bioRxiv preprint doi: https://doi.org/10.1101/2020.11.11.378877; this version posted November 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

—

10

11
12

13

14

15
16
17
18
19
20
21
22
23
24
25
26

available under aCC-BY-NC-ND 4.0 International license.

Dynamic Domain Specificity In Human Ventral Temporal Cortex

Brett B. Bankson'>#*, Matthew J. Boring'3#, R. Mark Richardson'>®, Avniel Singh

Ghuman!-23+#
Laboratory of Cognitive Neurodynamics, Department of Neurological Surgery, University of

Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA, 15213.

2Department of Psychology, University of Pittsburgh, 210 South Bouquet St, Pittsburgh, PA
15260, USA.

3Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, A210 Langley
Hall, Pittsburgh, PA 15260, USA.

“Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Pittsburgh, PA 15213.

SDepartment of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA
02144.

®Harvard Medical School, 25 Shattuck St., Boston, MA 02115.
Abbreviated title: Temporal dynamics of object individuation

*Correspondence to:

Brett B. Bankson

Laboratory of Cognitive Neurodynamics
UPMC Presbyterian

Suite B-400

200 Lothrop Street

Pittsburgh, PA 15213

bbbl 7@pitt.edu

Number of Pages 47; Figures 6
Number of Words 10990;
Abstract 198; Introduction 613; Discussion 1299


https://doi.org/10.1101/2020.11.11.378877
http://creativecommons.org/licenses/by-nc-nd/4.0/

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.11.378877; this version posted November 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

ABSTRACT

An enduring neuroscientific debate concerns the extent to which neural representation is
restricted to neural populations specialized for particular domains of perceptual input, or
distributed outside of highly selective populations as well. A critical level for this debate is the
neural representation of the identity of individual images, such as individual-level face or written
word recognition. Here, intracranial recordings throughout ventral temporal cortex across 17
human subjects were used to assess the spatiotemporal dynamics of individual word and face
processing within and outside regions strongly selective for these categories of visual
information. Individual faces and words were first discriminable primarily only in strongly
selective areas, beginning at about 150 milliseconds after word or face onset, and then
discriminable both within and outside strongly selective areas approximately 170 milliseconds
later. Regions of ventral temporal cortex that were and were not strongly selective both
contributed non-redundant information to the discrimination of individual images. These results
can reconcile previous results endorsing disparate poles of the domain specificity debate by
highlighting the temporally segregated contributions of different functionally defined cortical
areas to individual level representations. This work supports a dynamic model of neural

representation characterized by successive domain-specific and distributed processing stages.
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INTRODUCTION

A key debate regarding the architecture of the cortex concerns the extent to which diagnostic
aspects of stimuli are processed within domain-specific cortical populations (Kanwisher et al.,
1997; Martin, 2007; Fodor, 1983), or if processing is also distributed outside of highly selective
neural populations (Haxby et al., 2001; Op de Beeck, 2008). On one hand, an extensive body of
primate single unit recordings (Perrett et al., 1984; Tsao et al., 2006), human neuroimaging
(Kanwisher et al., 1997; Puce et al., 1996), stimulation (Puce et al., 1999; Hirshorn et al., 2016;
Afraz et al., 2006; Pitcher et al., 2007; Schalk et al., 2017), and lesion (Farah et al., 1995;
Hirshorn et al., 2016; Gaillard et al., 2006) data suggests that perception is causally related to the
activity within systems of cortical populations that respond selectively to preferred stimulus
categories. Conversely, the distributed representation hypothesis is supported by evidence from
both neuroimaging and single unit recordings that shows reliable face differentiation in weakly
or non- face-selective populations (Haxby et al, 2001; Bell et al., 2011) and differentiation of
non-face categories within face selective populations (Kiani et al., 2007; Cukur et al., 2013;
Hanson & Schmidt, 2011).

Across these hypotheses, a central point of debate concerns the role of activity evoked by
stimuli outside of highly selective parts of VTC (e.g. face-related activity outside of highly face
selective populations) and activity evoked by “other” stimuli inside parts of VTC selective for
particular categories of stimuli (e.g. non-face activity in face selective populations). A critical
tension between the aforementioned hypotheses is whether individual-level discrimination (e.g.
recognizing which face or word a person is viewing) can be found outside of putative category-
selective regions of VTC (Spiridon & Kanwisher, 2002; Nestor et al., 2011). Because individual-

level perception, but not category-level discrimination, is compromised in various agnosias
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(Damasio et al., 1982), addressing the debate between domain specific and distributed models of
processing requires the comparison of individual-level representations inside and outside of parts
of VTC that are highly selective at the category level (Spiridon & Kanwisher, 2002).

To test for the presence of individual-level representations across time in and out of
highly selective regions, the dynamics of face individuation was examined with intracranial
electroencephalography (iEEG) in 14 patients with pharmacologically intractable epilepsy. To
ensure that face individuation was based on face identity level and not the visual image level, 15
different images of each of 14 different identities were used across 5 expressions (anger, sadness,
fear, happy, neutral) and 3 gaze directions (left, straight, right). The dynamics of word
individuation was examined in 5 patients (2 overlapping, 17 total patients in the study). Face and
word stimuli were chosen because 1) they comprise domains of visual stimuli for which human
adults demonstrate strong expertise in exemplar-level discrimination, but 2) faces have a putative
genetic basis that can be seen in our evolutionary ancestors and that infants are predisposed to
orient to (Powell et al., 2018), and word expertise must be acquired during development. Thus, if
similar findings are seen for both faces and words, it supports a general principle of organization
for both learned and putatively partially innate information processing.

Above chance classification of individual faces and words was seen in both high face and
word selective regions (HFS and HWS) and not-highly face and word selective regions (NFS and
NWS), but significant decoding emerged approximately 170 ms earlier in HFS and HWS
compared to NFS and NWS regions. These results suggest a dynamic model of domain
specificity in VTC in which processing is first restricted to highly selective parts of VTC and
then is processed a non-redundant, though also partially similar, manner inside and outside of

highly selective regions.
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RESULTS
Spatiotemporal dynamics of individuation
Significant face and word individuation were present in and out of HFS and HWS regions
(Figure 2), as measured with elastic net regularized logistic regression. Using the first method of
onset calculation (see methods under Statistical Analysis), the onset of face individuation
occurred 190 ms earlier in HFS regions relative to NFS regions (#(13)= 3.05, p = 0.009) and
peaked 200 ms earlier (#(13) = 2.73, p = 0.017), with a higher peak in HFS than NFS regions
(#(13) = 2.68, p = 0.019). Notably, the difference in the magnitude of the HFS and NFS response
is independent of the difference in peak times, though onset times can be affected by magnitude
differences. Using two other methods of onset calculation that are robust to differences in
magnitude (Schrouff et al., 2020), above chance face individuation occurred significantly earlier
inside (160 ms, 210 ms) than outside (250 ms, 325 ms) HFS regions (#(13) = 3.6, p = 0.003; #(13)
=3.03, p = 0.0096).

Word individuation began 145 ms earlier in HWS regions relative to NWS regions (#(4) =
3.1, p = 0.036) and peaked 250 ms earlier (#(4) = 3.61, p = 0.022), with a higher peak in HWS
than NWS regions (#(4) = 2.802, p = 0.048). Using the two other methods of onset calculation
that are more robust to differences in magnitude (Schrouff et al., 2020), above chance face
individuation occurred earlier inside (150 ms, 190 ms) than outside (285 ms, 405 ms) HFS
regions (#(4)=1.77, p=0.15; (4) =4.31, p = 0.01).

HFS and HWS regions maintained significant sensitivity to individual face and word
information respectively throughout visual processing (from 130-940 ms and 160-535 ms
respectively, p<0.05 FDR corrected), suggesting that these regions contribute to both early and

late visual processing (before and after 300 ms). NFS and NWS reached significance only later
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(from 320-800 ms and 285 - 605 ms respectively, p < 0.05 FDR corrected), suggesting that these
regions contribute to late visual processing. For both faces and words, the finding of earlier
individuation in high selectivity regions relative to non-highly selectivity regions was robust
across a range of criteria for defining “highly” and “non-highly” selective (Figure 3). The
robustness of the result demonstrates that illustrating that the differences in timing were not due
to choosing an arbitrary threshold for “high” selectivity.

Electrodes were placed based on the clinical needs of the patients and not necessarily
optimally placed for sensitivity to visual information, thus relative effect sizes are likely more
relevant than absolute effect sizes. Peak effect sizes in NFS and NWS regions were relatively
small, but nonetheless more than 1/3 that of the peak effect sizes in HFS and HWS regions. This
suggests that activity in NFS and NWS regions contributed meaningfully to the overall
representation of individual faces and words, albeit less than HFS and HWS regions. Every
patient had recordings from both highly and non-highly category-selective areas.

To address potential concerns of signal bleed as the source of face individuation signals
in non-highly selective populations, we used multivariate regression to remove all of the high
selectivity channels’ activity from the non-highly selective channels and examined whether the
residual signals showed above chance classification. In both NFS and NWS regions, the residual
activity showed significant individuation during the stimulus presentation period (p < .05 FDR
corrected) after regressing out the multivariate signal from HFS and HWS channels.

The regression analysis above demonstrates that NFS and NWS contain at least some
diagnostic face and word information that is not redundant to the information in HFS and HWS
regions. The complimentary question is whether there is some shared information between high

and non-highly selective regions as well. To address this question, we used RSA to show that
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137 HFS and NFS populations share significant overlap in face individuation structure (p < .01, #(13)
138 >3.17, and HWS and NWS populations share significant overlap in word individuation structure
139 (p<.01, #(4) > 4.68). Thus, non-highly and highly selective regions have both some unshared
140  information (based on significant classification in non-highly selective regions after regressing
141 out the activity from high selectivity regions) and some shared information (based on significant
142 correlation in the RSA analysis).

143

144 Relative contribution of highly and non-highly selective regions to individuation

145 The previous results demonstrate that individuation emerges earlier inside highly selective

146  regions than outside these regions, but leaves the relative contribution of activity in highly and
147 non-highly selective regions to the overall individual-level representation unclear. Specifically,
148 two important questions are outstanding: 1) What is the balance of information between non-

149 highly selective regions and highly selective regions? 2) Outside of highly selective regions, to
150  what extent is discriminant information present in regions that are selective to other categories or
151  regions that show no measured category selectivity, e.g. do word-selective contacts (or body, or
152 house, etc. selective contacts) contribute diagnostic information to face individuation?

153 Regarding the first question, the multivariate regression results discussed above show that
154  NFS and NWS regions contain signals discriminant for faces and words beyond what is present
155 in HFS and HWS regions, but does not assess the relative information in each. To address this
156 question, sparse classification using L1-regularization and identical parameters to earlier elastic

157 net procedure except regularization parameter (1) was performed over all ventral temporal

158  contacts to identify the electrode contacts that provided information for face or word

159 individuation. If activity between any set of contacts is highly correlated, L1-regularization
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should force all contacts in that set to have zero weight, except the one with the largest amount
of discriminating information. Thus, the balance of non-highly and highly selective electrodes
that survive L1-regularization provides an estimate of how much each population of electrodes
contribute to the overall information about individual faces and words in VTC as a whole. Note
that choice of regularization method (elastic net vs. L1) does not alter the pattern of reported
results above (supplemental Figure 1). To address the second question, the above analysis was
extended by decomposing the non-highly selective contacts into “other category-selective”
(OCS) and “not category-selective” (NCS) populations. This was done by identifying the NFS
and NWS contacts that showed high selectivity for any of the other 5 categories in the localizer
and those that did not.

For both face and word individuation tasks, the analysis showed that proportions of both
HFS/HWS and NFS/NWS electrode populations contribute diagnostic information (Figure 4A),
though highly selective regions may contribute more than non-high selectivity ones. Second,
decomposing the NFS contacts showed that in the face individuation task, regions highly
selective for other categories contribute diagnostic information to overall individuation as well as
those that demonstrate non-high selectivity for all categories (Figure 4B). Specifically, higher
proportions of OCS than NCS electrode contacts survive penalization and contribute diagnostic
information to exemplar classification using L1 regularization. These findings demonstrate that
in the later time period, meaningful information that contributed to above chance individuation is
present outside of category-selective areas, distributed even to areas that demonstrate selectivity

for a different visual object category.
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Discussion

The presence of individual-level information in and out of highly category-selective electrode
contacts at different latencies suggests a “dynamic domain specificity” model of visual
processing. Specifically, information from a given visual category is first processed primarily in
strongly category-selective cortical populations followed by widespread processing that includes
both populations that are strongly and weakly selective for that stimulus category (Shehzad &
McCarthy, 2018). The cascade of neural activity during visual perception is characterized by an
early, potentially obligatory, stage of processing in strongly category-selective regions that may
guide and gate information for further processing. Previous studies suggest that this early stage
represents a coarse pass of processing only allowing for differentiation of relatively distinct
images (Hirshorn et al., 2016; Ghuman et al., 2014; Hegd¢, 2008). Approximately 150-200 ms
later, information then flows to visual processing populations outside of strongly category-
selective populations as well, including into cortical populations that are selective for other
visual categories, either through lateral and recurrent connectivity or through top-down feedback.
Non-highly selective regions contribute unique information to the overall individual-level
representation, though both these and high selectivity regions also exhibit partial representational
overlap. Future studies, perhaps requiring single unit recordings (Chang & Tsao, 2017), will be
required to determine the precise nature of the similarities and differences in the representational
structure for faces and words in non-highly versus highly selective regions. The extra processing
capacity from non-highly selective regions may help support later visual processing (Hirshorn et
al, 2016; Ghuman et al., 2014; Li et al., 2019) that could contribute to determining subtle
distinctions between individual category members or assist with later processes coincident to the

time when activity from non-highly selective regions begin to show significant individuation,
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such as viewpoint or position generalization (Freiwald et al., 2010; Quian Quiroga, 2012;
Mormann et al., 2008, Quian Quiroga, 2005; Tang et al., 2014).

The proposed dynamic domain specificity hypothesis may reconcile apparent
contradictions between findings that have been used to support domain-specific and distributed
models of visual perception. The profound and frank disturbances to the perception of stimuli
from particular categories seen in the presence of lesions or disruptions to highly category-
selective regions (Puce et al., 1999; Parvizi et al., 2012; Afraz et al., 2006; Farah et al., 1995;
Schalk et al., 2017; Rangarajan et al., 2014) may emerge due to the perturbation of early and
potentially obligatory activity of these areas during visual processing. The perceptual relevance
of later activity in non-highly selective regions is supported by the current evidence that these
regions contribute some unique information to face and word individuation (Figure 4 and
significant classification in non-highly selective regions after regressing out activity from high
selectivity regions). The time of peak individuation in non-highly selective regions occurs when
significant individuation is still present in high selectivity regions and is near the time when key
higher-level visual processes such as viewpoint generalization (Freiwald et al., 2010) and
semantic processing (Clarke et al., 2015) occur. Additionally, single units in the medial temporal
lobes show selectivity for individual faces in a similar later time period and it has been suggested
that this time period is critical for linking perception and memory (Quian Quiroga, 2012;
Mormann et al., 2008, Quian Quiroga, 2005). Furthermore, this time window is substantially
earlier than behavioral reaction times for comparable individual-level face and word recognition
tasks (Haxby et al., 1999; Seidenberg & McClelland, 1989). The later information processing in
non-high selectivity regions would also help explain why category discriminant information is

sometimes seen outside of category-selective regions in low temporal resolution measures such
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as fMRI (Haxby et al., 2001; Ghuman & Martin, 2019). As such, non-highly selective regions
may play a role in some aspects of individuation, even if that role is later and more supportive
than the central role of strongly selective regions.

A recent study showed that electrical stimulation to NFS electrode contacts does not
cause frank distortions of face perception (Rangarajan et al., 2014) and stimulation to NWS
electrode contacts does not cause frank distortions of reading (Hirshorn et al., 2016), though
these studies were not sensitive to the subtle aspects of perception that may be caused by
disrupting areas that play a supportive role in processing. Causal manipulations of activity in
non-highly selective regions, particularly ones that were precisely timed relative to stimulus
onset, coupled with measures of subtle aspects of perception in the future would be useful to
determine what role non-highly selective regions may play in individuation. One alternative
explanation of later discrimination in non-highly selective regions that would support a non-
causal role in perception is that it could reflect a backpropagating learning signal (Rumelhart et
al., 1986) rather than perceptual processing per se.

While the results here are consistent with the primarily low temporal resolution data that
have been used to support both domain specific and distributed models of VTC organization,
they also help address theoretical aspects of the debate between the models. Specifically, in
distributed models the difference between strongly and less selective parts of VTC is a difference
in the degree to which each contributes to perception of stimuli from a particular category, but
these contributions should happen at the same processing stage. These models would predict that
highly and non-highly selective regions should each have similar timecourses of processing,
varying mostly in how much each contributes to the representation for a particular stimulus class.

The result that individual-level representations in highly selective regions onset and peak 145 -

10
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250 ms earlier than in non-highly selective regions presents a challenge to current instantiations
of distributed models. These differences survive across a range of criteria for selectivity (Figure
3), suggesting there is a qualitative, not graded, difference in the role that highly selective
regions play for processing stimuli that those regions are selective for relative to non-highly
selective regions. Thus, distributed models would need to be modified to accommodate
relationships between selectivity and latency of information processing. One possibility that our
results cannot exclude is that there is a continuous relationship between selectivity and timing of
individual-level information rather than a bivariate one. If the relationship was continuous, it
would suggest that the regions with the strongest selectivity contribute throughout perceptual
processing, moderate selectivity regions contribute from a middle stage through the end, and
weakly selective regions only for the longest latency processes.

In the strongest versions of domain specificity models, there is no role for parts of VTC
that are not highly selective for a particular category of image in perceptual processing for that
stimulus type. However, the results here suggest that these non-highly selective regions do
contribute to later visual processing. The dynamic domain specificity hypothesis outlined above
is an attempt to modify traditional models of domain specificity by positing a supportive role for
non-highly selective regions; they may support later processes and provide supplementary
computational resources may be particularly useful in aiding more difficult perceptual processes.

The dynamic pattern of results was seen for both faces, with circuitry that putatively
arises from evolutionary and genetic origins, and words, where reading skill must be acquired
fully through experience, suggesting that dynamic domain specificity may be a general principle
of cortical organization. One caveat is that words were not varied with regards to visual

appearance. Thus, word individuation results may reflect discrimination of visual features and

11
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our results cannot rule out that dynamic domain specificity may not apply to words per se and
may only apply to word-like shapes. Nonetheless, the results with words still provide support for
the generalizability of dynamic domain specificity as it shows this principle governs an
additional well-learned category other than faces.

Taken together, these results may reconcile the tension between domain-specific versus
distributed models of visual object processing by providing evidence that domain-specific and
distributed processing emerge dynamically at different times during the course of visual

perception.

MATERIALS AND METHODS

Subjects

Experimental protocols were approved by the Institutional Review Board of the University of
Pittsburgh and written informed consent was obtained from all subjects. 17 patients (8 female)
undergoing surgical treatment for medicine-resistant epilepsy volunteered to participate in this
experiment. Patients had previously undergone surgical placement of intracranial surface / grid
and/or stereotactic electroencephalography depth electrodes (collectively referred to as iEEG
here) as standard care for clinical monitoring during seizure onset zone localization. 13 of the 17
patients exclusively had stereotaxic depth electrode implantations, and the remaining 4 patients
had a combination of grid / strip surface electrodes on cortical regions and depth electrode
implantations in subcortical structures. For stereotaxic depth electrodes, each adaptor contained
32 electrode contacts with 1 common reference and 3 ground contacts that were used to

normalize signal in each set of 32 contacts. For grid and strip surface electrodes, the first 2

12
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contacts for each grid (differing numbers of contacts depending on custom dimensions) were
used to reference and ground the grid signal.

Only patients with grid electrodes had craniotomies performed over the target cortical
tissue. Depth electrodes were produced by Ad-Tech Medical and PMT Corporation and the
electrode contacts were 0.86 and 0.8 mm in diameter, respectively. Grid electrodes were
produced by PMT Corporation and the electrode contacts were 4 mm in diameter. Because depth
electrode contacts are cylindrical, the surface area of the recording site was similar across grid
and strip electrode contacts. Post-operative MRIs were performed for patients with depth
electrodes, but standard clinical procedure follows a pre-operative MRI and post-operative CT
for patients with grids because grids electrodes are difficult to visualize using MRI. All patients
underwent standard post-operative clinical procedures for recovery and experiments were run at
least 36-48 hours after surgery to ensure adequate post-operative recovery. Recordings all took
place in the UPMC Presbyterian Epilepsy Monitoring Unit in Pittsburgh, PA. Local field
potentials were recorded via a GrapeVine Neural Interface (Ripple, LLC) sampling at 1 kHz. The
amplification system used was a Natus Xltek 128-channel Brain Monitor EEG Amplifier.

The ages of subjects ranged from 20 to 64 years (mean = 39.1, SD = 14.6). None of the
subjects showed any ictal events on any electrodes during experimental recording nor did they
have epileptic activity on the electrodes used in this study at any time. All patients completed a
localizer session, 14 patients completed experiment 1, and 5 patients (2 overlap) completed

experiment 2.
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320  Experimental Design: Stimuli

321  In the localizer session, images of 6 categories (bodies (50% male), faces (50% male), words,
322 hammers, houses and phase scrambled faces) were presented in a 1-back exact image repeat

323 detection task. Specific examples of these stimuli are outlined in Figure 2 of Ghuman et al.

324 (2014). Phase scrambled images were created in Matlab by taking the two-dimensional spatial
325  Fourier spectrum of the image, extracting the phase, adding random phases, recombining the
326  phase and amplitude, and taking the inverse two-dimensional spatial Fourier spectrum. Each
327  image category was presented 80 times, yielding a total of 480 image presentations. Each image
328  was presented for 900 ms, with a 900 ms inter-stimulus interval in pseudorandom order and

329  repeated once in each session.

330 For experiment 1, frontal views of 14 different face identities were drawn from the

331  Radboud Faces Database. 15 images of each identity were presented, with five expressions

332 (anger, sadness, fear, happy, neutral) and three gaze directions (left, right, forward). Each unique
333 image was presented four times, yielding a total of 60 presentations per identity and 840 face
334 image presentations. For experiment 2, 36 different character strings corresponding to real words
335 of 3-4 characters, pseudo-words of 4-5 characters (pronounceable letter strings that do not form
336  real words, such as “lerm”), and false font words of 5 characters were presented 30 times each.
337  Pseudowords were selected to have similar mean bigram and trigram frequency as real words
338  (measured using the English Lexicon Project). Because three-letter words did not have any

339 corresponding pseudo-word stimuli, only trials from the 16 unique four-letter real and pseudo-
340  word stimuli were considered further for data analysis. Thus, 480 trials of pronounceable

341  orthographic stimuli were ultimately included in further analyses. All stimuli for the three
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experimental sessions were presented on an LCD computer screen placed ~1 meter from

subjects’ heads. Stimulus examples are shown in Figure 1B.

Experimental Design: Paradigms

In all experimental sessions, each image was presented for 900 ms with 900 ms inter-trial
interval during which a fixation cross was presented at the center of the screen (~10° x 10° of
visual angle for the localizer session and experiment 1, ~6° x 6° visual angle for experiment 2).
For the localizer session, images were repeated 20% of the time at random. Subjects were
instructed to press a button on a button box when an image was repeated (1-back). Only the first
presentations of repeated images were used in the analysis.

In experiment 1, subjects completed a gender discrimination task, reporting whether the
presented face was male or female via button press on a button box. Each subject completed one
or two sessions of the task. All three paradigms were coded in MATLAB (version 2007,
Mathworks, Natick, MA) using Psychtoolbox (Brainard, 1997) and custom written code.

In experiment 2, subjects completed a one-back task, reporting whether the presented
word (real or pseudo-word comparisons) was the same as the previous image via button press on
a button box. Each subject completed one or two sessions of the task. All three paradigms were

coded in MATLAB using Psychtoolbox and custom written code.

Data preprocessing
Preprocessing followed the general steps of signal acquisition, trial segmentation from signal
epochs, band-pass filtering to yield single trial potentials, and power spectrum density estimation

to yield single trial broadband high-frequency activity. Electrophysiological activity was
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recorded at 1000 Hz using iEEG electrodes. These data were then epoched from -500 to 1500 ms
trials around stimulus onset. Single-trial potentials were generated by band-pass filtering the raw
data between 0.2-115 Hz using a fourth-order Butterworth filter to remove slow drift, high-
frequency noise, and 60 Hz line noise (additionally using a 55-65 Hz stop-band). Broadband
high-frequency activity was generated by first calculating the power spectrum density (PSD)
from 40-100 Hz (60 Hz line noise removed) with a bin size of 2 Hz and time-step size of 10 ms
was estimated using a Hann multi-taper power spectrum analysis in the FieldTrip toolbox
(Oostenveld et al., 2011). For each channel, the neural activity between 50-300 ms prior to
stimulus onset was used as baseline, and the PSD at each frequency z-scored based on the mean
and variance of baseline activity. Single trial broadband high-frequency activity was calculated
as the PSD z-scored against pre-stimulus baseline averaged from 40-100 Hz in each 10 ms time
step for each trial. Both the single trial potentials (stP) and single trial broadband high-frequency
activity (stBHA) were used in all analyses.

Trials with a maximum amplitude five standard deviations above the mean across trials
were eliminated, as well as trials with a deflection greater than 25 pV between sampling points.
These criteria allow the rejection of sampling error or interictal events, and resulted in

elimination of less than 1% of trials when applied in this and previous work (Li et al., 2019).

Electrode localization

To accurately identify electrode contact location, the co-registration of grid electrodes and
electrode strips with cortex was adapted from Hermes et al. (2017). Electrode contacts were
segmented from high-resolution post-operative computerized tomography (CT) scans of patients

and co-registered with anatomical MRI scans that were conducted before neurosurgery and
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electrode implantation. This method of using FreeSurfer (https://surfer.nmr.mgh.harvard.edu/,
1999) software reconstructions to co-register with the CT scans accounted for shifts in specific
electrode location caused by potential deformation of the cortex (“brain shift” due to cortical
displacement by the grid electrode substrate) and resulting signal as a result of grid electrode
implantation. Stereotaxic depth electrodes were localized with Brainstorm software (Tadel et al.,
2011) that co-registers post-operative MRI with pre-operative MRI images. Complete
localization (incorporating the following electrode selection step) is depicted in Figure 1A. The
presence of numerically greater HFS contacts in the left hemisphere than right hemisphere is
most likely explained by the larger absolute numbers of left than right hemisphere electrode

contacts, a result of electrode placement being guided solely by clinical needs of each patient.

Electrode selection

Electrodes were selected according to anatomical and two functional criteria. Anatomically,
electrodes of interest were selected from within ventral temporal cortex below the middle
temporal gyrus. Specifically, the midline of the middle temporal gyrus was defined as the upper
limit for anatomical consideration: the beginning of the middle temporal gyrus was used to
define a posterior threshold, and the midline of the middle temporal gyrus terminating at the
temporal pole was used as the anterior threshold for electrode selection. We conducted
multivariate classification over data from the localizer session to identify face and word sensitive
electrodes (described in next section). Functionally, highly category selective electrodes of
interest demonstrated a peak six-way face classification d’ score greater than 0.8, corresponding
to p <.01 and a large effect size (Cohen, 1988) for the preferred category (face or word) using a

Naive Bayes classifier (note that in Figure 3 we also examine the robustness of effects to varying
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thresholds). Electrodes were not considered highly selective if a d” score greater than 0.8 resulted
from face or word stBHA values with systematically less deviation from baseline relative to
other conditions (whereby above chance classification could occur simply by systematically
lower response magnitude), resulting in the removal of 7 electrodes across 5 patients. Selective
electrodes were also required to show a maximal stP or stBHA response to either faces or words
for at least 50 ms during the stimulus presentation period. Electrodes that met these criteria were
labeled as highly face selective (HFS) or highly word selective (HWS). Within each patient’s
montage, all VTC electrodes of interest that did not meet the criteria for high selectivity for faces
were labeled as non-highly face selective (NFS) and those that did not meet this criteria for
words were labeled as non-highly word selective (NWS; note that HFS electrodes could be
considered NWS and HWS electrodes could be considered NFS).

Finally, to control for any systematic differences in anatomic location between high
selectivity and non-highly selective contacts, the most anterior non-highly selective contacts
from each montage (which were more numerous and more anteriorly located, by an average 16.4
millimeters, than the selective contacts) were removed until the high selectivity and non-highly
selective contacts from each montage were matched anatomically along the anterior-posterior
axis. In total, 382 non-highly selective contacts were removed from the 17 patient electrode
montages, or 22.47 contacts per montage on average. Before trimming and balancing, non-highly
selective contacts were on average 16.4 millimeters more anterior than high selectivity contacts
(y =-0.0343 mean placement for non-highly selective compared to y = -0.0507 mean placement
for high selectivity contacts). Functionally, this trimming procedure yielded high selectivity and
non-highly selective contact populations in each patient’s montage with equivalent mean

coordinate values along the anterior-posterior axis and ensured that any latency differences
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between populations could not immediately be attributed to any expected conduction delays.
Indeed, recent work has demonstrated a relationship between response onset latency and
situation along the anterior-posterior axis, such that more anterior contacts emerged later in time
(Schrouff et al., 2020). Note that this anatomical balancing procedure did not meaningfully alter
the time course of classification over non-highly selective contacts compared to retaining all
anterior non-highly selective contacts and all results remained similar if non-balanced electrodes
were used in the analyses (Supplemental Figure 2). See figure 1A for all electrodes used in
further analyses.

Note that the locations of face and word selective electrodes are more distributed than is
typically reported in group-level neuroimaging studies (Kanwisher & Yovel, 2006), though they
are consistent with the individual variability seen in other imaging modalities (Glezer &
Riesenhuber, 2013; Weiner & Grill-Spector, 2013; Gao, Gentile & Rossion, 2018; Zhen et al.,
2015; Rossion et al., 2012; Cohen et al., 2002; Dehaene et al., 2004; White et al, 2019) and are
consistent with prior iEEG studies (Li et al., 2020, Allison et al., 1999, Hagen et al., 2020;
Matsuo et al., 2015; Jacques et al., 2020; Lochy et al., 2018). See Boring et al. (2021) and Figure
1 of Li et al. (2019) for a more thorough examination of the iIEEG-derived map of VTC category
selectivity, including illustrations of individual subjects from these localizer results and a map

that includes all categories used.

Multivariate classification: Naive Bayes classifier
We first used a Naive Bayes classifier with 3-fold cross validation to examine category
selectivity over time at individual electrode contacts throughout ventral temporal cortex. Both

stP and stBHA signal values were used as input features in the classifier with a sliding 100 ms
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457  time window (10 ms width) as previous studies have shown increased sensitivity and specificity
458  when using both stP and stBHA (Miller et al., 2016). Indeed, stP and stBHA metrics have been
459  shown to capture separate and complementary aspects of the physiology that contribute to visual
460  processing as measured with iIEEG (Lescynski et al., 2019). stP signal was sampled at 1000 Hz
461  and stBHA at 100 Hz, which yielded 110 features (100 mean stP voltage potentials and 10

462  normalized mean stBHA PSD values). Thus at each time point at each electrode for each of 3
463  cross validation steps, the classifier was trained on the first 2-folds and performance evaluated on
464  the left out fold for 6-way classification of the six object categories presented in the localizer
465  session. Trials were divided into three folds by random assignment. We used the sensitivity

466  index d’ for face or word category against all other categories to determine face and word

467  selective contacts. d’ was calculated as Z(true positive rate) — Z(false positive rate), where Z is
468  the inverse of the Gaussian cumulative distribution function.

469

470  Elastic net regularized logistic regression

471 To examine the temporal dynamics of face and word individuation, we used elastic net

472 regularized logistic regression with three-fold cross validation implemented with the GLMNET
473 package in Matlab. Elastic net was chosen as a means to identify diagnostic electrode contacts by
474  removing non-informative and/or highly correlated classifier features. These series of

475  classification problems were conducted iteratively in four different electrode populations:

476  individual face classification from experiment 1 data in VTC HFS contacts and VTC NFS

477  contacts, and individual word classification from experiment 2 data in VTC HWS contacts and

478  VTC NWS contacts (as defined above). Face identity classification was conducted across
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479  expression and gaze direction, effectively varying the low-level visual features of each face

480  identity such that this classification problem was not simply face image classification.

481 stP signal was first downsampled to 100 Hz to yield an equal number of stP and stBHA
482  features. stBHA signal was then normalized with a Box-Cox transformation to ensure that both
483  stBHA and stP were both normally distributed. Thus at each time point, stP and stBHA values
484  from each trial were arranged as a P-dimensional vector corresponding to 2 * number of contacts
485  in each of the four predefined electrode contact populations. The time course of face and word
486  individuation was identified by examining the pairwise decoding accuracy of a classifier using 3-
487  fold cross-validation. The regularization parameter (o) was set a priori to 0.9 (range of 0-1) to
488  favor more sparse classification solutions that produce more statistically interpretable results

489  (similar to applying a lasso (L1) penalty in the case of a = 1) while avoiding degeneracies that
490  sometimes emerge in full L1 regularization (Friedman et al, 2008). The results of this analysis
491  are depicted in Figure 2. For display purposes, group mean time courses were smoothed with a
492 moving average of 30 millisecond fixed window length.

493 For comparison purposes, L1 regularized logistic regression (a=1) was also repeated in
494  the same manner as the above elastic net analyses (classification conducted separately for highly
495  and non-highly category selective populations) to demonstrate minimal difference in the time

496  course of d’ values from the different regularization procedures.

497 To demonstrate the robustness of general trends of individuation to the selection criteria
498  for highly and non-highly selective contact populations, the elastic net classification procedure
499  was repeated with additional thresholds determined by dividing face and word contact

500  populations into partitions of equal numbers. To do so, all contacts across all subjects in face and

501  word tasks, respectively, were sorted according to peak d’ selectivity value from the category
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localizer. Then, these contacts were divided into six equal partitions. Then, elastic net
regularized classification was conducted again according to the following groupings: 1) bottom
two partitions labeled as NFS, top four partitions labeled as HFS (corresponding d’ value of 0.61
dividing the two groups); 2) bottom three partitions labeled as NFS, top three partitions labeled
as HFS (corresponding d’ value of 0.7 dividing the two groups); 3) bottom four partitions labeled
as NFS, top two partitions labeled as HFS (corresponding d’ value of 0.82 dividing the two
groups). This procedure was repeated for word selective contacts at the following d’ thresholds:
0.58, 0.67, 0.86. The results of this analysis are depicted in Figure 3. For display purposes, group
mean time courses were smoothed with a moving average of 30 millisecond fixed window
length. The partitions corresponding to the bottom 1/6 and top 5/6 (and vice versa) are not

demonstrated because not all subjects had contacts in the lowest and highest partitions.

L1 regularized logistic regression

To examine the diagnosticity of brain activity from highly and non-highly category selective
electrode populations in concert with one another, we repeated the above classification analyses
with L1 as opposed to elastic net regularization and examined the proportion of electrode
contacts that were entirely penalized and removed from the classifier model. Additionally, all
VTC electrode contacts (highly and non-highly category selective) were used to train each
classifier, as opposed to splitting the electrode populations as in the previous analyses. After
conducting pairwise face classification and pairwise word classification, the classifier weights
from each pairwise classification for each electrode contact were extracted and the number of
non-zero (positive or negative) weights for each contact tabulated. The percent of electrode

contacts with non-zero weights was determined at every time point after baseline normalization.
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Baseline normalization consisted of determining the threshold of non-zero weight counts that
would yield <1% contacts with non-zero weights during the baseline period. The total percentage
of electrode contacts assigned non-zero weights for at least 50 ms across the entire time course
was determined, and results from this analysis are depicted in Figure 4A. This change in
classifier does not alter the time course of individuation compared to the original elastic net

procedure.

Electrode Diagnosticity in non-highly category selective areas

Having examined the contributions of highly and non-highly face and word selective contacts to
exemplar representation, we were then interested in examining whether 1) non-highly face and
word selective sites with selectivity for a different category differed in their contributions to
exemplar representation from 2) non-highly face and word selective sites lacking any other
category selectivity. The main question here is the extent to which contacts that demonstrate
category selectivity will contribute to exemplar representation for a different category. Thus in
addition to examining highly and non-highly category selective contacts, we further decomposed
the non-highly face and word category selective populations into two sub groups: other category
selective (OCS) and not significantly selective for any category (NCS). Face OCS contacts,
while not showing high selectivity for face images, did show selectivity for either word, house,
body, or hammer stimuli based on the same criteria for selectivity described above. Word OCS
contacts did not show high selectivity for words, but did show high selectivity for either face,
house, body, or hammer stimuli. NCS contacts showed no high selectivity for any of the
categories presented in the localizer task. Category selectivity for non-face and word categories

was established with the same method of Multivariate Naive Bayes classification at the category
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level as previously outlined, and weights extracted in the same method outlined in the
immediately preceding section.

To further quantify unique diagnosticity in highly and non-highly selective populations
and address concerns of volume conduction or signal bleed from high selectivity populations,
multivariate linear regression was carried out to regress the high selectivity signal from non-
highly selective signal in each subject’s dataset. Following this, the same elastic net regularized
logistic regression procedure was used to classify individual stimuli across time using the
residuals of the non-highly selective signal.

Where the above analyses examine whether unique information is present in non-highly
selective regions, a representational similarity analysis (RSA) was performed to examine the
overlap in information between highly and non-highly selective populations. Confusion matrices
from pairwise classification accuracies as measured with elastic net regularized logistic
regression between highly and non-highly selective populations for faces and words were first
calculated. For each subject, a vector corresponding to the lower matrix diagonal from pairwise
classification accuracies was extracted separately for highly and non-highly selective populations
and a Spearman correlation computed between them. This correlation measures whether pairs of
faces or words that were easy or difficult to classify from one another in high selectivity contacts

were also easy or difficult to classify from one another in non-highly selective contacts.

Statistical Analyses
For the category localizer with Naive Bayes classification, row permutation tests on a subject
level were used to establish a d’ threshold for category selective contacts. For each subject within

each permutation, the condition labels for each trial were randomly shuffled and the same
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classification procedure as above was used 1000 times for a randomly selected channel in each
electrode montage. The peak d’ value from each permutation was aggregated into a group-level
distribution comprising the null distribution from each permutation for each subject. The d’ value
corresponding to p < .01 was estimated from this histogram and used as a selectivity threshold to
determine highly and non-highly selective contact populations for each subject.

For face and word individuation as measured with elastic net regularized logistic
regression, row permutation tests were used to establish a significance threshold for
classification accuracy for each subject. For each permutation, a classifier model was optimized
and test condition labels shuffled to test model predictions on randomized data. This procedure
was repeated 1000 times to generate a null distribution. The true classification values and null
distributions for each subject were combined into group-level distributions, and the mean true
classification value and mean null distribution compared to one another. Classification accuracy
was deemed significant at a level of p < .05 with FDR correction (Benjamini-Hochberg
procedure for dependent tests), with a minimum temporal threshold of 3 contiguous significant
time points. Thus, although different subjects contributed different numbers of contacts to each
classification analysis, all subjects are weighted equally in the group mean depicted in Figure 2.

Onset sensitivity was determined by with 3 metrics examining the individual subject-
level statistics. For the first method, the same true classification values and null distributions
from above were compared on an individual level, and the first time point significant at a level of
p < .05 with FDR correction (Benjamini-Hochberg procedure for dependent tests) with a
minimum temporal threshold of 3 contiguous significant time points was used as the onset
marker for each subject. Vectors of onset markers compiled from all subjects were compared

between HFS / NFS, and HWS / NWS electrode populations with paired-sample t-tests. Because
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this method is somewhat sensitive to the magnitude of the response (e.g. higher magnitude will
cross the statistical threshold sooner) two other methods for calculating onset that are more
robust to magnitude differences were used as well.

The second onset determination method was adapted from Schrouff et al. (2020): for each
subject, the time course of mean classification values for each classification problem (HFS, NFS,
HWS, and NWS) were normalized to peak classification value, and a sliding window with 50 ms
bins and 10 ms overlap was implemented. Classification average and standard deviation in the
baseline period of -100 to 0 ms was estimated, and the first period with 3 contiguous bins
surpassing the baseline threshold was marked as the signal onset for a given subject’s
classification time course. Vectors of onset markers compiled from all subjects were compared
between HFS / NFS, and HWS / NWS electrode populations with paired-sample t-tests. Schrouff
et al (2020) show that this method for finding onset times is robust to differences in peak
magnitude across comparisons.

For the third onset determination method, onset sensitivity was measured as the first 3
contiguous time points where classification values for each subject were greater than 25% of the
peak value. Vectors of onset markers compiled from all subjects were compared between HFS /
NEFS, and HWS / NWS electrode populations with paired-sample t-tests. While 25% of the peak
value is not necessarily a strict measure of “onset,” it is independent of peak magnitude and
provides a metric of whether any differences in peak time are due to differences in slope or
whether there is differences in onset (e.g. earlier peak times could be due to sharper rising slope
or earlier onset).

To assess significance for the residual classification procedure, the same row permutation

test from elastic net regularized logistic regression significance testing above was again used in
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617  this context. For the pairwise classification accuracy RSA, a two-sided t-test was used to identify
618  Spearman’s rho values significantly greater than 0.
619

620
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Figure 1. Ventral temporal electrode contact heatmaps (489 total electrode contacts), stimulus
examples, and electrophysiological traces. A) 426 total contacts from 14 subjects who completed
the gender discrimination task were divided into 171 HFS and 255 NFS contacts. Total HFS +
NEFS coverage throughout ventral temporal cortex is depicted in the top left heatmap. Total HFS
coverage is depicted in the bottom left heatmap. 174 total contacts from 5 subjects who
completed the word one-back task were divided into 113 HWS and 61 NWS contacts. Total

HWS + NWS coverage throughout ventral temporal cortex is depicted in the top right heatmap.
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Total HFS coverage is depicted in the bottom right heatmap. Electrode contact locations depicted
here include both subdural electrode strips on the surface of the cortex and stereotaxically
implanted depth electrodes, projected to the nearest surface vertex. B) Example stimuli from
gender discrimination task demonstrating 2 male and female identities with 3 gaze directions and
a surprised expression. Example stimuli from word one-back task depicting four-letter real and
matched pseudowords. C) Averaged single trial potentials (measured in microvolts) and single
trial high broadband activity (measured with z-scored power spectrum density values) from
single electrodes from high face selectivity, high word selectivity, non-high face selectivity, and
non-high word selectivity populations in response to 6 visual categories during localizer task
(note that for subjects that performed both tasks, HFS electrode contacts are included in the
NWS group and HWS contacts are included in the NFS group). Dashed black line shows
stimulus onset. See Boring et al. (2021) for a full examination of the localization and category-
level neurodynamics of face and word selective electrodes in iEEG in a superset of subjects that
include the ones reported in this work on the dynamics of individual level face and word

processing.
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Figure 2. Time course of the sensitivity index (d’) for individuation of faces and words. A) HFS
contacts (dark red) demonstrated significant face individuation from 130 ms to 940 ms after
stimulus onset, with peak d’ = 0.37 at 320 ms (p < .05, FDR corrected for multiple dependent
temporal comparisons). NFS contacts (light red) demonstrated significant face individuation
from 320 ms to 800 ms after stimulus onset, with peak d’=0.17 at 520 ms (p < .05, FDR
corrected). HFS individuation onset emerged significantly earlier than NFS individuation (190
ms average difference between HFS and NFS onset, p = .009, ¢(13) = 3.05). Individually, 11 of
the 14 patients demonstrated an earlier onset of significant individuation in HFS than NFS
contacts. B) HWS contacts (dark blue) demonstrated significant word individuation from 160 ms
to 535 ms after stimulus onset, with peak d” = 0.48 at 235 ms (p < .05, FDR corrected for
dependent tests). NWS contacts (light blue) demonstrated significant word individuation from
285 ms to 605 ms after stimulus onset, with peak d”=0.18 at 470 ms (p < .05, FDR corrected).
Word individuation emerged significantly earlier in HWS compared to NWS regions (145 ms

average difference between HWS and NWS onset, p =.036, #(4) = 3.1). Individually, all 5
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882  patients demonstrated an earlier onset of word individuation in HWS compared to NWS

883  contacts. Shaded bars illustrate standard error of the mean across subjects at each time point.

884
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886  Figure 3. Time course of the sensitivity index (d’) for individuation of faces and words at graded
887  thresholds. Individual face and word classification (as in Figure 2) was repeated with multiple
888  “high” selectivity thresholds. These thresholds were defined by separating all contacts into

889  partitions corresponding to the one third, one half, and two-thirds levels of d’ values as measured
890  with the category localizer. A) Time course of face individuation at thresholds of d’ = 0.61 (NFS
891 = bottom 1/3 of contacts, HFS = top 2/3 of contacts), d’ = 0.7 (NFS = bottom % of contacts, HFS
892  =top % of contacts), and d” = 0.82 (NFS = bottom 2/3 of contacts, HFS = top 1/3 of contacts). B)
893  Time course of word individuation at thresholds of d” = 0.58 (NWS = bottom 1/3 of contacts,

894  HWS =top 2/3 of contacts), d’ = 0.67 (NWS = bottom 2 of contacts, HWS = top Y4 of contacts),

895 and d’=0.86 (NWS = bottom 2/3 of contacts, HWS = top 1/3 of contacts).
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896

897  Figure 4. A) Percent diagnostic electrode contacts inside and outside high category-selectivity
898  populations measured with L1-regularized logistic regression. 58.6% of HFS contacts from 14
899  patients (average of 6.2 contacts per subject, SEM = 9%) were assigned non-zero weights. 42.4%
900  of NFS contacts (average of 4 contacts, SEM = 8.9%) were assigned non-zero weights on

901  average. 35.2% of HWS contacts from 5 patients (average of 3.2 contacts, SEM = 18%) on

902  average were assigned non-zero weights. 11.4% of NWS contacts (average of 0.9 contacts, SEM
903 = 6.2%) were assigned non-zero weights. B) Within non-high face selectivity electrode contacts

904  that demonstrated selectivity for a different object category (F-OCS, other category-selective),

43


https://doi.org/10.1101/2020.11.11.378877
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.11.378877; this version posted November 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

905  42.5% of the contacts (average of 3 contacts per montage, SEM = 8.7% of contacts) were

906  assigned non-zero weights. Within non-high face selectivity contacts that demonstrated no

907  selectivity for any object categories (F-NCS, not category-selective), 33% of the contacts

908  (average of 1 contact, SEM = 9.6%) on average were assigned non-zero weights. Within non-
909  high word selectivity electrode contacts that demonstrated selectivity for a different object

910  category (W-OCS), 9.4% of the contacts (average of 0.7 contacts, SEM = 8.1%) were assigned
911  non-zero weights. Within non-high word selectivity contacts that demonstrated non-significant
912  selectivity for any other object categories (W-NCS), 5% of the contacts (average of 0.2 contacts,
913  SEM 5%) on average were assigned non-zero weights. C) Example single trial potential

914  (microvolts) and single trial high broadband activity (z-scored power spectrum density values)
915  traces of one NCS electrode contact in response to all 6 categories of localizer task stimuli. The
916  dashed black line indicates stimulus onset. Example single trial potential and single trial high
917  broadband activity traces of one OCS electrode contact (showing tool selectivity) in response to

918  all 6 categories of localizer task stimuli can be seen in the NWS panels of figure 1C.

919

44


https://doi.org/10.1101/2020.11.11.378877
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.11.378877; this version posted November 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A. B
0.5 05
HFS NFS
0.4 0.4
N
\/\
0.3 / . 03
0.2 \’\« 0.2
N Py O
0.1 S 0.1 P4 TN
/ Y -
0‘v—-—v—/ ———————————————————————— 0——(—-57- ————————————————————————
0 200 400 600 800 1000 0 200 400 600 800 1000
C. D.
T 06 HWS 0.6 NWS
2
=
=04 0.4
c
[0}
(%]
= 0.2 0.2 3
s Mz .4
'[‘ R -N\‘:ﬂi. )
% 0 0 R A - - K\Lﬁﬁ‘\:
0O 200 400 600 800 1000 0 200 400 600 800 1000

Time (ms)
920  Supplementary Fig. 1.
921  Time course of d’ exemplar sensitivity as measured with elastic net vs. L1 regularized logistic
922 regression. A) HFS contacts measured with elastic net (dark red) versus L1 (light red)
923  penalization. B) NFS contacts measured with elastic net (dark red) versus L1 (light red)
924  penalization. C) HWS contacts measured with elastic net (dark blue) versus L1 penalization
925  (light blue). D) NWS contacts measured with elastic net (dark blue) versus L1 (light blue)
926  penalization.

927

928
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Supplementary Fig. 2.

Time course of exemplar sensitivity in original and anterior-inclusive NFS/NWS populations.
The same elastic net regularized logistic regression analysis was repeated over the anterior-
inclusive contacts for face and word classification. No statistically significant differences in the
onset time, peak time, or peak d’ between original and anterior-inclusive contacts emerged. A)
Mean d’ for NFS original contacts (light red) that peaked at 520 ms (d’ = 0.17) compared to the
mean d’ for NFS anterior-inclusive contacts (dark red) that peaked at 495 ms (d’ = 0.15). B)
Mean d‘ for NWS original contacts (light blue) peaked at 395 ms (d’ = 0.2) after stimulus onset,
temporally identical to the mean d” for NWS anterior-inclusive contacts that peaked at 395 ms

d’ =0.18).
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