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Abstract7

Humans have elegant bodies that allow gymnastics, piano playing, and8

tool use, but understanding how they do this in detail is difficult because9

their musculoskeletal systems are extraordinarily complicated. Nonetheless,10

common movements like walking and reaching can be stereotypical, and a11

very large number of studies have shown their movement cost a major factor.12

In contrast, one might think that general movements are very individuated13

and intractable, but a recent study has shown that in an arbitrary set of14

whole-body movements used to trace large-scale closed curves, near-identical15

posture sequences were chosen across different subjects, both in the average16

trajectories of the body’s limbs and in the variance within trajectories. The17

commonalities in that result motivate explanations for its generality. One18

possibility could be that humans also choose trajectories that are economical19

in energetic cost. To test this hypothesis, we situate the tracing data within20

a fifty degree of freedom dynamic model of the human skeleton that allows21

the computation of movement cost. Comparing the model movement cost22
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data from nominal tracings against various perturbed tracings shows that23

the latter are more energetically expensive, inferring that the original traces24

were chosen on the basis of minimum cost.25

Keywords: Posture analysis, whole body movement, virtual tracing,26

kinematic representation, movement variation costs27
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1. Introduction28

A general principle of human movement is that our nervous system should29

exhibit trajectories that are economical in energetic cost [1, 2]. It has been30

established for decades and has been well studied in simple movements. In lo-31

comotion, there are a number of experiments showing that humans’ walking32

speed [3], step frequency/length [4, 5, 6, 7, 8, 9, 10], step width [11, 12] are33

all corIn particularrelated with the minimum metabolic cost, In particular,34

energetic cost exhibits a U-shaped dependence on step frequency while walk-35

ing at a constant speed [13, 8], and the minimum of the U-shape is consistent36

with the self-selected or preferred walking frequency. Furthermore, new ev-37

idence [14, 15, 16] shows the system can adapt preferred gaits to minimize38

energetic cost in response to varying loads.39

Although the principle that humans’ self-selected trajectories or posture40

sequences are economical in energetic cost has been commonly shown in41

the studies of simple single-behavior motions such as walking, running, and42

reaching, whether the principle is true for large-scale complex movements still43

needs to be tested. Thus, we conducted a complex whole-body virtual tracing44

experiment [17] that aimed to learn the principles behind large-scale arbitrary45

movements, particularly regarding variations between different subjects. We46

eschewed common movements such as reaching and walking [18, 19, 13] and47

also studies of small-scale grasping movements [20, 21].48

In our study, a full-body virtual-reality tracing task elicited a series of49

human movement sequences [17]. At each trial, subjects freely chose their50
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initial postures and were given no instructions on how to comport themselves51

during the tracing process. Participants were tracing three-dimensional space52

curves at their preferred posture sequences and their postures were continu-53

ously recorded using a motion-capture system. Specialized aggregation meth-54

ods were developed for data analysis that extracted similarities of posture55

sequences in the face of kinematic variations. The exciting and unsuspected56

result was that both the movement’s posture sequences and kinematic vari-57

ations showed striking commonalities across subjects. The obvious inference58

from the observed similarities of movements across different subjects is that59

there must be some general principle for humans’ motion commonalities.60

This regularity of movements across different subjects implies energetic cost61

should be similar. Moreover, these observations arise from the generally62

argued principle that the self-selected trajectories should be economical in63

energetic cost. This argument is reinforced with by progress in the sparse64

coding of temporal sequences [22, 23] that strongly suggest that trajectories65

are remembered to obviate the difficulties of computing them online. In ad-66

dition, if movements are to be stored, the less expensive ones are likely to be67

preferred[24].68

For the energetic cost computation, we took advantage of a forty-eight69

degrees of freedom dynamic computational model capable of simulating, an-70

alyzing, and synthesizing humanoid movements [25]. The model consists of71

twenty-one body components connected by twenty joints and incorporates72

several novel features. One innovation is that the joint connections are not73
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treated as perfectly rigid constraints but rather as very stiff springs that hold74

body parts together like tendons and muscles. The model allows computing75

instantaneous power from the product of net joint torque and joint angular76

velocity. The work performed at each joint was determined by numerically77

integrating the instantaneous powers over the entire tracing task. In this78

way, the energetic cost of human motions can be computed given motion79

capture data.80

To test this hypothesis that the minimum energetic cost principle is still81

held in large-scale complex movements the costs of different subjects’ curve82

traces were computed and compared to the costs of tracing movements un-83

der two different kinds of perturbations. In one, the tracing trajectories were84

slightly perturbed by shifting positions of a particular body part of the dy-85

namic model a small amount for the duration of the trace. In the other, the86

original tracing path was displaced in certain small increments prior to the87

trace. The result of both of these kinds of perturbations was that their means88

of the energetic cost were higher than those of the original curve. In other89

words, the energetic cost exhibits a classical U-shape with respect to the dif-90

ferent posture sequences, with the minimum of the U-shape curve consistent91

with the cost of the original posture traces, which our subjects self-selected.92

These results strongly suggest that that movement is selected on the basis of93

predicted minimum cost.94
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2. Background95

In the past, a common way to address the minimum energetic cost prin-96

ciple was to conduct experiments comparing walking and running with many97

other strange and unpractised gaits [26, 27]. Nowadays, there are three98

commonly used methods to study energy optimization.99

The most straightforward and frequently used method is to measure the100

metabolic cost, e.g., subjects breath through a mouthpiece to measure oxygen101

consumption rates (VO2). For example, subjects were required to walk under102

different circumstances, and the results showed that the metabolic cost was103

minimum while subjects walked at the condition which was ”comfortable” for104

them [3, 4, 5, 6, 14, 15, 16].The advantage of this method is that movements105

can be related directly to energetic cost, but the measuring apparatus is106

typically very constraining.107

A common way to measure muscle co-activation and stiffness is to use108

Electromyography (EMG). Huang et. al. huang2012reduction showed that109

that subjects’ metabolic cost is reduced during the learning process of arm110

reaching tasks, and their muscle activities and co-activation would parallel111

changes in metabolic power. However EMG measures just a correlate that112

needs additional modeling to turn it into a energetic cost.113

A third energetic cost method, dynamic modelling, is to build a closed114

form analytical mechanics-based model and determine if the predicted min-115

imum mechanical cost correlates with people’s kinematic preferences. For116

example, [̧7, 8, 9, 11] use an inverted pendulum model to predict the op-117
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timal step length and compare it with the subjects’ real step length while118

walking.119

All these methods pose obstacles for our calculation of the energetic cost120

of whole-body tracing movements collected from the VR experiment [17].121

These methods are time-consuming, and the required configuration restricts122

the variety of experiments. For example, the VO2 process does not work123

for our virtual-reality tracing tasks as subjects need to wear the VR hel-124

met on their head, leaving little space for a mouthpiece. Besides, the EMG125

method measures muscle co-contraction, which is correlated with energetic126

cost, rather than calculating the cost. Another possible way is to build127

a humanoid dynamic model. The method is the best way to imitate hu-128

man movements, and it is widely used in biomedical engineering due to its129

compliance with real-world physical rules. However, it has several critical130

limitations as well: 1) it is too difficult to model and control a complex131

system, such as a whole human body. 2) it is challenging to represent ”kine-132

matic loops”, such as postures that need both feet are on the ground. 3) for133

large systems, the equations of motion in nested, rotating reference frames134

become very complex, making them more challenging to approximate well.135

Due to the complexity and disadvantages of dynamic modeling method for136

large complex systems, most of studies took advantages of two-dimensional137

models to study human part-body motions in the sagittal plane.138

There are some methods of building a dynamic 2D bipedal robot by139

modeling the whole-body with a skeleton of rigid segments connected with140
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joints. However, those methods over-simplify human bodies so that they can141

only study simple single-behavior human movements. The simplest bipedal142

robot uses three links to represent the torso and two legs in the sagittal143

plane [28, 29]. Five-link biped robots extend the model using two links144

to represent each leg [30, 31, 32, 33], while seven-link biped robots further145

extend it by adding feet to it [34, 35]. Furthermore, those methods have146

many assumptions while studying human locomotion. For example, most147

researchers assume that when the swing leg contacts with the ground, an148

instantaneous exchange of the biped support legs takes place. In this way, the149

biped locomotion with single foot support can be considered as a successive150

open loop of kinematic chain from the support point to the free ends, as151

robot manipulators. Recently, 3D modeling of closed-form nodeling of biped152

robots [36, 37] has been developed. However, they are still not sophisticated153

enough compared with a real human body.154

In the face of these complex challenges, a major alternate modeling route155

is to forego the neural level of detail as well as one that features muscles156

and model more abstract versions of the human system that still use multi-157

ple degrees of freedom but summarize muscle effects through joint torques.158

The computation of the dynamics of such multi-jointed systems recently has159

also experienced significant advances. The foremost of these, use a kine-160

matic plan to integrate the dynamic equations directly. Several different161
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open source dynamic libraries exist, such as MuJoCo1 [38], Bullet2, Havok3,162

Open Dynamic Engine(ODE)4, and PhysX5, but an evaluation by [39] found163

them roughly comparable in capability, and only MuJoCo has been applied164

to human modeling.165

Our 48 degree of freedoms human dynamic model (HDM)6 [25] also based166

on a direct integration method. It was built on top of ODE which is the most167

commonly used dynamic library in robotic research area. The model has a168

singular focus on human movement modeling and uses a unique approach to169

integrating the dynamic equations. A direct dynamics integration method170

to extracts torques from human subjects in real-time [40, 41, 42] using a171

unifying spring constraint formalism.172

These toques have two components. The major component is the one173

determined by the open-loop integration of Newton’s equations. These must174

be supplemented by a closed-loop set of “residual torques” to achieve accu-175

rate balance. This organization models the similar dichotomy in the human176

system.177

At each frame, instantaneous power was computed from the product of178

the net joint torque and joint angular velocity. The work performed at each179

joint was determined by numerically integrating the instantaneous powers180

1MuJoCo http://www.mujoco.org/
2Bullet https://pybullet.org/
3Havok https://www.havok.com/
4OpenDE: http://www.ode.org/
5PhysX: https://developer.nvidia.com/gameworks-physx-overview
6The HDM model: https://github.com/EmbodiedCognition/HDM_UI

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2020.12.29.424756doi: bioRxiv preprint 

http://www.mujoco.org/
https://pybullet.org/
https://www.havok.com/
http://www.ode.org/
https://developer.nvidia.com/gameworks-physx-overview
https://github.com/EmbodiedCognition/HDM_UI
https://doi.org/10.1101/2020.12.29.424756
http://creativecommons.org/licenses/by-nc-nd/4.0/


over the entire tracing task. In this way, given motion capture data, we can181

compute the mechanical cost without building a humanoid biped robot with182

motion equations. An extensive validation of this dynamic model appears183

in [25]. Note that it is common to use mechanical measures of work to indicate184

the metabolic energy consumption [43]. The “energetic cost” mentioned in185

the following sections means the mechanical cost.186

While doing the virtual tracing experiment, subjects freely chose their187

starting posture and were given no instructions on how to perform them-188

selves. Therefore, participants were tracing curves at their preferred posture189

sequences. In other words, they traced curves under the conditions which190

were “comfortable” for them. According to the previous experiments [3, 4,191

5, 6, 14, 15, 16], we can expect that the energetic costs of movements with192

those trajectories should be a minimum or at least locally minimum. To193

support our conclusion, the cost of original virtual tracing movements and194

perturbed movements were computed and compared using the human dy-195

namic model. As expected, the energetic cost always exhibits a U-shape196

while tracing using different postures sequences, with the minimum of the197

U-shape curve consistent with the original posture traces, which our subjects198

self-selected. In this way, we are able to demonstrate the energetic cost of199

original trajectories is a local minimum. The focus of the method section200

describes experimental protocol in more detail.201
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3. Results202

Using the kinematic curve tracing data from [17], we fitted the dynamic203

model to each of the eighteen subjects and then had the models trace the204

nine curves that are shown in Fig. 1. The energy cost of tracing paths showed205

marked regularities in the following aspects of the data that was subject to206

the following analysis summary:207

1.0 0.50.0 0.5 1.0

1.5
1.0

0.5
0.0

0.5
0.0

0.5

1.0

1.5

2.0

path: 1

1.0 0.50.0 0.5 1.0

1.5
1.0

0.5
0.0

0.5
0.0

0.5

1.0

1.5

2.0

path: 2

1.0 0.50.0 0.5 1.0

1.5
1.0

0.5
0.0

0.5
0.0

0.5

1.0

1.5

2.0

path: 3

1.0 0.50.0 0.5 1.0

1.5
1.0

0.5
0.0

0.5
0.0

0.5

1.0

1.5

2.0

path: 4

1.0 0.50.0 0.5 1.0

1.5
1.0

0.5
0.0

0.5
0.0

0.5

1.0

1.5

2.0

path: 5

1.0 0.50.0 0.5 1.0

1.5
1.0

0.5
0.0

0.5
0.0

0.5

1.0

1.5

2.0

path: 6

1.0 0.50.0 0.5 1.0

1.5
1.0

0.5
0.0

0.5
0.0

0.5

1.0

1.5

2.0

path: 7

1.0 0.50.0 0.5 1.0

1.5
1.0

0.5
0.0

0.5
0.0

0.5

1.0

1.5

2.0

path: 8

1.0 0.50.0 0.5 1.0

1.5
1.0

0.5
0.0

0.5
0.0

0.5

1.0

1.5

2.0

path: 9

Figure 1: The nine 3-dimensional paths in the virtual environment that were
used in the experiment. They are ordered by their complexity. For reference, colors
denote common segments and points. For the subjects, the paths were all rendered in
black, The scale is in meters.
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1. The joints’ power allocation while tracing path 1 across different sub-208

jects showed that although the total costs of the movements varied209

between subjects, the power use is qualitatively very similar. (See sec-210

tion 3.1, Figure 2);211

2. The computation of average energy cost while tracing path 1 showed212

the magnitude of the required residual forces were relatively small. (See213

section 3.1, Figure 3);214

3. The costs of tracing each path by each subject are very similar and215

approximately monotonic with the length of paths. (See section 3.2216

and Figure 4);217

4. Although there are variations in the cost across the repeated traces,218

the cost of using the perturbed model parameters is significantly higher219

than the original. (See See section 3.2, Figure 5 Figure 6);220

5. The increment of energy cost while using perturbed model parameters221

distributes more on the joints’ cost than on the residual component.222

(See section 3.2 and Figure 7);223

3.1. Detailed Energetic cost analysis of tracing path1224

The mean of power across different participants. As an initial anal-225

ysis, we established the variations in the energetic costs for tracing path 1226

exhibited by different subjects. Fig. 2 illustrates the mean and the standard227

deviation of powers across subjects at each frame. The result reveals that228
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subjects put similar effort at the same points along the path. Thus although229

the total cost of the movements may vary between subjects, the power pat-230

terns are qualitatively very similar. The VR experiment [17] showed partic-231

ipants used similar postures sequences while tracing the same curves from a232

kinematic perspective. It is expected that the instantaneous power of joints233

at each frame should be similar as well due to the skeleton constraints of234

the human body. The similarity of power patterns across different subjects235

reinforces this conclusion from a dynamics perspective.236
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Figure 2: The power of tracing path1 at each frame Nine subjects traced path1 five
times. The plot shows the average joints’ power at each frame across subjects. The blue
line indicates the mean and the gray shaded area represents the standard deviation of
powers. The small standard deviation means that different subjects had similar power
patterns while tracing the same curve, which shows that the curve has points of difficulty
in tracing shared by the subjects. Path 1 is the most straightforward, but the observation
of correlated effort represents patterns in tracing other curves.
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Average energy cost of five repetitions. Although there are qualitative237

similarities in the difficult points on the curve, the total costs of the traces238

differ across different subjects. This result is expected due to the variety of239

subjects’ skeletons and weights. Fig. 3 represents the energetic cost per sub-240

ject. The total energy of tracing a path1, including the residual components,241

is shown in blue, and the residual component is shown separately in orange.242

When reporting the energetic costs of the traces, we always use the total cost243

shown here in blue.244
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246
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122

186
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Figure 3: Energetic costs of tracing path 1 Each subject traced path 1 with five repeats.
The horizontal labels indicate the related subjects, e.g., ”S1” represents the subject1. The
total cost is shown in blue, and the portion of that cost due to residual forces are shown in
orange. A low cost in residual torque usually signifies that the dynamic model is a good
match for that subject’s kinematic data.

Residual forces. As shown in Fig. 3, the highest cost of the tracing move-245

ment is the component owing to the joint torques that are producing the246

kinetic trajectories, and the additional cost of the residual from the inverse247
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dynamic calculation is small. In the human system, this residual is most248

prominently due to the vestibular system, but just how the vestibular con-249

nects to the muscular system is not modeled by the human dynamic model.250

Instead, we implemented a provisional system of torques referred to as a co-251

ordinate system positioned and the center of mass to maintain balance [25].252

3.2. Energy cost analysis of tracing individual paths253

Energy cost of tracing nine paths. Although there are similar energetic254

costs per subject in tracing a same path, this arrangement does not carry255

over to the comparison between paths, which has larger differences. We256

hypothesized that the cost should scale as the length of the path, as shown257

in Fig. 4, which shows the average energetic cost of tracing the nine different258

paths. The paths differ in tracing cost, but the costs of tracing each path by259

each subject are very similar and approximately monotonic with the length260

of the paths.261

Given these regularities, the next step was to evaluate the significance of262

perturbations in the tracing protocol. The hypothesis is that if the tracing263

postures are chosen to be of minimum energy, changing the configuration264

away from the original tracing situation should incur a cost, which was what265

happened.266

Model perturbation. The first perturbation test changed in model marker267

trajectories, called model perturbation. Specifically, the right elbow marker268

was shifted by a small delta, which produced a new constraint that the model269
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Figure 4: Cost of tracing nine paths These results portray the possibility that the costs
vary across the best-fit five subjects. The statistics show that each path traced has a
unique cost that distinguishes it from the rest.

needed to satisfy while tracing paths. To implement it, the dynamic model270

had to trace paths using the same posture sequences except for lifting its271

right elbow. Although kinematics of the body parts except the right elbow272

remained for the unperturbed trace – only the kinematics of the right elbow273

changed, the joints’ constraints bias the dynamic model adapt to follow the274

new perturbed trace.275

For each trace, the right elbow marker was raised by 5 cm. The rest of276

the system adapted the way dictated by the dynamic constraints. Fig. 5277

shows the difference in cost of constrained motions and original motions.278

It is seen that although there are variations in the cost across the repeated279
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traces, the cost of using the perturbed model is higher than the original. Note280

that outside of the changes, the rest of the model solves the inverse dynamic281

model with the unperturbed parameters, and thus the model has substantial282

degrees of freedom at its proposal. The significant test showed the difference283

is reliable, with a p-value less than 0.001. Furthermore, it is obvious that the284

increase of tracing complex paths is larger than that of tracing simple paths.285

Figure 5: Energetic cost of tracing with model perturbation Energetic cost of tracing each
of the nine paths with perturbations in the right elbow marker. The elbow was moved up
5cm. This shows that for all the paths and the averages across subject tracers, the original
path is always the least expensive. Moreover, the differences between the energetic costs
of original trajectories and perturbed trajectories are highly significant.

Path perturbation. The second perturbation test made adjustments in286

the traced path, called path perturbation. Some effects of displacement can287

be intuited. For example, if a subject has to reach over their head during the288
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Figure 6: Energetic cost of tracing with path perturbation Each of the nine paths has two
perturbations of 5 cm: left in blue, right in green. This main result shows that for both
averages across subject traces, the original path is always the least expensive.

trace, it can be expected that lowering the traced path would result in cost289

savings. For this reason, we chose path perturbations in the horizontal plane.290

Two such perturbations were used: a 5-centimeter leftward displacement and291

a 5-centimeter rightward displacement. Left and right are referenced to the292

coordinate system used for the four points used for all nine curves (See Fig 1).293

In this way, new constraints were produced as the dynamic model was294

required to trace the perturbed paths while the starting tracing positions295

were not changed. In contrast to the model perturbation, the model’s trace296

paths were shifted while the posture sequences remain the same.Again, the297

dynamic model took advantage of internal joint constraints to adjust original298
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posture sequences to trace the perturbed paths.299

Figure 6 shows the difference in average energetic costs for tracing dis-300

placed paths and original paths across subjects. The blue dots indicate the301

difference between motions of tracing left-shifted paths and motions of trac-302

ing the original path while the green dots represent the other case. For most303

cases, the original paths are seen to be consistent with the lowest cost. The304

path 2 with 5cm leftward displacement costs less than the original path 2.305

The reason is that subjects preferred to stand near the left corner which is306

the starting tracing point. However, the left part of path 2 is much easier307

than its right part (See Fig. 1). Therefore, when shifting the path 2 to left,308

subjects became closer to the right part, which led to an easier tracing. In309

contrast, subjects had to move their bodies more in order to trace properly310

when shifting path 2 to right.311

Here again, the overall result is striking. Although there are some over-312

laps, the original paths are more economical for almost all curves than the313

displacements. The significant test showed the effects of shitting paths is not314

very clear but still reliable, with a p-value less than 0.01. The observation315

that the averages of all the perturbed costs are larger than the average cost316

of their original progenitors strongly suggests that energy cost is the factor317

in the choice of tracing postures.318

Residual forces. Given the dynamics dichotomy, a natural question that319

arises concerns the magnitude of the extra torques in the perturbation cases.320

Are the extra costs carried by the dynamic model or the residual? It can be321
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Figure 7: Residual torques The average of the means of the cost changes for path 1 with
five repeats across five participants.

answered by interrogating the simulation, and it turns out that the dynamics322

model’s contribution is dominating. This is shown in Fig 7.323

Note that if the constraints on the dynamics were extremely stiff, then324

the model would have no course other than tracing an exact copy of the325

unperturbed trajectory and let the residual torques contribute the needed326

difference. However, the markers on the body for these experiments were327

limited to 15∼18 of key body segments, leaving the extra degrees of freedom328

to be determined by the dynamics. Moreover, the torque computation, to329

model the reality of muscles [44], used spring constraints at each joint degree330

of freedom. Finally, the right finger was required to contact the displaced331

paths, and the remaining features of the movement are the same, leaving the332
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dynamics to fill in the rest.333

Discussion334

Given that the cost of the movements is a significant fraction of a human’s335

caloric budget [45], one might expect that humans would exhibit common336

low-cost postures. It turns out to be the case for stereotypical situations337

such as reaching or walking on a planar surface, but arbitrary whole-body338

movements have been less studied, so the expectations are open. Thus it was339

a surprise to measure arbitrary movements in a large-scale tracing task and340

find markedly common posture sequences used by all tested subjects [17]. An341

obvious possibility for similar posture sequences is energetic cost, especially342

since there were no complex constraints in the movements and no constraints343

in the time to perform the traces. Our simulation extends the kinematic find-344

ing to show that tests of human dynamics provide evidence that movements345

are chosen on the basis of energetic economic costs. The cost of tracing346

scales monotonically with the length of a traced path as expected, and the347

necessary residual forces, as would be expected from the human’s vestibu-348

lar system and others, were relatively small, given that the subjects had to349

choose their movements.350

The main substantive results are that subjects’ traces of each of nine351

space paths all have minimal costs with respect to local perturbations. One352

manipulation introduced perturbations in their kinematic variables – the sub-353

jects traced the path but their model with small displacements in kinematic354
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markers. The other experiment used local horizontal displacements of the355

paths. Verticals were not used as they can be equivocal. The displacements356

can interact with the different body heights, e.g., a short subject has to reach357

an uncomfortable height. However, outside of this caveat, all the data can358

be interpreted as the tracing posture sequences selected based on energetic359

cost.360

The hypothesis that humans use minimum cost movement trajectories361

is shown by the use of a human dynamic model that leverages a major in-362

novation in dynamics computation that allows the recovery of torques from363

kinematic data. The disadvantage of the current method is that we perturbed364

motions manually, so it is possible that we found only a local minimum in the365

space of possible movements. However, as tracing a path usually takes more366

than 1000 frames and at each frame, there are 50 markers representing a pos-367

ture, the perturbation space is significantly vast. Therefore, our future work368

is to introduce an algorithm with the capability of seeking potential pertur-369

bations automatically, such as reinforcement learning, while still reflecting370

the constraints of possible postures.371

4. Methods372

4.1. Virtual tracing experiment373

The original kinematic data capture were collected from a virtual whole-374

body tracing experiment that was to elicit natural movements under common375

goals [17]. Subjects wore a virtual-reality helmet, Oculus Rift [46], to see a376
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virtual three dimensional interior room with a dojo backdrop via stereo video.377

They were required to trace a series of paths positioned at fixed locations378

in the virtual environment. The movements of their bodies and variables379

relevant to the tasks were simultaneously recorded using the PhaseSpace380

motion capture system [47]. The WorldViz Vizard software package [48]381

both controlled the virtual tracing protocol and the recording of the motion382

capture data. Fig. 8 shows the virtual environment setup. Fig. 1 shows the383

nine paths that subjects traced.384

Data pos-processing. For some frames the motion capture system is un-385

able to determine the 3-dimensional location of some markers, thus raw mo-386

tion capture data usually contains some segments of signal loss (dropouts).387

Dropouts are relatively infrequent in practice but can occur over significant388

temporal intervals, which makes linear interpolation a poor choice for recon-389

structing the raw motion capture data. In this experiment, trajectory-based390

singular value threshold was implemented to reconstruct missing marker data391

with a minimal impact on its statistical structure. The data for each subject392

was interpolated using a separate matrix completion model.393

In addition to the data interpolation process, if a participant did not394

trace the path successfully we would consider this tracing invalid and the395

data unusable. Because if a recording of a tracing trial failed, e.g., too many396

markers were off during a tracing, it will lead to extremely large joint torques,397

which is unrealistic.398
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(a) Before tracing (b) After tracing

(c) A subject doing the tracing task (d) The skeleton plot of the subject

Figure 8: the virtual environment setup. (a) shows a full view of a path, denoted by a
black path, and the starting position, denoted by a large white sphere. The small white
sphere on the path at the end of a red segment is the tracing target sphere. (b) depicts the
scene when a trial is finished. The green path is the actual tracing trajectory generated by
a subject. (c) illustrates a subject in the act of tracing a path in the laboratory’s motion
capture 2 x 2 x 2 meter volume. and (d) shows the lab coordinate system. The scale on
the graph is in meters. The the subject’s skeleton and the traced path in the 3D space
are plotted. The color dots correspond to a subset of the fifty active-pulse LED markers
on the suit and the virtual-reality helmet.
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4.2. Human dynamic model399

Model topology. To compute the energy cost of subjects tracing paths,400

we used our human dynamic model [25]. By replaying the virtual tracing401

experiment’s kinematic data, we can compute can the joints’ properties, e.g.402

torques and angles, at frame rates. The human dynamic model is built on403

top of the ODE physics engine [49]. It consists of a collection of rigid bodies404

connected by joint. Each joint connects two rigid bodies with anchor points405

(center of rotation) defined in the reference frame of both bodies. Fig. 9406

shows the number of body segments and topology of the human dynamic407

model.408

B

Joint Part 1 Part 2 DOF/joint Total DOF
Cervical Head Neck 3 3
Thoracic Neck Upper Torso 3 3
Lumbar Upper Torso Lower Torso 3 3
Sacral Lower Torso Pelvis 3 3
c.Clavicle Upper Torso c.Collar 3 6
c.Shoulder c.Collar c.Upper Arm 3 6
c.Elbow c.Upper Arm c.Lower Arm 2 4
c.Wrist c.Lower Arm c.Hand 2 4
c.Hip c.Pelvis c.Upper.Leg 3 6
c.Knee c.Upper Leg c.Lower Leg 2 4
c.Ankle c.Lower Leg c.Heel 2 4
c.Tarsal c.Heel c.Sesamoid 1 2

Figure 9: The 48 internal DOFModel A. Four ball-and-socket joints connect five body-
segments along the spine from the head to the waist. Ball-and-socket joints are also used
at the collar-bone, shoulder, and hip. B. A summary of the joints used in the model. c.
= chiral: there are two of each of these joints (left and right). Universal joints are used at
the elbows, wrists, knees, and ankles. Hinge joints connect the toes to the heels. All joints
limit the range of motion to angles plausible for human movement. Our model assumes
that joint DOFs summarize the effects of component muscles.
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Fig. 10 shows a user interface that allows the simulation of human move-409

ments via a multi-purpose graphical interface for analyzing movement data410

captured through interaction with the virtual environment. With this tool,411

it is possible to interactively fit a model to motion capture data, dynami-412

cally adjust parameters to test different effects, and visualize the results of413

kinematic and dynamic analysis, such as the example in Fig 11, which shows414

a four stages in a tracing sequence made originally by a participant of the415

virtual tracing experiment and recreated by applying the inverse dynamics416

method using this tool.417

Residual forces/torques. The energetic costs are derived from the inverse418

dynamics technique described in [25], which combines measured kinematics419

and external forces to calculate net joint torques in a rigid body linked seg-420

ment model. A feature of the dynamic method is that it can reduce potential421

errors, both in the matches of the motion capture suit and the model. Anal-422

ogous to the human body’s ligament structure to join joints, some leeway is423

allowed in the model joints in the integration process. Nonetheless, even after424

these adjustments, some errors remain. In the model, the main source of the425

residual forces is usually attributable inaccuracies in the matches between the426

motion capture suit makers and their match with their corresponding points427

on the model. This is commonly resolved by introducing ’residual forces,’428

which compensate for this problem [50]. This resolution with a dichotomy of429

forces is analogous to the human system, which combines feedforward lateral430

pathway forces with medial pathway feedback forces. Therefore, a low cost431
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Figure 10: Our analysis tools use the physics engine to compute inverse kinematics and
inverse dynamics. They also support various visualizations of relevant data and control
for analyzing and producing physically-based movements. The programmed parameters of
the model consist of its joints and its 3D marker positions. For example, the right column
represents the positions of the markers relative to their corresponding body segments, e.g.
the first row shows the information of marker1: 1) ”1” represents the marker index, 2)
”head” means marker 1 is attaching to the ”head” body segment, 3) the remaining three
float numbers are marker1’s relative position.

in residual forces usually implies that the dynamic model is a good match432

for that subject’s kinematic data.433

4.3. Energy cost computation434

The centerpiece of the analysis depends critically on the definition of a435

posture. At each frame, posture is defined as a vector of the joint torques436

and angles of each of N joints (N = 22 in our dynamic human model). The437

posture p at a frame is a 6n-dimensional column vector presenting the joints438
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(a) (b)

(c) (d)

Figure 11: Model capability illustration. Four points in a tracing sequence reproduced
with physics-engine-based inverse dynamics using recorded motion capture data from a
human subject.
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properties of the i th participant, thus439

p = [j1, j2, ..., jN] (1)

ji = (τi, ai) (2)

where τi = (τix , τiy , τiz) and ai = (aix , aiy , aiz) represents the torques and440

angles of the i th joint at a frame respectively and i = 1, 2, ..., N . For the441

joints which have less than three dimensions, e.g. hinge joints, universal442

Joints, the values at unused dimension were assigned zero.443

The power W of ith joint at a frame t is a scale and equals to the inner444

product of its torque τi and its angular velocity ωi, thus445

ωi(t) = ai(t) − ai(t− 1) (3)

Pi(t) = τi(t) · ωi(t) (4)

Therefore the power of a posture at frame t is presented as:446

W (t) =
N∑
i=1

Wi(t)

Assuming it takes a participant T frames to trace a path, then the total447

energy cost E of the participant tracing a path is:448
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W =
T∑
t=1

P (t)

The energy cost analysis is naturally organized into three separate stages.449

Initially, we analyze the subjects energy cost and residual torques of tracing450

path1 which is the simplest path. Next, we computed the tracing cost of all451

nine paths. To compare the energy cost of tracing a path across subjects, we452

computed the average energy cost for all five repeated traces of each subject.453

Finally, we measured the tracing cost of perturbed participant’s trajectories454

and perturbed paths.455
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