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Abstract 
 

CRISPR-Cas9 viability screens are being increasingly performed at a genome-wide          

scale across large panels of cell lines to identify new therapeutic targets for precision cancer               

therapy. Integrating the datasets resulting from these studies is necessary to adequately            

represent the heterogeneity of human cancers, and to assemble a comprehensive map of             

cancer genetic vulnerabilities that might be exploited therapeutically. Here, we integrated the            

two largest independent CRISPR-Cas9 screens performed to date (at Broad and Sanger            

institutes), by assessing and selecting methods for correcting technology-specific biases and           

batch effects arising from differences in the underlying experimental protocols. Our integrated            

datasets recapitulate findings from the individual ones, provide larger statistical power           

allowing novel cancer- and subtype-specific analyses, unveil additional biomarkers of gene           

dependency, and improve the detection of common essential genes. Finally, we provide the             

largest integrated resources of CRISPR-Cas9 screens to date and the basis for harmonizing             

existing and future functional genetics datasets and assembling large cross-study cancer           

dependency maps. 
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Cancer is a complex disease that can arise from multiple different genetic alterations. 

The alternative mechanisms by which cancer can evolve result in a large amount of 

heterogeneity between patients, with the vast majority of them still not benefiting from 

approved targeted therapies​1​. In order to identify and prioritize new potential therapeutic 

targets for precision cancer therapy, analyses of cancer vulnerabilities at a genome-wide 

scale and across large panels of ​in vitro​ cancer models are being increasingly performed ​2–11​. 

This has been facilitated by recent advances in genome editing technologies allowing 

unprecedented precision and scale via CRISPR-Cas9 screens. To date, two large 

pan-cancer CRISPR-Cas9 screens have been independently performed by the Broad and 

Sanger institutes​2,12​. The two institutes have also joined forces in a collaborative endeavor 

with the aim of assembling a joint comprehensive map of all the intracellular genetic 

dependencies and vulnerabilities of cancer: the ​Cancer Dependency Map (DepMap)​13,14​. 

 

Despite the two generated datasets containing so far data from over 300 cell lines 

each, detecting all cancer dependencies has been estimated to require the analysis of 

thousands of cancer models​3​. Consequently, the integration of these two datasets will be key 

for the DepMap and other projects aiming at systematically probing cancer dependencies. 

This will provide a more comprehensive representation of heterogeneous cancer types as 

well as an increased sample size to support the use of statistical/machine-learning methods 

to identify molecular features associated with differential gene dependencies. This will form 

the basis for the development of effective new therapies with associated biomarkers for 

patient stratification ​15​. Furthermore, designing robust standards and computational protocols 

for the integration of these types of datasets will also mean that future releases of data from 

CRISPR-Cas9 screens can be integrated and analyzed together, paving the way to even 

larger cancer dependency resources. 

 

We have previously shown that two large pan-cancer CRISPR-Cas9 datasets 

independently generated at Broad and Sanger institutes are consistent on the domain of 147 

commonly screened cell lines​16​. This holds despite several extensive differences in the 

experimental pipelines underlying the two datasets, including distinct CRISPR-Cas9 sgRNA 

libraries. Here we extend our previous analysis by investigating the integrability of full 

releases of the Broad/Sanger gene dependency datasets. This yields the most 

comprehensive integrative cancer dependency resources encompassing dependency 

profiles of 16,827 genes across 786 different cell lines, spanning 26 tissues and 42 cancer 

types. We compare different state-of-the-art data processing methods to account for 
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heterogeneous single-guide RNAs (sgRNAs) on-target efficiency, and to correct for gene 

independent responses to CRISPR-cas9 targeting ​12,17,18​, reporting strengths and caveats for 

each of them (​Figure 1a, 1b and 1c ​). 
 

 

 
Figure 1: Schematic of the integration strategy. ​ a. Broad and Sanger gene dependency datasets (raw count data of 

single-guide RNAs) are downloaded from respective web-portals. b. The datasets from each institute are pre-processed 

with three different methods, accounting for gene-independent responses to CRISPR-cas9 targeting (arising from copy 

number amplifications) and heterogeneous sgRNA efficiency, providing gene-level corrected depletion fold changes. Then, 

four different batch-correction pipelines are applied to the gene level fold changes across the two institute datasets for each 

of the pre-processing methods. c. Twelve different integrated datasets resulting from applying three different pre-processing 

methods (as indicated by the border colors) and four different batch-correction pipelines (as indicated by the fill colors) are 

benchmarked. d. Three different integrated datasets obtained by applying three pre-processing methods and the best 

batch-correction pipeline are benchmarked. e. Advantages provided by the final integrated datasets and conservation of 

analytical outcomes from the individual ones are investigated. 

 

 

Furthermore, we show that our integration strategy accounts and corrects for technical 

biases whilst preserving gene dependency heterogeneity, and recapitulates established 

associations between molecular features and gene dependencies (​Figure 1d and 1e​). 
Finally, we highlight the benefits of the integrated dataset over the two individual ones in 
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terms of improved coverage of the genomic heterogeneity across different cancer types, 

gain of statistical power for biomarker identification, and increased reliability of unveiled sets 

of human core-fitness/common-essential genes (​Figure 1e​). Collectively, this study presents 

a robustly benchmarked framework to integrate independently generated CRISPR-Cas9 

data-sets which provides the most comprehensive integrative resource to explore novel 

cancer dependencies and propose novel therapeutic targets. 

 

 

Results 
 
Overview of the integrated CRISPR-Cas9 screens 

 

To establish the current scope of an integrated CRISPR-Cas9 dataset we compared 

numbers and tissue distributions of cell lines from the Project Score dataset (part of the 

Sanger DepMap)​19​ and the 19Q3 release of the Project Achilles dataset (part of the Broad 

DepMap)​20​. Overall, 786 unique screened cell lines are accounted for in these two datasets 

(​Figure 2a ​,​ Supplementary Data 1​). Together these cell lines spanned 26 different tissues 

(​Figure 2b ​) and for 65%, the number of cell lines covered increased when considering both 

datasets together. Similarly, the integrated dataset provided richer coverage of specific 

cancer types and clinically relevant subtypes (​Figure 2c​). These preliminary observations 

highlight the first benefit of combining these resources to increase statistical power for 

tissue-specific as well as pooled pan-cancer analyses. 

 

Furthermore, between the two datasets there was an overlap of 156 cell lines 

screened by both institutes, encompassing 16 different tissue types (median = 9, min 1 for 

Soft Tissue and Kidney, max 25 for Lung, ​Figure 2a and 2b​). This enables estimating batch 

effects due to differences in the experimental protocols underlying the two datasets​16​, 

without biasing the correction toward cell line lineages specific to either institute. 
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Figure 2. Overview of CRISPR-Cas9 screened cancer cell lines. ​a. Number of cell lines screened by the Broad and the 

Sanger institutes. b. Overview of the number of cell lines screened for each tissue type across the two datasets. c. Number 

of screened Lung cancer and Breast cancer cell lines split according to cancer types and PAM50 subtypes, respectively, 

across the two datasets. 

 

 

Data Pre-processing 
CRISPR screens have known nonspecific cutting toxicity that increases with copy 

number amplifications (CNAs)​21,22​. Another factor biasing the data derived from this type of 

screens is the heterogeneous levels of on-target efficiency across sgRNAs targeting the 

same gene in the employed libraries​23​. Multiple methods exist to correct for these biases. 

Here, we evaluate three: CRISPRcleanR, an unsupervised nonparametric CNA effect 

correction method for individual genome-wide screens​17​; a method resulting from using 

CRISPRcleanR with JACKS, a Bayesian method for inferring guide on target efficacy​18 

(CCR-JACKS) by a joint analysis of multiple screens; and CERES, an algorithm that 

simultaneously corrects for CNA effects and accounts for differences in guide efficacy​12​, also 

analyzing multiple screens jointly. 
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Batch effect correction 
In addition to biases within datasets caused by copy number alterations and variable 

guide efficiencies, technical differences in screening protocols, reagents and experimental 

settings can cause batch effects between datasets. These might arise from factors that vary 

within institute screens (for example, differences in control batches and Cas9 activity levels) 

as well as between institutes (such as differences in assay lengths and employed sgRNA 

libraries). When focusing on the set of cell lines screened at both institutes, a Principal 

Component Analysis (PCA) of the cell line dependency profiles across genes (DPGs) in the 

collated dataset highlights a clear batch effect determined by the screening of origin, 

irrespective of the pre-processing method, consistent with previous results (​Figure 3a​)​16​. 

 
We quantile-normalized each cell line DPG to adjust for differences in screen quality 

then correct batch effects using ComBat​24​. Following this correction, the combined datasets 

showed reduced yet persistent residual non-linear batch effects clearly visible along the two 

first principal components (​Supplementary Figure 1​). Based on this, we considered four 

different batch correction pipelines and evaluated their use in our integrative strategy. In the 

first pipeline, we processed the combined Broad/Sanger DPG dataset using ComBat alone 

(ComBat); In the second, we applied a quantile normalization following ComBat correction 

(ComBat+QN) to account for different phenotype intensities across experiments, resulting in 

different ranges of gene dependency effects; In the third and fourth pipelines we also 

removed the first or first two principal components respectively (ComBat+QN+PC1) and 

(ComBat+QN+PC1-2).  

 

To assess the performance of different batch correction pipelines we first calculated a 

weighted Pearson’s (wPearson) correlation (Methods) distance score between all possible 

pairs of 312 cell line DPGs, i.e. from 156 cell lines screened in both studies, similarly to our 

previous work​16​. Secondly, we fixed each cell line DPG in turn and ranked all others based 

on how similar they were to the fixed one in decreasing order, according to the wPearson 

scores. For each rank position ​k​ we determined the number of cell line DPGs from one of the 

two original datasets (over the total) that had a DPG derived from the same cell line (a 

matching DPG) from the other dataset in its ​k​ most similar DPGs, i.e. its ​k-neighborhood 

(​Figure 3b ​).  Among the tested pre-processing methods, the best performances were 

obtained when removing the first two principal components following ComBat and quantile 

normalization, i.e. ComBat+QN+PC1-2. Across pre-processing methods, the best 

performances were found for CERES (88.5%) followed by CRISPRcleanR (78.2%) and 

CCR-JACKS (63.5%) (​Figure 3b​).  
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Figure 3: Batch effect assessment and correction.​ a. Principal component plots of the dependency profile across genes 

(DPGs) for cell lines screened in both Broad and Sanger studies and pre-processing methods. b. Percentages of DPGs in 

the Broad/Sanger combined dataset that are derived from one studies by screening a given cell line and have among their ​k 

most correlated DPGs, i.e. the ​k-neighborhood​, a DPG derived from the other study by screening the same cell line. Results 

are shown across different pre-processing methods (in different plots) and different batch correction pipelines (as indicated 

by the different colors). Correlations between DPGs are computed using a weighted Pearson correlation metric, in which the 

contribution of each gene is proportional to the average selectivity of its dependency signal across cell lines. c. Agreement 

between cell line clusters based on DPGs correlation and tissue lineage labels of corresponding cell lines, across 

pre-processing methods and batch-correction pipelines. d. Fraction of gene expression addictions identified (across cell 

lines) for each of the 12 different versions of the Broad/Sanger integrated datasets. 

 
 

 
 
Evaluation of data integration methods extended to 786 cell lines 

 

To further assess the batch correction pipelines we considered their performances extended 

to a fully integrated dataset including also DPGs of cell lines exclusive to each study. To that 

end, we generated integrated batch corrected datasets across all 786 cell lines using each of 

the three pre-processing methods and four different batch correction pipelines as outlined in 

the previous section. Next we applied the batch correction vectors (Methods) estimated by 

ComBat on the DPGs of the 156 overlapping cell lines to the whole set cell lines, including 

those exclusive to each of the two starting individual datasets. 

 

To evaluate batch effects corrections pipelines we considered different criteria. One 

of this is estimating the extent of conserved similarity between screens of cell lines derived 

from the same lineage. We evaluated this by comparing unsupervised clusterings of the 

batch corrected cell line DPGs to the lineage labels of the cell lines. To this aim, we 

performed one hundred ​k​-means clusterings of each of the 12 datasets, with ​k ​equal to the 

number of tissue lineages screened in at least one study. We then calculated the adjusted 

mutual information (AMI, Methods) between each DPG clustering and corresponding cell line 

lineage labels. We observed higher than chance AMI between the obtained ​k​ clusters and 

the tissue lineages of the cell line DPGs, regardless of the starting batch corrected dataset 

(largest single-sample ​t​-test ​p ​-value of 3.36 10 ​-131​, ​N ​ = 100 , ​Figure 3c ​). 
 

Under each pre-processing method the removal of one or two principal components 

resulted in an increased AMI between cell line DPGs clusters and tissue lineages. For 

Broad-exclusive screens, we additionally tested the extent of AMI between cell line DPGs 

clusters and tissue lineages before/after integration, considering each integration method. All 
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methods yielded substantial improvements over the original, uncorrected data, with 

batch-correcting increasing AMI between 0.0757 (ComBat+QN) and 0.165 

(ComBat+QN+PC1-2); the largest two-sample ​t​-test ​p ​-value was ​2.23 10 ​-88 ​, ​N ​ = 200 ​. 

 

Further, we evaluated to what extent our data integration strategies retain the 

biological signals present in the (uncorrected) individual datasets. For a given cell line in 

each of the Broad and Sanger individual datasets, we identified significant dependency 

genes based on a fitness effect threshold corresponding to a false discovery rate (FDR) of 

5% (Methods) pre/post-batch-correction  We observed strong agreement between sets of 

significant dependency genes overall cell lines, pre-processed methods and batch correction 

pipelines, with median agreement above 80% in all cases (​Supplementary Figure 2a​). 
 

Next, we evaluated gene dependency false-positive rates in integrated datasets. For each 

cell line DPG, we defined a set of putative negative controls composed of genes not 

expressed at the basal level in that cell line (Methods). False positives rates were calculated 

as the sum of negative controls called as significant dependencies (in the top 15% most 

depleted genes) over their total number across DPG. There was little difference in 

false-positive rates across the four different batch correction pipelines, with a slight 

improvement when two principal components were removed (​Supplementary Figure 2b​). 
Similar results were observed for true positive rates, when calculating the Recall of a 

reference set of common essential genes​11​ within the top 15% most depleted genes for each 

cell line (​Supplementary Figure 2c​). 
 

In contrast to common essential genes, interesting potential novel therapeutic targets 

are genes that show a pattern of selective dependency, i.e. those exerting a strong reduction 

of viability upon CRISPR-Cas9 targeting but on a subset of cell lines. Furthermore, these 

selective dependencies are often associated with molecular features that might explain their 

dependency profiles (biomarkers). We first tested the ability of each dataset to recall gene 

expression based addictions – cases where the dependency signal of a gene is correlated 

with the basal expression of that gene, across cell lines (Methods). Genome-wide, 

ComBat+QN+PC1-2 recovered the greatest number of significant gene expression 

addictions across all preprocessing methods (​Figure 3d​). Finally we tested the ability of 

each dataset to conserve expected dependency relations, between paralogs, gene pairs 

coding for interacting proteins, or members of the same complex using gene pairs 

annotation from publicly available databases​25​, ​26​, ​27​ (Methods). Again the 
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ComBat+QN+PC1-2 batch correction pipeline recovered the greatest number of expected 

gene dependency relations (​Supplementary Figure 2d​). 
 

Taken together these results show that over the set of benchmarked batch correction 

pipelines, using ComBat with quantile normalization and removing the first one or two 

principal components outperformed any other batch correction pipelines, across all three 

tested pre-processing methods (CRISPRcleanR, CCR-JACKS and CERES). In addition, 

removing two principal components (ComBat+QN+PC1-2) showed the best ability to recover 

gene expression based vulnerabilities and other expected gene-dependency relationships. 

In conclusion, ComBat+QN+PC1-2 appeared to be the most robust batch correction 

pipeline, which we selected for follow-up analyses. 

 

 

Comparison of  pre-processing methods 
 

In contrast to the batch correction pipeline, determining the best performing 

pre-processing method across batch-correction-pipelines was not equally immediate. 

Therefore, we performed further comparative analysis to assess the performance of the 

three pre-processing methods (CERES, CRISPRcleanR and CCR-JACKS) once the best 

batch correction pipeline was determined (ComBat+QN+PC1-2). CRISPRcleanR is an 

unsupervised method that processes each screen individually. In contrast, JACKS and 

CERES borrow information across screens to different degrees; CERES assumes shared 

profiles of gene essentiality across screens, whilst JACKS makes a weaker assumption of 

shared guide efficiency across profiles. 

 

Despite differences in underlying algorithms, we expect most biological signals to be 

invariant to the pre-processing method used. Accordingly, we found significant correlation 

between median gene dependency scores across cell lines and method pairs (Spearman’s 

correlation = 0.80 for CERES vs. CCR-JACKS, 0.96 for  CRISPRcleanR vs. CCR-JACKS, 

0.83 for CERES vs. CRISPRcleanR, p-value < 2.2e-16 in all cases, n=16,827 

Supplementary​ ​Figure 3a ​). 
 

Comparisons of binary dependency matrices (Methods) from the integrated datasets 

also revealed a high overlap of dependencies found between each processing method, with 

more than 60% of significant dependencies found across all the methods and 75.4% found 

in at least two methods (​Supplementary Figure 3b​). The largest difference was found 
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between CRISPRcleanR and CERES (17.1% of dependencies were exclusive to one 

method). However, even in this case, 90% of dependencies found by CRISPRcleanR were 

also found by CERES, and 75% of dependencies found by CERES were identified by 

CRISPRcleanR (​Supplementary Figure 3b​). 
 

Pharmacological and CRISPR screens are being increasingly integrated as a means 

to elucidate drug mechanism-of-action ​28​. Here we used drug sensitivity analysis to compare 

the Recall of significant associations between a drug sensitivity profile and its nominal 

targets’ CRISPR dependency profile, across cell lines. Thus, we systematically calculated 

Spearman’s correlation between the dependency profile of a drug target across different 

pre-processing methods with the profile of cell line sensitivity to that drug. As indicators of 

drug sensitivity, we used viability reduction indicators (IC50 values) from two studies​29,30​ for 

307 unique compounds mapped to their targets​28​, across 486 cell lines included in our 

integrated datasets. Next we compared the resulting drug-response/target-dependency 

correlation patterns across pre-processing methods. We found a significant and large 

effect-size correlation between these patterns across each pair of pre-processing methods, 

and a significantly large overlap between associations identified by each pre-processing 

method (Fisher’s exact test largest p-value = 1.11e-60). These results confirm that the vast 

majority of associations between drug-response and target-gene essentiality are invariantly 

identified across pre-processing methods (​Figure 4a​) (​Supplementary Data 2​). 
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Figure 4: Comparison of pre-processing methods CERES, CCR-JACKS and CRISPRcleanR​. a. Spearman correlation 

(R) scores between drug IC50 values and drug’s target dependency profiles across cell lines compared between different 

pairs of pre-processing methods. Significant scores (at 5% FDR) identified under both pre-processing methods are shown in 

light blue. b. ​Null-normalized mean difference ​(NNMD, a measure of separation between dependency scores of prior-known 

essential and non-essentials genes): defined as the difference in means between dependency scores of essential and 

non-essential genes divided by standard deviation of dependency scores of the non-essential genes. Lower values of 

NNMD indicate better separation of essential genes and non-essential genes.  Significant differences in NNMD between 

pre-processing methods are shown with Wilcox test p-values < 0.05 (*) and < 1e-5 (***). c. Distribution of Pearson’s 

correlations scores between all possible pairs of cell line dependency profiles across genes, for each pre-processing 

method. d. Log distribution of significant fitness genes stratified by their normLRT scores, under each pre-processing 

method. 

 
 

Although we found good agreement across pre-processing methods we also 

investigated possible sources of discrepancies between the three integrated datasets. An 

aspect to consider is that as CERES and JACKS both borrow information across screens 

they are expected to better identify consistent signals across cell line DPGs (i.e. for essential 
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and non-essential genes), especially for DPGs derived from lower quality experiments, or 

reporting weaker depletion phenotypes​18,22​. 

We evaluated the separation of prior known essentials and non-essentials genes​11​ based on 

their dependency score (DS) in individual DPGs, across pre-processing methods. We 

calculated, for each cell line and under each pre-processing method, a ​null-normalized mean 

differences (​NNMDs)​31​ defined as the ​difference between the mean DS of essential genes 

and that of non-essential genes divided by the standard deviation of the DSs of the 

non-essential genes​. Results showed that CERES (median NNMD=-5.92) yielded a greater 

separation of prior known essentials and non-essentials genes compared to CCR-JACKS 

(median NNMD=-5.24) and CRISPRcleanR (median NNMD=-5.15, ​Figure 4b​).  
 

Whilst joint analysis of multiple screens improves true positive rates, this may reduce 

the heterogeneity of the DPGs. To investigate this, we computed Pearson’s correlation 

scores between all pairs of cell line DPGs for each of the integrated datasets. We observed 

generally larger background correlations for CERES and CCR-JACKS compared to 

CRISPRcleanR (​Figure 4c, ​Kolmogorov-Smirnov test p-values below machine precision), 

concordant with these two methods making DPGs more similar to each other by borrowing 

information across screens. 

 
A ubiquitous increase in correlation between DPGs could result in a loss of selective 

gene dependencies. As a measure of selective dependency of a gene we calculated the 

likelihood ratio that its dependency scores across cell lines have a skewed-t over a normal 

distribution (normLRT)​4​, with larger normLRT values indicative of selective dependency 

genes. Consistent with our hypothesis, we observed a greater number of genes with large 

normLRT values for CRISPRcleanR compared to CERES or CCR-JACKS (p-values = 

1.95e-52 for CRISPRcleanR versus CERES, 7.13e-29 for CCR-JACKS versus CERES, for 

1.85e-5 CRISPRcleanR versus CCR-JACKS proportions test, ​Figure 4d​). 
 

We investigated whether a reduction in DPG heterogeneity and context-specific 

dependencies translated into a smaller number of potential dependency-biomarkers. This 

analysis was performed by contrasting cell lines based on the status of each of 884 clinically 

relevant cancer functional events (CFEs​32​) encompassing mutations in cancer driver genes, 

amplifications/deletions of chromosomal segments recurrently altered in cancer, 

hypermethylated gene promoters and microsatellite instability status. For each CFE, we 

performed a Student’s t-test for each selective gene dependency (SGD, Methods) across 
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two groups of cell lines based on the status of the considered feature (present/absent). This 

resulted in a total number of 366,860 tests. 

To evaluate how similar the outcomes were from this systematic analysis, we assembled a 

vector of dependency-delta values (difference in means across the two groups) for each 

pre-processing method and calculated Spearman’s correlation scores between each pair of 

vectors/methods. Interestingly, the largest correlation was found between CRISPRcleanR 

and CERES (0.81), followed by that between CRISPRcleanR and CCR-JACKS (0.77) then 

between CCR-JACKS and CERES (0.65, all p-values <2.2e-16, n=344,418). Although these 

correlations were all significant, the number of significant associations varied between 

pre-processing methods. At 5% FDR significance threshold CRISPRcleanR identified 1,195 

differential dependencies, compared to 1,089 for CERES and 932 when using CCR-JACKS 

(p-values proportions test, 0.028 CRISPRcleanR versus CERES, 1.28e-08 CRISPRcleanR 

versus CCR-JACKS and 5.1e-04 CERES versus CCR-JACKS) (​Supplementary Data 3​). 
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An integrated dataset improving the detection of biomarkers, common 
essential genes and overall genetic dependencies 
 

We set out to estimate the advantage of a larger integrated dataset of genetic 

dependencies. First, we considered the increase in coverage of gene dependencies in the 

integrated dataset. To evaluate this, we quantified the number of significant dependencies 

(at 5% FDR) found in a fixed number of cell lines ​n ​(with ​n​ = 1, 3, 5 or n ≥ 10) of the 

integrated datasets, as well as in the individual original Broad and Sanger datasets. This 

number was always larger for the integrated datasets with respect to the individual ones, 

regardless of the pre-processing method used, with the largest number provided by 

CRISPRcleanR (​Figure 5a​) and very similar results provided by CERES and CCR-JACKS 

(​Supplementary Figure 4 ​). 
 

Second we evaluated the reliability of the integrated datasets to predict common 

essential genes using two methods: the 90th-percentile method ​16​ and the Adaptive Daisy 

Model (ADaM)​2​. We created a consensus list of predicted common essentials combining 

results from four lists of common essentials outputted by these two methods (ADaM and 

90th percentile) and the two integrated datasets processed using either CERES or 

CRISPRcleanR (selected as they consistently provided the most orthogonal across all 

pre-processing methods’ comparisons). The majority of genes called common essentials 

according to at least one of these lists was found consistently in all four (1,055 out of 1,973, 

Figure 5b ​). We assigned to each of the 1,973 common essential genes a tier based on the 

amount of supporting evidence of their common essentiality. Tier 1, the highest confidence 

set comprised the 1,055 genes found in all four gene lists. Tier 2 had 499 genes found in at 

least two lists. Finally, Tier 3 was assigned to the lowest confidence group and contained 

419 genes that were found only in one list (​Supplementary Data 4​). 
 

We compared the common essential genes identified using the integrated datasets to 

two existing sets of common essential genes from recent publications: Behan ​2​ and Hart​11​. 

We considered genes in Tier 1 only (Integrated Tier1), in Tier 1 or Tier 2 (Integrated Tier2) 

and in Tier 1, or 2 or 3 (Integrated Tier3). For each gene set we calculated the Precision and 

Recall rates of known core-fitness gene sets, such as Ribosomal protein genes, genes 

involved in DNA replication and Spliceosome. All Integrated Tiers of common essentials 

showed greater Recall of known core-fitness gene sets compared to Behan and Hart. To 

estimate a false discovery rate (FDR) we calculated the proportion of genes in each common 

essential gene set that was likely to be context-specific essential, according to the likelihood 
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of its dependency signal across cell lines (calculated from an orthogonal RNAi dataset) 

being drawn from skewed t-distribution ​4​. The increase in the number of genes in the 

common essential sets resulted in a small decrease in precision particularly for Tier 2 and 3. 

However, FDR was lower than that of Behan and Hart across all Integrated Tiers (​Figure 
5c​).  
 

We next asked whether the integrated datasets unveiled additional significant gene 

dependencies and CFE/gene-dependency statistical interactions compared to either one of 

the Broad or Sanger (individual) datasets. We performed a systematic identification of 

potential biomarkers of gene dependency and found that 884 CFEs could be tested, i.e. they 

were present in sufficiently large numbers of cell lines, in comparison to 754 for the Sanger 

dataset and 805 for the Broad dataset. Thus highlighting the benefit of an integrated dataset, 

with greater diversity of molecular profiles represented compared to each of the individual 

datasets. 

 

We compared the number of identified biomarkers (at 1% FDR) when testing the 

CRISPRcleanR integrated dataset with respect to those identified when analyzing the 

individual (Sanger/Broad) datasets. Analyzing the Sanger dataset alone unveiled 420 

significant CFE/gene-fitness associations, 465 were identified while testing the Broad 

dataset alone, whereas the integrated dataset allowed finding 1,017 significant 

CFE/gene-fitness associations. Notably, 138 associations that were significant (at 1% FDR) 

when analyzing both the individual uncorrected datasets were all retained in the integrated 

dataset. For these 138 associations the effect sizes were significantly larger in the integrated 

datasets compared to either of the individual datasets (​Figure 5d​) (paired Wilcox test, 

p-value 3.36e-13 for Sanger and 3.183e-06 for Broad). Taking the union of the results 

obtained from the individual Broad and Sanger datasets, 747 associations were significant at 

1% FDR, of these 562 (75.2%) were also identified in the integrated dataset. Finally, we 

identified 455 associations that were significant (1% FDR) in the integrated dataset only. 

 

Performing this systematic statistical inference on cell lines from individual tissue 

lineages unveiled 32 additional significant associations in the integrated dataset (when 

considering only CFE/gene-dependency pairs testable also in the individual datasets) with 

respect to those unveiled by the analysis of the Sanger datasets alone, and 48 with respect 

to the Broad dataset (​Supplementary Data 5​). Examples included decreased dependency 

on MDM4 in TP53 mutant Lung cell lines for the Sanger dataset, and increased dependency 
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on ERBB2 in ERBB2 amplified Breast cancer cell lines for the Broad dataset (​Figure 5e​). 
Furthermore, 13 tissue-specific significant associations identified in the integrated dataset 

were tested but not found significant in either the Broad or the Sanger dataset. Two 

examples of these associations are reported in ​Figure 5f​. 
 

Finally, we assessed whether we were able to identify a greater number of gene 

addiction relationships in the integrated dataset compared to the individual ones. For each 

tissue, we calculated the Pearson correlation between a gene’s expression and dependency 

profile across cell lines. We called significant associations those with an FDR less than 25%. 

Results showed an increase in the number of associations identified in the integrated 

dataset when compared to the individual datasets across multiple tissue types (​Figure 5g​).  
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Figure 5: Advantages of an integrated dataset ​. a. Number of significant gene dependencies in fixed number of cell 

lines across individual datasets and the integrated one, using CRISPRcleanR as the pre-processing method. b. Venn 

diagram showing genes called common essential when using two different detection algorithms (ADaM and 

90th-percentile) applied to integrated datasets resulting from two different preprocessing methods. c. Recall of essential 

genes sets for the integrated dataset, across different tiers, compared to two previously published gene sets (Behan and 

Hart). False discovery rates considered as negative hits genes that are putative context-specific essential according to a 

normLRT metric from an independent RNAi dataset, across levels of reliability. Precision values for each dataset using 

reference sets of essential genes as true hits. d. Scatter plot of the effect sizes for the 138 associations found in both 

individual datasets and the integrated dataset. The x-axis shows the effect sizes for the integrated dataset. The effect 

sizes for the individual datasets are shown on the y-axis. The black line is at intercept zero and slope 1. Most 

associations between dependencies and biomarkers have greater effect sizes in the integrated dataset compared to the 

individual datasets.  e. Examples of significant associations between genes and features, found in the integrated dataset 

compared to the individual dataset. f. Examples of significant associations found in the integrated dataset that were not 

significant in either of the individual datasets. g The number of gene expression-based addiction associations that were 

significant at FDR 25% in the integrated dataset compared to each individual dataset. 

 

 

 
 
Discussion 
 
 

The integration of data from different high-throughput functional genomics screens is 

becoming increasingly important in oncology research to ​adequately represent the diversity 

of human cancers. Harmonizing CRISPR-Cas9 screens performed independently and/or 

using distinct experimental protocols, requires correction and benchmarking strategies to 

account for technical biases, batch effects and differences in data-processing methods. 

Here, we proposed a strategy for the integration of CRISPR-Cas9 screens and evaluated 

methods accounting for biases within and between two dependency datasets generated at 

the Broad and Sanger institutes. 

Our results show that established batch correction methods can be used to adjust for 

linear and non-linear study-specific biases making integration possible. Following integration, 

dependency profiles of the same cell line screened by different institutes show strong 

concordance, as do cell lines from the same tissue lineage. Significant gene dependencies 

and associations with biomarkers unveiled by statistical analyses of the two individual 

datasets are retained and enriched by novel hits. 

Our analyses and assessment yielded two final integrated datasets of cancer 

dependencies across 786 cell lines (with associated quality metrics). In contrast to existing 
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databases of CRISPR-Cas9 screens​33,34​, our integrated datasets are corrected for batch 

effects allowing for their joint analysis. In addition, our integrated datasets cover a greater 

number of genetic dependencies, and the increased diversity of screened models allows 

additional associations between biomarkers and dependencies to be tested and called as 

significant. 

The integrated datasets were outputted by two orthogonal pre-processing methods 

(CRISPRcleanR and CERES) for correcting gene independent responses to CRISPR-Cas9 

targeting arising from gene copy number amplifications. We found these pre-processing 

methods highly concordant under different aspects including significant gene dependencies, 

dependency scores and their relationship with drug response. Further, evaluation of possible 

discrepancies between these methods showed that CERES (which borrows information 

across screens) yields a final dataset better able to identify prior known essential and 

non-essential genes based on their dependency scores, whilst CRISPRcleanR (a per 

sample method) retains more of the heterogeneity in the data.  

Therefore, using results from both pipelines may provide the best overall data-driven 

functional genetic landscape underlying the construction of a comprehensive Cancer 

Dependency Map. In particular, using results from both pipelines resulted in a reliable 

resource of human core-fitness genes, which were detected with increased reliability and 

with associated levels of supporting evidence. 

  

Further, the data integration strategies outlined here can be used with future and 

additional CRISPR-cas9 datasets to increase coverage and understanding of cancer 

dependencies. This will be of paramount importance for oncological functional genomics, for 

the identification of novel cancer therapeutic targets, and for the definition of a global cancer 

dependency map.  
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Data availability 
The final integrated datasets are available for download at ​https://depmap.org/broad-sanger/          

and ​https://score.depmap.sanger.ac.uk/downloads​ (submission on FigShare in progress). 

 

Code availability 
Scripts and software packages implementing the integration pipeline described in this           

manuscript and needed to reproduce results and figures are available at           

https://drive.google.com/drive/folders/1MyVwzK2kehu3gHbKGMlG8o2bqyMFxGhc?usp=sha

ring ​ (deposition on GitHub and FigShare in progress). 
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Methods 
 
Preprocessing data 

Sanger data processed with CRISPRcleanR were obtained from the Score website 

(​https://score.depmap.sanger.ac.uk/​). The CRISPRcleanR corrected counts were used as 

input into JACKS, for the CCR-JACKS processing method. 

Raw counts and the copy number profiles for the Sanger dataset downloaded were 

processed with CERES​35​. The Broad data processed with CERES (unscaled gene effect) 

version 19Q3 scores were downloaded from the Broad DepMap portal ​35​. The raw counts for 

Broad data 19Q3 were processed with CRISPRcleanR and the CRISPRcleanR corrected 

counts processed with JACKS. Gene names were matched across the Broad and Sanger 

datasets by updating both to the current version of HUGO gene symbols from the HGNC 

website. Genes with no NAs for any cell line under any processing method were retained for 

analysis. The 786 cell lines processed by both CERES and CRISPRcleanR were used for 

analysis. Tissue annotations for each cell line were obtained from the Cell Model Passports 

(​https://cellmodelpassports.sanger.ac.uk/​)​36​. 

 

Batch correction pipelines 

The dependency profiles across genes (DPGs) overlapping cell lines from each institute 

were first quantile normalized using the preprocessCore package in R​37​. Screen quality 

adjustments were made by fitting a spline to the average gene fold change across cell line 

DPGs. Each DPGs was then adjusted to remove the difference between the fitted spline and 

the diagonal. The overlapping cell lines were then batch corrected using three different 

methods. A standard least squares model was fitted in R. The ComBat correction was 

performed using the sva package in R​38​. 

 

Batch correction pipelines’ assessment and weighted Pearson correlation metric 

Cell lines’ rank neighborhoods were based on a weighted Pearson correlation metric. The 

weights were defined as the absolute mean (over the Broad and Sanger datasets) of a gene 

dependency signal skewness across the 156 overlapping cell lines for the Broad and Sanger 

datasets. This upweights genes with a variable and sufficiently selective fitness profile whilst 

downweighting those that show weak/no-signal or unselective dependencies.Then for each 

query DPG we ranked all the others based on how similar they were to the fixed one in 

decreasing order, according to the wPearson scores. For each position ​k​ in the resulting 

rank we then defined a ​k-neighborhood​ of the query DPG composed of all the other DPGs 

whose rank position was ≤ ​k​. Finally we determined the number of cell line DPGs that had 
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the DPG derived from screening the same cell line in the other dataset (a matching DPG) in 

its ​k-neighborhood​. The final rank for each cell line was defined based on the minimum rank 

obtained for each cell line when considering the DPG for that cell line from the Broad data 

compared to all DPGs, and similarly the DPG for the cell line in the Sanger dataset 

compared to all DPGs. 

 

Batch correction extended to 786 cell lines 

The ComBat estimates, pooled mean, variance and empirical Bayes adjustments (mean and 

standard deviation) for each batch based on the analysis of 156 cell lines common to both 

initial dataset were computed. The ComBat correction using these estimates was then 

applied to all 982 screens, i.e. the union of the two initial datasets. Particularly, each 

individual cell line DPG was shifted and scaled gene-wise using the batch correction vectors 

outputted by ComBat. 

Additional adjustments were then applied to the 982 screens including quantile 

normalization, and the removal of either the 1st principal component of the joint datasets or 

the first twos. Finally, DPGs for overlapping cell lines passing a similarity threshold (detailed 

below) were averaged. Across the three pre-processing methods the number of cell lines 

that matched their counterparts exactly after ComBat correction ranged from 54% - 85%. 

Suggesting that under all pre-processing methods there remained cell lines whose DPGs 

diverged between studies. For each of the cell lines that matched their counterpart as the 

first neighbor we considered their distances (1-wPearson) as a measure of the variability in 

distance profiles between DPGs of the same cell line across institutes. We called divergent 

DPGs those with a distance greater than the 95 percentile of distances from matching cell 

lines. For 19 cell lines with divergent DPGs across all three processing methods we selected 

the DPG from the screen with the highest quality to be included in the integrated datasets. 

As a quality metric we used the Null-normalized mean difference (NNMD, defined in the 

main text) and took its consensual value across the three datasets (resulting from applying 

CERES, CCR-JACKS and CRISPRcleanR). 

 

 

Agreement between dependency profile clusterings and cell line tissue labels 

We selected 500 genes with the highest variance in the CERES ComBat integrated dataset 

and performed repeated 100 k-means clusterings cell lines using the high variance genes for 

each pre-processing and batch-correction method. For each clustering, we calculated the 

adjusted mutual information between the obtained clusters and the cell line tissue labels as 
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specified in the annotation provided by the sample_info file of the DepMap_public_19Q4 

dataset​39​ using sklearn’s python function adjusted_mutual_info_score 

(​https://scikit-learn.org/stable/​).  

 

Recall of known gene relationships 

We assembled a set of functionally related gene pairs using paralogs identified by 

EnsemblCompara ​25​, protein-protein interactions identified by Li et al ​26​, and CORUM complex 

comemberships​27​. For a given dataset, for each pair of related genes, we calculated a 

Pearson correlation coefficient between those genes’ dependency scores across cell lines. 

We then binned each gene that appeared in the list of known gene relationships according to 

its mean gene score using 20 equally spaced bins. For pairs of genes in the related genes 

pairs, we chose one as the query gene and replaced its related partner with another 

randomly selected gene of similar gene mean, i.e. belonging to the same bin, excluding 

genes known to be related to the query gene. We calculated Pearson’s correlation 

coefficients between these randomly selected gene pairs to generate a null distribution, from 

which we calculated empirical ​p​-values and Benjamini-Hochberg FDRs for known related 

gene pairs. Ensuring that the pairs of genes used in the null distribution have similar 

distributions of mean gene effect as the pairs of known related genes is necessary because 

variable screen quality can produce a high but artificial correlation between any pair of 

common essential genes, and CORUM is highly biased towards common essentials. This is 

discussed further in the comparisons of batch corrections in Dempster et al ​31​. 

 

Unexpressed false positives 

We defined a gene as unexpressed in a cell line if the log2(Transcripts per million +1) of its 

DepMap expression was less than 0.01 ​39​. Any score of an unexpressed gene in a cell line 

was called a false positive if it fell in the bottom 15% of gene scores for that cell line. 

 

Recall of prior-known essential genes at 5% FDR 

For each dataset, we defined a true positive distribution from the (flattened) scores of the 

DepMap common essentials​39​ and a null distribution from the scores of unexpressed genes. 

We then calculated a one-sided p-value for each essential gene’s score and a 

Benjamini-Hochberg FDR. We report the number of essential gene scores with FDR less 

than 0.05. 
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Recovery of expression addictions 

For each dataset, we calculated the Pearson correlation of a gene’s dependency score 

across cell lines with its own expression (using data from the Broad DepMap portal ​39​). We 

then calculated its correlation with the nearest neighboring gene’s expression to generate a 

null distribution that includes whatever residual copy number bias may exist. Using these two 

distributions we calculated one-sided ​p​-values for a gene’s score to be negatively correlated 

with its own expression, followed by Benjamini-Hochberg FDRs. We report the number of 

significant negative correlations at an FDR of 0.25 as recovered expression addictions. 

 

 

Binary depletion calls 

This was computed by considering each cell line DPG as a rank-based classifier of 

essential/non-essential genes​11​ (with gene rank positions determined by their fitness effect, 

i.e. average depletion fold-change of targeting single guide RNAs abundance at the end of 

the assay with respect to plasmid counts). 

The fitness effect threshold was then fixed as that corresponding to the largest rank position 

r​ guaranteeing a false discovery rate (FDR) < 5%, when the predicted essential genes are 

those with a rank position ≤ ​r​. This allowed us to assign to each gene in each cell line, in 

each of the two datasets, a binary dependency score.  

To identify significantly depleted genes for a given cell line, we ranked all the genes in the 

cell line DPG in increasing order based on their depletion log fold-changes. We used this 

ranked list to calculate the precision curve using a set of prior known essential (​E​) and 

non-essential (​N​) genes, respectively. 

For each rank position ​k​, we determined a set of predicted genes 

P(k)​ ​=​ {​s​ ​∈​ ​E​ ​∪​ ​N:​ ​r(s)​ ​≤​ ​k​}, with ​r(s) ​ indicating the rank position of ​s​, and the 

corresponding precision ​PPV(k)​ as: 

PPV(k)=|P(k)∩E|/|P(k)| 

We then determined the largest rank position ​k*​ with ​P(k*)​ ≥ 0.95 (equivalent to a 

FDR ≤ 0.05). The 5% FDR logFCs threshold ​F*​ was defined as the logFCs of the gene s 

such that ​r(s)​ ​=​ ​k*​. We called all genes with a logFC < ​F*​ as significantly depleted at 5% 

FDR. 
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Binary dependency matrices were defined as gene x cell lines matrices with non null entries 

corresponding to significant dependency genes at 5% FDR, for each cell line, i.e. column. 

 

Selective dependencies 

NormLRT and likelihood of normal distribution was calculated in R using the MASS 

package ​40​. For the t-distribution the MASS package was used to calculate the likelihood, if 

the fitting procedure failed different degrees of freedom were used iteratively until a solution 

was found. The degrees of freedom used in order were 2,5,10,25,50 and 100.  

 

Systematic association test between molecular features and gene dependencies 

We performed a systematic two-sample unpaired Student’s ​t​-test (with the assumption of 

equal variance between compared populations) to assess the differential essentiality of each 

gene across a dichotomy of cell lines defined by the status (present/absent) of each CFE in 

turn. We tested genes whose NormLRT values were greater than 200 in any integrated 

dataset. From these tests, we obtained ​p​-values against the null hypothesis that the two 

compared populations had an equal mean, with the alternative hypothesis indicating an 

association between the tested CFE/gene-dependency pair. ​P​-values were corrected for 

multiple hypothesis testing using Benjamini–Hochberg. We also estimated the effect size of 

each tested association using Cohen’s Delta (ΔFC), i.e. the difference in population means 

divided by their pooled standard deviations. 

 

Identification of common essential genes via the 90th Percentile method 

This method finds for each gene the cell line on the boundary of its 90th percentile of least 

dependent cell lines. It then calculates the rank of that gene in that cell line, by sorting all the 

genes based on their dependency score in increasing order. A mixture of two normal 

distributions is then fitted to the rank positions of all genes. Those genes with ranks below 

the crossover point of these two distributions are labeled as common essentials. 

 

ADaM method 

Binary depletion matrices for the integrated datasets were used with the ADaM method as 

described in ​2​. The ADaM method determines the number of cell lines required to call a gene 

common essential. This threshold is calculated by maximizing the tradeoff between true 

positive rate (using a set of known prior essential genes) and the deviance from the null 

expected rate (calculated using random permutations of the binary depletion matrix). 
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Common essential genes were identified for each tissue separately and then were used as 

input into ADaM to determine pan-cancer common essential genes. 

 

False-positive rates of common essentials 

To estimate false-positive rates of the common essential genes we used the sets of 

negative controls as in Behan et al ​2​ derived from an independent study of RNAi screen ​4​​. In 

McDonald et al, gene essentiality was analyzed across a large dataset of RNAi screens 

across hundreds of cancer cell lines. For each gene, its tendency to follow a skewed 

Student-t distribution (indicative of a selective dependency) was estimated. As negative 

controls, we used sets of context-specific essential genes (as false positives) at different 

levels of likelihood of a skewed Student-t distribution.   
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