, S., Sewalk, K., Goodwin, L., Loskill, A., ... & Zarebski, A. E. (2020). Epidemiological
data from the COVID-19 outbreak, real-time case information. Scientific data, 7(1), 1-6.

2 Lipsitch, M., Swerdlow, D. L., & Finelli, L. (2020). Defining the epidemiology of Covid-19—studies needed. New
England journal of medicine, 382(13), 1194-1196.

3 Holmdahl, 1., & Buckee, C. (2020). Wrong but Useful—What Covid-19 Epidemiologic Models Can and Cannot
Tell Us. New England Journal of Medicine.

4 Cao, W., & Li, T. (2020). COVID-19: towards understanding of pathogenesis. Cell Research, 1-3.

5Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., ... & Liu, L. (2020). Single-cell landscape of bronchoalveolar
immune cells in patients with COVID-19. Nature Medicine, 1-3.

6Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A., & Ng, L. F. (2020). The trinity of COVID-19: immunity,
inflammation and intervention. Nature Reviews Immunology, 1-12.

7 Gervasoni, S.; Vistoli, G.; Talarico, C.; Manelfi, C.; Beccari, A.R.; Studer, G.; Tauriello, G.; Waterhouse, A.M.;
Schwede, T.; Pedretti, A. A Comprehensive Mapping of the Druggable Cavities within the SARS-CoV-2
Therapeutically Relevant Proteins by Combining Pocket and Docking Searches as Implemented in Pockets 2.0.
Int. J. Mol. Sci. 2020, 21, 5152.

8 Ostaszewski, M., Mazein, A., Gillespie, M. E., Kuperstein, ., Niarakis, A., Hermjakob, H., ... & Schreiber, F.
(2020). COVID-19 Disease Map, building a computational repository of SARS-CoV-2 virus-host interaction
mechanisms. Scientific data, 7(1), 1-4.

® Domingo-Fernandez, D. et al. COVID-19 Knowledge Graph: a computable, multi-modal, cause-and-effect
knowledge model of COVID-19 pathophysiology. Bioinformatics. btaa834 (2020).

10 Gysi, D. M., Valle, i. D., Zitnik, M., Ameli, A., Gan, X., Varol, O., ... & Barabasi, A. L. (2020). Network medicine
framework for identifying drug repurposing opportunities for covid-19. arXiv preprint arXiv:2004.07229.

11 Khan, J. Y., Khondaker, M., Islam, T., Hoque, I. T., Al-Absi, H., Rahman, M. S., ... & Rahman, M. S. (2020).
COVID-19Base: A knowledgebase to explore biomedical entities related to COVID-19. arXiv preprint
arXiv:2005.05954.

12 Kuperstein, I., Bonnet, E., Nguyen, H. A, Cohen, D, Viara, E., Grieco, L., ... & Dutreix, M. (2015). Atlas of
Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google
Maps. Oncogenesis, 4(7), e160-e160.

13 Kodamullil, A. T, Younesi, E., Naz, M., Bagewadi, S., & Hofmann-Apitius, M. (2015). Computable cause-and-
effect models of healthy and Alzheimer's disease states and their mechanistic differential analysis. Alzheimer's
& Dementia, 11(11), 1329-1339.

14 Fujita, K. A., Ostaszewski, M., Matsuoka, Y., Ghosh, S., Glaab, E., Trefois, C., ... & Diederich, N. (2014).
Integrating pathways of Parkinson's disease in a molecular interaction map. Molecular neurobiology, 49(1), 88-
102.

15 Matsuoka, Y. et al. A comprehensive map of the influenza A virus replication cycle. BMC Syst. Biol. 7, 97
(2013

16 Khan, J. Y., Khondaker, M., Islam, T., Hoque, I. T., Al-Absi, H., Rahman, M. S., ... & Rahman, M. S. (2020).
COVID-19Base: A knowledgebase to explore biomedical entities related to COVID-19. arXiv preprint
arXiv:2005.05954.

17 Ostaszewski, M., Mazein, A., Gillespie, M. E., Kuperstein, I., Niarakis, A., Hermjakob, H., ... & Schreiber, F.
(2020). COVID-19 Disease Map, building a computational repository of SARS-CoV-2 virus-host interaction
mechanisms. Scientific data, 7(1), 1-4.

18 Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W. C., Uhl, S., Hoagland, D., Mgller, R., ... & Wang, T. T. (2020). Imbalanced
host response to SARS-CoV-2 drives development of COVID-19. Cell.

1% Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., ... & Tummino, T. A. (2020). A
SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 1-13.

20 Bojkova, D., Klann, K., Koch, B., Widera, M., Krause, D., Ciesek, S.[@@E@@L ... & Miinch, C. (2020). Proteomics of SARS-CoV-2-
infected host cells reveals therapy targets. Nature, 1-8.

24


https://doi.org/10.1101/2020.09.23.308239
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.308239; this version posted February 12, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

2L Ashburn, T. T., & Thor, K. B. (2004). Drug repositioning: identifying and developing new uses for existing
drugs. Nature reviews Drug discovery, 3(8), 673-683.

22 pushpakom, S., lorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., ... & Norris, A. (2019). Drug
repurposing: progress, challenges and recommendations. Nature reviews Drug discovery, 18(1), 41-58.

23 http://rdcu.be/aKdSKdSp://rdcu.be/qKdS

24 https://doi.org/10.1073/pnas.1810137115

3 hitps://reframedb.org/assays/A00461

26 hitps://reframedb.org/assays/A00440

27 preprint, DOI:.21203/rs.3.rs-23951/v1

28 Slater, T. (2014). Recent advances in modeling languages for pathway maps and computable biological
networks. Drug discovery today, 19(2), 193-198.

2% Domingo-Fernandez, D., Mubeen, S., Marin-Llag, J., Hoyt, C. T., & Hofmann-Apitius, M. (2019). PathMe:
Merging and exploring mechanistic pathway knowledge. BMC bioinformatics, 20(1), 243.

30 Domingo-Fernandez, D., Hoyt, C. T., Bobis-Alvarez, C., Marin-Llaé, J., & Hofmann-Apitius, M. (2018).
ComPath: an ecosystem for exploring, analyzing, and curating mappings across pathway databases. NPJ
systems biology and applications, 4(1), 1-8.

31 Astghik, S. et al., submitted, Bioinformatics Journal (OUP)

32 Chua, R. L., Lukassen, S., Trump, S., Hennig, B. P., Wendisch, D., Pott, F.,Debnath, O., Thiirmann, L., Kurth, F.,
Volker, M.T., Kazmierski, J., Timmermann, B., Twardziok, S., Schneider, S., Machleidt, F., Miiller-Redetzky, H.,
Maier, M., Krannich, A., Schmidt, S., Balzer, F., Liebig, J., Loske, J., Suttorp, N., Eils, J., Ishaque, N., Liebert, U.G.,
von Kalle, C., Witzenrath, M., Goffinet, C., Drosten, C., Laudi, S., Lehmann, I., Conrad, C., Sander, L-E. and Eils, R.
(2020). COVID-19 severity correlates with airway epithelium—immune cell interactions identified by single-cell
analysis. Nature Biotechnology, 38(8), 970-979.

33 Ravindra, N. G., Alfajaro, M. M., Gasque, V., Habet, V., Wei, J., Filler, R. B., Huston, N. C., Wan, H., Szigeti-
Buck, K., Wang, B., Wang, G., Montgomery, R.R., Eisenbarth, S. C., Williams, A., Pyle, A.M., lwasaki, A., Horvath,
T.L., Foxman, E.F., Pierce, R.W., van Dijk, D., and Wilen, C.B. (2020). Single-cell longitudinal analysis of SARS-
CoV-2 infection in human bronchial epithelial cells. bioRxiv.

34 Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web
server 2016 update. Nucleic Acids Res. 2016;44(W1):W90-W97. doi:10.1093/nar/gkw377

35 https://pypi.org/project/gseapy/

36 Benjamini Y. Discovering the false discovery rate: False Discovery Rate. J. R. Stat. Soc. Ser. B Stat. Methodol.
2010;72(4):405-416. doi: 10.1111/j.1467-9868.2010.00746.x.

37 Hoehl, S., Rabenau, H., Berger, A., Kortenbusch, M., Cinatl, J., Bojkova, D., Behrens,P., Béddinghaus, B., Gotsch,U.,
Naujoks,F., Neumann, P., Schork, J., Tiarks-Jungk, P., Walczok, A., Eickmann, M., Vehreschild,M., Kann, G.,Wolf,
T.,Gottschalk, R., & Ciesek, S. (2020). Evidence of SARS-CoV-2 infection in returning travelers from Wuhan, China. New
England Journal of Medicine, 382(13), 1278-1280.

38 Ellinger, B., Bojkova, D., Zaliani, A., Cinatl, J., Claussen, C., Westhaus, S., ... & Gribbon, P. (2020). Identification of inhibitors
of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection. manuscript
under review

39 Bobrowski, T., Chen, L., Eastman, R. T., Itkin, Z., Shinn, P., Chen, C., Guo, H., Zheng, W., Michael, S., Simeonov,
A., Hall, M., Zakharov, A.V., and Muratov, E.N. (2020). Discovery of Synergistic and Antagonistic Drug
Combinations against SARS-CoV-2 In Vitro. BioRxiv.

40 Bobrowski, T., Chen, L., Eastman, R. T., Itkin, Z., Shinn, P., Chen, C., Guo, H., Zheng, W., Michael, S., Simeonov,
A., Hall, M., Zakharov, A.V., and Muratov, E.N. (2020). Discovery of Synergistic and Antagonistic Drug
Combinations against SARS-CoV-2 In Vitro. BioRxiv.

41 Ellinger, B et al. (2020). Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2)
cells using a large scale drug repurposing collection. Preprint. https://doi.org/10.21203/rs.3.rs-23951/v1.

42 yamamoto, N., Yang, R., Yoshinaka, Y., Amari, S., Nakano, T., Cinatl, J., ... & Tamamura, H. (2004). HIV
protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochemical and biophysical
research communications, 318(3), 719-725.

43 Musarrat, F., Chouljenko, V., Dahal, A., Nabi, R., Chouljenko, T., Jois, S. D., & Kousoulas, K. G. (2020). The anti-
HIV Drug Nelfinavir Mesylate (Viracept) is a Potent Inhibitor of Cell Fusion Caused by the SARS-CoV-2 Spike (S)
Glycoprotein Warranting further Evaluation as an Antiviral against COVID-19 infections. Journal of medical
virology.

25


http://rdcu.be/qKdS
http://rdcu.be/qKdS
http://rdcu.be/qKdS
https://doi.org/10.1073/pnas.1810137115
https://reframedb.org/assays/A00461
https://reframedb.org/assays/A00440
https://doi.org/10.1101/2020.09.23.308239
http://creativecommons.org/licenses/by-nc-nd/4.0/

[ heme [ elsevier
0 pmi 7771 intact
"1 gordon "] biodati

cbm_scai lux



https://doi.org/10.1101/2020.09.23.308239
http://creativecommons.org/licenses/by-nc-nd/4.0/

a Proteomics

Previous
Models

ChEMBL PubChem

Interaction
Datasets

Biological

DrugBank
Databases 9

Genetic
Analyses



https://doi.org/10.1101/2020.09.23.308239
http://creativecommons.org/licenses/by-nc-nd/4.0/

[ Touret
= Gordon
[ Riva
[0 Jeon
© Weston
Ellinger

[ Touret
[ Gordon
[ Riva
0 Jeon
 Weston
Ellinger



https://doi.org/10.1101/2020.09.23.308239
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/2020.09.23.308239
http://creativecommons.org/licenses/by-nc-nd/4.0/

O protein
O Compound

=== negative_correlation

®

MPHOSPHE
=== positive_correlation
has_target e
=== biogrid_interaction -
BLM
=== intact_interaction
=== has_modified_protein
. - hydrochloride
association
. . / ) N \\ i X . ‘ / s il
=== pc_interaction = > h = A4 ~L
; ' e ‘@
=== kegg_increases scomen =
=== has_fragmented_protein = >
L sicome
= Kegg_association N
LOPINAVIR SL‘K';&’ZBI
=== decreases
: a ; J
=== ncreases 8- Ly NN S Ve | ngnavi s
=== kegg_decreases
. CeRs
o/ | &/ @ §
DRDZ  GALcR GHRMS
h A ]
asw2 @ Arnt Pt
S eVEITRI ~ MCSR X ®
g A
ecsz iz @
e U e
/8. @ = -
. . i ]
v b O g,
O ‘ <@y i ;- io ACHE  apRazc
Ritonavir ,/ ekt AD%B D‘b P’\'\:FR T g Q0
s @ Reloxfene ' ADRAID  HTRZC
4 ‘o 7 O o,
- _ o 1 | eveep A ) )
dacmycin Doyoydine hydals: D}{_‘))z & opRD1 EDE a)xz c%‘ N HTRZB  SIGMARI
HIRS @
a M%:’I @ D E S CR P;%;lc
N y @ l‘;m o terRe VIPR1 OPRK! N Y
- m\,“. / MAPK 14 - ADREZ B o 5 oE ﬁé?w
rivi phosphete K il P @ e D .
\ AN A PRKTA wia | e T mn,i-\ L oo
cocer ) e E;R - ) 9%1 sioma ® sioost
= o OXORZ - 5 mmma
® NPvin  COR
sﬁm
@
W

FEGH

Thioguanosine


https://doi.org/10.1101/2020.09.23.308239
http://creativecommons.org/licenses/by-nc-nd/4.0/

Remdesivir DRC in presence of Anisomycin Remdesivir DRC in presence of Thioguanosine

150 150

100 ME:E:!

20 pM Anisomycin
6.67 uM Anisomycin 100
2.22 yM Anisomycin
0.74 uM Anisomycin
0.25 yM Anisomycin
0.08 uM Anisomycin
0.03 pM Anisomycin

0.01 pM Anisomycin 50 T T T T 1
7 -6 -5 -4

log ¢ (M)

fb e

0.25 yM Thioguanosine
0.08 pM Thioguanosine
0.03 uM Thioguanosine
0.01 uM Thioguanosine

% Inhibition
o
o
1

% Inhibition
(3.3
o
1

o

1

50
e T T T T 1

Remdesivir DRC in presence of Raloxifene Nelfinavir DRC in presence of Raloxifene

150 150
-o- 20 pM Raloxifene -o- 20 uM Raloxifene

- 6.67 pM Raloxifene

- 2.22 yM Raloxifene

- 0.74 uM Raloxifene

0.25 uM Raloxifene

0.08 uM Raloxifene

-m 6.67 uM Raloxifene 100-
-4 2.22 uM Raloxifene
-¥ 0.74 uM Raloxifene

0.25 pM Raloxifene

-
o
=]

1

L

% Inhibition
o
o
1

% Inhibition
3
1

0- 0.08 uM Raloxifene 04

0.03 pM Raloxifene 0.03 uM Raloxifene

50 T T T T 1 0.01 pM Raloxifene 50 T T T T 1 0.01 uM Raloxifene
9 -8 7 6 5 4 9 8 7 6 5 -4

log c (M) log ¢ (M)


https://doi.org/10.1101/2020.09.23.308239
http://creativecommons.org/licenses/by-nc-nd/4.0/

