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7 Abstract

8 Humans have elegant bodies that allow gymnastics, piano playing, and
o tool use, but understanding how they do this in detail is difficult because
10 their musculoskeletal systems are extraordinarily complicated. Nonetheless,
u common movements like walking and reaching can be stereotypical, and a
12 very large number of studies have shown their movement cost a major factor.
13 In contrast, one might think that general movements are very individuated
1 and intractable, but a recent study has shown that in an arbitrary set of
15 whole-body movements used to trace large-scale closed curves, near-identical
16 posture sequences were chosen across different subjects, both in the average
17 trajectories of the body’s limbs and in the variance within trajectories. The
18 commonalities in that result motivate explanations for its generality. One
19 possibility could be that humans also choose trajectories that are economical
2 in energetic cost. To test this hypothesis, we situate the tracing data within
a1 a fifty degree of freedom dynamic model of the human skeleton that allows

2 the computation of movement cost. Comparing the model movement cost
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;3 data from nominal tracings against various perturbed tracings shows that
2 the latter are more energetically expensive, inferring that the original traces

»s  were chosen on the basis of minimum cost.

2 Keywords: Posture analysis, whole body movement, virtual tracing,

7 kinematic representation, movement variation costs
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s 1. Introduction

29 A general principle of human movement is that our nervous system should
» exhibit trajectories that are economical in energetic cost [1, 2]. It has been
a1 established for decades and has been well studied in simple movements. In lo-
2 comotion, there are a number of experiments showing that humans’ walking
13 speed [3], step frequency/length [4, 5, 6, 7, 8, 9, 10], step width [11, 12] are
s all corln particularrelated with the minimum metabolic cost, In particular,
55 energetic cost exhibits a U-shaped dependence on step frequency while walk-
5 ing at a constant speed [13, 8], and the minimum of the U-shape is consistent
;7 with the self-selected or preferred walking frequency. Furthermore, new ev-
;s idence [14, 15, 16] shows the system can adapt preferred gaits to minimize
3 energetic cost in response to varying loads.

40 Although the principle that humans’ self-selected trajectories or posture
s sequences are economical in energetic cost has been commonly shown in
2 the studies of simple single-behavior motions such as walking, running, and
s reaching, whether the principle is true for large-scale complex movements still
s meeds to be tested. Thus, we conducted a complex whole-body virtual tracing
s experiment [17] that aimed to learn the principles behind large-scale arbitrary
s  movements, particularly regarding variations between different subjects. We
# eschewed common movements such as reaching and walking [18; 19, 13] and
s also studies of small-scale grasping movements [20, 21].

49 In our study, a full-body virtual-reality tracing task elicited a series of

so human movement sequences [17]. At each trial, subjects freely chose their

3
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51 initial postures and were given no instructions on how to comport themselves
s during the tracing process. Participants were tracing three-dimensional space
53 curves at their preferred posture sequences and their postures were continu-
s« ously recorded using a motion-capture system. Specialized aggregation meth-
55 0ods were developed for data analysis that extracted similarities of posture
ss  sequences in the face of kinematic variations. The exciting and unsuspected
57 result was that both the movement’s posture sequences and kinematic vari-
ss ations showed striking commonalities across subjects. The obvious inference
so from the observed similarities of movements across different subjects is that
oo there must be some general principle for humans’ motion commonalities.
s1 'This regularity of movements across different subjects implies energetic cost
&2 should be similar. Moreover, these observations arise from the generally
&3 argued principle that the self-selected trajectories should be economical in
s« energetic cost. This argument is reinforced with by progress in the sparse
s coding of temporal sequences [22, 23| that strongly suggest that trajectories
s are remembered to obviate the difficulties of computing them online. In ad-
o7 dition, if movements are to be stored, the less expensive ones are likely to be
s preferred[24].

69 For the energetic cost computation, we took advantage of a forty-eight
70 degrees of freedom dynamic computational model capable of simulating, an-
7 alyzing, and synthesizing humanoid movements [25]. The model consists of
72 twenty-one body components connected by twenty joints and incorporates

73 several novel features. One innovation is that the joint connections are not
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72 treated as perfectly rigid constraints but rather as very stiff springs that hold
75 body parts together like tendons and muscles. The model allows computing
76 instantaneous power from the product of net joint torque and joint angular
77 velocity. The work performed at each joint was determined by numerically
7s integrating the instantaneous powers over the entire tracing task. In this
7o way, the energetic cost of human motions can be computed given motion
s capture data.

81 To test this hypothesis that the minimum energetic cost principle is still
&2 held in large-scale complex movements the costs of different subjects’ curve
&3 traces were computed and compared to the costs of tracing movements un-
sa der two different kinds of perturbations. In one, the tracing trajectories were
s slightly perturbed by shifting positions of a particular body part of the dy-
s namic model a small amount for the duration of the trace. In the other, the
&7 original tracing path was displaced in certain small increments prior to the
ss trace. The result of both of these kinds of perturbations was that their means
g0 of the energetic cost were higher than those of the original curve. In other
o words, the energetic cost exhibits a classical U-shape with respect to the dif-
a1 ferent posture sequences, with the minimum of the U-shape curve consistent
oo with the cost of the original posture traces, which our subjects self-selected.
o3 These results strongly suggest that that movement is selected on the basis of

o predicted minimum cost.
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s 2. Background

% In the past, a common way to address the minimum energetic cost prin-
o7 ciple was to conduct experiments comparing walking and running with many
e other strange and unpractised gaits [26, 27]. Nowadays, there are three
o commonly used methods to study energy optimization.

100 The most straightforward and frequently used method is to measure the
11 metabolic cost, e.g., subjects breath through a mouthpiece to measure oxygen
102 consumption rates (VO2). For example, subjects were required to walk under
w3 different circumstances, and the results showed that the metabolic cost was
s minimum while subjects walked at the condition which was ” comfortable” for
s them [3, 4, 5, 6, 14, 15, 16].The advantage of this method is that movements
s can be related directly to energetic cost, but the measuring apparatus is
w7 typically very constraining.

108 A common way to measure muscle co-activation and stiffness is to use
1o Electromyography (EMG). Huang et. al. huang2012reduction showed that
no that subjects’” metabolic cost is reduced during the learning process of arm
w  reaching tasks, and their muscle activities and co-activation would parallel
2 changes in metabolic power. However EMG measures just a correlate that
u3  needs additional modeling to turn it into a energetic cost.

114 A third energetic cost method, dynamic modelling, is to build a closed
us form analytical mechanics-based model and determine if the predicted min-
ue imum mechanical cost correlates with people’s kinematic preferences. For

u7 example, [7, 8, 9, 11] use an inverted pendulum model to predict the op-

6
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us timal step length and compare it with the subjects’ real step length while
ne  walking.

120 All these methods pose obstacles for our calculation of the energetic cost
1 of whole-body tracing movements collected from the VR experiment [17].
122 These methods are time-consuming, and the required configuration restricts
123 the variety of experiments. For example, the VO2 process does not work
124 for our virtual-reality tracing tasks as subjects need to wear the VR hel-
s met on their head, leaving little space for a mouthpiece. Besides, the EMG
s method measures muscle co-contraction, which is correlated with energetic
127 cost, rather than calculating the cost. Another possible way is to build
s a humanoid dynamic model. The method is the best way to imitate hu-
129 man movements, and it is widely used in biomedical engineering due to its
1o compliance with real-world physical rules. However, it has several critical
s limitations as well: 1) it is too difficult to model and control a complex
132 system, such as a whole human body. 2) it is challenging to represent ”kine-
133 matic loops”, such as postures that need both feet are on the ground. 3) for
14 large systems, the equations of motion in nested, rotating reference frames
135 become very complex, making them more challenging to approximate well.
s Due to the complexity and disadvantages of dynamic modeling method for
17 large complex systems, most of studies took advantages of two-dimensional
s models to study human part-body motions in the sagittal plane.

139 There are some methods of building a dynamic 2D bipedal robot by

1o modeling the whole-body with a skeleton of rigid segments connected with
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w1 joints. However, those methods over-simplify human bodies so that they can
12 only study simple single-behavior human movements. The simplest bipedal
13 robot uses three links to represent the torso and two legs in the sagittal
e plane [28, 29]. Five-link biped robots extend the model using two links
s to represent each leg [30, 31, 32, 33], while seven-link biped robots further
s extend it by adding feet to it [34, 35]. Furthermore, those methods have
17 many assumptions while studying human locomotion. For example, most
us researchers assume that when the swing leg contacts with the ground, an
1o instantaneous exchange of the biped support legs takes place. In this way, the
150 biped locomotion with single foot support can be considered as a successive
151 open loop of kinematic chain from the support point to the free ends, as
152 robot manipulators. Recently, 3D modeling of closed-form nodeling of biped
153 robots [36, 37] has been developed. However, they are still not sophisticated
154 enough compared with a real human body.

155 In the face of these complex challenges, a major alternate modeling route
156 is to forego the neural level of detail as well as one that features muscles
157 and model more abstract versions of the human system that still use multi-
155 ple degrees of freedom but summarize muscle effects through joint torques.
159 The computation of the dynamics of such multi-jointed systems recently has
1o also experienced significant advances. The foremost of these, use a kine-

11 matic plan to integrate the dynamic equations directly. Several different
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12 open source dynamic libraries exist, such as MuJoCo® [38], Bullet?, Havok?,
13 Open Dynamic Engine(ODE)?*, and PhysX®, but an evaluation by [39] found
1« them roughly comparable in capability, and only MuJoCo has been applied
165 to human modeling.

166 Our 48 degree of freedoms human dynamic model (HDM)® [25] also based
17 on a direct integration method. It was built on top of ODE which is the most
s commonly used dynamic library in robotic research area. The model has a
160 singular focus on human movement modeling and uses a unique approach to
o integrating the dynamic equations. A direct dynamics integration method
m to extracts torques from human subjects in real-time [40, 41, 42] using a
12 unifying spring constraint formalism.

173 These toques have two components. The major component is the one
s determined by the open-loop integration of Newton’s equations. These must
s be supplemented by a closed-loop set of “residual torques” to achieve accu-
e rate balance. This organization models the similar dichotomy in the human
177 System.

178 At each frame, instantaneous power was computed from the product of
7o the net joint torque and joint angular velocity. The work performed at each

1o joint was determined by numerically integrating the instantaneous powers

MuJoCo http://www.mujoco.org/

2Bullet https://pybullet.org/

3Havok https://www.havok.com/

40OpenDE: http://www.ode.org/

SPhysX: https://developer.nvidia.com/gameworks-physx-overview
6The HDM model: https://github.com/EmbodiedCognition/HDM_UI
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11 over the entire tracing task. In this way, given motion capture data, we can
1.2 compute the mechanical cost without building a humanoid biped robot with
183 motion equations. An extensive validation of this dynamic model appears
18 in [25]. Note that it is common to use mechanical measures of work to indicate
155 the metabolic energy consumption [43]. The “energetic cost” mentioned in
s the following sections means the mechanical cost.

187 While doing the virtual tracing experiment, subjects freely chose their
188 starting posture and were given no instructions on how to perform them-
19 selves. Therefore, participants were tracing curves at their preferred posture
w0 sequences. In other words, they traced curves under the conditions which
w1 were “comfortable” for them. According to the previous experiments [3, 4,
w2 5, 6, 14, 15, 16], we can expect that the energetic costs of movements with
103 those trajectories should be a minimum or at least locally minimum. To
104 support our conclusion, the cost of original virtual tracing movements and
15 perturbed movements were computed and compared using the human dy-
s namic model. As expected, the energetic cost always exhibits a U-shape
17 while tracing using different postures sequences, with the minimum of the
108 U-shape curve consistent with the original posture traces, which our subjects
109 self-selected. In this way, we are able to demonstrate the energetic cost of
200 original trajectories is a local minimum. The focus of the method section

201 describes experimental protocol in more detail.

10
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3. Results

Using the kinematic curve tracing data from [17], we fitted the dynamic

model to each of the eighteen subjects and then had the models trace the

nine curves that are shown in Fig. 1. The energy cost of tracing paths showed

marked regularities in the following aspects of the data that was subject to

the following analysis summary:
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Figure 1: The nine 3-dimensional paths in the virtual environment that were
used in the experiment. They are ordered by their complexity. For reference, colors
denote common segments and points. For the subjects, the paths were all rendered in

black, The scale is in meters.
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208 1. The joints’ power allocation while tracing path 1 across different sub-
200 jects showed that although the total costs of the movements varied
210 between subjects, the power use is qualitatively very similar. (See sec-
o1 tion 3.1, Figure 2);

212 2. The computation of average energy cost while tracing path 1 showed
213 the magnitude of the required residual forces were relatively small. (See
214 section 3.1, Figure 3);

215 3. The costs of tracing each path by each subject are very similar and
216 approximately monotonic with the length of paths. (See section 3.2
217 and Figure 4);

218 4. Although there are variations in the cost across the repeated traces,
219 the cost of using the perturbed model parameters is significantly higher
220 than the original. (See See section 3.2, Figure 5 Figure 6);

221 5. The increment of energy cost while using perturbed model parameters
22 distributes more on the joints’ cost than on the residual component.
223 (See section 3.2 and Figure 7);

24 3.1. Detailed Energetic cost analysis of tracing pathl

»s The mean of power across different participants. As an initial anal-
26 ysis, we established the variations in the energetic costs for tracing path 1
27 exhibited by different subjects. Fig. 2 illustrates the mean and the standard

28 deviation of powers across subjects at each frame. The result reveals that

12
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29 subjects put similar effort at the same points along the path. Thus although
220 the total cost of the movements may vary between subjects, the power pat-
a1 terns are qualitatively very similar. The VR experiment [17] showed partic-
22 ipants used similar postures sequences while tracing the same curves from a
213 kinematic perspective. It is expected that the instantaneous power of joints
2 at each frame should be similar as well due to the skeleton constraints of
235 the human body. The similarity of power patterns across different subjects

236 reinforces this conclusion from a dynamics perspective.

—— mean_power
10

Power (Watt)
()]

0 50 100 150 200 250 300 350
Frames

Figure 2: The power of tracing pathl at each frame Nine subjects traced pathl five
times. The plot shows the average joints’ power at each frame across subjects. The blue
line indicates the mean and the gray shaded area represents the standard deviation of
powers. The small standard deviation means that different subjects had similar power
patterns while tracing the same curve, which shows that the curve has points of difficulty
in tracing shared by the subjects. Path 1 is the most straightforward, but the observation
of correlated effort represents patterns in tracing other curves.

13
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27 Average energy cost of five repetitions. Although there are qualitative
238 similarities in the difficult points on the curve, the total costs of the traces
230 differ across different subjects. This result is expected due to the variety of
20 subjects’ skeletons and weights. Fig. 3 represents the energetic cost per sub-
2 ject. The total energy of tracing a pathl, including the residual components,
22 18 shown in blue, and the residual component is shown separately in orange.
23 When reporting the energetic costs of the traces, we always use the total cost

24 shown here in blue.

I Total Work
60071 mmm Residual Work 587

503
464

SN
o
o

351

285 267 296

246

Energy (J)

Figure 3: Energetic costs of tracing path 1 Each subject traced path 1 with five repeats.
The horizontal labels indicate the related subjects, e.g., ”S1” represents the subjectl. The
total cost is shown in blue, and the portion of that cost due to residual forces are shown in
orange. A low cost in residual torque usually signifies that the dynamic model is a good
match for that subject’s kinematic data.

2#s Residual forces. As shown in Fig. 3, the highest cost of the tracing move-
s ment is the component owing to the joint torques that are producing the

27 kinetic trajectories, and the additional cost of the residual from the inverse

14
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2s  dynamic calculation is small. In the human system, this residual is most
29 prominently due to the vestibular system, but just how the vestibular con-
0 nects to the muscular system is not modeled by the human dynamic model.
1 Instead, we implemented a provisional system of torques referred to as a co-

252 ordinate system positioned and the center of mass to maintain balance [25].

w3 3.2. Energy cost analysis of tracing individual paths

x4 Energy cost of tracing nine paths. Although there are similar energetic
5 costs per subject in tracing a same path, this arrangement does not carry
6 over to the comparison between paths, which has larger differences. We
»s7  hypothesized that the cost should scale as the length of the path, as shown
s in Fig. 4, which shows the average energetic cost of tracing the nine different
9 paths. The paths differ in tracing cost, but the costs of tracing each path by
x%0 each subject are very similar and approximately monotonic with the length
»1  of the paths.

262 Given these regularities, the next step was to evaluate the significance of
»%3 perturbations in the tracing protocol. The hypothesis is that if the tracing
x4 postures are chosen to be of minimum energy, changing the configuration
s away from the original tracing situation should incur a cost, which was what

26 happened.

7 Model perturbation. The first perturbation test changed in model marker
x%s trajectories, called model perturbation. Specifically, the right elbow marker

0 was shifted by a small delta, which produced a new constraint that the model

15
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Figure 4: Cost of tracing nine paths These results portray the possibility that the costs
vary across the best-fit five subjects. The statistics show that each path traced has a
unique cost that distinguishes it from the rest.

a0 needed to satisfy while tracing paths. To implement it, the dynamic model
on had to trace paths using the same posture sequences except for lifting its
o2 right elbow. Although kinematics of the body parts except the right elbow
a3 remained for the unperturbed trace — only the kinematics of the right elbow
o changed, the joints’ constraints bias the dynamic model adapt to follow the
a5 new perturbed trace.

276 For each trace, the right elbow marker was raised by 5 cm. The rest of
o the system adapted the way dictated by the dynamic constraints. Fig. 5
as shows the difference in cost of constrained motions and original motions.

279 It is seen that although there are variations in the cost across the repeated

16
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280 traces, the cost of using the perturbed model is higher than the original. Note
21 that outside of the changes, the rest of the model solves the inverse dynamic
252 model with the unperturbed parameters, and thus the model has substantial
23 degrees of freedom at its proposal. The significant test showed the difference
2ss 1S reliable, with a p-value less than 0.001. Furthermore, it is obvious that the

285 increase of tracing complex paths is larger than that of tracing simple paths.
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Figure 5: Energetic cost of tracing with model perturbation Energetic cost of tracing each
of the nine paths with perturbations in the right elbow marker. The elbow was moved up
5cm. This shows that for all the paths and the averages across subject tracers, the original
path is always the least expensive. Moreover, the differences between the energetic costs
of original trajectories and perturbed trajectories are highly significant.

26 Path perturbation. The second perturbation test made adjustments in
27 the traced path, called path perturbation. Some effects of displacement can

28 be intuited. For example, if a subject has to reach over their head during the

17
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Figure 6: Energetic cost of tracing with path perturbation Each of the nine paths has two
perturbations of 5 cm: left in blue, right in green. This main result shows that for both
averages across subject traces, the original path is always the least expensive.

280 trace, it can be expected that lowering the traced path would result in cost
200 savings. For this reason, we chose path perturbations in the horizontal plane.
21 Two such perturbations were used: a 5-centimeter leftward displacement and
22 a H-centimeter rightward displacement. Left and right are referenced to the
203 coordinate system used for the four points used for all nine curves (See Fig 1).
204 In this way, new constraints were produced as the dynamic model was
205 required to trace the perturbed paths while the starting tracing positions
206 were not changed. In contrast to the model perturbation, the model’s trace
207 paths were shifted while the posture sequences remain the same.Again, the

208 dynamic model took advantage of internal joint constraints to adjust original
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209 posture sequences to trace the perturbed paths.

300 Figure 6 shows the difference in average energetic costs for tracing dis-
s placed paths and original paths across subjects. The blue dots indicate the
w2 difference between motions of tracing left-shifted paths and motions of trac-
53 ing the original path while the green dots represent the other case. For most
s cases, the original paths are seen to be consistent with the lowest cost. The
s path 2 with bem leftward displacement costs less than the original path 2.
6 The reason is that subjects preferred to stand near the left corner which is
37 the starting tracing point. However, the left part of path 2 is much easier
s than its right part (See Fig. 1). Therefore, when shifting the path 2 to left,
300 subjects became closer to the right part, which led to an easier tracing. In
s contrast, subjects had to move their bodies more in order to trace properly
su  when shifting path 2 to right.

312 Here again, the overall result is striking. Although there are some over-
a3 laps, the original paths are more economical for almost all curves than the
s displacements. The significant test showed the effects of shitting paths is not
a5 very clear but still reliable, with a p-value less than 0.01. The observation
a6 that the averages of all the perturbed costs are larger than the average cost
siz - of their original progenitors strongly suggests that energy cost is the factor

sis in the choice of tracing postures.

sis Residual forces. Given the dynamics dichotomy, a natural question that
20 arises concerns the magnitude of the extra torques in the perturbation cases.

s1 Are the extra costs carried by the dynamic model or the residual? It can be

19
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Figure 7: Residual torques The average of the means of the cost changes for path 1 with
five repeats across five participants.

522 answered by interrogating the simulation, and it turns out that the dynamics
23 model’s contribution is dominating. This is shown in Fig 7.

324 Note that if the constraints on the dynamics were extremely stiff, then
15 the model would have no course other than tracing an exact copy of the
1 unperturbed trajectory and let the residual torques contribute the needed
27 difference. However, the markers on the body for these experiments were
18 limited to 15~18 of key body segments, leaving the extra degrees of freedom
29 to be determined by the dynamics. Moreover, the torque computation, to
30 model the reality of muscles [44], used spring constraints at each joint degree
s of freedom. Finally, the right finger was required to contact the displaced

;2 paths, and the remaining features of the movement are the same, leaving the

20
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;3 dynamics to fill in the rest.

s Discussion

335 Given that the cost of the movements is a significant fraction of a human’s
13 caloric budget [45], one might expect that humans would exhibit common
37 low-cost postures. It turns out to be the case for stereotypical situations
;s such as reaching or walking on a planar surface, but arbitrary whole-body
;30 movements have been less studied, so the expectations are open. Thus it was
s & surprise to measure arbitrary movements in a large-scale tracing task and
s find markedly common posture sequences used by all tested subjects [17]. An
s2  obvious possibility for similar posture sequences is energetic cost, especially
us  since there were no complex constraints in the movements and no constraints
s4 in the time to perform the traces. Our simulation extends the kinematic find-
us  ing to show that tests of human dynamics provide evidence that movements
us are chosen on the basis of energetic economic costs. The cost of tracing
a7 scales monotonically with the length of a traced path as expected, and the
us  necessary residual forces, as would be expected from the human’s vestibu-
a9 lar system and others, were relatively small, given that the subjects had to
0 choose their movements.

351 The main substantive results are that subjects’ traces of each of nine
2 space paths all have minimal costs with respect to local perturbations. One
;3 manipulation introduced perturbations in their kinematic variables — the sub-

34 jects traced the path but their model with small displacements in kinematic

21
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55 markers. The other experiment used local horizontal displacements of the
16 paths. Verticals were not used as they can be equivocal. The displacements
57 can interact with the different body heights, e.g., a short subject has to reach
s an uncomfortable height. However, outside of this caveat, all the data can
0 be interpreted as the tracing posture sequences selected based on energetic
360 COSt.

361 The hypothesis that humans use minimum cost movement trajectories
s2 1S shown by the use of a human dynamic model that leverages a major in-
33 novation in dynamics computation that allows the recovery of torques from
s kinematic data. The disadvantage of the current method is that we perturbed
s motions manually, so it is possible that we found only a local minimum in the
w6 space of possible movements. However, as tracing a path usually takes more
s7 than 1000 frames and at each frame, there are 50 markers representing a pos-
s ture, the perturbation space is significantly vast. Therefore, our future work
w0 1S to introduce an algorithm with the capability of seeking potential pertur-
s bations automatically, such as reinforcement learning, while still reflecting

sn  the constraints of possible postures.

sz 4. Methods

sz 4.1. Vartual tracing experiment

374 The original kinematic data capture were collected from a virtual whole-
ss  body tracing experiment that was to elicit natural movements under common

ws goals [17]. Subjects wore a virtual-reality helmet, Oculus Rift [46], to see a

22
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sr7 - virtual three dimensional interior room with a dojo backdrop via stereo video.
s They were required to trace a series of paths positioned at fixed locations
s9 in the virtual environment. The movements of their bodies and variables
0 relevant to the tasks were simultaneously recorded using the PhaseSpace
31 motion capture system [47]. The WorldViz Vizard software package [48]
2 both controlled the virtual tracing protocol and the recording of the motion
;3 capture data. Fig. 8 shows the virtual environment setup. Fig. 1 shows the

;¢ nine paths that subjects traced.

;s Data pos-processing. For some frames the motion capture system is un-
;6 able to determine the 3-dimensional location of some markers, thus raw mo-
w7 tion capture data usually contains some segments of signal loss (dropouts).
;s Dropouts are relatively infrequent in practice but can occur over significant
;0 temporal intervals, which makes linear interpolation a poor choice for recon-
30 structing the raw motion capture data. In this experiment, trajectory-based
so1  singular value threshold was implemented to reconstruct missing marker data
;2 with a minimal impact on its statistical structure. The data for each subject
33 was interpolated using a separate matrix completion model.

304 In addition to the data interpolation process, if a participant did not
35 trace the path successfully we would consider this tracing invalid and the
w6 data unusable. Because if a recording of a tracing trial failed, e.g., too many
;7 markers were off during a tracing, it will lead to extremely large joint torques,

308 which is unrealistic.
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(c) A subject doing the tracing task (d) The skeleton plot of the subject

Figure 8: the virtual environment setup. (a) shows a full view of a path, denoted by a
black path, and the starting position, denoted by a large white sphere. The small white
sphere on the path at the end of a red segment is the tracing target sphere. (b) depicts the
scene when a trial is finished. The green path is the actual tracing trajectory generated by
a subject. (c) illustrates a subject in the act of tracing a path in the laboratory’s motion
capture 2 x 2 x 2 meter volume. and (d) shows the lab coordinate system. The scale on
the graph is in meters. The the subject’s skeleton and the traced path in the 3D space
are plotted. The color dots correspond to a subset of the fifty active-pulse LED markers
on the suit and the virtual-reality helmet.
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s 4.2. Human dynamic model

w0 Model topology. To compute the energy cost of subjects tracing paths,
s we used our human dynamic model [25]. By replaying the virtual tracing
w2 experiment’s kinematic data, we can compute can the joints’ properties, e.g.
w3 torques and angles, at frame rates. The human dynamic model is built on
ws  top of the ODE physics engine [49]. It consists of a collection of rigid bodies
w05 connected by joint. Each joint connects two rigid bodies with anchor points
ws (center of rotation) defined in the reference frame of both bodies. Fig. 9

a7 shows the number of body segments and topology of the human dynamic

a8 model.
B
Joint Part 1 Part 2 DOF /joint Total DOF
Cervical Head Neck 3 3
Thoracic Neck Upper Torso 3 3
Lumbar Upper Torso  Lower Torso 3 3
Sacral Lower Torso  Pelvis 3 3
c.Clavicle  Upper Torso  c.Collar 3 6
c.Shoulder  c.Collar c.Upper Arm 3 6
c.Elbow c.Upper Arm  c.Lower Arm 2 4
c.Wrist c.Lower Arm  c.Hand 2 4
c.Hip c.Pelvis c.Upper.Leg 3 6
c.Knee c.Upper Leg  c.Lower Leg 2 4
c.Ankle c.Lower Leg  c.Heel 2 4
c.Tarsal c.Heel c.Sesamoid 1 2

Figure 9: The 48 internal DOFModel A. Four ball-and-socket joints connect five body-
segments along the spine from the head to the waist. Ball-and-socket joints are also used
at the collar-bone, shoulder, and hip. B. A summary of the joints used in the model. c.
= chiral: there are two of each of these joints (left and right). Universal joints are used at
the elbows, wrists, knees, and ankles. Hinge joints connect the toes to the heels. All joints
limit the range of motion to angles plausible for human movement. Our model assumes
that joint DOFs summarize the effects of component muscles.
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409 Fig. 10 shows a user interface that allows the simulation of human move-
a0 ments via a multi-purpose graphical interface for analyzing movement data
an captured through interaction with the virtual environment. With this tool,
a2 it is possible to interactively fit a model to motion capture data, dynami-
a3 cally adjust parameters to test different effects, and visualize the results of
a2 kinematic and dynamic analysis, such as the example in Fig 11, which shows
a5 a four stages in a tracing sequence made originally by a participant of the
a6 virtual tracing experiment and recreated by applying the inverse dynamics

a7 method using this tool.

ss  Residual forces/torques. The energetic costs are derived from the inverse
s dynamics technique described in [25], which combines measured kinematics
a0 and external forces to calculate net joint torques in a rigid body linked seg-
w21 ment model. A feature of the dynamic method is that it can reduce potential
w22 errors, both in the matches of the motion capture suit and the model. Anal-
223 ogous to the human body’s ligament structure to join joints, some leeway is
24 allowed in the model joints in the integration process. Nonetheless, even after
w5 these adjustments, some errors remain. In the model, the main source of the
a6 residual forces is usually attributable inaccuracies in the matches between the
227 motion capture suit makers and their match with their corresponding points
w8 on the model. This is commonly resolved by introducing ’residual forces,’
20 which compensate for this problem [50]. This resolution with a dichotomy of
w0 forces is analogous to the human system, which combines feedforward lateral

a1 pathway forces with medial pathway feedback forces. Therefore, a low cost
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Figure 10: Our analysis tools use the physics engine to compute inverse kinematics and
inverse dynamics. They also support various visualizations of relevant data and control
for analyzing and producing physically-based movements. The programmed parameters of
the model consist of its joints and its 3D marker positions. For example, the right column
represents the positions of the markers relative to their corresponding body segments, e.g.
the first row shows the information of markerl: 1) ”1” represents the marker index, 2)
"head” means marker 1 is attaching to the "head” body segment, 3) the remaining three
float numbers are markerl’s relative position.

132 in residual forces usually implies that the dynamic model is a good match

a3 for that subject’s kinematic data.

s 4.3. Energy cost computation

435 The centerpiece of the analysis depends critically on the definition of a
a6 posture. At each frame, posture is defined as a vector of the joint torques
s and angles of each of N joints (N = 22 in our dynamic human model). The

18 posture p at a frame is a 6n-dimensional column vector presenting the joints
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Figure 11: Model capability illustration. Four points in a tracing sequence reproduced
with physics-engine-based inverse dynamics using recorded motion capture data from a
human subject.
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a0 properties of the i th participant, thus

pP= [j17j27"'7jN] (1>
ji= (1, &) (2)
440 where 7; = (7;,,7;,,7:,) and a; = (a;,, a;,, a;,) represents the torques and

w1 angles of the ¢ th joint at a frame respectively and ¢ = 1,2,..., N. For the
w2 joints which have less than three dimensions, e.g. hinge joints, universal
w3 Joints, the values at unused dimension were assigned zero.

444 The power W of i;h joint at a frame ¢ is a scale and equals to the inner

as  product of its torque 7; and its angular velocity w;, thus

wi(t) = a;(t) —as(t — 1) (3)
Bi(t) = 7i(t) - wi(t) (4)
446 Therefore the power of a posture at frame t is presented as:
N
W(t) =Y Wi(t)
i=1
aa7 Assuming it takes a participant T frames to trace a path, then the total

us energy cost F of the participant tracing a path is:
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The energy cost analysis is naturally organized into three separate stages.
Initially, we analyze the subjects energy cost and residual torques of tracing
pathl which is the simplest path. Next, we computed the tracing cost of all
nine paths. To compare the energy cost of tracing a path across subjects, we
computed the average energy cost for all five repeated traces of each subject.
Finally, we measured the tracing cost of perturbed participant’s trajectories

and perturbed paths.

Acknowledgments

This research was supported by National Science Foundation grant CNS1446578
and National Institutes of Health RO1 RR09283.

Declaration of Interests

The authors have no financial or personal relationships with other people
or organizations that could inappropriately influence their work. The authors

declare no competing interests.

References

[1] Wolpert DM. Computational approaches to motor control. Trends in

cognitive sciences. 1997;1(6):209-216.

30


https://doi.org/10.1101/2020.12.29.424756
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424756; this version posted April 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ws [2] Todorov E. Optimality principles in sensorimotor control. Nature neu-

a67 roscience. 2004;7(9):907-915.

ws [3] Ralston HJ. FEnergy-speed relation and optimal speed during level
469 walking. Internationale Zeitschrift fiir Angewandte Physiologie Ein-

470 schliesslich Arbeitsphysiologie. 1958;17(4):277-283.

m  [4] Cotes J, Meade F. The energy expenditure and mechanical energy de-

a2 mand in walking. Ergonomics. 1960;3(2):97-119.

a3 [b] Zarrugh M, Todd F, Ralston H. Optimization of energy expenditure
ara during level walking. European journal of applied physiology and occu-

475 pational physiology. 1974;33(4):293-306.

ws [6] Cavanagh PR, Williams KR. The effect of stride length variation on
ar7 oxygen uptake during distance running. Medicine and science in sports

a78 and exercise. 1982;14(1):30.

wo  [7] Holt KG, Hamill J, Andres RO. Predicting the minimal energy costs
480 of human walking. Medicine and science in sports and exercise.

a1 1991;23(4):491-498.

s [8] Minetti AE, Capelli C, Zamparo P, di Prampero PE, Saibene F. Ef-

483 fects of stride frequency on mechanical power and energy expenditure of
484 walking. Medicine and Science in Sports and Exercise. 1995;27(8):1194
485 1202.

31


https://doi.org/10.1101/2020.12.29.424756
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424756; this version posted April 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s 9] Donelan JM, Kram R, Kuo AD. Mechanical work for step-to-step tran-
a87 sitions is a major determinant of the metabolic cost of human walking.

488 Journal of Experimental Biology. 2002;205(23):3717-3727.

0 [10] Umberger BR, Martin PE. Mechanical power and efficiency of level
490 walking with different stride rates. Journal of Experimental Biology.

2007;210(18):3255-3265.

w2 [11] Maxwell Donelan J, Kram R, Arthur D K. Mechanical and metabolic

493 determinants of the preferred step width in human walking. Pro-
404 ceedings of the Royal Society of London Series B: Biological Sciences.
495 2001;268(1480):1985-1992.

ws [12] Arellano CJ, Kram R. The effects of step width and arm swing on ener-
a07 getic cost and lateral balance during running. Journal of biomechanics.

8 2011;44(7):1291-1295.

w90 [13] Zarrugh M, Radcliffe C. Predicting metabolic cost of level walking.
500 European Journal of Applied Physiology and Occupational Physiology.
so1 1978;38(3):215-223.

s [14] Selinger JC, O’Connor SM, Wong JD, Donelan JM. Humans can con-
503 tinuously optimize energetic cost during walking. Current Biology.

2015:25(18):2452-2456.

sos [15] Sanchez N, Park S, Finley JM. Evidence of energetic optimization during

32


https://doi.org/10.1101/2020.12.29.424756
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424756; this version posted April 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

506 adaptation differs for metabolic, mechanical, and perceptual estimates

507 of energetic cost. Scientific Reports. 2017;7(1):1-14.

ss  [16] Wong JD, Selinger JC, Donelan JM. Is natural variability in gait suf-
500 ficient to initiate spontaneous energy optimization in human walking?

510 Journal of neurophysiology. 2019;121(5):1848-1855.

su [17] Liu L, Johnson L, Zohar O, Ballard DH. Humans Use Similar Posture
512 Sequences in a Whole-Body Tracing Task. Iscience. 2019;19:860-871.

sis [18] Flash T, Henis E. Arm trajectory modifications during reaching towards

514 visual targets. Journal of cognitive Neuroscience. 1991;3(3):220-230.

sis [19] Flash T, Hogan N. The coordination of arm movements: an ex-

516 perimentally confirmed mathematical model. Journal of neuroscience.

1985;5(7):1688-1703.

sis [20] Bongers RM, Zaal FT, Jeannerod M. Hand aperture patterns in pre-

510 hension. Human movement science. 2012;31(3):487-501.

s0 [21] Smeets JB, Martin J, Brenner E. Similarities between digits’ move-

521 ments in grasping, touching and pushing. Experimental brain research.

522 2010;203(2)1339*346.

23 [22] Olshausen BA, Field DJ. Emergence of simple-cell receptive field
524 properties by learning a sparse code for natural images. Nature.

525 1996;381(6583):607-609.

33


https://doi.org/10.1101/2020.12.29.424756
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424756; this version posted April 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s [23] Olshausen BA, Field DJ. Sparse coding with an overcomplete basis set:
527 A strategy employed by V1?7 Vision research. 1997;37(23):3311-3325.

s [24] Wolpert DM, Ghahramani Z, Jordan MI. Are arm trajectories planned
529 in kinematic or dynamic coordinates? An adaptation study. Experi-

530 mental brain research. 1995;103(3):460-470.

sn  [25] Liu L, Cooper J, Ballard D. Computational Modeling: Human Dynamic
532 Model. bioRxiv. 2020.

s [26] Margaria R. Biomechanics and energetics of muscular exercise. Oxford

534 University Press, USA; 1976.

s [27] Hoyt DF, Taylor CR. Gait and the energetics of locomotion in horses.
536 Nature. 1981;292(5820):239-240.

s [28] Lee TT. Trajectory planning and control of a 3-link biped robot. In:
538 Proceedings. 1988 IEEE International Conference on Robotics and Au-
539 tomation. IEEE; 1988. p. 820-823.

so [29] Celikovsky S, Anderle M. Stable walking gaits for a three-link pla-

541 nar biped robot with two actuators based on the collocated virtual
542 holonomic constraints and the cyclic unactuated variable. IFAC-
543 PapersOnLine. 2018;51(22):378-385.

sa [30] Mu X, Wu Q. Synthesis of a complete sagittal gait cycle for a five-link
545 biped robot. Robotica. 2003;21(5):581-587.

34


https://doi.org/10.1101/2020.12.29.424756
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424756; this version posted April 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

si6 [31] Mu X, Wu Q. Sagittal gait synthesis for a five-link biped robot. In:
547 Proceedings of the 2004 American Control Conference. vol. 5. IEEE;
548 2004. p. 4004-4009.

se0 [32] Mu X. Dynamics and Motion Regulation of a Five-link Biped Robot

550 Walking in the sagittal plane. 2005.

ss1 [33] Krishchenko A, Tkachev S, Fetisov D. Planar walking control for
552 a five-link biped robot. Computational Mathematics and Modeling.
553 2007;18(2):176-191.

s+ [34] Mousavi PN, Bagheri A. Mathematical simulation of a seven link biped
555 robot on various surfaces and ZMP considerations. Applied Mathemat-

556 ical Modelling. 2007;31(1):18-37.

ss7 [35] Bajrami X, Murturi I. Kinematic Model of the seven link biped robot.
558 [JMET. 2017;8(2):454-462.

ss0 [36] Grizzle JW, Chevallereau C, Ames AD, Sinnet RW. 3D bipedal robotic
560 walking: models, feedback control, and open problems. IFAC Proceed-

561 ings Volumes. 2010;43(14):505-532.

s [37] Khusainov R, Shimchik I, Afanasyev I, Magid E. 3D modelling of biped

563 robot locomotion with walking primitives approach in simulink envi-
564 ronment. In: Informatics in Control, Automation and Robotics 12th
565 International Conference, ICINCO 2015 Colmar, France, July 21-23,
566 2015 Revised Selected Papers. Springer; 2016. p. 287-304.

35


https://doi.org/10.1101/2020.12.29.424756
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424756; this version posted April 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

sev [38] Todorov E, Erez T, Tassa Y. Mujoco: A physics engine for model-based
568 control. In: 2012 IEEE/RSJ International Conference on Intelligent

569 Robots and Systems. IEEE; 2012. p. 5026-5033.

s0 [39] Erez T, Tassa Y, Todorov E. Simulation tools for model-based robotics:

571 Comparison of bullet, havok, mujoco, ode and physx. In: 2015 IEEE in-
572 ternational conference on robotics and automation (ICRA). IEEE; 2015.
573 p. 4397-4404.

s [40] Johnson L, Ballard DH. Efficient codes for inverse dynamics during
575 walking. In: Twenty-Eighth AAATI Conference on Artificial Intelligence.
576 Citeseer; 2014. .

s7 [41] Cooper JL, Ballard D. Realtime, physics-based marker following. In:
578 International Conference on Motion in Games. Springer; 2012. p. 350

579 361.

se0 [42] Cooper JL. Analysis and synthesis of bipedal humanoid movement: a

581 physical simulation approach. 2013.

se2  [43] Burdett RG, Skrinar GS, Simon SR. Comparison of mechanical work
583 and metabolic energy consumption during normal gait. Journal of or-

584 thopaedic research. 1983;1(1):63-72.

sss  [44] Hogan N. The mechanics of multi-joint posture and movement control.

586 Biological cybernetics. 1985;52(5):315-331.

36


https://doi.org/10.1101/2020.12.29.424756
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424756; this version posted April 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

587

588

589

590

591

592

593

594

595

596

597

598

[45]

[46]

[47]

[48]

[49]

[50]

available under aCC-BY-NC-ND 4.0 International license.

Nelson WL. Physical principles for economies of skilled movements.

Biological cybernetics. 1983;46(2):135-147.

Desai PR, Desai PN, Ajmera KD, Mehta K. A review paper on oculus

rift-a virtual reality headset. arXiv preprint arXiv:14081173. 2014.

PhaseSpace 1. phaseSpace Motion Capture; 1994. Available from:

https://www.phasespace.con/.

WorldViz. Vizard 3 [Computer Software|(Version 3). WorldViz Santa
Barbara, CA; 2010.

Smith R, et al. Open dynamics engine. 2005.

Faber H, Van Soest AJ, Kistemaker DA. Inverse dynamics of mechanical
multibody systems: An improved algorithm that ensures consistency

between kinematics and external forces. PloS one. 2018;13(9):e0204575.

37


https://www.phasespace.com/
https://doi.org/10.1101/2020.12.29.424756
http://creativecommons.org/licenses/by-nc-nd/4.0/

	1 Introduction
	2 Background
	3 Results
	3.1 Detailed Energetic cost analysis of tracing path1
	3.2 Energy cost analysis of tracing individual paths

	4 Methods
	4.1  Virtual tracing experiment
	4.2 Human dynamic model
	4.3 Energy cost computation


