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Abstract8

Trait evolution among a set of species—a central theme in evolutionary biology—has long been un-9

derstood and analyzed with respect to a species tree. However, the field of phylogenomics, which has10

been propelled by advances in sequencing technologies, has ushered in the era of species/gene tree in-11

congruence and, consequently, a more nuanced understanding of trait evolution. For a trait whose states12

are incongruent with the branching patterns in the species tree, the same state could have arisen inde-13

pendently in different species (homoplasy) or followed the branching patterns of gene trees, incongruent14

with the species tree (hemiplasy). Another evolutionary process whose extent and significance are better15

revealed by phylogenomic studies is gene flow between different species. In this work, we present a phy-16

logenomic method for assessing the role of hybridization and introgression in the evolution of polymorphic17

or monomorphic binary traits. We apply the method to simulated evolutionary scenarios to demonstrate18

the interplay between the parameters of the evolutionary history and the role of introgression in a binary19

trait’s evolution (which we call xenoplasy). Very importantly, we demonstrate, including on a biological20

data set, that inferring a species tree and using it for trait evolution analysis in the presence of gene flow21

could lead to misleading hypotheses about trait evolution.22

Keywords: Trait evolution, phylogenomics, hybridization, introgression, multispecies coalescent.23
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Introduction24

Evolutionary biology began with the study of traits, and both descriptive and mechanistic explanations25

of trait evolution are key foci of macroevolutionary studies today. Trait evolution is often coupled with26

speciation, as in the case of Darwin’s finches, where the evolution of their beaks reflects adaptation to27

particular diets in an adaptive radiation [1–4]. Modern systematics synthesizes genomic data into informative28

species trees [5, 6], revealing the complex relationship between speciation and trait evolution. This is a29

welcome development as statistical methods for elucidating interspecific trait evolution without making use30

of the species tree can produce misleading results [7, 8].31

Given a hypothesized species tree inferred from available data, trait patterns “congruent” with the tree32

may be parsimoniously explained as having a single origin in some ancestral taxon, and are shared by all33

descendants. However, many trait patterns are “incongruent” and may be examples of convergent evolution,34

where traits have been gained or lost independently. This kind of explanation is termed homoplasy, referring35

to a pattern of similarity which is not the result of common descent [9]. Incongruent trait patterns can also36

be produced by discordant gene trees and ancestral polymorphism. In such cases, while the trait pattern is37

incongruent with the species tree, it is congruent with gene trees that differ from the species tree.38

When gene tree incongruence is due to incomplete lineage sorting (ILS) this explanation is termed hemi-39

plasy [10, 11], and the hemiplasy risk factor (HRF) was developed to assess its significance for a given species40

tree [12]. Inference of species trees from genomic data in the presence of ILS has attracted much attention41

in recent years, resulting in a wide array of species tree inference methods [13–20]. The significance of elu-42

cidating not only the species tree but also the gene trees within its branches was recently highlighted for its43

significance in understanding trait evolution [21].44

Another major source of species/gene tree discordance in eukaryotes is hybridization and introgression45

[22]. The multispecies network coalescent was developed to unify phylogenomic inference while accounting for46

both ILS and introgression [23–25]. Gene flow may explain some trait evolution [26], and methods analyzing47

trait evolution along a species network have been introduced [27, 28]. Such methods do not account for48

ILS, but the HRF framework was recently extended to fold introgression into hemiplasy and homoplasy [29].49

However, hemiplasy was originally circumscribed to discordances that arise from idiosyncratic lineage sorting50

[11]. To distinguish the effects of gene flow we therefore propose using “xenoplasy” to explain a trait pattern51

resulting from inheritance across species boundaries through hybridization or introgression. This builds on52

“xenology” which denotes homologous genes sharing ancestry through horizontal gene transfer [30].53

For the example in Fig 1, although both gene trees share the same topology, mutations along the internal54

branches will lead to hemiplasy or xenoplasy respectively for the solid and dashed gene trees. It also illustrates55

that hemiplasy requires deep coalescence events, but xenoplasy does not. It is important to highlight here56

that in some cases there cannot be clear delineation of homoplasy, hemiplasy, and xenoplasy, as the evolution57
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of trait could simultaneously involved convergence and genes whose evolutionary histories involve both ILS58

and introgression. In fact, the picture can get even more complex when the effects of gene duplication and59

loss are involved (maybe necessitating yet another term, e.g., “paraplasy,” following the term “paralogy”60

that is used to describe genes whose ancestor is a duplication event).61

Figure 1: Phylogenomic view of trait evolution in the presence of incomplete lineage sorting (ILS) and

introgression. Left: The three possible genealogies of three taxa A, B, and C. Right: Phylogenetic network

that models an underlying species tree (A,(B,C)) along with a reticulation from A to B, and whose associate

inheritance probability is γ. The embedded solid gene tree involves ILS but no introgression, whereas the

dashed gene tree involves introgression but not ILS. The states Sa, Sb, and Sc of an incongruent binary

character are shown at the leaves of the phylogenetic network.

We introduce the global xenoplasy risk factor (G-XRF) to assess the role of introgression in the evolution62

of a given binary trait. We append “global” because unlike HRF, which is computed per-branch, G-XRF is63

computed over the whole network for a specific pattern, a pattern which can be polymorphic. We evaluated64

the G-XRF in simulated settings with ILS and introgression, demonstrating the interplay among divergence65

and reticulation times, introgression probability, population size and substitution rates, and how this affects66

the role of introgression in trait evolution. We also show how sampling trait polymorphism improves the67

informativeness of the G-XRF, and the importance of inferring a species network where gene flow occurs for68

elucidating trait evolution. In particular, we demonstrate how assuming a species tree despite the presence69

of gene flow overemphasizes the role of hemiplasy.70

Our work brings together phylogenetic inference and comparative methods in a phylogenomic context71

where both the species phylogeny and the phylogenies of individual loci are all taken into account. A72

short tutorial demonstrating how to calculate and use G-XRF values is available at our web site, https:73

//nakhlehlab.github.io/.74

Materials and methods75

The Global Xenoplasy Risk Factor76

Consider that a binary trait evolving along the branches of a fixed species tree or network Ψ with77

population mutation rates Θ, and in the case of species networks inheritance probabilities Γ. The trait78

is given by A which specifies for each species the number of sampled individuals with state 0 and the79

number with state 1. We refer to this as the observed state counts, or in the special case where only80

one observation present for each species, as the trait pattern. We use u and v respectively for the forward81

character substitution rate (replacing state 0 with state 1) and the backward character substitution rate82
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(replacing state 1 with state 0).83

The posterior probability of the species phylogeny and associated parameters given A is:84

f (Ψ,Θ,Γ, u, v|A) = f (A|Ψ,Θ,Γ, u, v) f (Ψ,Θ,Γ, u, v)
1

f (A)

∝ f (A|Ψ,Θ,Γ, u, v) f (Ψ,Θ,Γ, u, v) ,

(1)

where f (A|Ψ,Θ,Γ, u, v) is the likelihood of the observed state counts, and f (Ψ,Θ,Γ, u, v) is the prior85

on the species phylogeny and population sizes.86

In the phylogenomic view of trait evolution, the evolutionary history of A is modeled as a gene tree87

evolving inside the species phylogeny. To calculate the likelihood of the observed state counts, we need to88

integrate over all possible genealogies G:89

f (A|Ψ,Θ,Γ, u, v) =

∫
G

f (A|G, u, v) f (G|Ψ,Θ,Γ) dG. (2)

Here, f (A|G, u, v) is the likelihood of a genealogy given the observed site counts and f (G|Ψ,Θ,Γ) is the90

multispecies coalescent (or multispecies network coalescent) likelihood. We use existing Bayesian methods91

of species tree and network inference from bi-allelic markers [31, 32] to calculate f (A|Ψ,Θ,Γ, u, v) according92

to Equation 1. While the network inference method we use cannot handle missing data, it can calculate93

the likelihood where multiple individuals are sampled for a single species, which we take advantage of to94

calculate the likelihood of polymorphic traits. Finally, the G-XRF is calculated as the natural log of the95

posterior odds ratio, where Ψ is the species network which should be estimated from the data, and T is the96

hypothesized backbone tree without gene flow displayed by Ψ:97

ln
f(Ψ,Θ,Γ, u, v|A)

f(T ,Θ, u, v|A)
. (3)

This ratio compares the posterior probability integrating over possible hemiplasy, homoplasy and in-98

trogression with the probability integrating over possible hemiplasy and homoplasy alone. Therefore, the99

ratio compares how likely it is that introgression has contributed to the trait pattern, rather than directly100

comparing introgression with hemiplasy or introgression with homoplasy.101

Jaltomata analysis102

We studied the utility of G-XRF by inferring species phylogenies from a previously published dataset of103

6,431 orthologous gene sequences from Jaltomata and the close relative Solanum lycopersicum as an outgroup104

[33]. To derive conditionally independent bi-allelic markers of the original dataset, we randomly selected one105

site from each gene and obtained 6,409 valid bi-allelic markers in total.106
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We inferred a species phylogeny of this group in two different ways using MCMC BiMarkers [32] with107

chain length 5× 106, burn-in 2× 106, and sample frequencies 1000, using the following command:108

MCMC_BiMarkers -taxa (JA0701, JA0456, JA0694, JA0010, JA0719, JA0816)109

-cl 5000000 -bl 2000000 -sf 1000 -mr 1110

We ran the same command setting -mr to 0 (which sets the number of reticulations to 0) for species tree111

inference. The effective sample size (ESS) of the parameter values of the MCMC chains were higher than112

2321 for the species tree and higher than 1583 for the species network.113

Simulated multilocus data114

We generated the data with 2 steps. First, we generated 128 gene trees with ms [34] given the species115

network. The command is as follows.116

ms 6 128 -T -I 6 1 1 1 1 1 1 -es 0.25 5 0.3 -es 0.25 3 0.8 -ej 0.5 7 3117

-ej 0.5 8 2 -ej 0.75 6 5 -ej 1.0 3 4 -ej 1.0 2 1 -ej 2.0 5 4 -ej 2.5 4 1118

Second, at each locus, we simulated the sequence alignment given the gene tree with seq-gen [35]. We set119

the length of sequences to be 500 bps, and utilized GTR model with base frequencies 0.2112,0.2888,0.2896,0.2104120

(A,C,G,T) and transition probabilities 0.2173,0.9798,0.2575,0.1038,1.0,0.207. We set the population muta-121

tion rate θ = 0.036, so the scale −s is 0.018. The command is as follows.122

seq-gen -mGTR -s0.018 -f0.2112,0.2888,0.2896,0.2104123

-r0.2173,0.9798,0.2575,0.1038,1.0,0.207 -l500124

We inferred a species network from the simulated data with MCMC SEQ [36] under GTR model with125

chain length 5 × 107, burn-in 1 × 107 and sample frequencies 5000. We fixed the population mutation rate126

θ = 0.036 and GTR parameters to be true parameters. The command is below:127

MCMC_SEQ -cl 60000000 -bl 10000000 -sf 5000 -pl 8128

-tm <A:A_0;C:C_0;G:G_0;L:L_0;Q:Q_0;R:R_0> -fixps 0.036129

-gtr (0.2112,0.2888,0.2896,0.2104,0.2173,0.9798,0.2575,0.1038,1,0.2070);130

We also inferred a species tree using StarBEAST2 [17]. The chain length was 108 with a sample frequency131

of sample frequency 50, 000 under GTR model with empirical base frequencies and transition probabilities132

fixed to the true values. Population sizes were sampled for the individual branches (i.e., a single population133

size across all branches was not assumed).134
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Results135

Consider the evolutionary history depicted by the phylogenetic network of Fig 1. If a single individual136

is sampled from each of the three species A, B, and C, then this network can be viewed as a mixture of two137

displayed trees [37]: The “species” tree (A,(B,C)) and another tree that captures the introgressed parts of B’s138

genome ((A,B),C). The given trait whose character states are 1, 1, and 0 for taxa A, B, and C, respectively,139

could have evolved down and within the branches of the species tree. In this case, either homoplasy and140

hemiplasy could explain the trait evolution. To tease these two processes apart, assuming introgression did141

not play a role, the HRF can be evaluated with respect to the species tree. Furthermore, a similar analysis of142

both displayed trees can provide a way for assessing the role of hemiplasy in the presence of introgression [29].143

In our case, we are interested in answering a different question: How much does a reticulate evolutionary144

history involving hybridization and introgression explain the evolution of a trait as opposed to a strictly145

treelike evolutionary history?146

The likelihood of observed state counts given the species phylogeny integrates over all possible gene147

histories and is calculated using methods previously implemented in PhyloNet [32, 38]. Furthermore, while148

the model was illustrated above on three taxa, those methods allow for any number of taxa and any topology149

of the phylogenies, including any number of reticulation events. We use G-XRF to measure the importance of150

taking into account the possibility of introgression for a given trait. The higher value of G-XRF corresponds151

to the greater necessity of a species network for trait analysis, and the greater odds that the site pattern is152

due to introgression.153

Interactions between evolutionary parameters154

A phylogenomic view of the evolution of a binary trait on the phylogenetic network of Fig 1 involves, in155

addition to the topologies of the phylogenetic network and species tree, roles for:156

• The inheritance probability γ, which measures the probability that a locus in the genome of B was157

derived from the ancestor of A, representing gene flow from A into B [24, 36].158

• The reticulation time Tr, as it controls the likelihood of inheriting a character state by B from A, as159

well as the likelihood of such an inherited state becoming fixed in the population.160

• The length of the internal species tree branch, T2 − T1, as it controls the amount of ILS and, conse-161

quently, hemiplasy.162

• The population mutation rate, θ = 2N2µ, which also controls the amount of ILS and hemiplasy.163

• The relative forward and backward substitution rates u, v.164
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The character states are shown at the leaves of the network of Fig 1 which displays the species tree165

(A,(B,C)). We varied the ILS level by varying the internal branch length (T2 − T1). The initial interval166

between internal nodes Tn was 1 coalescent unit, but we varied (T2 − T1) from 0.001 to 10 to represent a167

range from very high to very low levels of ILS. Two factors controlled the introgression: the inheritance168

probability γ and the reticulation time Tr. The inheritance probability γ was varied between 0 and 1. As γ169

approaches 1 this represents a complete replacement of the genome with introgressed sequences, as seen in170

the Anopheles gambiae species complex [39]. The reticulation time Tr was varied between 0 and 1 coalescent171

unit. We varied the population mutation rate θ between 0.001 and 0.01. For the character substitution rate,172

we used three settings: forward = 0.1×backward, forward = backward and forward = 10×backward. For173

the polymorphic trait, we varied the frequency of allele ‘1’ in taxon B from 0 to 1.174

We focused on a couple of three-way interactions: G-XRF as a function of the interplay among the internal175

branch length, the inheritance probability, and the relative forward/backward character substitution rates176

(Fig 2 top row), and G-XRF as a function of the interplay among the reticulation time, population mutation177

rate, and the relative forward/backward character substitution rates (Fig 2 bottom row).178
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Figure 2: The interaction of evolutionary parameters affects the need for introgression to explain trait

patterns. G-XRF is shown as a function of internal branch length T2 − T1 and inheritance probability γ

when reticulation time Tr = 0.1 coalescent units and population mutation rate θ = 0.01 (top row), and as a

function of θ and Tr when T2 − T1 = 10 and γ = 0.5 (bottom row).

As the internal branch becomes longer, the amount of ILS and consequently hemiplasy decrease, increasing179
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the roles of introgression/homoplasy. Conversely, as the forward substitution rate increases relative to the180

backward rate, the necessity of introgression decreases since convergent mutations along the A and B branches181

may explain the trait pattern. This is indicated by decreasing G-XRF values for the same combination of182

(T2 − T1) and γ across as forward substitution rate increases (Fig 2 top row).183

The second three-way interaction is based on a scenario where the internal branch is too long for ILS to184

occur and, consequently, for hemiplasy to be a factor. Therefore, the two forces underlying trait evolution185

in this case are homoplasy and xenoplasy. The role of introgression increases as Tr decreases, since there is186

less time for the state to revert to 0 when state 1 is inherited by B from its most recent common ancestor187

(MRCA) with A (Fig 2 bottom row). The other key factor is the probability of a forward mutation, which188

is a function of the population mutation rate and the ratio of forward to backwards mutations. As this189

probability increases, homoplasy becomes more plausible as an explanation through convergent forward190

mutations along the A and B branches the same as for the first three-way interaction.191

Increasing the probability of forward relative to backwards mutation flips the effect of increasing the192

population mutation rate θ. When the probability of forward mutation is low (and backward mutation193

high), increasing θ makes the trait pattern more likely to be the result of introgression, since any mutations194

along the B branch are likely to be backward (Fig 2 bottom left). When the probability of forward mutation is195

high (and backward mutation low), increasing the population mutation rate makes homoplasy more plausible196

due to convergent forward mutations along the A and B branches (Fig 2 bottom right).197

Introgression and polymorphic traits198

Polymorphism is a major factor in trait evolution, often ignored only because methods do not account199

for it [40]. Fortunately, bi-allelic marker methods based on the multispecies (network) coalescent methods200

naturally account for polymorphism, and we take advantage of that in order to apply G-XRF to polymorphic201

traits. We conducted the same analysis as above, but now with ten observations for taxon B (we assume202

only one sampled state each from taxa A and C). Once again the internal branch is too long for ILS and203

hemiplasy to be relevant to the results.204

Under certain conditions the G-XRF values were much higher or lower than what we observed sampling205

only one state per species (Figs 3 and 4). This is predictable, as we now have 12 total observations of the206

trait state compared with only three observations before, and more data will increase the magnitude of the207

observed state count likelihoods.208

The G-XRF is highest where the introgression probability γ is equal to the observed frequency of the 1209

state in B, an intuitively predictable result (Fig 4). Increased population mutation rate decreased the G-210

XRF, especially when the forward substitution rate was relatively high and the frequency of 1 in B relatively211

low (Fig 3). As for the previous results, this is because convergent forward mutations may occur along the A212
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Allele Frequency (1)

T
r

Figure 3: The interaction of evolutionary parameters affects the need for introgression to explain observed

state counts. The x- and y-axis in each panel correspond to the frequency of character state 1 in taxon B

and the reticulation time Tr. Columns correspond to three different relative forward/backward character

substitution rates and rows correspond to three different population mutation rates. In all panels T2−T1 = 10

coalescent units and γ = 0.5.

and B branches. Unlike for trait patterns with only one observation per species, we can now observe negative213

G-XRF values. When the observed frequency of 1 in B is low, but γ is high, the trait is much more plausibly214

explained through common ancestry between B and C than gene flow (Fig 3). This effect becomes stronger215

as the probability of forward mutation increases, as it makes backward mutation of introgresses traits less216

likely.217
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γ

T
r

Figure 4: G-XRF values in the presence of trait polymorphism. The x- and y-axis in each panel correspond

to the inheritance probability γ and reticulation time Tr, respectively. Columns correspond to three different

relative forward/backward character substitution rates, and rows correspond to three different frequencies

of all 1 in taxon B. In all panels T2 − T1 = 10 coalescent units and θ = 0.01.

Applying G-XRF to Jaltomata218

When the evolutionary history of a set of species is reticulate, inferring a species tree could result in a219

tree with much shorter branches [25, 36, 41]. In such cases, the role of hemiplasy would be overestimated as220

it has an inverse relationship to branch length. This could in turn give the false impression that introgression221

did not play a role in the trait’s evolutionary history. In other words, inferring a species tree despite the222

presence of gene flow could lead to misleading results not only in terms of the evolutionary history of those223

species, but also for their associated traits.224
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We illustrate this phenomenon using empirical and simulated data. Based on an inferred species tree, the225

trait patterns of Jaltomata species were previously hypothesized to be the result of homoplasy [42]. Another226

study indicated that the evolutionary history of these species was reticulate, yet no phylogenetic network227

was inferred [33]. We inferred both a species tree and species network based on six Jaltomata species and228

the Solanum lycopersicum outgroup from the latter study (Fig 5).229

Figure 5: Inferred species tree (left) and network (right) of the Jaltomata data set. The major tree inside

the species network is obtained by removing the blue reticulation edge leading to I1.

We evaluated the HRF values of the species tree inferred without reticulations, and of the major tree230

inside the species network. The HRF values computed based on the species tree are larger than the values231

computed based on the major tree inside the species network. This suggests that the predicted amount of232

hemiplasy is erroneously high when gene flow is unaccounted for. We also computed G-XRF for three possible233

trait patterns, finding that trait patterns X and Y can be plausibly explained by either tree-like or reticulate234

evolution since the G-XRF values are close to zero (Fig 6). The trait pattern that would be best explained235

by introgression was pattern Z where introgression of state 1 from the MRCA of (incahuasina, grandibaccata,236

dendroidea) into the MRCA of (procumbens, repandidentata) would be a more plausible explanation than237

homoplasy, except for when the probability of forward mutation is relatively high and therefore convergent238

forward mutations can be anticipated.239
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Figure 6: G-XRF values of three trait patterns (X, Y and Z) as the ratio of forward to backward substi-

tutions is varied. Each box plot summarizes 3,000 G-XRF values obtained from the species network and

corresponding major tree sampled from the posterior distribution of Jaltomata species networks.
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The simulated data set240

To further confirm these results, we repeated the same analysis on simulated data. We simulated sequence241

alignments on 128 loci from the phylogenetic network whose topology was based on a previously published242

phylogeny of anopheline mosquitoes [43]. Then, we inferred a species network and tree from the simulated243

alignments. We then computed HRF values on two trees:244

• The “major tree” of the species network estimated by, obtained by deleting the edge with the lowest245

inheritance probability entering each reticulation node. Specifically, the reticulation edges I5 → I6246

and I7→ I8 were deleted as they have the smaller inheritance probabilities.247

• The inferred species tree. Unlike the major tree, this was not ultrametric in coalescent units, because248

we did not assume a single uniform population size across all branches in this case.249

The major tree HRF values for the branches leading to the two clades of three Jaltomata species each250

were orders of magnitude smaller than the HRF values for the same branches in the species tree. This251

indicates that some of the gene tree incongruence is erroneously attributed to ILS, and that incongruent252

trait patterns may erroneously be attributed to hemiplasy, when introgression is not accounted for.253

We also compare posterior probability densities for the case where taxa A and C have state ‘1’ and the254

other taxa have states ‘0’ and the case where Q and R have state ‘1’ and the other taxa have states ‘0’.255

Both cases are examples of where introgression from the second taxon’s lineage to the first taxon’s lineage256

could explain the trait pattern. We find that the probability density of the major tree is lower than the true257

or inferred networks in either case, suggesting that the G-XRF is powerful enough to detect the potential258

for specific traits to be introgressed, since it is derived from those probability densities. Similar posterior259

probabilities for the true and inferred networks further suggest that relying on inferred species phylogenies260

to compute the G-XRF is not a problem.261

Discussion262

The extent of hybridization and introgression continues to be revealed in an increasingly larger number263

of eukaryotic clades [44]. In this paper, we introduced the concept of xenoplasy to capture the inheritance264

of morphological character states via hybridization and introgression. We demonstrated how various evo-265

lutionary parameters impact the role these processes could play in the evolution of a given trait, including266

polymorphic traits. When gene flow is ignored as a mode of inheritance, complex traits patterns may be267

erroneously explained by homoplasy, that is convergent or parallel evolution. This may be the cases even268

when coalescent processes that result in incomplete sorting of alleles or traits are accounted for, particularly269

when the gene flow occurs between relatively distant taxa.270

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.09.16.300343doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.300343
http://creativecommons.org/licenses/by-nc-nd/4.0/


We are indebted to previous work on HRF [12] as the inspiration for our work on G-XRF. HRF is271

computed per-branch, and we anticipate the development of more granular statistics that apply to local272

branches, sub-networks, or reticulation nodes within the species network. It is worth noting that as a273

global metric based on likelihood ratios, G-XRF will reflect the overall risk of introgression. Therefore,274

a trait pattern with moderate introgression across two clades would have similar risk to that with a high275

introgression in one clade and a low introgression in the other. As a workaround, researchers may want to276

compute G-XRF for a particular region or regions of their phylogeny by pruning other taxa. In this way the277

measure will be more specific and meaningful.278

Because we implemented G-XRF using existing multispecies (network) coalescent methods for bi-allelic279

markers, it does not account for gene duplication and loss or multistate or continuous traits. Previous work280

on the evolution of quantitative traits within a species tree found that discordance was invariant to the281

number of loci controlling a trait, a result which may also apply to xenoplasy risk [45]. The framework we282

presented here is general enough to investigate this and other possibilities, although it requires significant283

algorithmic improvements. Another useful extension to this framework would be to compute the probabilities284

where the ancestral state is known, as is the case with Dollo traits where the ancestral state is the presence285

of a complex trait [46].286

We have shown how to visualize the effect on G-XRF when varying up to four parameters in a single287

analysis (Figs 2 and 4). This will be useful to understand the potential contribution of introgression towards288

trait patterns when substantial uncertainty is present in one, two, three or four parameters of the model.289

Greater uncertainty means that a grid search as presented here becomes less feasible, both computationally290

and in terms of remaining interpretable. Instead, G-XRF could potentially be computed as part of a full291

Bayesian analysis using MCMC or other algorithms that integrate over the posterior distribution of networks.292

Species network inference methods may have trouble identifying instances of reticulate evolution where293

the introgression probability is very small resulting in a lack of signal, but we do not think this presents a294

practical problem as such instances necessarily have low xenoplasy risk. The running time for inferring the295

posterior probability of species networks can be significant; while likelihood calculations for the three-taxon296

networks took less than one second each, the time complexity of MCMC Bimarkers is O(sn4l+4), where s297

is the number of species, n is the number of lineages sampled from all species, and l is the level of the298

network [32, 47]. Increasing the network level is therefore highly deleterious to running time, but this may299

be overcome using a new, more scalable algorithm with a time complexity of O(sn2K̄+2), where K̄ ≤ l + 1300

[47]. Another option is using pseudo-likelihood [48], which is much faster to calculate than the full likelihood,301

though its appropriateness in this domain remains to be studied.302

By applying the G-XRF to simulated data, we have demonstrated how the likelihood of particular trait303

patterns and observed state counts can be meaningfully affected by hybridization and introgression. By304
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applying it to both simulated data and the Jaltomata species network, we show how it can be usefully305

applied by researchers to quantify the risk that particular trait patterns are the product of xenoplasy,306

instead of or in addition to hemiplasy and homoplasy. Introducing the concept of xenoplasy and a method307

of estimating the global risk of xenoplasy for binary traits is the first necessary step in developing methods308

to quantify xenoplasy risk, which we anticipate will flourish given the growing appreciation for the frequency309

and importance of hybridization and introgression.310
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45. Mendes FK, Fuentes-González JA, Schraiber JG, and Hahn MW. A multispecies coalescent model for402

quantitative traits. Elife 2018;7:e36482.403

46. Wright AM, Lyons KM, Brandley MC, and Hillis DM. Which came first: The lizard or the egg? Ro-404

bustness in phylogenetic reconstruction of ancestral states. Journal of Experimental Zoology Part B:405

Molecular and Developmental Evolution 2015;324:504–16.406

47. Rabier CE, Berry V, Glaszmann JC, Pardi F, and Scornavacca C. On the inference of complex phylo-407

genetic networks by Markov Chain Monte-Carlo. bioRxiv 2020.408

48. Zhu J and Nakhleh L. Inference of species phylogenies from bi-allelic markers using pseudo-likelihood.409

Bioinformatics 2018;34:i376–i385.410

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.09.16.300343doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.300343
http://creativecommons.org/licenses/by-nc-nd/4.0/

