

1 Phylogenomic Assessment of the Role of Hybridization and

2 Introgression in Trait Evolution

3 Yaxuan Wang¹, Zhen Cao¹, Huw A. Ogilvie^{1,*}, and Luay Nakhleh^{1,2,)**}

4 ¹Department of Computer Science, Rice University, Houston TX, 77005, USA

5 ²Department of BioSciences, Rice University, Houston TX, 77005, USA

6 ^{*}huw.a.ogilvie@rice.edu

7 ^{**}nakhleh@rice.edu

8 **Abstract**

9 Trait evolution among a set of species—a central theme in evolutionary biology—has long been un-
10 derstood and analyzed with respect to a species tree. However, the field of phylogenomics, which has
11 been propelled by advances in sequencing technologies, has ushered in the era of species/gene tree in-
12 congruence and, consequently, a more nuanced understanding of trait evolution. For a trait whose states
13 are incongruent with the branching patterns in the species tree, the same state could have arisen inde-
14 pendently in different species (homoplasy) or followed the branching patterns of gene trees, incongruent
15 with the species tree (hemiplasy). Another evolutionary process whose extent and significance are better
16 revealed by phylogenomic studies is gene flow between different species. In this work, we present a phy-
17 logenomic method for assessing the role of hybridization and introgression in the evolution of polymorphic
18 or monomorphic binary traits. We apply the method to simulated evolutionary scenarios to demonstrate
19 the interplay between the parameters of the evolutionary history and the role of introgression in a binary
20 trait’s evolution (which we call *xenoplasy*). Very importantly, we demonstrate, including on a biological
21 data set, that inferring a species tree and using it for trait evolution analysis in the presence of gene flow
22 could lead to misleading hypotheses about trait evolution.

23 **Keywords:** Trait evolution, phylogenomics, hybridization, introgression, multispecies coalescent.

24 Introduction

25 Evolutionary biology began with the study of traits, and both descriptive and mechanistic explanations
26 of trait evolution are key foci of macroevolutionary studies today. Trait evolution is often coupled with
27 speciation, as in the case of Darwin's finches, where the evolution of their beaks reflects adaptation to
28 particular diets in an adaptive radiation [1–4]. Modern systematics synthesizes genomic data into informative
29 species trees [5, 6], revealing the complex relationship between speciation and trait evolution. This is a
30 welcome development as statistical methods for elucidating interspecific trait evolution without making use
31 of the species tree can produce misleading results [7, 8].

32 Given a hypothesized species tree inferred from available data, trait patterns "congruent" with the tree
33 may be parsimoniously explained as having a single origin in some ancestral taxon, and are shared by all
34 descendants. However, many trait patterns are "incongruent" and may be examples of convergent evolution,
35 where traits have been gained or lost independently. This kind of explanation is termed homoplasy, referring
36 to a pattern of similarity which is not the result of common descent [9]. Incongruent trait patterns can also
37 be produced by discordant gene trees and ancestral polymorphism. In such cases, while the trait pattern is
38 incongruent with the species tree, it is congruent with gene trees that differ from the species tree.

39 When gene tree incongruence is due to incomplete lineage sorting (ILS) this explanation is termed hemiplasy [10, 11], and the hemiplasy risk factor (HRF) was developed to assess its significance for a given species
40 tree [12]. Inference of species trees from genomic data in the presence of ILS has attracted much attention
41 in recent years, resulting in a wide array of species tree inference methods [13–20]. The significance of elu-
42 cidating not only the species tree but also the gene trees within its branches was recently highlighted for its
43 significance in understanding trait evolution [21].

44 Another major source of species/gene tree discordance in eukaryotes is hybridization and introgression
45 [22]. The multispecies network coalescent was developed to unify phylogenomic inference while accounting for
46 both ILS and introgression [23–25]. Gene flow may explain some trait evolution [26], and methods analyzing
47 trait evolution along a species network have been introduced [27, 28]. Such methods do not account for
48 ILS, but the HRF framework was recently extended to fold introgression into hemiplasy and homoplasy [29].
49 However, hemiplasy was originally circumscribed to discordances that arise from idiosyncratic lineage sorting
50 [11]. To distinguish the effects of gene flow we therefore propose using "xenoplasy" to explain a trait pattern
51 resulting from inheritance across species boundaries through hybridization or introgression. This builds on
52 "xenology" which denotes homologous genes sharing ancestry through horizontal gene transfer [30].

53 For the example in Fig 1, although both gene trees share the same topology, mutations along the internal
54 branches will lead to hemiplasy or xenoplasy respectively for the solid and dashed gene trees. It also illustrates
55 that hemiplasy requires deep coalescence events, but xenoplasy does not. It is important to highlight here
56 that in some cases there cannot be clear delineation of homoplasy, hemiplasy, and xenoplasy, as the evolution
57

58 of trait could simultaneously involved convergence and genes whose evolutionary histories involve both ILS
59 and introgression. In fact, the picture can get even more complex when the effects of gene duplication and
60 loss are involved (maybe necessitating yet another term, e.g., “paraplasly,” following the term “paralogy”
61 that is used to describe genes whose ancestor is a duplication event).

Figure 1: Phylogenomic view of trait evolution in the presence of incomplete lineage sorting (ILS) and introgression. Left: The three possible genealogies of three taxa A, B, and C. Right: Phylogenetic network that models an underlying species tree (A,(B,C)) along with a reticulation from A to B, and whose associate inheritance probability is γ . The embedded solid gene tree involves ILS but no introgression, whereas the dashed gene tree involves introgression but not ILS. The states S_a , S_b , and S_c of an incongruent binary character are shown at the leaves of the phylogenetic network.

62 We introduce the global xenoplasly risk factor (G-XRF) to assess the role of introgression in the evolution
63 of a given binary trait. We append “global” because unlike HRF, which is computed per-branch, G-XRF is
64 computed over the whole network for a specific pattern, a pattern which can be polymorphic. We evaluated
65 the G-XRF in simulated settings with ILS and introgression, demonstrating the interplay among divergence
66 and reticulation times, introgression probability, population size and substitution rates, and how this affects
67 the role of introgression in trait evolution. We also show how sampling trait polymorphism improves the
68 informativeness of the G-XRF, and the importance of inferring a species *network* where gene flow occurs for
69 elucidating trait evolution. In particular, we demonstrate how assuming a species *tree* despite the presence
70 of gene flow overemphasizes the role of hemiplasy.

71 Our work brings together phylogenetic inference and comparative methods in a phylogenomic context
72 where both the species phylogeny and the phylogenies of individual loci are all taken into account. A
73 short tutorial demonstrating how to calculate and use G-XRF values is available at our web site, <https://nakhllelab.github.io/>.

75 Materials and methods

76 The Global Xenoplasly Risk Factor

77 Consider that a binary trait evolving along the branches of a fixed species tree or network Ψ with
78 population mutation rates Θ , and in the case of species networks inheritance probabilities Γ . The trait
79 is given by \mathcal{A} which specifies for each species the number of sampled individuals with state 0 and the
80 number with state 1. We refer to this as the **observed state counts**, or in the special case where only
81 one observation present for each species, as the **trait pattern**. We use u and v respectively for the forward
82 character substitution rate (replacing state 0 with state 1) and the backward character substitution rate

83 (replacing state 1 with state 0).

84 The posterior probability of the species phylogeny and associated parameters given \mathcal{A} is:

$$f(\Psi, \Theta, \Gamma, u, v | \mathcal{A}) = f(\mathcal{A} | \Psi, \Theta, \Gamma, u, v) f(\Psi, \Theta, \Gamma, u, v) \frac{1}{f(\mathcal{A})} \propto f(\mathcal{A} | \Psi, \Theta, \Gamma, u, v) f(\Psi, \Theta, \Gamma, u, v), \quad (1)$$

85 where $f(\mathcal{A} | \Psi, \Theta, \Gamma, u, v)$ is the likelihood of the observed state counts, and $f(\Psi, \Theta, \Gamma, u, v)$ is the prior
86 on the species phylogeny and population sizes.

87 In the phylogenomic view of trait evolution, the evolutionary history of \mathcal{A} is modeled as a gene tree
88 evolving inside the species phylogeny. To calculate the likelihood of the observed state counts, we need to
89 integrate over all possible genealogies G :

$$f(\mathcal{A} | \Psi, \Theta, \Gamma, u, v) = \int_G f(\mathcal{A} | G, u, v) f(G | \Psi, \Theta, \Gamma) dG. \quad (2)$$

90 Here, $f(\mathcal{A} | G, u, v)$ is the likelihood of a genealogy given the observed site counts and $f(G | \Psi, \Theta, \Gamma)$ is the
91 multispecies coalescent (or multispecies network coalescent) likelihood. We use existing Bayesian methods
92 of species tree and network inference from bi-allelic markers [31, 32] to calculate $f(\mathcal{A} | \Psi, \Theta, \Gamma, u, v)$ according
93 to Equation 1. While the network inference method we use cannot handle missing data, it can calculate
94 the likelihood where multiple individuals are sampled for a single species, which we take advantage of to
95 calculate the likelihood of polymorphic traits. Finally, the G-XRF is calculated as the natural log of the
96 posterior odds ratio, where Ψ is the species network which should be estimated from the data, and \mathcal{T} is the
97 hypothesized backbone tree without gene flow displayed by Ψ :

$$\ln \frac{f(\Psi, \Theta, \Gamma, u, v | \mathcal{A})}{f(\mathcal{T}, \Theta, u, v | \mathcal{A})}. \quad (3)$$

98 This ratio compares the posterior probability integrating over possible hemiplasy, homoplasy and in-
99 trogression with the probability integrating over possible hemiplasy and homoplasy alone. Therefore, the
100 ratio compares how likely it is that introgression has contributed to the trait pattern, rather than directly
101 comparing introgression with hemiplasy or introgression with homoplasy.

102 **Jaltomata analysis**

103 We studied the utility of G-XRF by inferring species phylogenies from a previously published dataset of
104 6,431 orthologous gene sequences from *Jaltomata* and the close relative *Solanum lycopersicum* as an outgroup
105 [33]. To derive conditionally independent bi-allelic markers of the original dataset, we randomly selected one
106 site from each gene and obtained 6,409 valid bi-allelic markers in total.

107 We inferred a species phylogeny of this group in two different ways using MCMC_BiMarkers [32] with
108 chain length 5×10^6 , burn-in 2×10^6 , and sample frequencies 1000, using the following command:

```
109 MCMC_BiMarkers -taxa (JA0701, JA0456, JA0694, JA0010, JA0719, JA0816)  
110 -cl 5000000 -bl 2000000 -sf 1000 -mr 1
```

111 We ran the same command setting **-mr** to 0 (which sets the number of reticulations to 0) for species tree
112 inference. The *effective sample size* (ESS) of the parameter values of the MCMC chains were higher than
113 2321 for the species tree and higher than 1583 for the species network.

114 Simulated multilocus data

115 We generated the data with 2 steps. First, we generated 128 gene trees with ms [34] given the species
116 network. The command is as follows.

```
117 ms 6 128 -T -I 6 1 1 1 1 1 -es 0.25 5 0.3 -es 0.25 3 0.8 -ej 0.5 7 3  
118 -ej 0.5 8 2 -ej 0.75 6 5 -ej 1.0 3 4 -ej 1.0 2 1 -ej 2.0 5 4 -ej 2.5 4 1
```

119 Second, at each locus, we simulated the sequence alignment given the gene tree with seq-gen [35]. We set
120 the length of sequences to be 500 bps, and utilized GTR model with base frequencies 0.2112,0.2888,0.2896,0.2104
121 (A,C,G,T) and transition probabilities 0.2173,0.9798,0.2575,0.1038,1.0,0.207. We set the population muta-
122 tion rate $\theta = 0.036$, so the scale **-s** is 0.018. The command is as follows.

```
123 seq-gen -mGTR -s0.018 -f0.2112,0.2888,0.2896,0.2104  
124 -r0.2173,0.9798,0.2575,0.1038,1.0,0.207 -1500
```

125 We inferred a species network from the simulated data with MCMC_SEQ [36] under GTR model with
126 chain length 5×10^7 , burn-in 1×10^7 and sample frequencies 5000. We fixed the population mutation rate
127 $\theta = 0.036$ and GTR parameters to be true parameters. The command is below:

```
128 MCMC_SEQ -cl 60000000 -bl 10000000 -sf 5000 -pl 8  
129 -tm <A:A_0;C:C_0;G:G_0;L:L_0;Q:Q_0;R:R_0> -fixps 0.036  
130 -gtr (0.2112,0.2888,0.2896,0.2104,0.2173,0.9798,0.2575,0.1038,1.0,0.2070);
```

131 We also inferred a species tree using StarBEAST2 [17]. The chain length was 10^8 with a sample frequency
132 of sample frequency 50,000 under GTR model with empirical base frequencies and transition probabilities
133 fixed to the true values. Population sizes were sampled for the individual branches (i.e., a single population
134 size across all branches was *not* assumed).

135 Results

136 Consider the evolutionary history depicted by the phylogenetic network of Fig 1. If a single individual
137 is sampled from each of the three species A, B, and C, then this network can be viewed as a mixture of two
138 displayed trees [37]: The “species” tree (A,(B,C)) and another tree that captures the introgressed parts of B’s
139 genome ((A,B),C). The given trait whose character states are 1, 1, and 0 for taxa A, B, and C, respectively,
140 could have evolved down and within the branches of the species tree. In this case, either homoplasy and
141 hemiplasy could explain the trait evolution. To tease these two processes apart, assuming introgression did
142 not play a role, the HRF can be evaluated with respect to the species tree. Furthermore, a similar analysis of
143 both displayed trees can provide a way for assessing the role of hemiplasy in the presence of introgression [29].
144 In our case, we are interested in answering a different question: How much does a reticulate evolutionary
145 history involving hybridization and introgression explain the evolution of a trait as opposed to a strictly
146 treelike evolutionary history?

147 The likelihood of observed state counts given the species phylogeny integrates over all possible gene
148 histories and is calculated using methods previously implemented in PhyloNet [32, 38]. Furthermore, while
149 the model was illustrated above on three taxa, those methods allow for any number of taxa and any topology
150 of the phylogenies, including any number of reticulation events. We use G-XRF to measure the importance of
151 taking into account the possibility of introgression for a given trait. The higher value of G-XRF corresponds
152 to the greater necessity of a species network for trait analysis, and the greater odds that the site pattern is
153 due to introgression.

154 Interactions between evolutionary parameters

155 A phylogenomic view of the evolution of a binary trait on the phylogenetic network of Fig 1 involves, in
156 addition to the topologies of the phylogenetic network and species tree, roles for:

- 157 • The inheritance probability γ , which measures the probability that a locus in the genome of B was
158 derived from the ancestor of A, representing gene flow from A into B [24, 36].
- 159 • The reticulation time T_r , as it controls the likelihood of inheriting a character state by B from A, as
160 well as the likelihood of such an inherited state becoming fixed in the population.
- 161 • The length of the internal species tree branch, $T_2 - T_1$, as it controls the amount of ILS and, conse-
162 quently, hemiplasy.
- 163 • The population mutation rate, $\theta = 2N_2\mu$, which also controls the amount of ILS and hemiplasy.
- 164 • The relative forward and backward substitution rates u, v .

165 The character states are shown at the leaves of the network of Fig 1 which displays the species tree
 166 (A,(B,C)). We varied the ILS level by varying the internal branch length ($T_2 - T_1$). The initial interval
 167 between internal nodes T_n was 1 coalescent unit, but we varied ($T_2 - T_1$) from 0.001 to 10 to represent a
 168 range from very high to very low levels of ILS. Two factors controlled the introgression: the inheritance
 169 probability γ and the reticulation time T_r . The inheritance probability γ was varied between 0 and 1. As γ
 170 approaches 1 this represents a complete replacement of the genome with introgressed sequences, as seen in
 171 the *Anopheles gambiae* species complex [39]. The reticulation time T_r was varied between 0 and 1 coalescent
 172 unit. We varied the population mutation rate θ between 0.001 and 0.01. For the character substitution rate,
 173 we used three settings: forward = $0.1 \times$ backward, forward = backward and forward = $10 \times$ backward. For
 174 the polymorphic trait, we varied the frequency of allele '1' in taxon B from 0 to 1.

175 We focused on a couple of three-way interactions: G-XRF as a function of the interplay among the internal
 176 branch length, the inheritance probability, and the relative forward/backward character substitution rates
 177 (Fig 2 top row), and G-XRF as a function of the interplay among the reticulation time, population mutation
 178 rate, and the relative forward/backward character substitution rates (Fig 2 bottom row).

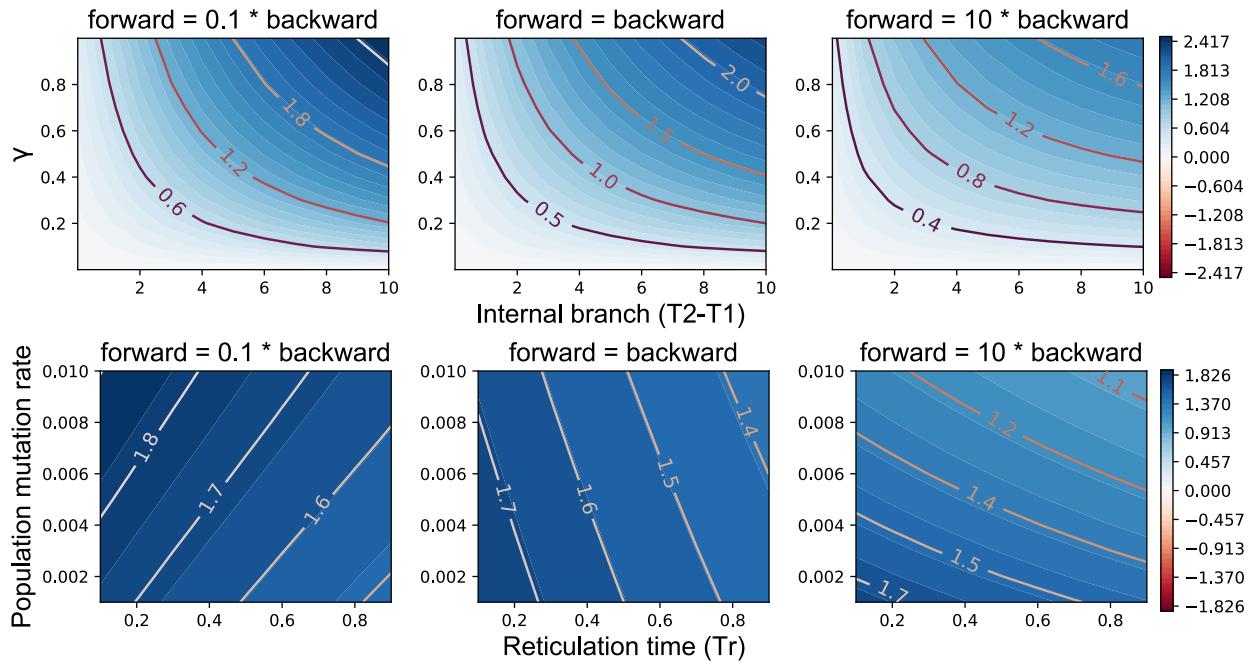


Figure 2: The interaction of evolutionary parameters affects the need for introgression to explain trait patterns. G-XRF is shown as a function of internal branch length $T_2 - T_1$ and inheritance probability γ when reticulation time $T_r = 0.1$ coalescent units and population mutation rate $\theta = 0.01$ (top row), and as a function of θ and T_r when $T_2 - T_1 = 10$ and $\gamma = 0.5$ (bottom row).

179 As the internal branch becomes longer, the amount of ILS and consequently hemiplasy decrease, increasing

180 the roles of introgression/homoplasy. Conversely, as the forward substitution rate increases relative to the
181 backward rate, the necessity of introgression decreases since convergent mutations along the A and B branches
182 may explain the trait pattern. This is indicated by decreasing G-XRF values for the same combination of
183 ($T_2 - T_1$) and γ across as forward substitution rate increases (Fig 2 top row).

184 The second three-way interaction is based on a scenario where the internal branch is too long for ILS to
185 occur and, consequently, for hemiplasy to be a factor. Therefore, the two forces underlying trait evolution
186 in this case are homoplasy and xenoplasy. The role of introgression increases as T_r decreases, since there is
187 less time for the state to revert to 0 when state 1 is inherited by B from its most recent common ancestor
188 (MRCA) with A (Fig 2 bottom row). The other key factor is the probability of a forward mutation, which
189 is a function of the population mutation rate and the ratio of forward to backwards mutations. As this
190 probability increases, homoplasy becomes more plausible as an explanation through convergent forward
191 mutations along the A and B branches the same as for the first three-way interaction.

192 Increasing the probability of forward relative to backwards mutation flips the effect of increasing the
193 population mutation rate θ . When the probability of forward mutation is low (and backward mutation
194 high), increasing θ makes the trait pattern more likely to be the result of introgression, since any mutations
195 along the B branch are likely to be backward (Fig 2 bottom left). When the probability of forward mutation is
196 high (and backward mutation low), increasing the population mutation rate makes homoplasy more plausible
197 due to convergent forward mutations along the A and B branches (Fig 2 bottom right).

198 **Introgression and polymorphic traits**

199 Polymorphism is a major factor in trait evolution, often ignored only because methods do not account
200 for it [40]. Fortunately, bi-allelic marker methods based on the multispecies (network) coalescent methods
201 naturally account for polymorphism, and we take advantage of that in order to apply G-XRF to polymorphic
202 traits. We conducted the same analysis as above, but now with ten observations for taxon B (we assume
203 only one sampled state each from taxa A and C). Once again the internal branch is too long for ILS and
204 hemiplasy to be relevant to the results.

205 Under certain conditions the G-XRF values were much higher or lower than what we observed sampling
206 only one state per species (Figs 3 and 4). This is predictable, as we now have 12 total observations of the
207 trait state compared with only three observations before, and more data will increase the magnitude of the
208 observed state count likelihoods.

209 The G-XRF is highest where the introgression probability γ is equal to the observed frequency of the 1
210 state in B, an intuitively predictable result (Fig 4). Increased population mutation rate decreased the G-
211 XRF, especially when the forward substitution rate was relatively high and the frequency of 1 in B relatively
212 low (Fig 3). As for the previous results, this is because convergent forward mutations may occur along the A

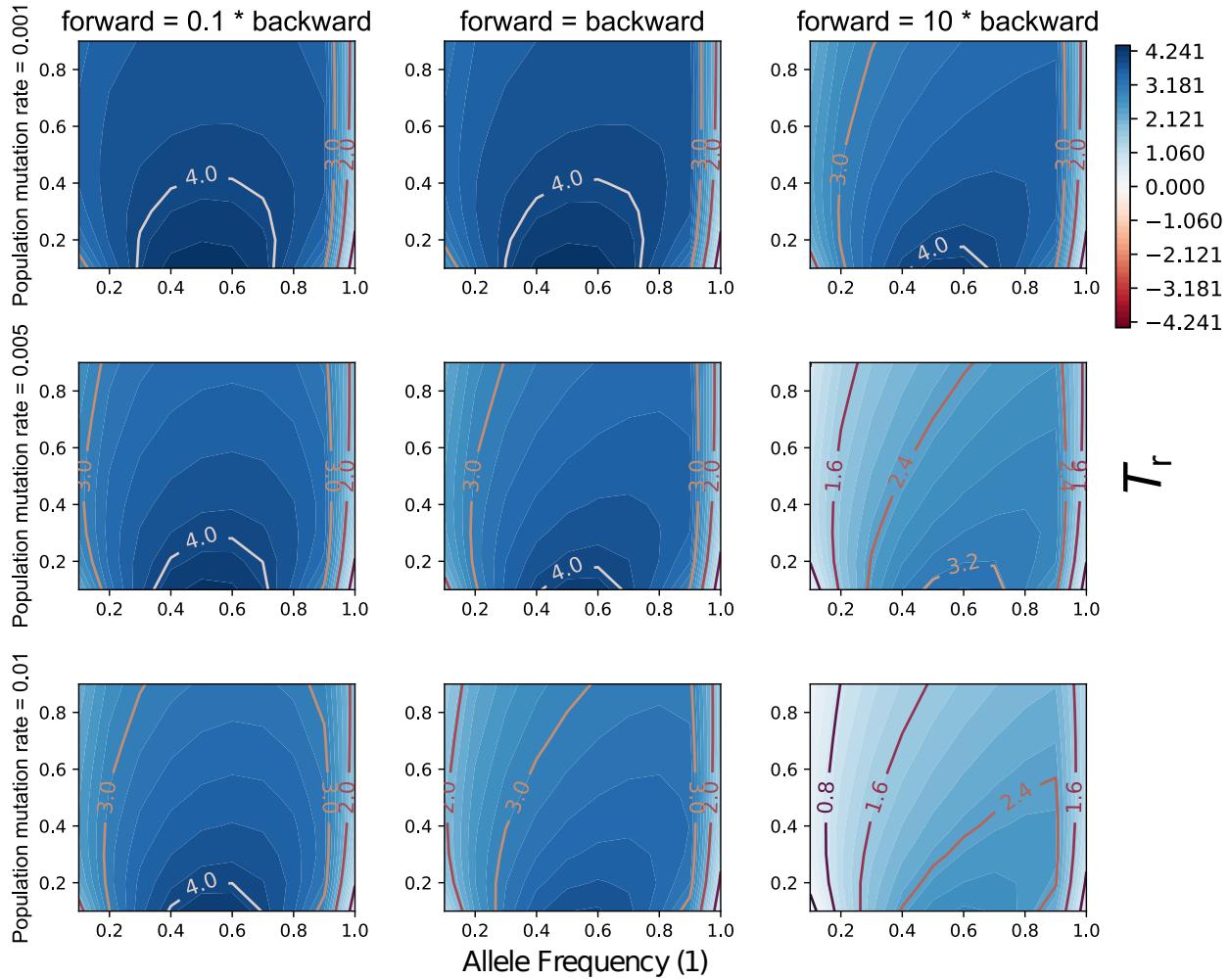


Figure 3: The interaction of evolutionary parameters affects the need for introgression to explain observed state counts. The x- and y-axis in each panel correspond to the frequency of character state 1 in taxon B and the reticulation time T_r . Columns correspond to three different relative forward/backward character substitution rates and rows correspond to three different population mutation rates. In all panels $T_2 - T_1 = 10$ coalescent units and $\gamma = 0.5$.

213 and B branches. Unlike for trait patterns with only one observation per species, we can now observe negative
 214 G-XRF values. When the observed frequency of 1 in B is low, but γ is high, the trait is much more plausibly
 215 explained through common ancestry between B and C than gene flow (Fig 3). This effect becomes stronger
 216 as the probability of forward mutation increases, as it makes backward mutation of introgresses traits less
 217 likely.

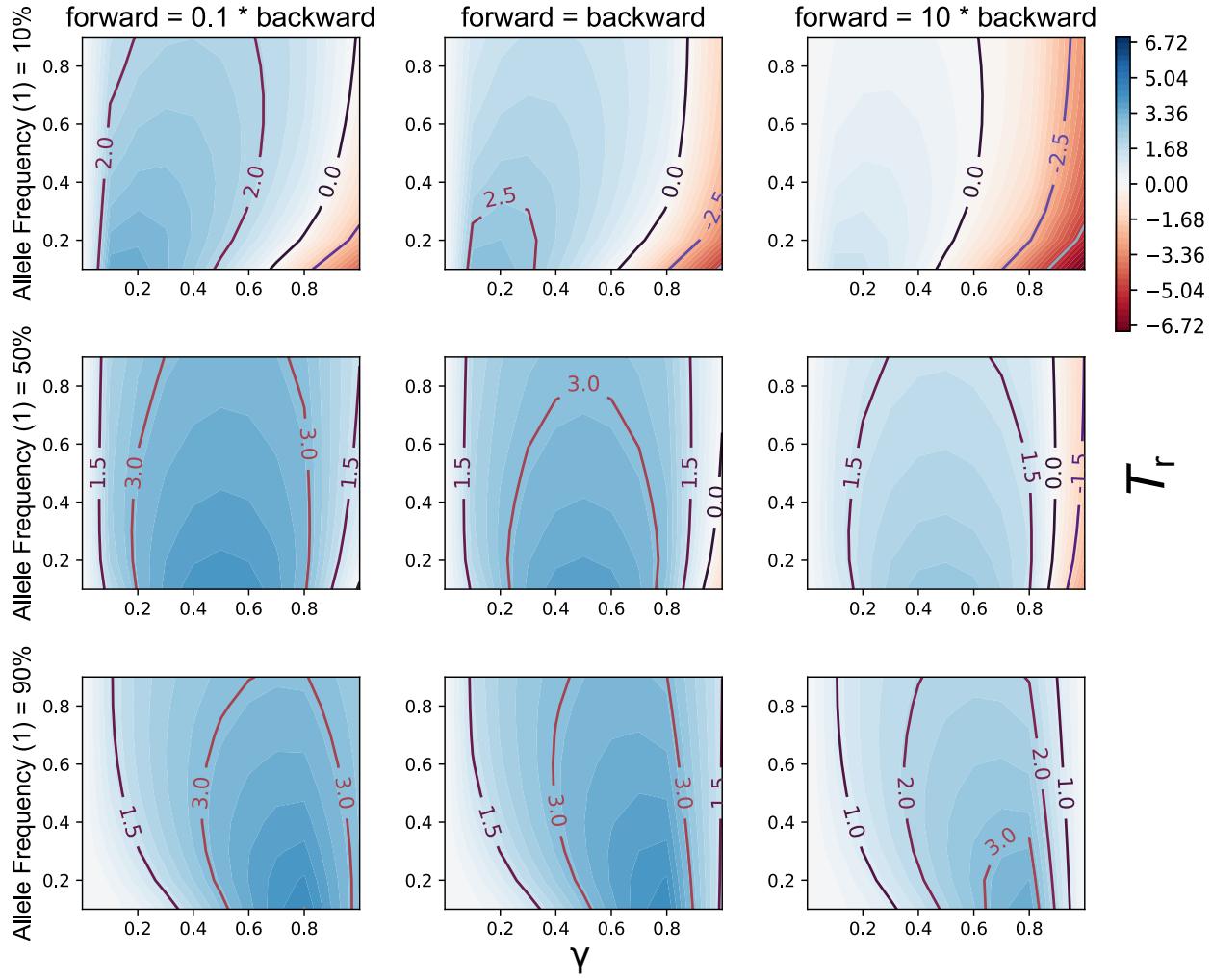


Figure 4: G-XRF values in the presence of trait polymorphism. The x- and y-axis in each panel correspond to the inheritance probability γ and reticulation time T_r , respectively. Columns correspond to three different relative forward/backward character substitution rates, and rows correspond to three different frequencies of all 1 in taxon B. In all panels $T_2 - T_1 = 10$ coalescent units and $\theta = 0.01$.

218 **Applying G-XRF to *Jaltomata***

219 When the evolutionary history of a set of species is reticulate, inferring a species tree could result in a
 220 tree with much shorter branches [25, 36, 41]. In such cases, the role of hemiplasy would be overestimated as
 221 it has an inverse relationship to branch length. This could in turn give the false impression that introgression
 222 did not play a role in the trait's evolutionary history. In other words, inferring a species tree despite the
 223 presence of gene flow could lead to misleading results not only in terms of the evolutionary history of those
 224 species, but also for their associated traits.

225 We illustrate this phenomenon using empirical and simulated data. Based on an inferred species tree, the
 226 trait patterns of *Jaltomata* species were previously hypothesized to be the result of homoplasy [42]. Another
 227 study indicated that the evolutionary history of these species was reticulate, yet no phylogenetic network
 228 was inferred [33]. We inferred both a species tree and species network based on six *Jaltomata* species and
 229 the *Solanum lycopersicum* outgroup from the latter study (Fig 5).

Figure 5: Inferred species tree (left) and network (right) of the *Jaltomata* data set. The major tree inside the species network is obtained by removing the blue reticulation edge leading to I1.

230 We evaluated the HRF values of the species tree inferred without reticulations, and of the major tree
 231 inside the species network. The HRF values computed based on the species tree are larger than the values
 232 computed based on the major tree inside the species network. This suggests that the predicted amount of
 233 hemiplasy is erroneously high when gene flow is unaccounted for. We also computed G-XRF for three possible
 234 trait patterns, finding that trait patterns X and Y can be plausibly explained by either tree-like or reticulate
 235 evolution since the G-XRF values are close to zero (Fig 6). The trait pattern that would be best explained
 236 by introgression was pattern Z where introgression of state 1 from the MRCA of (*incahuasina*, *grandibaccata*,
 237 *dendroidea*) into the MRCA of (*procumbens*, *repandidentata*) would be a more plausible explanation than
 238 homoplasy, except for when the probability of forward mutation is relatively high and therefore convergent
 239 forward mutations can be anticipated.

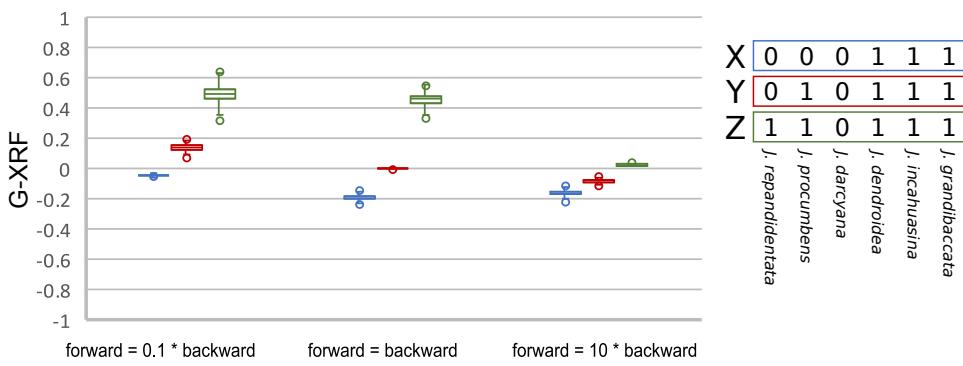


Figure 6: G-XRF values of three trait patterns (X, Y and Z) as the ratio of forward to backward substitutions is varied. Each box plot summarizes 3,000 G-XRF values obtained from the species network and corresponding major tree sampled from the posterior distribution of *Jaltomata* species networks.

240 The simulated data set

241 To further confirm these results, we repeated the same analysis on simulated data. We simulated sequence
242 alignments on 128 loci from the phylogenetic network whose topology was based on a previously published
243 phylogeny of anopheline mosquitoes [43]. Then, we inferred a species network and tree from the simulated
244 alignments. We then computed HRF values on two trees:

245 • The “major tree” of the species network estimated by, obtained by deleting the edge with the lowest
246 inheritance probability entering each reticulation node. Specifically, the reticulation edges $I5 \rightarrow I6$
247 and $I7 \rightarrow I8$ were deleted as they have the smaller inheritance probabilities.

248 • The inferred species tree. Unlike the major tree, this was not ultrametric in coalescent units, because
249 we did not assume a single uniform population size across all branches in this case.

250 The major tree HRF values for the branches leading to the two clades of three *Jaltomata* species each
251 were orders of magnitude smaller than the HRF values for the same branches in the species tree. This
252 indicates that some of the gene tree incongruence is erroneously attributed to ILS, and that incongruent
253 trait patterns may erroneously be attributed to hemiplasy, when introgression is not accounted for.

254 We also compare posterior probability densities for the case where taxa A and C have state ‘1’ and the
255 other taxa have states ‘0’ and the case where Q and R have state ‘1’ and the other taxa have states ‘0’.
256 Both cases are examples of where introgression from the second taxon’s lineage to the first taxon’s lineage
257 could explain the trait pattern. We find that the probability density of the major tree is lower than the true
258 or inferred networks in either case, suggesting that the G-XRF is powerful enough to detect the potential
259 for specific traits to be introgressed, since it is derived from those probability densities. Similar posterior
260 probabilities for the true and inferred networks further suggest that relying on inferred species phylogenies
261 to compute the G-XRF is not a problem.

262 Discussion

263 The extent of hybridization and introgression continues to be revealed in an increasingly larger number
264 of eukaryotic clades [44]. In this paper, we introduced the concept of xenoplasty to capture the inheritance
265 of morphological character states via hybridization and introgression. We demonstrated how various evo-
266 lutionary parameters impact the role these processes could play in the evolution of a given trait, including
267 polymorphic traits. When gene flow is ignored as a mode of inheritance, complex traits patterns may be
268 erroneously explained by homoplasy, that is convergent or parallel evolution. This may be the cases even
269 when coalescent processes that result in incomplete sorting of alleles or traits are accounted for, particularly
270 when the gene flow occurs between relatively distant taxa.

271 We are indebted to previous work on HRF [12] as the inspiration for our work on G-XRF. HRF is
272 computed per-branch, and we anticipate the development of more granular statistics that apply to local
273 branches, sub-networks, or reticulation nodes within the species network. It is worth noting that as a
274 global metric based on likelihood ratios, G-XRF will reflect the overall risk of introgression. Therefore,
275 a trait pattern with moderate introgression across two clades would have similar risk to that with a high
276 introgression in one clade and a low introgression in the other. As a workaround, researchers may want to
277 compute G-XRF for a particular region or regions of their phylogeny by pruning other taxa. In this way the
278 measure will be more specific and meaningful.

279 Because we implemented G-XRF using existing multispecies (network) coalescent methods for bi-allelic
280 markers, it does not account for gene duplication and loss or multistate or continuous traits. Previous work
281 on the evolution of quantitative traits within a species tree found that discordance was invariant to the
282 number of loci controlling a trait, a result which may also apply to xenoplasmy risk [45]. The framework we
283 presented here is general enough to investigate this and other possibilities, although it requires significant
284 algorithmic improvements. Another useful extension to this framework would be to compute the probabilities
285 where the ancestral state is known, as is the case with Dollo traits where the ancestral state is the presence
286 of a complex trait [46].

287 We have shown how to visualize the effect on G-XRF when varying up to four parameters in a single
288 analysis (Figs 2 and 4). This will be useful to understand the potential contribution of introgression towards
289 trait patterns when substantial uncertainty is present in one, two, three or four parameters of the model.
290 Greater uncertainty means that a grid search as presented here becomes less feasible, both computationally
291 and in terms of remaining interpretable. Instead, G-XRF could potentially be computed as part of a full
292 Bayesian analysis using MCMC or other algorithms that integrate over the posterior distribution of networks.

293 Species network inference methods may have trouble identifying instances of reticulate evolution where
294 the introgression probability is very small resulting in a lack of signal, but we do not think this presents a
295 practical problem as such instances necessarily have low xenoplasmy risk. The running time for inferring the
296 posterior probability of species networks can be significant; while likelihood calculations for the three-taxon
297 networks took less than one second each, the time complexity of MCMC_Bimarkers is $O(sn^{4l+4})$, where s
298 is the number of species, n is the number of lineages sampled from all species, and l is the level of the
299 network [32, 47]. Increasing the network level is therefore highly deleterious to running time, but this may
300 be overcome using a new, more scalable algorithm with a time complexity of $O(sn^{2\bar{K}+2})$, where $\bar{K} \leq l+1$
301 [47]. Another option is using pseudo-likelihood [48], which is much faster to calculate than the full likelihood,
302 though its appropriateness in this domain remains to be studied.

303 By applying the G-XRF to simulated data, we have demonstrated how the likelihood of particular trait
304 patterns and observed state counts can be meaningfully affected by hybridization and introgression. By

305 applying it to both simulated data and the *Jaltomata* species network, we show how it can be usefully
306 applied by researchers to quantify the risk that particular trait patterns are the product of xenoplasmy,
307 instead of or in addition to hemiplasy and homoplasmy. Introducing the concept of xenoplasmy and a method
308 of estimating the global risk of xenoplasmy for binary traits is the first necessary step in developing methods
309 to quantify xenoplasmy risk, which we anticipate will flourish given the growing appreciation for the frequency
310 and importance of hybridization and introgression.

311 **Acknowledgements**

312 This work was funded by National Science Foundation Grants DBI 2030604, CCF 1514177, and CCF
313 1800723 (to L.N.).

314 **References**

- 315 1. Darwin C. *On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured
316 Races in the Struggle for Life*. New York: Modern Library, 1859.
- 317 2. Grant PR. Speciation and the adaptive radiation of Darwin's Finches: the complex diversity of Darwin's
318 finches may provide a key to the mystery of how intraspecific variation is transformed into interspecific
319 variation. *American Scientist* 1981;69:653–63.
- 320 3. Grant PR and Grant BR. Adaptive radiation of Darwin's finches: Recent data help explain how this fa-
321 mous group of Galapagos birds evolved, although gaps in our understanding remain. *American Scientist*
322 2002;90:130–9.
- 323 4. Petren K, Grant P, Grant B, and Keller L. Comparative landscape genetics and the adaptive radiation
324 of Darwin's finches: the role of peripheral isolation. *Molecular Ecology* 2005;14:2943–57.
- 325 5. Edwards SV. Is a new and general theory of molecular systematics emerging? *Evolution: International
326 Journal of Organic Evolution* 2009;63:1–19.
- 327 6. Nakhleh L. Computational approaches to species phylogeny inference and gene tree reconciliation.
328 *Trends in ecology & evolution* 2013;28:719–28.
- 329 7. Garamszegi LZ. Modern phylogenetic comparative methods and their application in evolutionary biol-
330 ogy: concepts and practice. Springer, 2014.
- 331 8. Uyeda JC, Zenil-Ferguson R, and Pennell MW. Rethinking phylogenetic comparative methods. *Sys-
332 tematic Biology* 2018;67:1091–109.

333 9. Hall BK. Descent with modification: the unity underlying homology and homoplasy as seen through an
334 analysis of development and evolution. *Biological Reviews* 2003;78:409–33.

335 10. Tajima F. Evolutionary relationship of DNA sequences in finite populations. *Genetics* 1983;105:437–60.

336 11. Avise JC and Robinson TJ. Hemiplasy: A New Term in the Lexicon of Phylogenetics. *Systematic*
337 *Biology* 2008;57:503–7.

338 12. Guerrero RF and Hahn MW. Quantifying the risk of hemiplasy in phylogenetic inference. *Proceedings*
339 *of the National Academy of Sciences* 2018;115:12787–92.

340 13. Liu L, Yu L, and Edwards SV. A maximum pseudo-likelihood approach for estimating species trees
341 under the coalescent model. *BMC Evolutionary Biology* 2010;10:302.

342 14. Liu L and Yu L. Estimating species trees from unrooted gene trees. *Systematic Biology* 2011;60:661–7.

343 15. Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, and Warnow T. ASTRAL: genome-scale
344 coalescent-based species tree estimation. *Bioinformatics* 2014;30:i541–i548.

345 16. Chifman J and Kubatko L. Quartet inference from SNP data under the coalescent model. *Bioinformatics*
346 2014;30:3317–24.

347 17. Ogilvie HA, Bouckaert RR, and Drummond AJ. StarBEAST2 brings faster species tree inference and
348 accurate estimates of substitution rates. *Molecular Biology and Evolution* 2017;34:2101–14.

349 18. Flouri T, Jiao X, Rannala B, and Yang Z. Species tree inference with BPP using genomic sequences
350 and the multispecies coalescent. *Molecular Biology and Evolution* 2018;35:2585–93.

351 19. Wang Y and Nakhleh LK. Towards an accurate and efficient heuristic for species/gene tree co-estimation.
352 *Bioinformatics* 2018;34 17:i697–i705.

353 20. Wang Y, Ogilvie HA, and Nakhleh L. Practical Speedup of Bayesian Inference of Species Phylogenies
354 by Restricting the Space of Gene Trees. *Molecular Biology and Evolution* 2020;37:1809–18.

355 21. Hahn MW and Nakhleh L. Irrational exuberance for resolved species trees. *Evolution* 2016;70:7–17.

356 22. Maddison WP. Gene Trees in Species Trees. *Systematic Biology* 1997;46:523–36.

357 23. Yu Y, Degnan JH, and Nakhleh L. The probability of a gene tree topology within a phylogenetic
358 network with applications to hybridization detection. *PLoS Genet* 2012;8:e1002660.

359 24. Yu Y, Dong J, Liu KJ, and Nakhleh L. Maximum likelihood inference of reticulate evolutionary histories.
360 *Proceedings of the National Academy of Sciences* 2014;111:16448–53.

361 25. Elworth RL, Ogilvie HA, Zhu J, and Nakhleh L. Advances in computational methods for phylogenetic
362 networks in the presence of hybridization. In: *Bioinformatics and Phylogenetics*. Springer, 2019:317–60.

363 26. Karimi N, Grover CE, Gallagher JP, Wendel JF, Ané C, and Baum DA. Reticulate Evolution Helps
364 Explain Apparent Homoplasy in Floral Biology and Pollination in Baobabs (Adansonia; Bombacoideae;
365 Malvaceae). *Systematic Biology* 2019;69:462–78.

366 27. Jhlueng DC and O'Meara BC. Trait evolution on phylogenetic networks. *bioRxiv* 2015:023986.

367 28. Bastide P, Solís-Lemus C, Kriebel R, William Sparks K, and Ané C. Phylogenetic comparative methods
368 on phylogenetic networks with reticulations. *Systematic biology* 2018;67:800–20.

369 29. Hibbins MS, Gibson MJ, and Hahn MW. Determining the probability of hemiplasy in the presence of
370 incomplete lineage sorting and introgression. *eLife* 2020;9. Ed. by Rokas A and Wittkopp PJ:e63753.

371 30. Gray GS and Fitch WM. Evolution of antibiotic resistance genes: the DNA sequence of a kanamycin
372 resistance gene from *Staphylococcus aureus*. *Molecular Biology and Evolution* 1983;1:57–66.

373 31. Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, and RoyChoudhury A. Inferring Species Trees
374 Directly from Biallelic Genetic Markers: Bypassing Gene Trees in a Full Coalescent Analysis. *Molecular
375 Biology and Evolution* 2012;29:1917–32.

376 32. Zhu J, Wen D, Yu Y, Meudt HM, and Nakhleh L. Bayesian inference of phylogenetic networks from
377 bi-allelic genetic markers. *PLoS computational biology* 2018;14:e1005932.

378 33. Wu M, Kostyun JL, Hahn MW, and Moyle LC. Dissecting the basis of novel trait evolution in a
379 radiation with widespread phylogenetic discordance. *Molecular Ecology* 2018;27:3301–16.

380 34. Hudson RR. Generating samples under a Wright–Fisher neutral model of genetic variation. *Bioinformatics*
381 2002;18:337–8.

382 35. Rambaut A and Grass NC. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence
383 evolution along phylogenetic trees. *Bioinformatics* 1997;13:235–8.

384 36. Wen D and Nakhleh L. Coestimating reticulate phylogenies and gene trees from multilocus sequence
385 data. *Systematic Biology* 2017;67:439–57.

386 37. Zhu J, Yu Y, and Nakhleh L. In the light of deep coalescence: revisiting trees within networks. *BMC
387 bioinformatics* 2016;17:415.

388 38. Wen D, Yu Y, Zhu J, and Nakhleh L. Inferring phylogenetic networks using PhyloNet. *Systematic
389 Biology* 2018;67:735–40.

390 39. Wen D, Yu Y, Hahn MW, and Nakhleh L. Reticulate evolutionary history and extensive introgression
391 in mosquito species revealed by phylogenetic network analysis. *Molecular Ecology* 2016;25:2361–72.

392 40. Wiens JJ. Polymorphism in Systematics and Comparative Biology. *Annual Review of Ecology and
393 Systematics* 1999;30:327–62.

394 41. Solís-Lemus C, Yang M, and Ané C. Inconsistency of species tree methods under gene flow. *Systematic*
395 *biology* 2016;65:843–51.

396 42. Miller RJ, Mione T, Phan HL, and Olmstead RG. Color by numbers: Nuclear gene phylogeny of Jal-
397 tomata (Solanaceae), sister genus to Solanum, supports three clades differing in fruit color. *Systematic*
398 *Botany* 2011;36:153–62.

399 43. Fontaine MC, Pease JB, Steele A, et al. Extensive introgression in a malaria vector species complex
400 revealed by phylogenomics. *Science* 2015;347.

401 44. Mallet J, Besansky N, and Hahn MW. How reticulated are species? *BioEssays* 2016;38:140–9.

402 45. Mendes FK, Fuentes-González JA, Schraiber JG, and Hahn MW. A multispecies coalescent model for
403 quantitative traits. *Elife* 2018;7:e36482.

404 46. Wright AM, Lyons KM, Brandley MC, and Hillis DM. Which came first: The lizard or the egg? Ro-
405 bustness in phylogenetic reconstruction of ancestral states. *Journal of Experimental Zoology Part B:*
406 *Molecular and Developmental Evolution* 2015;324:504–16.

407 47. Rabier CE, Berry V, Glaszmann JC, Pardi F, and Scornavacca C. On the inference of complex phylo-
408 genetic networks by Markov Chain Monte-Carlo. *bioRxiv* 2020.

409 48. Zhu J and Nakhleh L. Inference of species phylogenies from bi-allelic markers using pseudo-likelihood.
410 *Bioinformatics* 2018;34:i376–i385.