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 1 

ABSTRACT 27 

An enduring neuroscientific debate concerns the extent to which neural representation is 28 

restricted to neural populations specialized for particular domains of perceptual input, or 29 

distributed outside of highly selective populations as well. A critical level for this debate is the 30 

neural representation of the identity of individual images, such as individual-level face or written 31 

word recognition. Here, intracranial recordings throughout ventral temporal cortex across 17 32 

human subjects were used to assess the spatiotemporal dynamics of individual word and face 33 

processing within and outside regions strongly selective for these categories of visual 34 

information. Individual faces and words were first discriminable primarily only in strongly 35 

selective areas, beginning at about 150 milliseconds after word or face onset, and then 36 

discriminable both within and outside strongly selective areas approximately 170 milliseconds 37 

later. Regions of ventral temporal cortex that were and were not strongly selective both 38 

contributed non-redundant information to the discrimination of individual images. These results 39 

can reconcile previous results endorsing disparate poles of the domain specificity debate by 40 

highlighting the temporally segregated contributions of different functionally defined cortical 41 

areas to individual level representations. This work supports a dynamic model of neural 42 

representation characterized by successive domain-specific and distributed processing stages. 43 

  44 
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INTRODUCTION 45 

A key debate regarding the architecture of the cortex concerns the extent to which diagnostic 46 

aspects of stimuli are processed within domain-specific cortical populations (Kanwisher et al., 47 

1997; Martin, 2007; Fodor, 1983), or if processing is also distributed outside of highly selective 48 

neural populations (Haxby et al., 2001; Op de Beeck, 2008). On one hand, an extensive body of 49 

primate single unit recordings (Perrett et al., 1984; Tsao et al., 2006), human neuroimaging 50 

(Kanwisher et al., 1997; Puce et al., 1996), stimulation (Puce et al., 1999; Hirshorn et al., 2016; 51 

Afraz et al., 2006; Pitcher et al., 2007; Schalk et al., 2017), and lesion (Farah et al., 1995; 52 

Hirshorn et al., 2016; Gaillard et al., 2006) data suggests that perception is causally related to the 53 

activity within systems of cortical populations that respond selectively to preferred stimulus 54 

categories. Conversely, the distributed representation hypothesis is supported by evidence from 55 

both neuroimaging and single unit recordings that shows reliable face differentiation in weakly 56 

or non- face-selective populations (Haxby et al, 2001; Bell et al., 2011) and differentiation of 57 

non-face categories within face selective populations (Kiani et al., 2007; Cukur et al., 2013; 58 

Hanson & Schmidt, 2011).  59 

Across these hypotheses, a central point of debate concerns the role of activity evoked by 60 

stimuli outside of highly selective parts of VTC (e.g. face-related activity outside of highly face 61 

selective populations) and activity evoked by “other” stimuli inside parts of VTC selective for 62 

particular categories of stimuli (e.g. non-face activity in face selective populations). A critical 63 

tension between the aforementioned hypotheses is whether individual-level discrimination (e.g. 64 

recognizing which face or word a person is viewing) can be found outside of putative category-65 

selective regions of VTC (Spiridon & Kanwisher, 2002; Nestor et al., 2011). Because individual-66 

level perception, but not category-level discrimination, is compromised in various agnosias 67 
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(Damasio et al., 1982), addressing the debate between domain specific and distributed models of 68 

processing requires the comparison of individual-level representations inside and outside of parts 69 

of VTC that are highly selective at the category level (Spiridon & Kanwisher, 2002).   70 

To test for the presence of individual-level representations across time in and out of 71 

highly selective regions, the dynamics of face individuation was examined with intracranial 72 

electroencephalography (iEEG) in 14 patients with pharmacologically intractable epilepsy. To 73 

ensure that face individuation was based on face identity level and not the visual image level, 15 74 

different images of each of 14 different identities were used across 5 expressions (anger, sadness, 75 

fear, happy, neutral) and 3 gaze directions (left, straight, right). The dynamics of word 76 

individuation was examined in 5 patients (2 overlapping, 17 total patients in the study). Face and 77 

word stimuli were chosen because 1) they comprise domains of visual stimuli for which human 78 

adults demonstrate strong expertise in exemplar-level discrimination, but 2) faces have a putative 79 

genetic basis that can be seen in our evolutionary ancestors and that infants are predisposed to 80 

orient to (Powell et al., 2018), and word expertise must be acquired during development. Thus, if 81 

similar findings are seen for both faces and words, it supports a general principle of organization 82 

for both learned and putatively partially innate information processing. 83 

Above chance classification of individual faces and words was seen in both high face and 84 

word selective regions (HFS and HWS) and not-highly face and word selective regions (NFS and 85 

NWS), but significant decoding emerged approximately 170 ms earlier in HFS and HWS 86 

compared to NFS and NWS regions. These results suggest a dynamic model of domain 87 

specificity in VTC in which processing is first restricted to highly selective parts of VTC and 88 

then is processed a non-redundant, though also partially similar, manner inside and outside of 89 

highly selective regions. 90 
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RESULTS 91 

Spatiotemporal dynamics of individuation 92 

Significant face and word individuation were present in and out of HFS and HWS regions 93 

(Figure 2), as measured with elastic net regularized logistic regression. Using the first method of 94 

onset calculation (see methods under Statistical Analysis), the onset of face individuation 95 

occurred 190 ms earlier in HFS regions relative to NFS regions (t(13)= 3.05, p = 0.009) and 96 

peaked 200 ms earlier (t(13) = 2.73, p = 0.017), with a higher peak in HFS than NFS regions 97 

(t(13) = 2.68, p = 0.019). Notably, the difference in the magnitude of the HFS and NFS response 98 

is independent of the difference in peak times, though onset times can be affected by magnitude 99 

differences. Using two other methods of onset calculation that are robust to differences in 100 

magnitude (Schrouff et al., 2020), above chance face individuation occurred significantly earlier 101 

inside (160 ms, 210 ms) than outside (250 ms, 325 ms) HFS regions (t(13) = 3.6, p = 0.003; t(13) 102 

= 3.03, p = 0.0096). 103 

Word individuation began 145 ms earlier in HWS regions relative to NWS regions (t(4) = 104 

3.1, p = 0.036) and peaked 250 ms earlier (t(4) = 3.61, p = 0.022), with a higher peak in HWS 105 

than NWS regions (t(4) = 2.802, p = 0.048). Using the two other methods of onset calculation 106 

that are more robust to differences in magnitude (Schrouff et al., 2020), above chance face 107 

individuation occurred earlier inside (150 ms, 190 ms) than outside (285 ms, 405 ms) HFS 108 

regions (t(4) = 1.77, p = 0.15; t(4) = 4.31, p = 0.01).  109 

HFS and HWS regions maintained significant sensitivity to individual face and word 110 

information respectively throughout visual processing (from 130-940 ms and 160-535 ms 111 

respectively, p<0.05 FDR corrected), suggesting that these regions contribute to both early and 112 

late visual processing (before and after 300 ms). NFS and NWS reached significance only later 113 
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(from 320-800 ms and 285 - 605 ms respectively, p < 0.05 FDR corrected), suggesting that these 114 

regions contribute to late visual processing. For both faces and words, the finding of earlier 115 

individuation in high selectivity regions relative to non-highly selectivity regions was robust 116 

across a range of criteria for defining “highly” and “non-highly” selective (Figure 3). The 117 

robustness of the result demonstrates that illustrating that the differences in timing were not due 118 

to choosing an arbitrary threshold for “high” selectivity.  119 

Electrodes were placed based on the clinical needs of the patients and not necessarily 120 

optimally placed for sensitivity to visual information, thus relative effect sizes are likely more 121 

relevant than absolute effect sizes. Peak effect sizes in NFS and NWS regions were relatively 122 

small, but nonetheless more than 1/3 that of the peak effect sizes in HFS and HWS regions. This 123 

suggests that activity in NFS and NWS regions contributed meaningfully to the overall 124 

representation of individual faces and words, albeit less than HFS and HWS regions. Every 125 

patient had recordings from both highly and non-highly category-selective areas.  126 

To address potential concerns of signal bleed as the source of face individuation signals 127 

in non-highly selective populations, we used multivariate regression to remove all of the high 128 

selectivity channels’ activity from the non-highly selective channels and examined whether the 129 

residual signals showed above chance classification. In both NFS and NWS regions, the residual 130 

activity showed significant individuation during the stimulus presentation period (p < .05 FDR 131 

corrected) after regressing out the multivariate signal from HFS and HWS channels. 132 

The regression analysis above demonstrates that NFS and NWS contain at least some 133 

diagnostic face and word information that is not redundant to the information in HFS and HWS 134 

regions. The complimentary question is whether there is some shared information between high 135 

and non-highly selective regions as well. To address this question, we used RSA to show that 136 
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HFS and NFS populations share significant overlap in face individuation structure (p < .01, t(13) 137 

> 3.17, and HWS and NWS populations share significant overlap in word individuation structure 138 

(p < .01, t(4) > 4.68). Thus, non-highly and highly selective regions have both some unshared 139 

information (based on significant classification in non-highly selective regions after regressing 140 

out the activity from high selectivity regions) and some shared information (based on significant 141 

correlation in the RSA analysis). 142 

 143 

Relative contribution of highly and non-highly selective regions to individuation 144 

The previous results demonstrate that individuation emerges earlier inside highly selective 145 

regions than outside these regions, but leaves the relative contribution of activity in highly and 146 

non-highly selective regions to the overall individual-level representation unclear. Specifically, 147 

two important questions are outstanding: 1) What is the balance of information between non-148 

highly selective regions and highly selective regions? 2) Outside of highly selective regions, to 149 

what extent is discriminant information present in regions that are selective to other categories or 150 

regions that show no measured category selectivity, e.g. do word-selective contacts (or body, or 151 

house, etc. selective contacts) contribute diagnostic information to face individuation?  152 

Regarding the first question, the multivariate regression results discussed above show that 153 

NFS and NWS regions contain signals discriminant for faces and words beyond what is present 154 

in HFS and HWS regions, but does not assess the relative information in each. To address this 155 

question, sparse classification using L1-regularization and identical parameters to earlier elastic 156 

net procedure except regularization parameter (𝜆) was performed over all ventral temporal 157 

contacts to identify the electrode contacts that provided information for face or word 158 

individuation. If activity between any set of contacts is highly correlated, L1-regularization 159 
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should force all contacts in that set to have zero weight, except the one with the largest amount 160 

of discriminating information. Thus, the balance of non-highly and highly selective electrodes 161 

that survive L1-regularization provides an estimate of how much each population of electrodes 162 

contribute to the overall information about individual faces and words in VTC as a whole. Note 163 

that choice of regularization method (elastic net vs. L1) does not alter the pattern of reported 164 

results above (supplemental Figure 1). To address the second question, the above analysis was 165 

extended by decomposing the non-highly selective contacts into “other category-selective” 166 

(OCS) and “not category-selective” (NCS) populations. This was done by identifying the NFS 167 

and NWS contacts that showed high selectivity for any of the other 5 categories in the localizer 168 

and those that did not.  169 

For both face and word individuation tasks, the analysis showed that proportions of both 170 

HFS/HWS and NFS/NWS electrode populations contribute diagnostic information (Figure 4A), 171 

though highly selective regions may contribute more than non-high selectivity ones. Second, 172 

decomposing the NFS contacts showed that in the face individuation task, regions highly 173 

selective for other categories contribute diagnostic information to overall individuation as well as 174 

those that demonstrate non-high selectivity for all categories (Figure 4B). Specifically, higher 175 

proportions of OCS than NCS electrode contacts survive penalization and contribute diagnostic 176 

information to exemplar classification using L1 regularization. These findings demonstrate that 177 

in the later time period, meaningful information that contributed to above chance individuation is 178 

present outside of category-selective areas, distributed even to areas that demonstrate selectivity 179 

for a different visual object category.  180 

 181 

 182 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2020.11.11.378877doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.378877
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 8 

Discussion 183 

The presence of individual-level information in and out of highly category-selective electrode 184 

contacts at different latencies suggests a “dynamic domain specificity” model of visual 185 

processing. Specifically, information from a given visual category is first processed primarily in 186 

strongly category-selective cortical populations followed by widespread processing that includes 187 

both populations that are strongly and weakly selective for that stimulus category (Shehzad & 188 

McCarthy, 2018). The cascade of neural activity during visual perception is characterized by an 189 

early, potentially obligatory, stage of processing in strongly category-selective regions that may 190 

guide and gate information for further processing. Previous studies suggest that this early stage 191 

represents a coarse pass of processing only allowing for differentiation of relatively distinct 192 

images (Hirshorn et al., 2016; Ghuman et al., 2014; Hegdé, 2008). Approximately 150-200 ms 193 

later, information then flows to visual processing populations outside of strongly category-194 

selective populations as well, including into cortical populations that are selective for other 195 

visual categories, either through lateral and recurrent connectivity or through top-down feedback. 196 

Non-highly selective regions contribute unique information to the overall individual-level 197 

representation, though both these and high selectivity regions also exhibit partial representational 198 

overlap. Future studies, perhaps requiring single unit recordings (Chang & Tsao, 2017), will be 199 

required to determine the precise nature of the similarities and differences in the representational 200 

structure for faces and words in non-highly versus highly selective regions. The extra processing 201 

capacity from non-highly selective regions may help support later visual processing (Hirshorn et 202 

al, 2016; Ghuman et al., 2014; Li et al., 2019) that could contribute to determining subtle 203 

distinctions between individual category members or assist with later processes coincident to the 204 

time when activity from non-highly selective regions begin to show significant individuation, 205 
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such as viewpoint or position generalization (Freiwald et al., 2010; Quian Quiroga, 2012; 206 

Mormann et al., 2008, Quian Quiroga, 2005; Tang et al., 2014).  207 

The proposed dynamic domain specificity hypothesis may reconcile apparent 208 

contradictions between findings that have been used to support domain-specific and distributed 209 

models of visual perception. The profound and frank disturbances to the perception of stimuli 210 

from particular categories seen in the presence of lesions or disruptions to highly category-211 

selective regions (Puce et al., 1999; Parvizi et al., 2012; Afraz et al., 2006; Farah et al., 1995; 212 

Schalk et al., 2017; Rangarajan et al., 2014) may emerge due to the perturbation of early and 213 

potentially obligatory activity of these areas during visual processing. The perceptual relevance 214 

of later activity in non-highly selective regions is supported by the current evidence that these 215 

regions contribute some unique information to face and word individuation (Figure 4 and 216 

significant classification in non-highly selective regions after regressing out activity from high 217 

selectivity regions). The time of peak individuation in non-highly selective regions occurs when 218 

significant individuation is still present in high selectivity regions and is near the time when key 219 

higher-level visual processes such as viewpoint generalization (Freiwald et al., 2010) and 220 

semantic processing (Clarke et al., 2015) occur. Additionally, single units in the medial temporal 221 

lobes show selectivity for individual faces in a similar later time period and it has been suggested 222 

that this time period is critical for linking perception and memory (Quian Quiroga, 2012; 223 

Mormann et al., 2008, Quian Quiroga, 2005). Furthermore, this time window is substantially 224 

earlier than behavioral reaction times for comparable individual-level face and word recognition 225 

tasks (Haxby et al., 1999; Seidenberg & McClelland, 1989). The later information processing in 226 

non-high selectivity regions would also help explain why category discriminant information is 227 

sometimes seen outside of category-selective regions in low temporal resolution measures such 228 
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as fMRI (Haxby et al., 2001; Ghuman & Martin, 2019). As such, non-highly selective regions 229 

may play a role in some aspects of individuation, even if that role is later and more supportive 230 

than the central role of strongly selective regions.  231 

A recent study showed that electrical stimulation to NFS electrode contacts does not 232 

cause frank distortions of face perception (Rangarajan et al., 2014) and stimulation to NWS 233 

electrode contacts does not cause frank distortions of reading (Hirshorn et al., 2016), though 234 

these studies were not sensitive to the subtle aspects of perception that may be caused by 235 

disrupting areas that play a supportive role in processing. Causal manipulations of activity in 236 

non-highly selective regions, particularly ones that were precisely timed relative to stimulus 237 

onset, coupled with measures of subtle aspects of perception in the future would be useful to 238 

determine what role non-highly selective regions may play in individuation. One alternative 239 

explanation of later discrimination in non-highly selective regions that would support a non-240 

causal role in perception is that it could reflect a backpropagating learning signal (Rumelhart et 241 

al., 1986) rather than perceptual processing per se.  242 

While the results here are consistent with the primarily low temporal resolution data that 243 

have been used to support both domain specific and distributed models of VTC organization, 244 

they also help address theoretical aspects of the debate between the models. Specifically, in 245 

distributed models the difference between strongly and less selective parts of VTC is a difference 246 

in the degree to which each contributes to perception of stimuli from a particular category, but 247 

these contributions should happen at the same processing stage. These models would predict that 248 

highly and non-highly selective regions should each have similar timecourses of processing, 249 

varying mostly in how much each contributes to the representation for a particular stimulus class. 250 

The result that individual-level representations in highly selective regions onset and peak 145 - 251 
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250 ms earlier than in non-highly selective regions presents a challenge to current instantiations 252 

of distributed models. These differences survive across a range of criteria for selectivity (Figure 253 

3), suggesting there is a qualitative, not graded, difference in the role that highly selective 254 

regions play for processing stimuli that those regions are selective for relative to non-highly 255 

selective regions. Thus, distributed models would need to be modified to accommodate 256 

relationships between selectivity and latency of information processing. One possibility that our 257 

results cannot exclude is that there is a continuous relationship between selectivity and timing of 258 

individual-level information rather than a bivariate one. If the relationship was continuous, it 259 

would suggest that the regions with the strongest selectivity contribute throughout perceptual 260 

processing, moderate selectivity regions contribute from a middle stage through the end, and 261 

weakly selective regions only for the longest latency processes. 262 

In the strongest versions of domain specificity models, there is no role for parts of VTC 263 

that are not highly selective for a particular category of image in perceptual processing for that 264 

stimulus type. However, the results here suggest that these non-highly selective regions do 265 

contribute to later visual processing. The dynamic domain specificity hypothesis outlined above 266 

is an attempt to modify traditional models of domain specificity by positing a supportive role for 267 

non-highly selective regions; they may support later processes and provide supplementary 268 

computational resources may be particularly useful in aiding more difficult perceptual processes.  269 

The dynamic pattern of results was seen for both faces, with circuitry that putatively 270 

arises from evolutionary and genetic origins, and words, where reading skill must be acquired 271 

fully through experience, suggesting that dynamic domain specificity may be a general principle 272 

of cortical organization. One caveat is that words were not varied with regards to visual 273 

appearance. Thus, word individuation results may reflect discrimination of visual features and 274 
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our results cannot rule out that dynamic domain specificity may not apply to words per se and 275 

may only apply to word-like shapes. Nonetheless, the results with words still provide support for 276 

the generalizability of dynamic domain specificity as it shows this principle governs an 277 

additional well-learned category other than faces. 278 

Taken together, these results may reconcile the tension between domain-specific versus 279 

distributed models of visual object processing by providing evidence that domain-specific and 280 

distributed processing emerge dynamically at different times during the course of visual 281 

perception. 282 

 283 

MATERIALS AND METHODS 284 

Subjects 285 

Experimental protocols were approved by the Institutional Review Board of the University of 286 

Pittsburgh and written informed consent was obtained from all subjects. 17 patients (8 female) 287 

undergoing surgical treatment for medicine-resistant epilepsy volunteered to participate in this 288 

experiment. Patients had previously undergone surgical placement of intracranial surface / grid 289 

and/or stereotactic electroencephalography depth electrodes (collectively referred to as iEEG 290 

here) as standard care for clinical monitoring during seizure onset zone localization. 13 of the 17 291 

patients exclusively had stereotaxic depth electrode implantations, and the remaining 4 patients 292 

had a combination of grid / strip surface electrodes on cortical regions and depth electrode 293 

implantations in subcortical structures. For stereotaxic depth electrodes, each adaptor contained 294 

32 electrode contacts with 1 common reference and 3 ground contacts that were used to 295 

normalize signal in each set of 32 contacts. For grid and strip surface electrodes, the first 2 296 
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contacts for each grid (differing numbers of contacts depending on custom dimensions) were 297 

used to reference and ground the grid signal. 298 

Only patients with grid electrodes had craniotomies performed over the target cortical 299 

tissue. Depth electrodes were produced by Ad-Tech Medical and PMT Corporation and the 300 

electrode contacts were 0.86 and 0.8 mm in diameter, respectively. Grid electrodes were 301 

produced by PMT Corporation and the electrode contacts were 4 mm in diameter. Because depth 302 

electrode contacts are cylindrical, the surface area of the recording site was similar across grid 303 

and strip electrode contacts. Post-operative MRIs were performed for patients with depth 304 

electrodes, but standard clinical procedure follows a pre-operative MRI and post-operative CT 305 

for patients with grids because grids electrodes are difficult to visualize using MRI. All patients 306 

underwent standard post-operative clinical procedures for recovery and experiments were run at 307 

least 36-48 hours after surgery to ensure adequate post-operative recovery. Recordings all took 308 

place in the UPMC Presbyterian Epilepsy Monitoring Unit in Pittsburgh, PA. Local field 309 

potentials were recorded via a GrapeVine Neural Interface (Ripple, LLC) sampling at 1 kHz. The 310 

amplification system used was a Natus Xltek 128-channel Brain Monitor EEG Amplifier.  311 

The ages of subjects ranged from 20 to 64 years (mean = 39.1, SD = 14.6). None of the 312 

subjects showed any ictal events on any electrodes during experimental recording nor did they 313 

have epileptic activity on the electrodes used in this study at any time. All patients completed a 314 

localizer session, 14 patients completed experiment 1, and 5 patients (2 overlap) completed 315 

experiment 2.  316 

 317 

 318 

 319 
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Experimental Design: Stimuli 320 

In the localizer session, images of 6 categories (bodies (50% male), faces (50% male), words, 321 

hammers, houses and phase scrambled faces) were presented in a 1-back exact image repeat 322 

detection task. Specific examples of these stimuli are outlined in Figure 2 of Ghuman et al. 323 

(2014). Phase scrambled images were created in Matlab by taking the two-dimensional spatial 324 

Fourier spectrum of the image, extracting the phase, adding random phases, recombining the 325 

phase and amplitude, and taking the inverse two-dimensional spatial Fourier spectrum. Each 326 

image category was presented 80 times, yielding a total of 480 image presentations. Each image 327 

was presented for 900 ms, with a 900 ms inter-stimulus interval in pseudorandom order and 328 

repeated once in each session.  329 

For experiment 1, frontal views of 14 different face identities were drawn from the 330 

Radboud Faces Database. 15 images of each identity were presented, with five expressions 331 

(anger, sadness, fear, happy, neutral) and three gaze directions (left, right, forward). Each unique 332 

image was presented four times, yielding a total of 60 presentations per identity and 840 face 333 

image presentations. For experiment 2, 36 different character strings corresponding to real words 334 

of 3-4 characters, pseudo-words of 4-5 characters (pronounceable letter strings that do not form 335 

real words, such as “lerm”), and false font words of 5 characters were presented 30 times each. 336 

Pseudowords were selected to have similar mean bigram and trigram frequency as real words 337 

(measured using the English Lexicon Project). Because three-letter words did not have any 338 

corresponding pseudo-word stimuli, only trials from the 16 unique four-letter real and pseudo-339 

word stimuli were considered further for data analysis. Thus, 480 trials of pronounceable 340 

orthographic stimuli were ultimately included in further analyses. All stimuli for the three 341 
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experimental sessions were presented on an LCD computer screen placed ~1 meter from 342 

subjects’ heads. Stimulus examples are shown in Figure 1B. 343 

 344 

Experimental Design: Paradigms 345 

In all experimental sessions, each image was presented for 900 ms with 900 ms inter-trial 346 

interval during which a fixation cross was presented at the center of the screen (~10° × 10° of 347 

visual angle for the localizer session and experiment 1, ~6° × 6° visual angle for experiment 2). 348 

For the localizer session, images were repeated 20% of the time at random. Subjects were 349 

instructed to press a button on a button box when an image was repeated (1-back). Only the first 350 

presentations of repeated images were used in the analysis.  351 

 In experiment 1, subjects completed a gender discrimination task, reporting whether the 352 

presented face was male or female via button press on a button box. Each subject completed one 353 

or two sessions of the task. All three paradigms were coded in MATLAB (version 2007, 354 

Mathworks, Natick, MA) using Psychtoolbox (Brainard, 1997) and custom written code. 355 

In experiment 2, subjects completed a one-back task, reporting whether the presented 356 

word (real or pseudo-word comparisons) was the same as the previous image via button press on 357 

a button box. Each subject completed one or two sessions of the task. All three paradigms were 358 

coded in MATLAB using Psychtoolbox and custom written code. 359 

 360 

Data preprocessing 361 

Preprocessing followed the general steps of signal acquisition, trial segmentation from signal 362 

epochs, band-pass filtering to yield single trial potentials, and power spectrum density estimation 363 

to yield single trial broadband high-frequency activity. Electrophysiological activity was 364 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2020.11.11.378877doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.378877
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 16 

recorded at 1000 Hz using iEEG electrodes. These data were then epoched from -500 to 1500 ms 365 

trials around stimulus onset. Single-trial potentials were generated by band-pass filtering the raw 366 

data between 0.2-115 Hz using a fourth-order Butterworth filter to remove slow drift, high-367 

frequency noise, and 60 Hz line noise (additionally using a 55-65 Hz stop-band). Broadband 368 

high-frequency activity was generated by first calculating the power spectrum density (PSD) 369 

from 40-100 Hz (60 Hz line noise removed) with a bin size of 2 Hz and time-step size of 10 ms 370 

was estimated using a Hann multi-taper power spectrum analysis in the FieldTrip toolbox 371 

(Oostenveld et al., 2011). For each channel, the neural activity between 50-300 ms prior to 372 

stimulus onset was used as baseline, and the PSD at each frequency z-scored based on the mean 373 

and variance of baseline activity. Single trial broadband high-frequency activity was calculated 374 

as the PSD z-scored against pre-stimulus baseline averaged from 40-100 Hz in each 10 ms time 375 

step for each trial. Both the single trial potentials (stP) and single trial broadband high-frequency 376 

activity (stBHA) were used in all analyses.  377 

 Trials with a maximum amplitude five standard deviations above the mean across trials 378 

were eliminated, as well as trials with a deflection greater than 25 μV between sampling points. 379 

These criteria allow the rejection of sampling error or interictal events, and resulted in 380 

elimination of less than 1% of trials when applied in this and previous work (Li et al., 2019).  381 

 382 

Electrode localization 383 

To accurately identify electrode contact location, the co-registration of grid electrodes and 384 

electrode strips with cortex was adapted from Hermes et al. (2017). Electrode contacts were 385 

segmented from high-resolution post-operative computerized tomography (CT) scans of patients 386 

and co-registered with anatomical MRI scans that were conducted before neurosurgery and 387 
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electrode implantation. This method of using FreeSurfer (https://surfer.nmr.mgh.harvard.edu/, 388 

1999) software reconstructions to co-register with the CT scans accounted for shifts in specific 389 

electrode location caused by potential deformation of the cortex (“brain shift” due to cortical 390 

displacement by the grid electrode substrate) and resulting signal as a result of grid electrode 391 

implantation. Stereotaxic depth electrodes were localized with Brainstorm software (Tadel et al., 392 

2011) that co-registers post-operative MRI with pre-operative MRI images. Complete 393 

localization (incorporating the following electrode selection step) is depicted in Figure 1A. The 394 

presence of numerically greater HFS contacts in the left hemisphere than right hemisphere is 395 

most likely explained by the larger absolute numbers of left than right hemisphere electrode 396 

contacts, a result of electrode placement being guided solely by clinical needs of each patient.  397 

 398 

Electrode selection 399 

Electrodes were selected according to anatomical and two functional criteria. Anatomically, 400 

electrodes of interest were selected from within ventral temporal cortex below the middle 401 

temporal gyrus. Specifically, the midline of the middle temporal gyrus was defined as the upper 402 

limit for anatomical consideration: the beginning of the middle temporal gyrus was used to 403 

define a posterior threshold, and the midline of the middle temporal gyrus terminating at the 404 

temporal pole was used as the anterior threshold for electrode selection. We conducted 405 

multivariate classification over data from the localizer session to identify face and word sensitive 406 

electrodes (described in next section). Functionally, highly category selective electrodes of 407 

interest demonstrated a peak six-way face classification d’ score greater than 0.8, corresponding 408 

to p < .01 and a large effect size (Cohen, 1988) for the preferred category (face or word) using a 409 

Naïve Bayes classifier (note that in Figure 3 we also examine the robustness of effects to varying 410 
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thresholds). Electrodes were not considered highly selective if a d’ score greater than 0.8 resulted 411 

from face or word stBHA values with systematically less deviation from baseline relative to 412 

other conditions (whereby above chance classification could occur simply by systematically 413 

lower response magnitude), resulting in the removal of 7 electrodes across 5 patients. Selective 414 

electrodes were also required to show a maximal stP or stBHA response to either faces or words 415 

for at least 50 ms during the stimulus presentation period. Electrodes that met these criteria were 416 

labeled as highly face selective (HFS) or highly word selective (HWS). Within each patient’s 417 

montage, all VTC electrodes of interest that did not meet the criteria for high selectivity for faces 418 

were labeled as non-highly face selective (NFS) and those that did not meet this criteria for 419 

words were labeled as non-highly word selective (NWS; note that HFS electrodes could be 420 

considered NWS and HWS electrodes could be considered NFS).  421 

Finally, to control for any systematic differences in anatomic location between high 422 

selectivity and non-highly selective contacts, the most anterior non-highly selective contacts 423 

from each montage (which were more numerous and more anteriorly located, by an average 16.4 424 

millimeters, than the selective contacts) were removed until the high selectivity and non-highly 425 

selective contacts from each montage were matched anatomically along the anterior-posterior 426 

axis. In total, 382 non-highly selective contacts were removed from the 17 patient electrode 427 

montages, or 22.47 contacts per montage on average. Before trimming and balancing, non-highly 428 

selective contacts were on average 16.4 millimeters more anterior than high selectivity contacts 429 

(y = -0.0343 mean placement for non-highly selective compared to y = -0.0507 mean placement 430 

for high selectivity contacts).  Functionally, this trimming procedure yielded high selectivity and 431 

non-highly selective contact populations in each patient’s montage with equivalent mean 432 

coordinate values along the anterior-posterior axis and ensured that any latency differences 433 
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between populations could not immediately be attributed to any expected conduction delays. 434 

Indeed, recent work has demonstrated a relationship between response onset latency and 435 

situation along the anterior-posterior axis, such that more anterior contacts emerged later in time 436 

(Schrouff et al., 2020). Note that this anatomical balancing procedure did not meaningfully alter 437 

the time course of classification over non-highly selective contacts compared to retaining all 438 

anterior non-highly selective contacts and all results remained similar if non-balanced electrodes 439 

were used in the analyses (Supplemental Figure 2). See figure 1A for all electrodes used in 440 

further analyses. 441 

Note that the locations of face and word selective electrodes are more distributed than is 442 

typically reported in group-level neuroimaging studies (Kanwisher & Yovel, 2006), though they 443 

are consistent with the individual variability seen in other imaging modalities (Glezer & 444 

Riesenhuber, 2013; Weiner & Grill-Spector, 2013; Gao, Gentile & Rossion, 2018; Zhen et al., 445 

2015; Rossion et al., 2012; Cohen et al., 2002; Dehaene et al., 2004; White et al, 2019) and are 446 

consistent with prior iEEG studies (Li et al., 2020, Allison et al., 1999, Hagen et al., 2020; 447 

Matsuo et al., 2015; Jacques et al., 2020; Lochy et al., 2018). See Boring et al. (2021) and Figure 448 

1 of Li et al. (2019) for a more thorough examination of the iEEG-derived map of VTC category 449 

selectivity, including illustrations of individual subjects from these localizer results and a map 450 

that includes all categories used. 451 

 452 

Multivariate classification: Naïve Bayes classifier 453 

We first used a Naïve Bayes classifier with 3-fold cross validation to examine category 454 

selectivity over time at individual electrode contacts throughout ventral temporal cortex. Both 455 

stP and stBHA signal values were used as input features in the classifier with a sliding 100 ms 456 
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time window (10 ms width) as previous studies have shown increased sensitivity and specificity 457 

when using both stP and stBHA (Miller et al., 2016). Indeed, stP and stBHA metrics have been 458 

shown to capture separate and complementary aspects of the physiology that contribute to visual 459 

processing as measured with iEEG (Lescynski et al., 2019). stP signal was sampled at 1000 Hz 460 

and stBHA at 100 Hz, which yielded 110 features (100 mean stP voltage potentials and 10 461 

normalized mean stBHA PSD values). Thus at each time point at each electrode for each of 3 462 

cross validation steps, the classifier was trained on the first 2-folds and performance evaluated on 463 

the left out fold for 6-way classification of the six object categories presented in the localizer 464 

session. Trials were divided into three folds by random assignment. We used the sensitivity 465 

index d’ for face or word category against all other categories to determine face and word 466 

selective contacts. d’ was calculated as Z(true positive rate) – Z(false positive rate), where Z is 467 

the inverse of the Gaussian cumulative distribution function.  468 

 469 

Elastic net regularized logistic regression 470 

To examine the temporal dynamics of face and word individuation, we used elastic net 471 

regularized logistic regression with three-fold cross validation implemented with the GLMNET 472 

package in Matlab. Elastic net was chosen as a means to identify diagnostic electrode contacts by 473 

removing non-informative and/or highly correlated classifier features. These series of 474 

classification problems were conducted iteratively in four different electrode populations: 475 

individual face classification from experiment 1 data in VTC HFS contacts and VTC NFS 476 

contacts, and individual word classification from experiment 2 data in VTC HWS contacts and 477 

VTC NWS contacts (as defined above). Face identity classification was conducted across 478 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2020.11.11.378877doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.378877
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 21 

expression and gaze direction, effectively varying the low-level visual features of each face 479 

identity such that this classification problem was not simply face image classification. 480 

stP signal was first downsampled to 100 Hz to yield an equal number of stP and stBHA 481 

features. stBHA signal was then normalized with a Box-Cox transformation to ensure that both 482 

stBHA and stP were both normally distributed. Thus at each time point, stP and stBHA values 483 

from each trial were arranged as a P-dimensional vector corresponding to 2 * number of contacts 484 

in each of the four predefined electrode contact populations. The time course of face and word 485 

individuation was identified by examining the pairwise decoding accuracy of a classifier using 3-486 

fold cross-validation. The regularization parameter (α) was set a priori to 0.9 (range of 0-1) to 487 

favor more sparse classification solutions that produce more statistically interpretable results 488 

(similar to applying a lasso (L1) penalty in the case of α = 1) while avoiding degeneracies that 489 

sometimes emerge in full L1 regularization (Friedman et al, 2008). The results of this analysis 490 

are depicted in Figure 2. For display purposes, group mean time courses were smoothed with a 491 

moving average of 30 millisecond fixed window length.  492 

For comparison purposes, L1 regularized logistic regression (α=1) was also repeated in 493 

the same manner as the above elastic net analyses (classification conducted separately for highly 494 

and non-highly category selective populations) to demonstrate minimal difference in the time 495 

course of d’ values from the different regularization procedures.  496 

To demonstrate the robustness of general trends of individuation to the selection criteria 497 

for highly and non-highly selective contact populations, the elastic net classification procedure 498 

was repeated with additional thresholds determined by dividing face and word contact 499 

populations into partitions of equal numbers. To do so, all contacts across all subjects in face and 500 

word tasks, respectively, were sorted according to peak d’ selectivity value from the category 501 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2020.11.11.378877doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.378877
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 22 

localizer. Then, these contacts were divided into six equal partitions. Then, elastic net 502 

regularized classification was conducted again according to the following groupings: 1) bottom 503 

two partitions labeled as NFS, top four partitions labeled as HFS (corresponding d’ value of 0.61 504 

dividing the two groups); 2) bottom three partitions labeled as NFS, top three partitions labeled 505 

as HFS (corresponding d’ value of 0.7 dividing the two groups); 3) bottom four partitions labeled 506 

as NFS, top two partitions labeled as HFS (corresponding d’ value of 0.82 dividing the two 507 

groups). This procedure was repeated for word selective contacts at the following d’ thresholds: 508 

0.58, 0.67, 0.86. The results of this analysis are depicted in Figure 3. For display purposes, group 509 

mean time courses were smoothed with a moving average of 30 millisecond fixed window 510 

length. The partitions corresponding to the bottom 1/6 and top 5/6 (and vice versa) are not 511 

demonstrated because not all subjects had contacts in the lowest and highest partitions.  512 

 513 

L1 regularized logistic regression 514 

To examine the diagnosticity of brain activity from highly and non-highly category selective 515 

electrode populations in concert with one another, we repeated the above classification analyses 516 

with L1 as opposed to elastic net regularization and examined the proportion of electrode 517 

contacts that were entirely penalized and removed from the classifier model. Additionally, all 518 

VTC electrode contacts (highly and non-highly category selective) were used to train each 519 

classifier, as opposed to splitting the electrode populations as in the previous analyses. After 520 

conducting pairwise face classification and pairwise word classification, the classifier weights 521 

from each pairwise classification for each electrode contact were extracted and the number of 522 

non-zero (positive or negative) weights for each contact tabulated. The percent of electrode 523 

contacts with non-zero weights was determined at every time point after baseline normalization. 524 
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Baseline normalization consisted of determining the threshold of non-zero weight counts that 525 

would yield <1% contacts with non-zero weights during the baseline period. The total percentage 526 

of electrode contacts assigned non-zero weights for at least 50 ms across the entire time course 527 

was determined, and results from this analysis are depicted in Figure 4A.  This change in 528 

classifier does not alter the time course of individuation compared to the original elastic net 529 

procedure. 530 

 531 

Electrode Diagnosticity in non-highly category selective areas 532 

Having examined the contributions of highly and non-highly face and word selective contacts to 533 

exemplar representation, we were then interested in examining whether 1) non-highly face and 534 

word selective sites with selectivity for a different category differed in their contributions to 535 

exemplar representation from 2) non-highly face and word selective sites lacking any other 536 

category selectivity. The main question here is the extent to which contacts that demonstrate 537 

category selectivity will contribute to exemplar representation for a different category. Thus in 538 

addition to examining highly and non-highly category selective contacts, we further decomposed 539 

the non-highly face and word category selective populations into two sub groups: other category 540 

selective (OCS) and not significantly selective for any category (NCS). Face OCS contacts, 541 

while not showing high selectivity for face images, did show selectivity for either word, house, 542 

body, or hammer stimuli based on the same criteria for selectivity described above. Word OCS 543 

contacts did not show high selectivity for words, but did show high selectivity for either face, 544 

house, body, or hammer stimuli. NCS contacts showed no high selectivity for any of the 545 

categories presented in the localizer task. Category selectivity for non-face and word categories 546 

was established with the same method of Multivariate Naïve Bayes classification at the category 547 
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level as previously outlined, and weights extracted in the same method outlined in the 548 

immediately preceding section.  549 

 To further quantify unique diagnosticity in highly and non-highly selective populations 550 

and address concerns of volume conduction or signal bleed from high selectivity populations, 551 

multivariate linear regression was carried out to regress the high selectivity signal from non-552 

highly selective signal in each subject’s dataset. Following this, the same elastic net regularized 553 

logistic regression procedure was used to classify individual stimuli across time using the 554 

residuals of the non-highly selective signal.  555 

 Where the above analyses examine whether unique information is present in non-highly 556 

selective regions, a representational similarity analysis (RSA) was performed to examine the 557 

overlap in information between highly and non-highly selective populations. Confusion matrices 558 

from pairwise classification accuracies as measured with elastic net regularized logistic 559 

regression between highly and non-highly selective populations for faces and words were first 560 

calculated. For each subject, a vector corresponding to the lower matrix diagonal from pairwise 561 

classification accuracies was extracted separately for highly and non-highly selective populations 562 

and a Spearman correlation computed between them. This correlation measures whether pairs of 563 

faces or words that were easy or difficult to classify from one another in high selectivity contacts 564 

were also easy or difficult to classify from one another in non-highly selective contacts.  565 

 566 

Statistical Analyses 567 

For the category localizer with Naïve Bayes classification, row permutation tests on a subject 568 

level were used to establish a d’ threshold for category selective contacts. For each subject within 569 

each permutation, the condition labels for each trial were randomly shuffled and the same 570 
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classification procedure as above was used 1000 times for a randomly selected channel in each 571 

electrode montage. The peak d’ value from each permutation was aggregated into a group-level 572 

distribution comprising the null distribution from each permutation for each subject. The d’ value 573 

corresponding to p < .01 was estimated from this histogram and used as a selectivity threshold to 574 

determine highly and non-highly selective contact populations for each subject. 575 

For face and word individuation as measured with elastic net regularized logistic 576 

regression, row permutation tests were used to establish a significance threshold for 577 

classification accuracy for each subject. For each permutation, a classifier model was optimized 578 

and test condition labels shuffled to test model predictions on randomized data. This procedure 579 

was repeated 1000 times to generate a null distribution. The true classification values and null 580 

distributions for each subject were combined into group-level distributions, and the mean true 581 

classification value and mean null distribution compared to one another. Classification accuracy 582 

was deemed significant at a level of p < .05 with FDR correction (Benjamini-Hochberg 583 

procedure for dependent tests), with a minimum temporal threshold of 3 contiguous significant 584 

time points. Thus, although different subjects contributed different numbers of contacts to each 585 

classification analysis, all subjects are weighted equally in the group mean depicted in Figure 2.  586 

Onset sensitivity was determined by with 3 metrics examining the individual subject-587 

level statistics. For the first method, the same true classification values and null distributions 588 

from above were compared on an individual level, and the first time point significant at a level of 589 

p < .05 with FDR correction (Benjamini-Hochberg procedure for dependent tests) with a 590 

minimum temporal threshold of 3 contiguous significant time points was used as the onset 591 

marker for each subject. Vectors of onset markers compiled from all subjects were compared 592 

between HFS / NFS, and HWS / NWS electrode populations with paired-sample t-tests. Because 593 
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this method is somewhat sensitive to the magnitude of the response (e.g. higher magnitude will 594 

cross the statistical threshold sooner) two other methods for calculating onset that are more 595 

robust to magnitude differences were used as well. 596 

The second onset determination method was adapted from Schrouff et al. (2020): for each 597 

subject, the time course of mean classification values for each classification problem (HFS, NFS, 598 

HWS, and NWS) were normalized to peak classification value, and a sliding window with 50 ms 599 

bins and 10 ms overlap was implemented. Classification average and standard deviation in the 600 

baseline period of -100 to 0 ms was estimated, and the first period with 3 contiguous bins 601 

surpassing the baseline threshold was marked as the signal onset for a given subject’s 602 

classification time course. Vectors of onset markers compiled from all subjects were compared 603 

between HFS / NFS, and HWS / NWS electrode populations with paired-sample t-tests. Schrouff 604 

et al (2020) show that this method for finding onset times is robust to differences in peak 605 

magnitude across comparisons. 606 

For the third onset determination method, onset sensitivity was measured as the first 3 607 

contiguous time points where classification values for each subject were greater than 25% of the 608 

peak value. Vectors of onset markers compiled from all subjects were compared between HFS / 609 

NFS, and HWS / NWS electrode populations with paired-sample t-tests. While 25% of the peak 610 

value is not necessarily a strict measure of “onset,” it is independent of peak magnitude and 611 

provides a metric of whether any differences in peak time are due to differences in slope or 612 

whether there is differences in onset (e.g. earlier peak times could be due to sharper rising slope 613 

or earlier onset).  614 

To assess significance for the residual classification procedure, the same row permutation 615 

test from elastic net regularized logistic regression significance testing above was again used in 616 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2020.11.11.378877doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.378877
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 27 

this context. For the pairwise classification accuracy RSA, a two-sided t-test was used to identify 617 

Spearman’s rho values significantly greater than 0. 618 

 619 
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Figure 1. Ventral temporal electrode contact heatmaps (489 total electrode contacts), stimulus 844 

examples, and electrophysiological traces. A) 426 total contacts from 14 subjects who completed 845 

the gender discrimination task were divided into 171 HFS and 255 NFS contacts. Total HFS + 846 

NFS coverage throughout ventral temporal cortex is depicted in the top left heatmap. Total HFS 847 

coverage is depicted in the bottom left heatmap. 174 total contacts from 5 subjects who 848 

completed the word one-back task were divided into 113 HWS and 61 NWS contacts. Total 849 

HWS + NWS coverage throughout ventral temporal cortex is depicted in the top right heatmap. 850 
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Total HFS coverage is depicted in the bottom right heatmap. Electrode contact locations depicted 851 

here include both subdural electrode strips on the surface of the cortex and stereotaxically 852 

implanted depth electrodes, projected to the nearest surface vertex. B) Example stimuli from 853 

gender discrimination task demonstrating 2 male and female identities with 3 gaze directions and 854 

a surprised expression. Example stimuli from word one-back task depicting four-letter real and 855 

matched pseudowords. C) Averaged single trial potentials (measured in microvolts) and single 856 

trial high broadband activity (measured with z-scored power spectrum density values) from 857 

single electrodes from high face selectivity, high word selectivity, non-high face selectivity, and 858 

non-high word selectivity populations in response to 6 visual categories during localizer task 859 

(note that for subjects that performed both tasks, HFS electrode contacts are included in the 860 

NWS group and HWS contacts are included in the NFS group). Dashed black line shows 861 

stimulus onset. See Boring et al. (2021) for a full examination of the localization and category-862 

level neurodynamics of face and word selective electrodes in iEEG in a superset of subjects that 863 

include the ones reported in this work on the dynamics of individual level face and word 864 

processing. 865 

 866 
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 867 

Figure 2. Time course of the sensitivity index (d’) for individuation of faces and words. A) HFS 868 

contacts (dark red) demonstrated significant face individuation from 130 ms to 940 ms after 869 

stimulus onset, with peak d’ = 0.37 at 320 ms (p < .05, FDR corrected for multiple dependent 870 

temporal comparisons). NFS contacts (light red) demonstrated significant face individuation 871 

from 320 ms to 800 ms after stimulus onset, with peak d’ = 0.17 at 520 ms (p < .05, FDR 872 

corrected). HFS individuation onset emerged significantly earlier than NFS individuation (190 873 

ms average difference between HFS and NFS onset, p = .009, t(13) = 3.05). Individually, 11 of 874 

the 14 patients demonstrated an earlier onset of significant individuation in HFS than NFS 875 

contacts. B) HWS contacts (dark blue) demonstrated significant word individuation from 160 ms 876 

to 535 ms after stimulus onset, with peak d’ = 0.48 at 235 ms (p < .05, FDR corrected for 877 

dependent tests). NWS contacts (light blue) demonstrated significant word individuation from 878 

285 ms to 605 ms after stimulus onset, with peak d’ = 0.18 at 470 ms (p < .05, FDR corrected).  879 

Word individuation emerged significantly earlier in HWS compared to NWS regions (145 ms 880 

average difference between HWS and NWS onset, p = .036, t(4) = 3.1). Individually, all 5 881 
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patients demonstrated an earlier onset of word individuation in HWS compared to NWS 882 

contacts. Shaded bars illustrate standard error of the mean across subjects at each time point. 883 

  884 
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 885 

Figure 3. Time course of the sensitivity index (d’) for individuation of faces and words at graded 886 

thresholds. Individual face and word classification (as in Figure 2) was repeated with multiple 887 

“high” selectivity thresholds. These thresholds were defined by separating all contacts into 888 

partitions corresponding to the one third, one half, and two-thirds levels of d’ values as measured 889 

with the category localizer. A) Time course of face individuation at thresholds of d’ = 0.61 (NFS 890 

= bottom 1/3 of contacts, HFS = top 2/3 of contacts), d’ = 0.7 (NFS = bottom ½ of contacts, HFS 891 

= top ½ of contacts), and d’ = 0.82 (NFS = bottom 2/3 of contacts, HFS = top 1/3 of contacts). B) 892 

Time course of word individuation at thresholds of d’ = 0.58 (NWS = bottom 1/3 of contacts, 893 

HWS = top 2/3 of contacts), d’ = 0.67 (NWS = bottom ½ of contacts, HWS = top ½ of contacts), 894 

and d’ = 0.86 (NWS = bottom 2/3 of contacts, HWS = top 1/3 of contacts). 895 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2020.11.11.378877doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.378877
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 43 

896 

Figure 4. A) Percent diagnostic electrode contacts inside and outside high category-selectivity 897 

populations measured with L1-regularized logistic regression. 58.6% of HFS contacts from 14 898 

patients (average of 6.2 contacts per subject, SEM = 9%) were assigned non-zero weights. 42.4% 899 

of NFS contacts (average of 4 contacts, SEM = 8.9%) were assigned non-zero weights on 900 

average. 35.2% of HWS contacts from 5 patients (average of 3.2 contacts, SEM = 18%) on 901 

average were assigned non-zero weights. 11.4% of NWS contacts (average of 0.9 contacts, SEM 902 

= 6.2%) were assigned non-zero weights. B) Within non-high face selectivity electrode contacts 903 

that demonstrated selectivity for a different object category (F-OCS, other category-selective), 904 
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42.5% of the contacts (average of 3 contacts per montage, SEM = 8.7% of contacts) were 905 

assigned non-zero weights. Within non-high face selectivity contacts that demonstrated no 906 

selectivity for any object categories (F-NCS, not category-selective), 33% of the contacts 907 

(average of 1 contact, SEM = 9.6%) on average were assigned non-zero weights. Within non-908 

high word selectivity electrode contacts that demonstrated selectivity for a different object 909 

category (W-OCS), 9.4% of the contacts (average of 0.7 contacts, SEM = 8.1%) were assigned 910 

non-zero weights. Within non-high word selectivity contacts that demonstrated non-significant 911 

selectivity for any other object categories (W-NCS), 5% of the contacts (average of 0.2 contacts, 912 

SEM 5%) on average were assigned non-zero weights. C) Example single trial potential 913 

(microvolts) and single trial high broadband activity (z-scored power spectrum density values) 914 

traces of one NCS electrode contact in response to all 6 categories of localizer task stimuli. The 915 

dashed black line indicates stimulus onset. Example single trial potential and single trial high 916 

broadband activity traces of one OCS electrode contact (showing tool selectivity) in response to 917 

all 6 categories of localizer task stimuli can be seen in the NWS panels of figure 1C. 918 

  919 
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Supplementary Fig. 1. 920 

Time course of d’ exemplar sensitivity as measured with elastic net vs. L1 regularized logistic 921 

regression. A) HFS contacts measured with elastic net (dark red) versus L1 (light red) 922 

penalization. B) NFS contacts measured with elastic net (dark red) versus L1 (light red) 923 

penalization. C) HWS contacts measured with elastic net (dark blue) versus L1 penalization 924 

(light blue). D) NWS contacts measured with elastic net (dark blue) versus L1 (light blue) 925 

penalization. 926 
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Supplementary Figure 3. Time course of G· exemplar sensitivity as measured with elastic net vs. L1 regularized logstic regression. 
A) Face preferring contacts measured with elastic net (dark red) versus L1 (light red) penalization. B) Face non-preferring contacts 
measured with elastic net(dark red) versus L1 (light red) penalization. C) Word preferring contacts measured with elastic net (dark blue) 
versus L1 penalization (light blue). D) Word non-preferring contacts measured with elastic net (dark blue) versus L1 (light blue) 
penalization. 
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Supplementary Fig. 2. 929 

Time course of exemplar sensitivity in original and anterior-inclusive NFS/NWS populations. 930 

The same elastic net regularized logistic regression analysis was repeated over the anterior-931 

inclusive contacts for face and word classification. No statistically significant differences in the 932 

onset time, peak time, or peak d’ between original and anterior-inclusive contacts emerged. A) 933 

Mean d’ for NFS original contacts (light red) that peaked at 520 ms (d’ = 0.17) compared to the 934 

mean d’ for NFS anterior-inclusive contacts (dark red) that peaked at 495 ms (d’ = 0.15). B) 935 

Mean d‘ for NWS original contacts (light blue) peaked at 395 ms (d’ = 0.2) after stimulus onset, 936 

temporally identical to the mean d’ for NWS anterior-inclusive contacts that peaked at 395 ms 937 

(d’ = 0.18). 938 

 939 
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Supplementary Figure 2. Time course of G· category sensitivity. A) Mean G· for face preferring contacts (dark red) peaks at 245 ms
(G·  =  0.67) after stimulus onset, compared to the mean G·  for face non-preferring contacts (light right) that peaks at 365 ms (G·  = 0.2). 
B) Mean G¶�for word preferring contacts (dark blue) peaks at 325 ms (G·  =  0.89) after stimulus onset, compared to the mean G·  for word 
non-preferring contacts that peaks at 705 ms (G·  = 0.19).
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