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Abstract 
Expression quantitative trait loci (eQTL) studies are used to understand the regulatory function 
of non-coding genome-wide association study (GWAS) risk loci, but colocalization alone does 
not demonstrate a causal relationship of gene expression affecting a trait. Evidence for 
mediation, that perturbation of gene expression in a given tissue or developmental context will 
induce a change in the downstream GWAS trait, can be provided by two-sample Mendelian 
Randomization (MR). Here, we introduce a new statistical method, MRLocus, for Bayesian 
estimation of the gene-to-trait effect from eQTL and GWAS summary data for loci displaying 
allelic heterogeneity, that is, containing multiple LD-independent eQTLs. MRLocus makes use of 
a colocalization step applied to each eQTL, followed by an MR analysis step across eQTLs. 
Additionally, our method involves estimation of allelic heterogeneity through a dispersion 
parameter, indicating variable mediation effects from each individual eQTL on the downstream 
trait. Our method is evaluated against state-of-the-art methods for estimation of the gene-to-trait 
mediation effect, using an existing simulation framework. In simulation, MRLocus often has the 
highest accuracy among competing methods, and in each case provides more accurate 
estimation of uncertainty as assessed through interval coverage. MRLocus is then applied to 
five causal candidate genes for mediation of particular GWAS traits, where gene-to-trait effects 
are concordant with those previously reported. We find that MRLocus' estimation of the causal 
effect across eQTLs within a locus provides useful information for determining how perturbation 
of gene expression or individual regulatory elements will affect downstream traits. The MRLocus 
method is implemented as an R package available at https://mikelove.github.io/mrlocus. 

Keywords: Mendelian randomization, allelic heterogeneity, colocalization, mediation, eQTL. 

Introduction 
Genome-wide association studies (GWAS) have identified many loci associated with complex 
traits and diseases. A major goal now is to understand the mechanism by which non-coding 
genetic variation influences trait levels through changes in gene expression. This involves 
identifying the causal variants at a locus, determining if the same variants are associated with 
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both gene expression and trait, and disambiguating mediation from pleiotropy (Yao et al., 2020). 
Proposing mediating genes from existing expression quantitative trait loci (eQTL) and GWAS 
resources will lead to experiments that test whether modulating gene expression influences 
traits, and therefore inform further research and development of treatments. 

Current efforts to identify the genes underlying GWAS risk often make use of either 
colocalization of GWAS signal with eQTLs, or expression imputation. In colocalization, statistical 
models are used to probabilistically assess if the same genetic variants within a locus are likely 
to be causally contributing to both eQTL and GWAS signals, taking into account the structure of 
linkage disequilibrium (LD) for a given population. A number of different methods have been 
proposed for colocalization, including QTLMatch (Plagnol et al., 2009), coloc (Giambartolomei et 
al., 2014; Wallace et al., 2012), eCAVIAR (Hormozdiari et al., 2016), enloc (Wen et al., 2017), 
RTC (Ongen et al., 2017), and Primo for multi-omics colocalization (Gleason et al., 2019). 
Expression imputation methods, as in transcriptome-wide association studies (TWAS), add 
additional information by including subthreshold signal for both GWAS and eQTL to identify 
which genes’ expression may have a non-zero local genetic correlation with a given GWAS trait 
(Gamazon et al., 2015; Gusev et al., 2016; Mancuso et al., 2019). Further refinements of TWAS 
statistical models have allowed for probabilistic fine-mapping within loci harboring multiple 
candidate genes by accounting for LD structure, as in FOCUS (Mancuso et al., 2019). 

Though colocalization and expression imputation suggest genes involved in a trait, neither 
method is designed to disambiguate between pleiotropy and mediation. The latest generation of 
methods for determining those genes involved in mediating GWAS signal have combined the 
approaches of colocalization and expression imputation with statistical techniques from the field 
of Mendelian randomization (MR) (Davey Smith & Hemani, 2014; Smith & Ebrahim, 2003), as 
reviewed recently (Broekema et al., 2020). Intuitively, these methods work by determining if 
those genetic variants which influence gene expression also influence a downstream trait in 
proportionate degrees. Evidence for mediation is provided by randomized genetic variation used 
to perturb gene expression and observing the expression effects propagated to traits. With 
access to genotype, expression, and trait data, classical mediation techniques can be 
employed, as in the methods CIT (Millstein et al., 2009) and SMUT (Zhong et al., 2019), while 
MR-link (van der Graaf et al., 2019) makes use of individual-level data from an eQTL study and 
summary statistics from GWAS to perform MR analysis. 

Other sets of methods testing gene-to-trait mediation require only summary statistics from eQTL 
and GWAS studies, as it may be prohibitive for a method to require access to the per-participant 
genotypes, expression values, and GWAS trait values (Pasaniuc & Price, 2017). Methods such 
as SMR (Summary data-based MR) consider genetic variants as potential instruments that may 
affect a downstream trait through the mediator of gene expression (Zhu et al., 2016). SMR uses 
the top cis-eQTL per gene for testing the gene-to-trait effect, and the authors proposed HEIDI 
(Heterogeneity In Dependent Instruments) to test for heterogeneity of the gene-to-trait effect 
across multiple variants in a region, with heterogeneity indicating that the gene may not be 
causally involved in the trait. CaMMEL performs causal mediation analysis across multiple loci, 
each harboring multiple candidate genes, and attempts to adjust for unmediated effects (Park et 
al., 2017). TWMR performs a multivariable MR analysis wherein the gene-to-trait effect of 
multiple genes is estimated simultaneously to reduce bias (Porcu et al., 2019). In contrast to 
SMR, TWMR includes multiple variants per gene for effect estimation. LDA-MR-Egger (Barfield 
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et al., 2018) and PMR-Summary-Egger (Yuan et al., 2020) account for LD structure in 
estimating the gene-to-trait effect, and additionally allow for pleiotropy through the use of an 
intercept term. PTWAS (Zhang et al., 2019) adds to the analysis of gene-to-trait effects an 
upstream fine-mapping of cis-eQTL using DAP (Wen et al., 2016), and estimation of gene-to-
trait effect heterogeneity in the case of multiple independent eQTL signal clusters, employing an 
I2 statistic (Higgins & Thompson, 2002). The I2 statistic ranges between 0 and 1 and represents, 
in the gene-to-trait meditation case, the percent of variance in estimated effect sizes across 
signal clusters that arises from true effect heterogeneity. MESC also attempts to determine 
whether gene expression mediates GWAS signals, and as with CaMMEL and TWMR, multiple 
genes are considered simultaneously  (Yao et al., 2020). Finally, a new method MR-Robin 
performs robust MR with a focus on multiple tissue eQTL summary statistics, allowing for fewer 
and correlated candidate causal variants to achieve accurate gene-to-trait effect estimates 
(Gleason et al., 2020). 

The ability to perform MR within a locus relies on having multiple independent “instruments”, 
SNPs which are found to be associated with the potential mediator, and which plausibly only 
affect the downstream trait through the mediator. Recently, it has been found that more than a 
third of genes have more than one independent cis-eQTL, with some genes having up to 13 
independent cis-eQTL signals, detected by conditional analysis in peripheral blood (Jansen et 
al., 2017). A recent study integrating neonatal gene expression with GWAS of autoimmune and 
allergic disease performed MR analysis across 52 genes that had three or more cis-eQTLs 
(Huang et al., 2020). In addition, power to detect mediation at typical eQTL and GWAS sample 
sizes will depend on the percent of mediated heritability through a gene of interest. The MESC 
method estimated that the average percent of mediated heritability through the expression of all 
genes is around 11%, averaging over 42 GWAS diseases and traits, with the top mediated traits 
having around 30% mediated heritability through expression of all genes (Yao et al., 2020). 

The existing methods for assessing whether expression of a particular gene in some context 
may mediate GWAS signal have primarily focused on their ability to perform genome-wide 
mediation scans across multiple tissues or cell types. This is a critical task in determining the 
genetic architecture and the most relevant molecular contexts for a trait (e.g. tissues, cell types, 
or developmental stage) which are often not known a priori. However, when considering 
functional follow-up experiments at an individual locus, investigators are interested in the degree 
to which modulation of gene expression results in trait differences. This can be quantified by the 
statistical uncertainty regarding a potential gene-to-trait effect, as well as the heterogeneity of 
gene-to-trait effects across independent signal clusters within a locus, as is the focus in 
PTWAS. 

Here, we propose MRLocus, a Bayesian model for estimating the gene-to-trait effect from 
multiple independent signal clusters for one gene, as well as for estimating the heterogeneity of 
the effects across clusters. We have designed our method for prioritization of genes in functional 
experiments, where the genes under study have already been identified as candidates for 
mediation, having emerged from one of the global mediation scanning methods described 
above, or from colocalization or TWAS. MRLocus performs estimation of the gene-to-trait effect 
itself, as our focus is on experimental follow-up, as opposed to estimation of the percent of 
mediated heritability in a given population. In comparisons with other recently developed 
methods for identifying mediating genes from eQTL and GWAS summary data and LD matrices, 
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TWMR and PTWAS, MRLocus was often more accurate in estimation of the gene-to-trait effect 
across simulated eQTL and GWAS experiments, and had higher and closer to nominal 
coverage of the true effect when considering its credible intervals. Using existing eQTL and 
GWAS data, we also demonstrate mediation is observed at previously reported and 
experimentally validated loci. The MRLocus method is implemented as an open source R 
package with full function documentation and a software vignette demonstrating its use, publicly 
available at https://mikelove.github.io/mrlocus. 

Methods  

MRLocus method 
MRLocus consists of two steps, (1) colocalization and (2) MR slope fitting, each of which use 
Bayesian hierarchical models specified in the Stan probabilistic programming language, and 
with posterior inference using the Stan and RStan software packages (Carpenter et al., 2017). 
As in PTWAS (Zhang et al., 2019), MRLocus attempts to estimate the gene-to-trait effect or 
slope by identifying "LD-independent" signal clusters and then assesses the strength of 
evidence of mediation and the heterogeneity of the allelic effects. In referring to "LD-
independent" clusters, we refer to non-overlapping sets of SNPs with low LD: MRLocus uses 
PLINK’s clumping algorithm (Purcell et al., 2007) to identify LD-independent sets of SNPs based 
on eQTL p-value (as discussed below), whereas PTWAS uses DAP (Wen et al., 2016) for 
identifying signal clusters. Alternatively, conditional analysis could be used as discussed in a 
recent coloc methods paper (Wallace, 2020). As with other gene mediation methods mentioned 
above, we focus here on common SNPs (using a minor allele frequency (MAF) filter on real and 
simulated data of 0.01). To the extent that a SNP or genetic variant gives rise to both the eQTL 
and GWAS signal and is in the set analyzed by MRLocus, then the model has a chance to find 
the "causal" SNP, although in general MRLocus may identify a SNP which is in high LD with the 
causal SNP. 

In contrast to other methods for estimating gene-to-trait effects, MRLocus additionally performs 
a colocalization step prior to slope fitting, using eQTL and GWAS summary statistics (estimated 
coefficients and standard errors (SE)), based on LD matrices (either distinct matrices when 
eQTL/GWAS are performed in different populations, or a single shared matrix can be used 
when eQTL/GWAS are performed in the same population). The colocalization step attempts to 
identify a single candidate causal SNP per LD-independent signal cluster. Here “candidate 
causal SNP” refers to the hypothesis that the SNP gives rise to both the observed eQTL and 
GWAS signal, given the LD matrices. The colocalization step produces posterior estimates that 
assess the degree to which the summary statistics and LD matrices support the causal 
hypothesis per signal cluster (see Supplementary Methods for details on the statistical model). If 
the SNP is a strong candidate for causing both the eQTL and GWAS signal in a signal cluster, 
then the posterior estimates for the eQTL and GWAS effect sizes will be large (in absolute 
value) for the SNP, and near 0 for the other SNPs. If the SNP is a strong candidate for only the 
eQTL signal, but not for the GWAS signal, then the posterior estimate for the chosen SNP for 
the GWAS signal will be near 0. Finally, we note that prior to the colocalization step, MRLocus 
performs collapsing of highly correlated SNPs (threshold of 0.95 correlation), such that the final 
"per-SNP" results actually correspond to results for representatives from sets of highly 

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.08.14.250720doi: bioRxiv preprint 

https://mikelove.github.io/mrlocus
https://doi.org/10.1101/2020.08.14.250720
http://creativecommons.org/licenses/by/4.0/


correlated SNPs. MRLocus also performs allele flipping such that all SNPs are coded to be in 
positive LD correlation to the index SNP that has a positive estimated coefficient for eQTL 
(Supplementary Methods). This ensures that the statistical modeling and visualizations are 
always referring to the effect of an expression-increasing allele. 

MRLocus’ colocalization step is motivated by the eCAVIAR model (Hormozdiari et al., 2016) as 
it formulates a generative model for the summary statistics based on true underlying signals, but 
is distinct from the eCAVIAR model in two respects. First, eCAVIAR models the z-scores from 
eQTL and GWAS, while MRLocus directly models the estimated coefficients, as our focus is on 
estimation of the gene-to-trait effect, which can be conceived as in other MR applications as a 
regression of coefficients from GWAS on eQTL. Second, eCAVIAR uses a multivariate normal 
distribution to model the vector of observed z-scores in a locus, while MRLocus uses a 
univariate distribution to model the estimated coefficients of the SNPs in each LD-independent 
signal cluster. The univariate distribution was chosen for its increased performance in accuracy 
and in efficiency in model fitting, as well as for flexibility in specification of prior distributions. In 
its implementation of colocalization, MRLocus uses a horseshoe prior (Carvalho et al., 2010) on 
the true coefficients for eQTL and GWAS signal per signal cluster, which helps to induce 
sparsity in the posterior estimates of the coefficients prior to mediation analysis (Supplementary 
Methods). The proposed use of the horseshoe prior during colocalization to identify putative 
causal SNPs from eQTL and GWAS coefficients within a signal cluster is distinct from other 
Bayesian MR methods’ use of the horseshoe prior on pleiotropic effects or on the mediation 
slope (Berzuini et al., 2020; Fazia et al., 2019; Uche-Ikonne et al., 2019).  

Figure 1: MRLocus estimates the gene-to-trait effect (solid blue line) as the slope from 
paired eQTL and GWAS effect sizes from independent signal clusters (black points with 
standard error bars), here on simulated coefficients. The dispersion of allelic effects 
around the main gene-to-trait effect (light blue band) is also estimated. An 80% credible 
interval on the slope is indicated with dashed blue lines sloping above and below the 
solid blue line. Panels represent loci demonstrating A) mediation with low dispersion, B) 
mediation with high dispersion, and C) colocalization of eQTL and GWAS signals but no 
evidence of mediation (slope credible interval overlaps 0). Investigators may wish to 
prioritize loci for experimental follow-up in which a typical “dosage” pattern is observed, 
such that alleles contributing small amounts to expression of a gene contribute small 
amounts to GWAS trait, and similarly for large effect alleles. 
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MRLocus’ slope fitting step involves estimation of the gene-to-trait effect across signal clusters 
(Figure 1). For slope estimation, the best candidate SNP per LD-independent signal cluster is 
chosen, based on which SNP has the largest posterior mean of the eQTL effect size from the 
colocalization step. Again, a hierarchical model is used to perform inference on parameters of 
interest, in this case the slope (ɑ) of true GWAS coefficients on true eQTL coefficients 
(Supplementary Methods). If the signal cluster does not provide evidence of colocalization, the 
estimate of the GWAS coefficient from the previous step will be near 0, and this will bring the 
estimated slope toward 0 as well. Quantile-based credible intervals on the slope coefficient 
provide information regarding the uncertainty of the gene mediating the trait measured in the 
GWAS. Finally, whereas PTWAS makes use of an I2 statistic (Higgins & Thompson, 2002) for 
quantifying the heterogeneity of the allelic effects at the locus, MRLocus estimates the 
dispersion (σ) of the different allelic effects around the predicted values given by the slope. 
Therefore, MRLocus may have high certainty on the slope (narrow credible interval for ɑ not 
overlapping 0), while nevertheless estimating that the dispersion of allelic effects around the 
slope is large (σ). The tradeoff between uncertainty on the estimate of ɑ and the dispersion σ of 
allelic effects around fitted line naturally depends upon the number of independent signal 
clusters at the locus. When a single signal cluster is provided by PLINK clumping, MRLocus 
uses a parametric bootstrap to estimate the gene-to-trait effect (Supplementary Methods). 

Choice of methods for comparison 
We chose to focus on TWMR (Porcu et al., 2019) and PTWAS (Zhang et al., 2019) in our 
comparisons, as these two methods had a focus on estimation of the gene-to-trait effect, were 
able to run on eQTL data for a single gene and a single tissue, and required only summary 
statistics and LD matrices. We additionally compared MRLocus to LDA-MR-Egger (Barfield et 
al., 2018) and PMR-Summary-Egger (Yuan et al., 2020) on the first simulation setting. Other 
methods that likewise determine if one or more genes may mediate traits include CaMMEL 
(Park et al., 2017), MESC (Yao et al., 2020), and MR-Robin (Gleason et al., 2020). We were not 
able to run CaMMEL using only LD matrices from the eQTL and/or GWAS cohort, as the 
fit.med.zqtl function takes genotype design matrices as input. We were not able to run MESC 
with less than 5 genes (our focus with MRLocus is on single gene mediating effect estimation). 
Finally, MR-Robin also provides robust estimates of gene-to-trait effects but with a focus on 
multiple-tissue eQTL summary statistics as input. 

Simulation 
For simulation, we used the pre-existing TWAS simulation framework, twas_sim (mancusolab, 
n.d.), which simulates eQTL and GWAS datasets using real genotype data (1KG EUR Phase3) 
and outputs summary statistics. This software has a number of options for simulation 
parameters including cis heritability of gene expression (referred to here as “h2”), variance 
explained in the downstream trait by the gene's expression level (referred to here as “var. exp.”), 
and the number of SNPs in a locus which are cis eQTL. A single gene’s expression was 
simulated per experiment, and both gene and trait were scaled to unit variance for slope 
estimation. Simulations of paired eQTL and GWAS datasets were performed where the gene 
was a partial mediator of the trait, as well as null simulations where the gene expression was 
unrelated to the downstream trait. TWMR, PTWAS, MRLocus, LDA-MR-Egger, and PMR-
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Summary-Egger were all run on the same summary data from eQTL and GWAS simulations. 
The Snakemake software (Koster & Rahmann, 2012) was used for automation of simulation 
scripts including specification of random seed for each of the 240 simulations, in order to assist 
with computational reproducibility of simulations. Simulation and analysis code is provided at 
https://github.com/mikelove/mrlocusPaper. The sample sizes for eQTL and GWAS were kept at 
their default values of N = 500 and N = 100,000, respectively. The percent of SNPs in a locus 
which are eQTLs was set to 1%. The gene h2 was varied from its default value (0.1) to a higher 
value (0.2) and a lower value (0.05), and the trait variance explained by gene expression was 
varied from its default value (0.01) to two lower values (0.005, 0.001, as well as to 0 indicating a 
null simulation where gene expression does not explain variation in a GWAS trait). 20 
replications of each combination of 3 (for h2) x 4 (for variance explained) resulted in 240 
simulations, 60 of which simulated no mediation of gene on trait (Supplementary Figure 1). 

LD-based clumping implemented in PLINK (v1.90b) (Purcell et al., 2007) was performed on 
eQTL simulation un-adjusted p-values with the following settings: --clump-p1 0.001 --clump-p2 1 
--clump-r2 0.2 --clump-kb 500. All PLINK clumps were provided to TWMR (commit 62994ec) 
(Porcu et al., 2019) and MRLocus (v0.0.14) for gene-to-trait effect estimation. PTWAS (v1.0) 
(Zhang et al., 2019) was provided with output from DAP (DAP-G, commit ac38301) (Wen et al., 
2016) with settings: -d_n 500 -d_syy 500 (as twas_sim scales the GWAS trait to unit variance). 
LDA-MR-Egger (from R script) and PMR-Summary-Egger (v1.0) were supplied with the eQTL 
and GWAS summary statistics of the locus, without clumping. For all simulations, if there were 
no SNPs in the simulated locus with eQTL un-adjusted p-value < 0.001 then a new seed was 
drawn. For simulation comparisons, MR with inverse variance weighted (IVW) regression with 
fixed effects (Burgess et al., 2013) was computed using the true causal eQTLs ("causal") or 
across all SNPs ("all") using the mr_ivw_fe function in the TwoSampleMR R package (v0.5.5) 
(Hemani et al., 2018) with eQTL as the exposure study and GWAS as the outcome study. The 
"causal" IVW MR analysis served as an "oracle" estimator in the simulations, as it was provided 
with information not available in a typical analysis and not provided to other methods. The 
number of true eQTL SNPs, PLINK clumps, and DAP signal clusters are shown in 
Supplementary Figure 2. The distribution of the number of SNPs per clump before and after 
collapsing highly correlated SNPs (part of MRLocus pre-processing, described in 
Supplementary Methods) is shown in Supplementary Figure 3. 

Real data analysis 
To evaluate the performance of methods on real data, we applied TWMR, PTWAS, and 
MRLocus to five eQTL-GWAS pairs chosen based on literature review of previous connections 
between gene expression and downstream phenotype: MARS (tibial artery) - coronary artery 
disease (CAD), PHACTR1 (tibial artery) - CAD, CETP (liver) - high-density lipoproteins (HDL), 
LIPC (liver) - HDL, and SORT1 (liver) - low-density lipoproteins (LDL). eQTL and GWAS 
summary data were obtained as summarized in Supplementary Tables 1 and 2 (SNP details and 
URLs). Briefly,  eQTL data on tibial artery and liver was obtained from the Genotype-Tissue 
Expression (GTEx) project v8 (GTEx Consortium et al., 2017) and directly from the authors of a 
liver meta-analysis study (Strunz et al., 2018), respectively. GTEx v8 estimated eQTL 
coefficients were on the scale of unit variance expression values (following per-gene inverse 
normal transformation), while the liver meta-analysis effect sizes were on the scale of log2 

normalized expression, according to references. GWAS summary statistics on CAD were 
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obtained from CARDioGRAMplusC4D (Coronary ARtery DIsease Genome wide Replication and 
Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease (C4D) Genetics) consortium 
(Nikpay et al., 2015), where coefficients represent log odds ratios (OR), and the UK Biobank 
(https://www.ukbiobank.ac.uk) obtained from http://www.nealelab.is/uk-biobank/, where 
coefficients are estimated with respect to unit variance, continuous scale HDL or LDL.  

Prior to defining independent signal clusters, we filtered out SNPs with MAF < 0.01 from GWAS 
data, and p-values were corrected with lambda GC (Bacanu et al., 2000). We used raw p-values 
for eQTL data and genomic control corrected p-values for GWAS data. As our task for 
downstream inference is estimation of the slope of GWAS coefficients over eQTL coefficients 
across signal clusters, it is not necessary that the eQTL signal clusters attain genome-wide 
significance before being provided to MRLocus. 

Defining independent signal clusters 
We first identified LD-independent signal clusters for eQTL and GWAS datasets by LD-based 
clumping implemented in PLINK (1.90b) (Purcell et al., 2007) with the following settings: --
clump-p1 0.001 --clump-p2 1 --clump-kb 500 --r2 0.2 for eQTL, and --clump-p1 5e-8 --clump-p2 
1 --clump-kb 500 --r2 0.2 for GWAS. LD (r2)  was estimated in the European population from the 
1000 Genome Project phase 3 (1KG EUR). Next, to define a candidate pair for colocalization, 
we calculated r2 between eQTL index SNPs and GWAS index SNPs for each cluster. The 
clusters are considered to be candidates for colocalization if r2 >= 0.4. The union of SNPs within 
paired clusters were provided to MRLocus. 

We also kept the rest of the eQTL independent clusters, defined them as unpaired eQTL 
signals, and additionally provided these data to MRLocus. Because for those pairs, we do not 
have corresponding GWAS clusters, we directly obtained test statistics of matched SNPs from 
GWAS summary data. Unpaired eQTL signal clusters, which were not candidates for 
colocalization with GWAS, were included in all analyses, as these provide important evidence 
against the gene mediating the trait. However, as we are performing a unidirectional MR 
analysis of a candidate gene for mediation of downstream traits, unpaired GWAS signal clusters 
were not included. 

Generating MRLocus input files 
For each independent pair, we generated MRLocus input files (effect size tables) with estimated 
coefficients, SE, and reference and effect alleles from both eQTL and GWAS. Pairwise LD (r) 
between SNPs metrics (LD metrics table) were generated by the plink --r function for all SNPs 
included in the corresponding effect size table using 1KG EUR. As LD matrix structure needs to 
be matched to the effect size table, the row of the effect size table was sorted by SNP position. 
We also included major/minor allele information from the reference panel (plink bim files) in the 
effect size table for proper allele flipping for statistical modeling and visualization 
(Supplementary Methods). 
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Real data analysis with other methods 
TWMR (Porcu et al., 2019) and PTWAS (Zhang et al., 2019) were used to compare estimates 
on real data loci. Both software packages require independent eQTL signal clusters and we 
used DAP (DAP-G, commit ac38301) (Wen et al., 2016) to estimate independent eQTL clusters 
for PTWAS (v1.0) as described in the original paper, while for TWMR (commit 62994ec) we ran 
PLINK clumping with the same parameters we used for MRLocus (v0.0.14) because we only 
have access to summary statistics (c.f. the original TWMR paper performed conditional 
analyses). DAP was applied to estimated coefficients and SE from eQTL summary statistics 
with default options except we set maximum models (-msize) to 20. PTWAS code was modified 
at line 64 to allow for input of estimated coefficients and their SE, such that it provided slope 
estimates on the original scale of coefficients, not z-scores. 

Results 

Simulation 
In order to evaluate the accuracy in estimating the mediated gene effect, we used a GWAS and 
eQTL simulation. The twas_sim simulation framework used for evaluating methods has default 
values for cis eQTL gene expression heritability of 10% (“h2”) and gene-mediated trait variance 
explained of 1% (“var. exp”). As the eQTL-based heritability could feasibly be higher or lower, 
we investigated values of 20% and 5% as well, which are within the range of detection for eQTL 
studies with hundreds of samples (Lloyd-Jones et al., 2017; Stranger et al., 2007). The default 
mediated trait variance explained value of 1% for a single gene is likely high, given that a recent 
publication using GTEx data has estimated the total gene-mediated heritability across all genes 
to be around 11% (±2%) averaging over 42 traits (Yao et al., 2020). We therefore considered 
even lower heritability of trait on gene expression of 0.5% and 0.1%, as well as a null simulation 
where gene expression did not mediate the downstream trait in any way (0%). 
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Figure 2: Performance of methods on 20 simulated eQTL and GWAS datasets. A) 
Estimates of each method over true (simulated) gene-to-trait values.  The method 
denoted with “causal” indicates an inverse variance weighted slope estimation using the 
true causal SNPs but the estimated coefficients and SEs (an oracle estimate), and “all” 
indicates an inverse variance weighted slope estimation using all SNPs. B) Observed 
coverage (abbreviated cov. within each panel) of 80% confidence or credible intervals 
from each method. If the interval contains the true effect size, it is colored black, 
otherwise red. 

For the default values of 10% gene h2 and 1% trait variance explained, MRLocus had the 
highest accuracy in terms of relative mean absolute error (RMAE), dividing the error by the 
absolute value of the true slope, and in terms of mean absolute error (MAE) (Figure 2A). In 
addition, MRLocus was able to achieve nominal coverage for 80% credible intervals over the 
true values, while other methods had lower observed coverage, having too narrow confidence 
intervals (Figure 2B). We additionally tested two other methods, LDA-MR-Egger and PMR-
Summary-Egger at the default twas_sim settings (Supplementary Figure 4). LDA-MR-Egger did 
not provide an estimate of SE for 6 of 20 simulations, while PMR did not provide an estimate of 
the effect for 14 of 20 simulations. These additional two methods had much higher error 
compared to TWMR, PTWAS, and MRLocus at the default twas_sim settings, and so we 
focused on the latter three methods for further evaluation.  We note that in this first simulation, 
MRLocus obtained slightly lower RMAE of gene-to-trait slope compared to an oracle method 
that uses only the true causal SNPs (which are generally not known) and their estimated 
coefficients (“causal”) in IVW regression with fixed effects (Burgess et al., 2013). We believe the 
main reason for this improvement was MRLocus’ re-estimation of the coefficients in its 
colocalization procedure with shrinkage priors, resulting in coefficients that had lower variance 
potentially leading to lower error for the eQTL effect sizes (where N = 500).  

For simulations using other parameter settings of h2 and gene-trait variance explained, the true 
causal SNPs with their estimated coefficients (“causal”) always had the lowest RMAE, as might 
be expected, but MRLocus had the second lowest RMAE in 4 of the remaining 8 non-null 
simulation settings with non-default values of h2 and variance explained (Supplementary Figure 
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5 – Supplementary Figure 12). For some simulations, PTWAS would report a division by a zero 
error had occurred, and in these cases, the estimate would not be included in PTWAS’ error or 
coverage calculations, and the estimate is plotted in figures at y=0. In the other 4 non-null 
settings, PTWAS had lower RMAE than MRLocus and higher than “causal”, although in 2 of 
these 4 settings PTWAS had division-by-zero errors for the majority of the replicate simulations, 
making comparisons between methods difficult. PTWAS and MRLocus always had lower RMAE 
than TWMR. 

In terms of credible or confidence interval coverage, MRLocus always had better or equal 
coverage of the true values compared to all other methods within the non-null simulation 
settings, though it did not always reach the nominal level (Supplementary Figure 13 – 
Supplementary Figure 20). When gene h2 was 10% or 5% and trait variance explained was 1% 
or 0.5%, the nominal coverage (for 80% intervals) was achieved, with mean coverage of 79% 
over these 4 settings. When gene h2 was 20% (the highest setting) or when trait variance 
explained was 0.1% (the lowest setting), the coverage for MRLocus was lower than nominal, 
with mean coverage of 43%, though in all of these 5 settings MRLocus had better or equal 
interval coverage than the oracle method, TWMR, or PTWAS. The oracle method tended to 
have narrow confidence intervals, and MRLocus had higher coverage than the oracle method 
for all of the 9 non-null simulations. We believe the lower-than-nominal coverage seen here for 
the oracle method is likely from insufficient propagation of error during slope estimation. As the 
twas_sim framework does not include heterogeneity of effects from different signal clusters, an 
additional simulation was performed to assess MRLocus' estimation of the dispersion of effects 
around the gene-to-trait fitted line (Supplementary Figure 21). Here, MRLocus was accurate 
both in estimation of the dispersion and quantification of uncertainty (attaining nominal credible 
interval coverage), with higher accuracy and smaller intervals as the number of LD-independent 
clusters increased, as expected. 

In the 3 null simulation settings (gene h2 of 5%, 10%, 20% but no trait variance explained), 
MRLocus always had the highest coverage of the true slope value of 0, with average coverage 
of 95% (Supplementary Figure 22). Here, TWMR had average coverage of 65% and PTWAS 
had average coverage of 55%. The oracle method with the true eQTL SNPs had average 
coverage of 72%, and always lower than MRLocus. The oracle method again had narrow 
intervals as in the non-null simulations. As the oracle method uses GWAS SE for the true causal 
eSNPs for invariance variance weighting, we believe this was insufficient for propagation of 
error. 

Across the 240 simulations, MRLocus was approximately 34 times slower than TWMR and 48 
times slower than PTWAS, with a mean running time per locus of 121 seconds (compared to 3.5 
seconds for TWMR and 2.5 seconds for PTWAS) (Supplementary Figure 23). This additional 
runtime is because MRLocus involves a colocalization step that is fit per signal cluster. Runtime 
for PLINK clumping and DAP were not included in the times presented above. 

Real data analysis 
We compared TWMR, PTWAS, and MRLocus using eQTL and GWAS summary statistics for 
five gene-trait pairs in which there is strong evidence that the gene mediates the trait, and the 
direction of the effect has also been reported, such that we could compare our estimates 
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against the literature. The paired index SNPs for the eQTL and GWAS datasets for these gene-
trait pairs are provided in Supplementary Table 1, and LocusZoom-style plots (Hahne & Ivanek, 
2016; Pruim et al., 2010) for the eQTL and GWAS tracks are provided in Supplementary Figure 
24 – Supplementary Figure 27. Additionally, the LD patterns for paired PLINK clumps (eQTL and 
GWAS signals are candidates for colocalization) and unpaired PLINK clumps (eQTL only 
signals) are provided in Supplementary Figure 28 – Supplementary Figure 32. 

Figure 3: Estimated gene-to-trait effects for TWMR, PTWAS, and MRLocus on five eQTL 
and GWAS datasets for strong candidate genes for mediation of the GWAS trait. 80% 
confidence or credible intervals are shown (MRLocus provides quantile-based credible 
intervals). The artery eQTL were estimated from inverse normal transformed expression 
data from GTEx, while the liver meta-analysis eQTL were estimated from log2 expression 
data, thus the estimated slopes represent changes in SD of gene expression on log odds 
for CAD risk, and doubling of gene expression on lipid levels in population SD, 
respectively. The last panel provides two estimates of heterogeneity: PTWAS uses an I2 
statistic to quantify heterogeneity across signal clusters (ranging from 0 to 1, for low to 
high heterogeneity), while MRLocus quantifies the dispersion with a parameter, σ, on the 
scale of the estimated slope. 

On the five eQTL-GWAS dataset pairs, all three methods had consistent sign of the mediating 
effect (Figure 3), though MRLocus had larger credible intervals compared to confidence 
intervals from the other two methods, as was seen in the simulation datasets where MRLocus 
has improved coverage of the true effect size. In all cases, the sign of the mediating effect was 
in concordance with literature: higher MRAS (Artery) being hazardous for CAD (Alshahid et al., 
2013; Song et al., 2019; Wu et al., 2015), higher PHACTR1 (Artery) being protective for CAD 
(Chen et al., 2019; Codina-Fauteux et al., 2018), higher CETP (Liver) decreasing HDL levels 
(Tall, 2010), higher LIPC (Liver) decreasing HDL levels (Guerra et al., 1997), and higher SORT1 
(Liver) decreasing LDL levels (Musunuru et al., 2010; Strong et al., 2014; van der Graaf et al., 
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2019). For CEPT (Liver) paired with HDL, PTWAS encountered a division by zero error and did 
not produce an estimated effect. MRLocus had the strongest evidence for mediation with the 
SORT1 (Liver) locus paired with LDL, with LocusZoom-style plot of the region in Figure 4A and 
MRLocus gene-to-trait estimate plot in Figure 4B. MRLocus plots for the remaining four gene-
trait pairs are provided in Supplementary Figure 33. 

Figure 4: Colocalization and MRLocus estimation for SORT1. A) Colocalized signals in 
the SORT1 region. From top panel to bottom, gene model (NCBI Refseq), eQTL for 
SORT1 in liver (N = 588) (Strunz et al., 2018) and LDL association within UKBB (N = 
343,621). LD was calculated to independent SNPs within 1KG EUR and colored 
accordingly. Symbols indicate independent co-localized (r2> 0.4) eQTL-GWAS pairs. 
Dashed line indicates a significance threshold at p = 0.001 or p = 5x10-8 for eQTL and 
GWAS respectively. B) MRLocus plot of the gene-to-trait effect for SORT1 expression in 
liver on LDL levels. The signal clusters all provide consistent evidence for a gene-to-trait 
effect of -0.044, meaning that doubling of gene expression level in liver should reduce 
LDL by 4.4% of its population standard deviation. An 80% credible interval for the slope is 
indicated by dashed blue lines around the solid blue slope, while a range of heterogeneity 
of allelic effects is indicated by the light blue band.  

On the 5 real data gene-trait pairs, MRLocus running with 2 cores had an average run time of 
18.1 seconds per cluster, such that the average runtime of MRLocus per gene-trait pair was 3.1 
minutes. 
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Discussion 
Here, we introduce MRLocus, a two-step Bayesian statistical procedure for estimation of gene-
to-trait effects from eQTL and GWAS summary statistics. We find that MRLocus tends to have 
high accuracy in estimating the gene-to-trait effect across a variety of simulation settings, often 
higher than existing methods, and always had better credible interval coverage of true values, 
whether in mediating or null simulations. On real data analyses, MRLocus had consistent sign of 
estimates and comparable effect size compared to TWMR and PTWAS, but larger credible 
intervals compared to the other methods’ confidence intervals. While the effect sizes of alleles 
detected by GWAS on downstream traits examined here may be moderate, MRLocus’ 
estimation of the causal effect from perturbation of gene expression can be helpful in assessing 
the impact of therapeutic effects modulating expression on downstream traits (Visscher et al., 
2017). For various systems, different downstream trait effect sizes qualify as practically 
meaningful increases or decreases, and MRLocus provides a framework for assessing what 
level of gene expression perturbation may be needed to obtain such changes in a downstream 
trait. 

While the mediator evaluated by MRLocus in this work was gene expression effects via eQTL, 
the methods are generic, and protein abundance effects via pQTL could be used instead of 
eQTL. Two-sample MR linking pQTL and GWAS has already uncovered 30 metabolite features 
with evidence of causal effects on at least one disease (Qin et al., 2020), and a recent pQTL 
study of hepatic proteins reported a median of 4.5 local pQTL variants per protein (He et al., 
2020), suggesting that there are loci with sufficient number of LD-independent clusters for MR 
analysis. Alternatively, pQTL could be used in place of the downstream GWAS trait in order to 
study mediation from gene expression to protein abundance (Buccitelli & Selbach, 2020), as 
previous work has found pQTL effect size to be positively correlated with eQTL effect size for 
variants ascertained through eQTL in human (Battle et al., 2015; Li et al., 2016), and that 
colocalized eQTL and pQTL signal leads to higher observed RNA-protein correlations in mice 
(Chick et al., 2016). 

Given MRLocus’ improved performance with respect to interval coverage in the simulation, we 
feel that accurate estimation of uncertainty is an advantage to MRLocus, and the focus in 
developing a new method was on specificity for prioritization of gene targets for functional 
follow-up experiments. Additionally, the MRLocus model is extensible. The slope-fitting model 
could easily be generalized to use an alternative monotonic function, as long as there are 
sufficient LD-independent signal clusters to support fitting. On the other hand, MRLocus’ slower 
speed means it is likely not the best choice for a global scan of the transcriptome for mediating 
genes, while the other methods examined and discussed here have been successfully used to 
scan across all genes and across multiple tissues. Furthermore, MRLocus is designed for 
investigating loci with strong causal gene candidates, whereas other methods that estimate 
gene-to-trait effects for many genes in a locus simultaneously may have less biased estimation 
of the effect, when a strong gene candidate is not present. Future work on the MRLocus model 
may involve estimation of the mediating effect of candidate causal genes in the context of other 
relevant genes in a pathway and a polygenic background (Sinnott-Armstrong et al., 2020). 
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We note that our method focuses on common variation (MAF > 0.01), and that we collapse 
highly correlated SNPs to a single representative SNP during the pre-processing, such that we 
cannot determine if the final selected SNP is the true "causal" SNP. Future development of 
MRLocus could involve upstream use of methods defining credible sets (Hormozdiari et al., 
2014; Hutchinson et al., 2020; Kichaev et al., 2014; Servin & Stephens, 2005; Wang et al., 
2020; Wellcome Trust Case Control Consortium et al., 2012) or modeling based on a posterior 
inclusion probability as in LLARRMA or DAP (Valdar et al., 2012; Wen et al., 2016). Therefore, 
the current implementation of MRLocus can perform fine-mapping to the level of a highly 
correlated set of SNPs, which may be sufficient for identifying one or more regulatory elements 
(RE) to prioritize for functional follow-up experiments. The current implementation of MRLocus 
assumes that the mediation slope passes through the origin, and therefore that eQTL signal 
clusters do not affect the downstream trait through genes other than the eGene. Further 
iterations of MRLocus could relax this assumption through the addition of an intercept term 
accounting for invalid instruments as in MR-Egger (Bowden et al., 2015; Burgess et al., 2017). 
Finally, complementary information linking RE to genes, e.g. as measured by Hi-C, was not 
examined here, but have been proven successful elsewhere (HUGIN (Martin et al., 2017), H-
MAGMA (Sey et al., 2020)), and we envision that prioritization of signal clusters in MRLocus that 
are supported by Hi-C would increase its power to detect causal genes. 

As part of the MR analysis, MRLocus provides an estimate of the dispersion of effects around 
the estimated slope from LD-independent signal clusters, analogous to PTWAS’ use of the I2 
statistic for effect size heterogeneity. The combined information from PTWAS and MRLocus 
regarding both uncertainty in estimation of the gene-to-trait slope, and estimated dispersion or 
heterogeneity of effects is critical when modeling context-specific (e.g. relevant tissue, cell type, 
or developmental stage) gene expression as a mediator for downstream traits. Different 
combinations of eQTL and GWAS SE (primarily influenced by sample size), extent of 
heterogeneity of effects, and the number of LD-independent signal clusters within a locus all 
may give rise to the same gene-to-trait effect and SE, but disentangling these sources of 
variance is important for experimental planning. For example, consider experimental follow-up 
for endophenotype downstream traits that could be feasibly measured in vitro. An investigator 
could choose between modulating gene expression directly or modulating the activity of an RE 
harboring candidate causal SNPs. A nonzero gene-to-trait effect with narrow credible interval 
estimated by MRLocus (as in Figure 1A and Figure 4B) would suggest that modulating the gene 
should affect the downstream trait, and the predicted effect could be assessed experimentally. 
However, high dispersion around the gene-to-trait slope (as in Figure 1B) suggests that 
perturbation of an RE implicated by candidate causal SNPs may induce an effect on the trait 
that is far from the effect size indicated by the fitted line. MRLocus provides a band around the 
predominant gene-to-trait slope, such that functional experiments per RE can therefore be 
prioritized. In all, here we demonstrate the MRLocus method and software utilizing summary 
statistics from eQTL and GWAS to identify genes mediating traits that can be prioritized for 
experimental follow-up. 
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