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8 Abstract
9 Trait evolution among a set of species—a central theme in evolutionary biology—has long been un-
10 derstood and analyzed with respect to a species tree. However, the field of phylogenomics, which has
11 been propelled by advances in sequencing technologies, has ushered in the era of species/gene tree in-
12 congruence and, consequently, a more nuanced understanding of trait evolution. For a trait whose states
13 are incongruent with the branching patterns in the species tree, the same state could have arisen inde-
14 pendently in different species (homoplasy) or followed the branching patterns of gene trees, incongruent
15 with the species tree (hemiplasy). Another evolutionary process whose extent and significance are better
16 revealed by phylogenomic studies is gene flow between different species. In this work, we present a phy-
17 logenomic method for assessing the role of hybridization and introgression in the evolution of polymorphic
18 or monomorphic binary traits. We apply the method to simulated evolutionary scenarios to demonstrate
19 the interplay between the parameters of the evolutionary history and the role of introgression in a binary
20 trait’s evolution (which we call zenoplasy). Very importantly, we demonstrate, including on a biological
21 data set, that inferring a species tree and using it for trait evolution analysis in the presence of gene flow
2 could lead to misleading hypotheses about trait evolution.
23 Keywords: Trait evolution, phylogenomics, hybridization, introgression, multispecies coalescent.
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» Introduction

2 Evolutionary biology began with the study of traits, and both descriptive and mechanistic explanations
»% of trait evolution are key foci of macroevolutionary studies today. Trait evolution is often coupled with
z speciation, as in the case of Darwin’s finches, where the evolution of their beaks reflects adaptation to
s particular diets in an adaptive radiation [1-4]. Modern systematics synthesizes genomic data into informative
2 species trees [5, 6], revealing the complex relationship between speciation and trait evolution. This is a
s welcome development as statistical methods for elucidating interspecific trait evolution without making use
s of the species tree can produce misleading results [7, §].

» Given a hypothesized species tree inferred from available data, trait patterns “congruent” with the tree
33 may be parsimoniously explained as having a single origin in some ancestral taxon, and are shared by all
u descendants. However, many trait patterns are “incongruent” and may be examples of convergent evolution,
35 where traits have been gained or lost independently. This kind of explanation is termed homoplasy, referring
s to a pattern of similarity which is not the result of common descent [9]. Incongruent trait patterns can also
s be produced by discordant gene trees and ancestral polymorphism. In such cases, while the trait pattern is
3 incongruent with the species tree, it is congruent with gene trees that differ from the species tree.

30 When gene tree incongruence is due to incomplete lineage sorting (ILS) this explanation is termed hemi-
w plasy [10, 11], and the hemiplasy risk factor (HRF) was developed to assess its significance for a given species
o tree [12]. Inference of species trees from genomic data in the presence of ILS has attracted much attention
» in recent years, resulting in a wide array of species tree inference methods [13-20]. The significance of elu-
. cidating not only the species tree but also the gene trees within its branches was recently highlighted for its
« significance in understanding trait evolution [21].

5 Another major source of species/gene tree discordance in eukaryotes is hybridization and introgression
s [22]. The multispecies network coalescent was developed to unify phylogenomic inference while accounting for
« both ILS and introgression [23-25]. Gene flow may explain some trait evolution [26], and methods analyzing
s« trait evolution along a species network have been introduced [27, 28]. Such methods do not account for
w ILS, but the HRF framework was recently extended to fold introgression into hemiplasy and homoplasy [29].
so However, hemiplasy was originally circumscribed to discordances that arise from idiosyncratic lineage sorting
st [11]. To distinguish the effects of gene flow we therefore propose using “xenoplasy” to explain a trait pattern
s resulting from inheritance across species boundaries through hybridization or introgression. This builds on
53 “xenology” which denotes homologous genes sharing ancestry through horizontal gene transfer [30].

54 For the example in Fig 1, although both gene trees share the same topology, mutations along the internal
ss  branches will lead to hemiplasy or xenoplasy respectively for the solid and dashed gene trees. It also illustrates
ss that hemiplasy requires deep coalescence events, but xenoplasy does not. It is important to highlight here

57 that in some cases there cannot be clear delineation of homoplasy, hemiplasy, and xenoplasy, as the evolution


https://doi.org/10.1101/2020.09.16.300343
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.300343; this version posted August 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ss  of trait could simultaneously involved convergence and genes whose evolutionary histories involve both ILS
s and introgression. In fact, the picture can get even more complex when the effects of gene duplication and
o loss are involved (maybe necessitating yet another term, e.g., “paraplasy,” following the term “paralogy”

st that is used to describe genes whose ancestor is a duplication event).

Figure 1: Phylogenomic view of trait evolution in the presence of incomplete lineage sorting (ILS) and
introgression. Left: The three possible genealogies of three taxa A, B, and C. Right: Phylogenetic network
that models an underlying species tree (A,(B,C)) along with a reticulation from A to B, and whose associate
inheritance probability is . The embedded solid gene tree involves ILS but no introgression, whereas the
dashed gene tree involves introgression but not ILS. The states S,, Sy, and S, of an incongruent binary

character are shown at the leaves of the phylogenetic network.

62 We introduce the global xenoplasy risk factor (G-XRF) to assess the role of introgression in the evolution
63 of a given binary trait. We append “global” because unlike HRF, which is computed per-branch, G-XRF is
e computed over the whole network for a specific pattern, a pattern which can be polymorphic. We evaluated
s the G-XRF in simulated settings with ILS and introgression, demonstrating the interplay among divergence
e and reticulation times, introgression probability, population size and substitution rates, and how this affects
e the role of introgression in trait evolution. We also show how sampling trait polymorphism improves the
6 informativeness of the G-XRF, and the importance of inferring a species network where gene flow occurs for
e elucidating trait evolution. In particular, we demonstrate how assuming a species tree despite the presence
7o of gene flow overemphasizes the role of hemiplasy.

7 Our work brings together phylogenetic inference and comparative methods in a phylogenomic context
7 where both the species phylogeny and the phylogenies of individual loci are all taken into account. A
73 short tutorial demonstrating how to calculate and use G-XRF values is available at our web site, https:

7 //nakhlehlab.github.io/.

» Materials and methods

» The Global Xenoplasy Risk Factor

7 Consider that a binary trait evolving along the branches of a fixed species tree or network ¥ with
s population mutation rates ©, and in the case of species networks inheritance probabilities I'. The trait
7 is given by A which specifies for each species the number of sampled individuals with state 0 and the
s number with state 1. We refer to this as the observed state counts, or in the special case where only
a1 one observation present for each species, as the trait pattern. We use u and v respectively for the forward

@ character substitution rate (replacing state 0 with state 1) and the backward character substitution rate
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s (replacing state 1 with state 0).

8 The posterior probability of the species phylogeny and associated parameters given A is:

1
ey "
x f(AY,0,T,u,v) f(¥,0,T,u,v),

F(9,0,T,u,vA) = f(AY,0,T,u,v) f(V,0,T,u,v)

where f (A|U,0,T, u,v) is the likelihood of the observed state counts, and f (¥,0,T,u,v) is the prior

©
o

s on the species phylogeny and population sizes.
87 In the phylogenomic view of trait evolution, the evolutionary history of A is modeled as a gene tree
e evolving inside the species phylogeny. To calculate the likelihood of the observed state counts, we need to

s integrate over all possible genealogies G:

ﬂA%Qwa:/fMWMWf@WﬁIMG ()
G

%0 Here, f (A|G,u,v) is the likelihood of a genealogy given the observed site counts and f (G|¥,0,T) is the
o multispecies coalescent (or multispecies network coalescent) likelihood. We use existing Bayesian methods
e of species tree and network inference from bi-allelic markers [31, 32] to calculate f (A|¥,0,T", u,v) according
s to Equation 1. While the network inference method we use cannot handle missing data, it can calculate
o the likelihood where multiple individuals are sampled for a single species, which we take advantage of to
os calculate the likelihood of polymorphic traits. Finally, the G-XRF is calculated as the natural log of the
o posterior odds ratio, where W is the species network which should be estimated from the data, and 7T is the

o hypothesized backbone tree without gene flow displayed by W:

v, 0,T,u,
ln f( ) U ,U|A) . (3)
f(T.0,u,v|A)
08 This ratio compares the posterior probability integrating over possible hemiplasy, homoplasy and in-

9 trogression with the probability integrating over possible hemiplasy and homoplasy alone. Therefore, the
w0 ratio compares how likely it is that introgression has contributed to the trait pattern, rather than directly

101 comparing introgression with hemiplasy or introgression with homoplasy.

1w Jaltomata analysis

103 We studied the utility of G-XRF by inferring species phylogenies from a previously published dataset of
104 6,431 orthologous gene sequences from Jaltomata and the close relative Solanum lycopersicum as an outgroup
s [33]. To derive conditionally independent bi-allelic markers of the original dataset, we randomly selected one

s site from each gene and obtained 6,409 valid bi-allelic markers in total.
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107 We inferred a species phylogeny of this group in two different ways using MCMC_BiMarkers [32] with

e chain length 5 x 106, burn-in 2 x 10%, and sample frequencies 1000, using the following command:

109 MCMC_BiMarkers -taxa (JA0O701, JAO456, JA0694, JA0010, JAO719, JA0O816)
o —cl 5000000 -bl 2000000 -sf 1000 -mr 1

11 We ran the same command setting -mr to 0 (which sets the number of reticulations to 0) for species tree
12 inference. The effective sample size (ESS) of the parameter values of the MCMC chains were higher than

us 2321 for the species tree and higher than 1583 for the species network.

1 Simulated multilocus data

115 We generated the data with 2 steps. First, we generated 128 gene trees with ms [34] given the species

s  network. The command is as follows.

w ms 6128 -T -I 6 111111 -es 0.25 5 0.3 -es 0.25 3 0.8 -ej 0.5 7 3
s -ej 0.5 82 -ej 0.75 6 5 -ej 1.0 34 -ej 1.0 2 1 -ej 2.0 5 4 -ej 2.5 4 1

119 Second, at each locus, we simulated the sequence alignment given the gene tree with seq-gen [35]. We set
120 the length of sequences to be 500 bps, and utilized GTR model with base frequencies 0.2112,0.2888,0.2896,0.2104
m (A,C,G,T) and transition probabilities 0.2173,0.9798,0.2575,0.1038,1.0,0.207. We set the population muta-

122 tion rate # = 0.036, so the scale —s is 0.018. The command is as follows.

123 seq-gen -mGTR -s0.018 -£0.2112,0.2888,0.2896,0.2104
12s -r0.2173,0.9798,0.2575,0.1038,1.0,0.207 -1500

125 We inferred a species network from the simulated data with MCMC_SEQ [36] under GTR model with
s chain length 5 x 107, burn-in 1 x 107 and sample frequencies 5000. We fixed the population mutation rate

12z 0 = 0.036 and GTR parameters to be true parameters. The command is below:

128 MCMC_SEQ -cl 60000000 -bl 10000000 -sf 5000 -pl 8
120 —tm <A:A_0;C:C_0;G:G_O;L:L_0;Q:Q_0;R:R_0> -fixps 0.036
130 -gtr (0.2112,0.2888,0.2896,0.2104,0.2173,0.9798,0.2575,0.1038,1,0.2070) ;

131 We also inferred a species tree using StarBEAST2 [17]. The chain length was 10® with a sample frequency
12 of sample frequency 50,000 under GTR model with empirical base frequencies and transition probabilities
1 fixed to the true values. Population sizes were sampled for the individual branches (i.e., a single population

1 size across all branches was not assumed).
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» Results

136 Consider the evolutionary history depicted by the phylogenetic network of Fig 1. If a single individual
137 is sampled from each of the three species A, B, and C, then this network can be viewed as a mixture of two
s displayed trees [37]: The “species” tree (A,(B,C)) and another tree that captures the introgressed parts of B’s
1o genome ((A,B),C). The given trait whose character states are 1, 1, and 0 for taxa A, B, and C, respectively,
1o could have evolved down and within the branches of the species tree. In this case, either homoplasy and
1w hemiplasy could explain the trait evolution. To tease these two processes apart, assuming introgression did
12 not play a role, the HRF can be evaluated with respect to the species tree. Furthermore, a similar analysis of
1z both displayed trees can provide a way for assessing the role of hemiplasy in the presence of introgression [29].
s In our case, we are interested in answering a different question: How much does a reticulate evolutionary
us history involving hybridization and introgression explain the evolution of a trait as opposed to a strictly
us  treelike evolutionary history?

147 The likelihood of observed state counts given the species phylogeny integrates over all possible gene
us  histories and is calculated using methods previously implemented in PhyloNet [32, 38]. Furthermore, while
19 the model was illustrated above on three taxa, those methods allow for any number of taxa and any topology
150 of the phylogenies, including any number of reticulation events. We use G-XRF to measure the importance of
151 taking into account the possibility of introgression for a given trait. The higher value of G-XRF corresponds
12 to the greater necessity of a species network for trait analysis, and the greater odds that the site pattern is

153 due to introgression.

s« Interactions between evolutionary parameters

155 A phylogenomic view of the evolution of a binary trait on the phylogenetic network of Fig 1 involves, in

156 addition to the topologies of the phylogenetic network and species tree, roles for:

157 e The inheritance probability v, which measures the probability that a locus in the genome of B was
158 derived from the ancestor of A, representing gene flow from A into B [24, 36].

150 e The reticulation time 7)., as it controls the likelihood of inheriting a character state by B from A, as
160 well as the likelihood of such an inherited state becoming fixed in the population.

161 e The length of the internal species tree branch, To — T}, as it controls the amount of ILS and, conse-
162 quently, hemiplasy.

163 e The population mutation rate, § = 2N, pu, which also controls the amount of ILS and hemiplasy.

164 e The relative forward and backward substitution rates u, v.
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165 The character states are shown at the leaves of the network of Fig 1 which displays the species tree
s (A,(B,C)). We varied the ILS level by varying the internal branch length (75 — T1). The initial interval
17 between internal nodes T,, was 1 coalescent unit, but we varied (T — T1) from 0.001 to 10 to represent a
s range from very high to very low levels of ILS. Two factors controlled the introgression: the inheritance
169 probability v and the reticulation time 7. The inheritance probability v was varied between 0 and 1. As ~
o approaches 1 this represents a complete replacement of the genome with introgressed sequences, as seen in
wm  the Anopheles gambiae species complex [39]. The reticulation time T, was varied between 0 and 1 coalescent
12 unit. We varied the population mutation rate 6 between 0.001 and 0.01. For the character substitution rate,
i3 we used three settings: forward = 0.1xbackward, forward = backward and forward = 10xbackward. For
s the polymorphic trait, we varied the frequency of allele ‘1’ in taxon B from 0 to 1.

175 We focused on a couple of three-way interactions: G-XRF as a function of the interplay among the internal
ws branch length, the inheritance probability, and the relative forward/backward character substitution rates
v (Fig 2 top row), and G-XRF as a function of the interplay among the reticulation time, population mutation

ws rate, and the relative forward /backward character substitution rates (Fig 2 bottom row).

forward = 0.1 * backward forward = backward forward = 10 * backward
2.417

1.813
1.208
0.604
0.000
—0.604
—1.208
-1.813

T T T T —2.417
8 2 4 6 8 10
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forward = backward 0.010 forward = 10 * backward
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Figure 2: The interaction of evolutionary parameters affects the need for introgression to explain trait
patterns. G-XRF is shown as a function of internal branch length 75 — 77 and inheritance probability ~y
when reticulation time 7, = 0.1 coalescent units and population mutation rate § = 0.01 (top row), and as a

function of § and T, when T — T} = 10 and v = 0.5 (bottom row).

179 As the internal branch becomes longer, the amount of ILS and consequently hemiplasy decrease, increasing
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o the roles of introgression/homoplasy. Conversely, as the forward substitution rate increases relative to the
11 backward rate, the necessity of introgression decreases since convergent mutations along the A and B branches
12 may explain the trait pattern. This is indicated by decreasing G-XRF values for the same combination of
w3 (Th —T1) and v across as forward substitution rate increases (Fig 2 top row).

184 The second three-way interaction is based on a scenario where the internal branch is too long for ILS to
155 occur and, consequently, for hemiplasy to be a factor. Therefore, the two forces underlying trait evolution
16 in this case are homoplasy and xenoplasy. The role of introgression increases as T;. decreases, since there is
17 less time for the state to revert to 0 when state 1 is inherited by B from its most recent common ancestor
s (MRCA) with A (Fig 2 bottom row). The other key factor is the probability of a forward mutation, which
189 18 a function of the population mutation rate and the ratio of forward to backwards mutations. As this
10 probability increases, homoplasy becomes more plausible as an explanation through convergent forward
11 mutations along the A and B branches the same as for the first three-way interaction.

192 Increasing the probability of forward relative to backwards mutation flips the effect of increasing the
103 population mutation rate §. When the probability of forward mutation is low (and backward mutation
e high), increasing 6 makes the trait pattern more likely to be the result of introgression, since any mutations
s along the B branch are likely to be backward (Fig 2 bottom left). When the probability of forward mutation is
106 high (and backward mutation low), increasing the population mutation rate makes homoplasy more plausible

w7 due to convergent forward mutations along the A and B branches (Fig 2 bottom right).

s Introgression and polymorphic traits

199 Polymorphism is a major factor in trait evolution, often ignored only because methods do not account
20 for it [40]. Fortunately, bi-allelic marker methods based on the multispecies (network) coalescent methods
s naturally account for polymorphism, and we take advantage of that in order to apply G-XRF to polymorphic
22 traits. We conducted the same analysis as above, but now with ten observations for taxon B (we assume
203 only one sampled state each from taxa A and C). Once again the internal branch is too long for ILS and
24 hemiplasy to be relevant to the results.

205 Under certain conditions the G-XRF values were much higher or lower than what we observed sampling
25 only one state per species (Figs 3 and 4). This is predictable, as we now have 12 total observations of the
207 trait state compared with only three observations before, and more data will increase the magnitude of the
208 observed state count likelihoods.

200 The G-XRF is highest where the introgression probability  is equal to the observed frequency of the 1
a0 state in B, an intuitively predictable result (Fig 4). Increased population mutation rate decreased the G-
an - XRF, especially when the forward substitution rate was relatively high and the frequency of 1 in B relatively

a2 low (Fig 3). As for the previous results, this is because convergent forward mutations may occur along the A
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Figure 3: The interaction of evolutionary parameters affects the need for introgression to explain observed
state counts. The x- and y-axis in each panel correspond to the frequency of character state 1 in taxon B
and the reticulation time 7,. Columns correspond to three different relative forward/backward character
substitution rates and rows correspond to three different population mutation rates. In all panels To—T7 = 10

coalescent units and v = 0.5.

23 and B branches. Unlike for trait patterns with only one observation per species, we can now observe negative
au G-XRF values. When the observed frequency of 1 in B is low, but - is high, the trait is much more plausibly
a5 explained through common ancestry between B and C than gene flow (Fig 3). This effect becomes stronger
26 as the probability of forward mutation increases, as it makes backward mutation of introgresses traits less

217 likely.
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Figure 4: G-XRF values in the presence of trait polymorphism. The x- and y-axis in each panel correspond
to the inheritance probability v and reticulation time T;., respectively. Columns correspond to three different
relative forward/backward character substitution rates, and rows correspond to three different frequencies

of all 1 in taxon B. In all panels 75 — T7 = 10 coalescent units and § = 0.01.

xs  Applying G-XRF to Jaltomata

219 When the evolutionary history of a set of species is reticulate, inferring a species tree could result in a
20 tree with much shorter branches [25, 36, 41]. In such cases, the role of hemiplasy would be overestimated as
21 it has an inverse relationship to branch length. This could in turn give the false impression that introgression
22 did not play a role in the trait’s evolutionary history. In other words, inferring a species tree despite the
23 presence of gene flow could lead to misleading results not only in terms of the evolutionary history of those

24 species, but also for their associated traits.

10
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25 We illustrate this phenomenon using empirical and simulated data. Based on an inferred species tree, the
26 trait patterns of Jaltomata species were previously hypothesized to be the result of homoplasy [42]. Another
27 study indicated that the evolutionary history of these species was reticulate, yet no phylogenetic network
2 was inferred [33]. We inferred both a species tree and species network based on six Jaltomata species and

20 the Solanum lycopersicum outgroup from the latter study (Fig 5).

Figure 5: Inferred species tree (left) and network (right) of the Jaltomata data set. The major tree inside

the species network is obtained by removing the blue reticulation edge leading to I1.

230 We evaluated the HRF values of the species tree inferred without reticulations, and of the major tree
2 inside the species network. The HRF values computed based on the species tree are larger than the values
22 computed based on the major tree inside the species network. This suggests that the predicted amount of
213 hemiplasy is erroneously high when gene flow is unaccounted for. We also computed G-XRF for three possible
2 trait patterns, finding that trait patterns X and Y can be plausibly explained by either tree-like or reticulate
25 evolution since the G-XRF values are close to zero (Fig 6). The trait pattern that would be best explained
26 by introgression was pattern Z where introgression of state 1 from the MRCA of (incahuasina, grandibaccata,
ar  dendroidea) into the MRCA of (procumbens, repandidentata) would be a more plausible explanation than
2s homoplasy, except for when the probability of forward mutation is relatively high and therefore convergent
20 forward mutations can be anticipated.
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Figure 6: G-XRF values of three trait patterns (X, Y and Z) as the ratio of forward to backward substi-
tutions is varied. Fach box plot summarizes 3,000 G-XRF values obtained from the species network and

corresponding major tree sampled from the posterior distribution of Jaltomata species networks.

11


https://doi.org/10.1101/2020.09.16.300343
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.300343; this version posted August 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

20 The simulated data set

201 To further confirm these results, we repeated the same analysis on simulated data. We simulated sequence
22 alignments on 128 loci from the phylogenetic network whose topology was based on a previously published
23 phylogeny of anopheline mosquitoes [43]. Then, we inferred a species network and tree from the simulated

2s  alignments. We then computed HRF values on two trees:

25 e The “major tree” of the species network estimated by, obtained by deleting the edge with the lowest
26 inheritance probability entering each reticulation node. Specifically, the reticulation edges I5 — I6
2u7 and 17 — I8 were deleted as they have the smaller inheritance probabilities.

218 e The inferred species tree. Unlike the major tree, this was not ultrametric in coalescent units, because
29 we did not assume a single uniform population size across all branches in this case.

250 The major tree HRF values for the branches leading to the two clades of three Jaltomata species each

1 were orders of magnitude smaller than the HRF values for the same branches in the species tree. This
»2 indicates that some of the gene tree incongruence is erroneously attributed to ILS, and that incongruent
»3  trait patterns may erroneously be attributed to hemiplasy, when introgression is not accounted for.

254 We also compare posterior probability densities for the case where taxa A and C have state ‘1’ and the
»s  other taxa have states ‘O’ and the case where Q and R have state ‘1’ and the other taxa have states ‘0’.
6 Both cases are examples of where introgression from the second taxon’s lineage to the first taxon’s lineage
7 could explain the trait pattern. We find that the probability density of the major tree is lower than the true
s or inferred networks in either case, suggesting that the G-XRF is powerful enough to detect the potential
»9  for specific traits to be introgressed, since it is derived from those probability densities. Similar posterior
%0 probabilities for the true and inferred networks further suggest that relying on inferred species phylogenies

s to compute the G-XRF is not a problem.

w» Discussion

263 The extent of hybridization and introgression continues to be revealed in an increasingly larger number
e of eukaryotic clades [44]. In this paper, we introduced the concept of xenoplasy to capture the inheritance
s of morphological character states via hybridization and introgression. We demonstrated how various evo-
%6 lutionary parameters impact the role these processes could play in the evolution of a given trait, including
27 polymorphic traits. When gene flow is ignored as a mode of inheritance, complex traits patterns may be
s erroneously explained by homoplasy, that is convergent or parallel evolution. This may be the cases even
%0 when coalescent processes that result in incomplete sorting of alleles or traits are accounted for, particularly

a0 when the gene flow occurs between relatively distant taxa.
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27 We are indebted to previous work on HRF [12] as the inspiration for our work on G-XRF. HRF is
sz computed per-branch, and we anticipate the development of more granular statistics that apply to local
a3 branches, sub-networks, or reticulation nodes within the species network. It is worth noting that as a
o global metric based on likelihood ratios, G-XRF will reflect the overall risk of introgression. Therefore,
a5 a trait pattern with moderate introgression across two clades would have similar risk to that with a high
a6 introgression in one clade and a low introgression in the other. As a workaround, researchers may want to
an compute G-XRF for a particular region or regions of their phylogeny by pruning other taxa. In this way the
as measure will be more specific and meaningful.

279 Because we implemented G-XRF using existing multispecies (network) coalescent methods for bi-allelic
x0  markers, it does not account for gene duplication and loss or multistate or continuous traits. Previous work
2 on the evolution of quantitative traits within a species tree found that discordance was invariant to the
22 number of loci controlling a trait, a result which may also apply to xenoplasy risk [45]. The framework we
23 presented here is general enough to investigate this and other possibilities, although it requires significant
2 algorithmic improvements. Another useful extension to this framework would be to compute the probabilities
25 where the ancestral state is known, as is the case with Dollo traits where the ancestral state is the presence
25 of a complex trait [46].

287 We have shown how to visualize the effect on G-XRF when varying up to four parameters in a single
s analysis (Figs 2 and 4). This will be useful to understand the potential contribution of introgression towards
20 trait patterns when substantial uncertainty is present in one, two, three or four parameters of the model.
20 Greater uncertainty means that a grid search as presented here becomes less feasible, both computationally
21 and in terms of remaining interpretable. Instead, G-XRF could potentially be computed as part of a full
22 Bayesian analysis using MCMC or other algorithms that integrate over the posterior distribution of networks.
203 Species network inference methods may have trouble identifying instances of reticulate evolution where
24 the introgression probability is very small resulting in a lack of signal, but we do not think this presents a
25 practical problem as such instances necessarily have low xenoplasy risk. The running time for inferring the
26 posterior probability of species networks can be significant; while likelihood calculations for the three-taxon

4l4+4) " where s

27 networks took less than one second each, the time complexity of MCMC Bimarkers is O(sn
28 is the number of species, n is the number of lineages sampled from all species, and [ is the level of the
20 mnetwork [32, 47]. Increasing the network level is therefore highly deleterious to running time, but this may
w0 be overcome using a new, more scalable algorithm with a time complexity of O(ank +2), where K <1+ 1
s [47]. Another option is using pseudo-likelihood [48], which is much faster to calculate than the full likelihood,
32 though its appropriateness in this domain remains to be studied.

303 By applying the G-XRF to simulated data, we have demonstrated how the likelihood of particular trait

su  patterns and observed state counts can be meaningfully affected by hybridization and introgression. By
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s applying it to both simulated data and the Jaltomata species network, we show how it can be usefully
s applied by researchers to quantify the risk that particular trait patterns are the product of xenoplasy,
a7 instead of or in addition to hemiplasy and homoplasy. Introducing the concept of xenoplasy and a method
s of estimating the global risk of xenoplasy for binary traits is the first necessary step in developing methods
w0 to quantify xenoplasy risk, which we anticipate will flourish given the growing appreciation for the frequency

s and importance of hybridization and introgression.
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