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Abstract

Solving the structure of an antibody-antigen complex gives atomic level information of the

interactions between an antibody and its antigen, but such structures are expensive and hard
to obtain. Alternative experimental sources include epitope mapping and binning experiments
which can be used as a surrogate to identify key interacting residues. However, their resolution
is usually not sufficient to identify if two antibodies have identical interactions. Computational
approaches to this problem have so far been based on the premise that antibodies with similar
sequences behave similarly. Such approaches will fail to identify sequence-distant antibodies
that target the same epitope.
We present Ab-Ligity, a structure-based similarity measure tailored to antibody-antigen inter-
faces. Using predicted paratopes on model antibody structures, we assessed its ability to identify
those antibodies that target highly similar epitopes. Most antibodies adopting similar binding
modes can be identified from sequence similarity alone, using methods such as clonotyping. In
the challenging subset of antibodies whose sequences differ significantly, Ab-Ligity is still able
to predict antibodies that would bind to highly similar epitopes (precision of 0.95 and recall
of 0.69). We compared Ab-Ligity’s performance to an existing tool for comparing general pro-
tein interfaces, InterComp, and showed improved performance on antibody cases alongside a
significant speed-up. These results suggest that Ab-Ligity will allow the identification of di-
verse (sequence-dissimilar) antibodies that bind to the same epitopes from large datasets such
as immune repertoires. The tool is available at http://opig.stats.ox.ac.uk/resources.

1 Introduction

Antibodies are immune proteins that have high specificity and affinity against their target antigens.
Their target specificity is determined by the intermolecular interactions at the antibody-antigen
interface. The types of interactions used in antibody-antigen binding are known to be distinct from


http://opig.stats.ox.ac.uk/resources
https://doi.org/10.1101/2020.03.24.004051
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.24.004051; this version posted October 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

those observed in general protein-protein interactions [I].

The highest resolution method for studying antibody-antigen binding configurations is co-crystal
complex structures. These give atomic level information but are expensive and difficult to obtain [2].
Experimental mapping is often used as a surrogate as it is able to identify the binding regions of the
antigen (“epitopes”) and antibody (“paratopes”; [3]). Competition assays exploit the cross-blocking
effect of antibodies that displace one another if they bind to similar or neighbouring epitopes [4} 5].
This method gives a coarse representation of which binders may share similar target sites, as minimal
epitope overlap can be sufficient for a pair of antibodies to compete with each other [5]. A more
refined approach is hydrogen deuterium exchange (HDX). HDX assesses the solvent accessibility of
the bound and unbound forms of the partner proteins, and highlights regions with the maximum
changes upon binding (e.g. [6l [7]). The resolution is typically up to the range of peptides in the
immediate proximity of the binding site. To achieve residue-level resolution, point mutations of the
interacting proteins can be used to indicate key binding residues. Mutagenesis studies measure the
binding kinetics upon mutation of specific residues, but structural integrity may be compromised
by the mutations, leading to spurious results [3]. All three of these experimental techniques provide
an approximation of the binding regions, but are usually unable to provide a fine mapping of exact
epitopes and paratopes.

Computational techniques have also been developed to identify antibodies that bind in similar
ways. These have generally been exploited on large immunoglobulin sequencing datasets (e.g. []]).
Many of these techniques require a large number of known binders to a given epitope, to be able to
identify further binders [9]. The informatics approaches employed to analyse datasets, when none or
only a few binders to a given epitope are known, are mainly dependent on sequence similarity. This
is based on the concept of “clonotype” analysis [§], which considers the genotype and the sequence
identity of CDRH3 (the third complementarity determining region on the heavy chain) [8, [10] [IT].
Clonotyping exploits the evolutionary origins of antibodies, using both the concept that antibodies
from the same clone and lineage tend to bind similarly [12], and that the CDRH3 region, the most
sequence-variable region, is often responsible for much of the binding [13]. Whilst clonotype analysis
can identify antibodies with similar binding modes, there are many cases where binding remains the
same even when the CDRH3 sequences and/or the genotypes are different (e.g. in anti-lysozyme
antibodies; [14]).

To capture potential chemical interactions and the antibody-antigen binding configurations,
macromolecular docking has been used [I5]. However, this method is slow and not scalable to
the large datasets of antibody sequences available in the early discovery stage [16].

In small molecule discovery, comparing the spatial arrangements of pharmacophores (the atom
features involved in interactions) has been proposed as an alternative to docking when searching for
similar binders. Pharmacophoric points are encoded using geometric hashing algorithms (e.g. [I7-
19]). This approach is much faster than docking whilst giving comparable results [19]. Some of
the descriptors for ligand-binding pockets have been adapted for protein-protein interactions. The
I2ISiteEngine uses atom type triangulation to describe protein-protein interfaces and is able to
successfully identify similar interfaces across different protein families in a number of case stud-
ies [20]. However, the all-atom description means it is far slower than its counterpart developed for
the comparison of small molecules [I7]. Recently, a number of tools have been proposed for gen-
eral protein-protein interface comparisons. MaSIF compares molecular surfaces of protein-protein
interfaces using geometric deep learning [21]. Whilst this technique showed promise using bound
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structures to search for similar binders, the performance did not hold on a more challenging, unbound
set. MaSIF’s high sensitivity to the precise location and chemical properties of the atoms suggests
that it would depend heavily on model accuracy and would be unsuitable for use on modelled struc-
tures. InterComp has also been proposed for general protein-protein interface comparison. It aligns
residues on the surfaces for comparison and scores their similarity using a combination of the Ca
atom distances and their BLOSUM substitution score [22]. The approach successfully identified
similar surface patches but the algorithm is computationally intensive. Both of these methods were
only applied on solved crystal structures and on general-protein-protein interfaces, not on models
and more specifically, not on models of antibodies. In the context of finding antibodies in large
sequencing datasets that target the same epitope, a tool needs to be fast, applicable on antibody-
antigen interfaces, and able to cope with the predicted model structures of antibodies.

In this manuscript, we describe Ab-Ligity, an antibody version of the small molecule method Lig-
ity [19]. Ab-Ligity uses residue points tokenized by their physicochemical properties to allow rapid
operation. To simulate a real-life scenario, we applied Ab-Ligity to antibody models and predicted
paratopes, and showed that it can accurately predict antibodies that share similar target epitopes.
As the majority of the similar binders shared similar sequence composition and lengths, and can be
identified by sequence-based metrics, we also considered the more challenging cases that could not
be identified by such sequence-based metrics. In these more challenging cases of sequence-dissimilar
antibodies, Ab-Ligity still accurately predicts antibodies that have similar binding modes. Ab-Ligity
also performed better than InterComp, in a fraction of the time. Finally we describe two case studies
where Ab-Ligity predicts sequence-dissimilar and length-mismatched antibodies that bind to highly
similar epitopes.

2 Results

Ab-Ligity compares two antibody paratopes by tokenized residues and distance hashes. It is designed
to work on antibody models with predicted paratopes. In this manuscript, we used Parapred [23]
for paratope prediction (for full details, see Methods).

To test the power of Ab-Ligity to identify antibodies that bind to the same epitope, we simulated
a real-life application of using antibody models and predicted paratopes. We built models of 920
unique protein-binding antibodies using ABodyBuilder [24], and predicted their paratope residues
with Parapred [23]. Using these models and predicted paratopes we tested if Ab-Ligity was able
to identify antibodies that bind to the same epitopes (as defined by the antibody-antigen crystal
complexes; see Methods). We call this set the “full set”. Since the majority of the similar binders
have the same CDRH3 length and highly similar CDRH3 sequences, we also tested Ab-Ligity per-
formance when we removed these “easy” comparisons (CDRH3 identity >0.8). We call this set the
CDRH3<0.8 set. The number of comparisons for each of these tests are summarized in Table
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Table 1: Number of positive and negative comparisons in the datasets, based on Ab-Ligity’s definition
of similar epitopes.

Set Positive  Negative
Full 719 29,557
CDRH3<0.8 266 29,519

2.1 Selecting similarity thresholds
2.1.1 Definition of similar epitopes captured in crystal structures

In order to identify a standardised definition of when two epitopes are the same, we ran a grid
search on the corresponding “crystal paratope” and “crystal epitope” similarity scores as calculated
by Ab-Ligity, maximising the Matthews correlation coefficient (MCC; see Methods and Supplemen-
tary Materials). This procedure suggested an epitope similarity threshold of 0.1 was appropriate
and visual inspections of examples confirmed this. Epitope pairs above this threshold are considered
positive (Table[T).

2.1.2 Selecting a similarity threshold for predicted paratopes in antibody models

In a real-life scenario where antibody models and predicted paratopes would be used, we need to es-
tablish a model paratope similarity threshold that can recapitulate the definition of similar epitopes
as defined by the crystal structures. Similar to the earlier strategy, we ran a grid search on a range
of “model paratope” similarity scores, and found a threshold of 0.1 that gives the best MCC (0.90,
see Supplementary Materials). Above the model paratope similarity of 0.1, paratopes are predicted
to bind to a common epitope.

2.2 Using Ab-Ligity to predict antibodies that bind to highly similar
epitopes

We assessed the performance of Ab-Ligity on two datasets of different difficulties: the “easy” full set
and the “hard” CDRH3<0.8 set. Sequence-based methods can identify relatively accurately CDRH3
sequence-similar antibodies that will bind to the same epitope [25]. In our dataset, the majority
of the antibody pairs that target highly similar epitopes have similar CDRH3 sequences. Table
shows that 63.0% (453/719) of the positive pairs that bind to highly similar epitopes have CDRH3
sequence identities >0.8. This set represents “easy” cases, and Ab-Ligity is able to stratify between
similar and dissimilar binders with good accuracy on the “easy” full set (precision of 0.95 and recall
of 0.85; Table .

To assess Ab-Ligity’s performance on a more challenging set, we removed the “easy” compar-
isons. The remaining 37.0% (266/719; see Table [I)) of the pairs that bind to similar epitopes have
their CDRH3 sequence identities <0.8, and would not be identified by sequence-based methods such
as clonotype. On this more challenging subset of cases, Ab-Ligity’s precision remains at 0.95 and its
recall drops slightly (0.69; Table . These results demonstrate that Ab-Ligity is able to accurately
identify sequence-dissimilar antibodies that have similar binding modes.
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Table 2: Precision and recall on the full and CDRH3<0.8 sets, using the selected paratope simi-
larity thresholds for Ab-Ligity (0.1) and InterComp (0.6), based on Ab-Ligity’s definition of similar

epitopes.
Method Ab-Ligity InterComp
Set Precision Recall Precision Recall
Full 0.95 0.85 0.92 0.77
CDRH3<0.8 0.95 0.69 0.86 0.59

2.3 Sensitivity analyses

We assessed the sensitivity of Ab-Ligity’s performance in three situations: varying the distance bin
size in hashing, changing the Parapred prediction threshold and applying Ab-Ligity to only the
heavy (VH) or light chain (VL). The latter two factors change the paratope size. Using different
Parapred thresholds affects the number of paratope residues predicted on each of the antibodies and
potentially introduces noise if an inappropriate threshold is selected. We checked the performance
on VH and VL alone as almost all current large sequencing datasets are unpaired [26]; if Ab-Ligity
is able to accurately predict on a single chain, its potential application space is increased.

2.3.1 Distance bin size

During the hashing procedure, Ab-Ligity discretizes the distances between residues (i.e. edge
length of the triangles) into distance bins of 1A . We observed that tightening the bin width to
0.5 A marginally reduces the classification performance with a precision and recall of 0.93 and 0.85
in the full set and a similar change on the CDRH3<0.8 set (see Supplementary Materials). Increasing
the bin size harms performance, potentially as it over-smooths residue distances (see Supplementary
Materials).

2.3.2 Parapred predictions

Ab-Ligity uses predicted paratopes, so we examined how their accuracy influences performance. The
Parapred prediction threshold of 0.67 from the original paper was selected such that the size of the
predicted paratopes replicates that of actual paratopes. At this threshold, the precision and recall of
Parapred were found to be 0.67 and 0.73 (see Supplementary Materials). We increased the threshold
to 0.80 (increasing precision and reducing the number of residues predicted; see Supplementary Ma-
terials) to investigate the effect on Ab-Ligity. We saw little effect on the performance of Ab-Ligity:
the precision and recall were 0.95 and 0.85 for the original Parapred threshold (0.67), compared to
0.96 and 0.80 in the increased Parapred thresholds (see Supplementary Materials).

We then reduced the Parapred threshold, increasing the paratope size but lowering the precision
of paratope prediction. This reduction in the Parapred threshold decreased Ab-Ligity performance
(see Supplementary Materials). This drop in performance is probably due to an elevated level of
noise (i.e. the inclusion of residues not involved in binding) in the Parapred predictions.
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2.3.3 Performance on heavy chains or light chains alone

Since most publicly available immune repertoire datasets are from bulk sequencing of unpaired an-
tibody chains [20], we assessed the applicability of Ab-Ligity on unpaired heavy and light chains.

We built homology models for heavy chain or light chain separately and extracted the predicted
paratopes on these models. In Table 3] we show that heavy chain paratopes alone can be used to
accurately identify antibodies that bind to the same epitopes, with a precision of 0.88 and recall of
0.78. Using the light chain alone, Ab-Ligity can also identify antibodies that bind to similar epitopes
but with lower precision (Table[3]). We also evaluated using the heavy chain or light chain paratopes
from paired antibody models and the results were almost identical (see Supplementary Materials).

Table 3: Precision and recall on the full set, using heavy chain and light chain only homology models
and the predicted paratopes on the corresponding single domain.

Method Ab-Ligity InterComp
Domain Precision Recall Precision Recall
VH 0.88 0.78 0.74 0.82
VL 0.67 0.89 0.17 0.94

2.4 Comparing Ab-Ligity to InterComp

We compared Ab-Ligity to an existing general protein-protein interface comparison tool, InterComp.
Since the original manuscript of InterComp did not indicate a threshold for interfaces to be consid-
ered similar, we conducted the same evaluation as for Ab-Ligity. The InterComp epitope similarity
threshold was selected at 0.7 by maximising the MCC between crystal paratope and crystal epitope
similarities (see Supplementary Materials). Based on this definition of similar epitopes, 0.6 is the
optimal cut-off for InterComp model paratope similarity.

In Table[2] we show the results of Ab-Ligity and InterComp using Ab-Ligity’s definition of similar
crystal epitopes. In the Supplementary Materials, we give the corresponding results for the methods
using InterComp’s definition of similar epitopes. Both Table 2] and the Supplementary Tables show
that the two methods have comparable performance with Ab-Ligity showing improved performance
on the more challenging CDRH3<0.8 set, regardless of whether the performance is assessed using
the definition of ground truth by Ab-Ligity or InterComp (i.e. which pairs of antibody-antigen
structures were considered to have similar epitopes by the two methods).

We carried out the same sensitivity analyses on InterComp as described above for Ab-Ligity. In
terms of Parapred thresholds and predictions on VH or VL chains alone, very similar effects were
observed (see Supplementary Materials).

As well as outperforming InterComp, Ab-Ligity is also significantly faster. We measured the
algorithm run-time on a single 3.40GHz i7-6700 CPU core. On the full set of 920x920 pairwise
comparisons, Ab-Ligity takes 0.5 CPU-minute to generate the 920 hash tables for all paratopes,
and 18.5 minutes for an optimized all-against-all similarity calculation. InterComp does not require
pre-processing but the all-against-all query takes 65.5 minutes. It is now possible to model large
portions of next generation sequencing datasets [27] and Ab-Ligity would allow rapid comparison of
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binding sites in these datasets. For example, Ab-Ligity would take one day to process on 150 cores
a next generation dataset of 100,000 antibodies, compared to five days for InterComp.

2.5 Anti-lysozyme antibodies with dissimilar CDRH3 sequences against
highly similar epitopes

To show the power of Ab-Ligity to predict similar binding of antibodies with dissimilar CDRH3 se-
quences, we examined three anti-lysosyzme antibodies, HyHEL-26, HyHEL-10 L-Y50F mutant and
HyHEL-63 (annotated as INDM_BA_C, 1JIO_HL_Y and INBY_BA _C respectively in Figure [1)).
These antibodies are known to all adopt the same binding mode against lysozyme (Figure ; [28]).
Their CDRHS3 loops are seven residues long, but differ by at least three residues between any pair, so
would not be considered to share the same clonotype (Figure ) We have also included a counter-
example of the 3C8 antibody (annotated as 6OKM_HL_R in Figure against Tumor Necrosis Factor
Receptor superfamily member 4 (OX4). This antibody also has seven-residue long CDRH3 sequence
and shares a maximum sequence identity of 0.57 with HyHEL-26 (INDM_BA_C).

We used Ab-Ligity to calculate the similarity of their binding using models of predicted paratopes.
As outlined above, an Ab-Ligity score of above 0.1 indicates that the antibodies in comparison have
similar binding sites. The pairwise similarity scores of all three anti-lysozyme antibodies are all
above 0.1, indicating that Ab-Ligity would classify them as targeting the same epitope. This classi-
fication is consistent with the observation in the co-crystal complexes (Figure ) Conversely, the
Ab-Ligity scores of these three anti-lysozyme antibodies with the anti-OX4 antibody were all below
0.1. Reflected in the crystal structures shown in Figure[TJA, the anti-OX4 antibody clearly binds to
a different antigen and epitope to the other three antibodies.
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Figure 1: Analysis of anti-lysozyme antibodies with dissimilar CDRH3 sequences and highly sim-
ilar epitopes. (A) Structural superposition of three anti-lysozyme and one anti-OX4 antibodies
co-crystallized with their antigens (lysozyme or OX4) in white. The three anti-lysozyme anti-
bodies were HyHEL-26 (INDM_BA_C), HyHEL-10 L-Y50F mutant (1J10_HL.Y) and HyHEL-63
(INBY_BA_C); and the anti-OX4 antibody is 3C8 (6OKM_HL_R). The antigens from the three anti-
lysozyme antibody crystal structures are aligned. The legend shows the colors of the antibodies with
their PDB codes followed by the heavy-light chain and antigen chain identifiers, separated by (‘).
The CDRH3 sequences are displayed next to the respective antibody identifiers. (B) Heatmaps of
CDRHS3 sequence identity and Ab-Ligity paratope similarity. The row and column labels correspond
to the structures shown in (A). Ab-Ligity paratope similarity is calculated on the antibody model
and predicted paratope as outlined in the manuscript. Pairs of antibodies with CDRH3 identity
of >0.80 would have been considered similar by sequence-based metric. For Ab-Ligity, a similarity
score of >0.1 suggests that the antibodies bind to highly similar epitopes.

2.6 CDRH3 sequences with different lengths engage the same epitope in
HIV core gp120

Ab-Ligity may also be useful in cases where antibodies have different CDRH3 lengths but similar
binding modes. Sequence-based metrics are not applied to such cases [§]. One example of mis-
matched CDRH3 lengths binding the same epitope are two HIV-1 neutralizing antibodies, VRCO01
(PDB code and chain ID 4LSS_HL) and its variant, VRC07 (4OLU_HL). They target the gp120 core
with highly similar binding modes (Figure . Their heavy and light chain germlines are the same
but their CDRH3 sequences differ in length and composition. Aligning by the IMGT-numbered
positions [29], only 12 out of the 18 residues are aligned and identical. These two antibodies are
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known to engage a similar epitope [30] and Ab-Ligity based on models of these antibodies and pre-
dicted paratopes correctly predicts this (Ab-Ligity score of 0.24; >0.1 Ab-Ligity similarity threshold).

CDRH3 Sequence
41.SS HI. G TRGKNCD----YNWDFEH
40LU HL GTRGKYCTARDYYNWDFEH

Paratope Similarity
Ab-Ligity 0.24
InterComp0.75

Figure 2: Analysis of two anti-gp120 antibodies. VRCO01 antibody (PDB code and chain IDs:
41L.SS_HL_G) is colored in blue; VRCO7 (PDB code and chain IDs: 4OLU_HL_G) is shown in pink.
The gp120 core antigen is displayed as white surfaces and the superimposed antibodies are in car-
toons. The CDRH3 loops are in solid shades of the cartoon representation. The PDB code, heavy
and light chain ID, and antigen chain ID are separated by (‘_’) and listed in the legend with the cor-
responding CDRH3 sequences. CDRH3 sequences are shown by aligning their IMGT positions and
> indicates a gap in the alignment according to the IMGT numbering scheme [29]. The Ab-Ligity
paratope similarity score for the pair is listed.

3 Discussion

We present Ab-Ligity, an antibody-protein binding site structural similarity metric that can iden-
tify sequence-dissimilar antibodies that engage the same epitope. Our results show that Ab-Ligity
is able to identify antibodies that bind to the same epitopes using model structures and predicted
paratopes, even for pairs of sequence-dissimilar antibodies. We evaluated the robustness of Ab-Ligity
to the distance hashing, its dependence on the accuracy of paratope prediction by Parapred, and its
applicability on unpaired antibody sequencing datasets. We also compared Ab-Ligity to InterComp,
an existing protein surface similarity metric and found improved performance for harder cases with
dissimilar sequences, and for the application on heavy chains or light chains only paratopes, and a
far faster run-time. We further show that Ab-Ligity can identify antibodies that bind to the same
epitope with dissimilar CDRH3 lengths, beyond the constraints of most sequence-based metrics.

Binding site comparison with tools, such as Ab-Ligity, opens up an alternative way to search
for binders with similar binding modes. Typically in antibody discovery, multiple diverse hits are
desired to avoid developability issues in the downstream optimisation process [31]. Ab-Ligity has the
ability to predict if antibodies share similar target epitopes, without being sequence-similar. This
ability coupled with the fast run-time of Ab-Ligity makes it suitable for searching through large
datasets of antibody sequences to find sets of sequence-diverse binders to the same epitope.
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4 Methods

4.1 Antibody-antigen co-crystal datasets

We selected all paired antibody-antigen complexes from SAbDab [2] as of 27th January, 2020, that
were solved by X-ray crystallography, had no missing residues in all six CDRs (using the North
definition; [I3]), and were co-crystallized with a protein antigen of more than 50 residues. To avoid
redundancy, we retain only one copy of each antibody. In the case of multiple copies, the complex
with the best resolution is selected. Nine hundred and twenty antibody-antigen complexes were
identified.

We defined epitopes as residues on the antigen with any atoms within 4.5A of its cognate anti-
body. We extracted these residues using Biopython [32].

4.2 Antibody modelling and paratope prediction

We numbered antibody sequences using the IMGT scheme [29] and defined the CDR regions by the
North scheme [13], with ANARCT [33]. We then modelled the full set using ABodyBuilder [24], bar-
ring it from using sequence-identical structures as templates. The ABodyBuilder template library
was built using all structures available on the 27th January, 2020, in SAbDab [2].

We used Parapred to predict the paratope residues [23]. Parapred gives a score to each residue in
the CDRs, and two residues before and after, to indicate how likely it is to participate in binding. As
suggested in the original paper, we selected residues with a score of > 0.67 as the predicted paratope
residues on the models (see Supplementary Materials for Parapred prediction performance). The co-
ordinates of these predicted paratope residues were obtained from the corresponding model. Models
and predicted paratopes were used throughout the manuscript for calculating the structural simi-
larity between antibodies.

4.3 Ab-Ligity calculations

The workflow of Ab-Ligity is illustrated in Figure|3l The binding residues are tokenized according to
Table [d] This tokenisation scheme was chosen as it is simple and intuitive, and gave similar results
to several other more complex choices. For each binding site residue, a point is placed representing
the residue group on the C-a atom of the residue. These points collectively represent a paratope on
an antibody or an epitope on an antigen.

10
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Figure 3: The Ab-Ligity workflow. (A) Binding site residues within 4.5A of the binding partner
are tokenized as stated in Table 4] (B) All distances between tokenized points are calculated and
hashed into 1.0A-wide distance bins for both the paratopes and epitopes. (C) Each pair of tokens
is given a unique hash code. (D) A six-character hash code is generated for each triplet. (E) The
hashes of a binding site are stored in a frequency table.

Table 4: Residue groupings for tokenisation.

Group Residues

Aliphatic  Glycine (G), Alanine (A), Valine (V), Leucine (L), Isoleucine (I), Proline (P)
Hydroxyl Serine (S), Threonine (T)

Sulphur  Cysteine (C), Methionine (M)

Aromatic Phenylalanine (F), Tyrosine (Y), Tryptophan (W)

Acidic Aspartic acid (D), Glutamic acid (E)

Amine Asparagine (N), Glutamine (Q)

Basic Histidine (H), Lysine (K), Arginine (R)

Ab-Ligity uses the hashing function outlined in [19]. In short, it considers all combinations of
triplets formed from a set of tokenized residues in a binding site. In a given triplet, each edge is
represented by its vertices’ tokens and its length. Each combination of tokens has a unique hash
code. Edge lengths are discretized into bins of 1.0A in both paratopes and epitopes to reduce com-
putational complexity. The final hash code for a given triplet is determined by the three vertex
hash codes sorted alphabetically, followed by the hash codes of the three corresponding length bins.
The resulting hash table for the target binding site stores the frequency of these hash codes from all
triplets.

Binding site similarity is calculated by the Tversky index of the pairs of hash tables:

XY
XY= 1
SEY) = XUV aX - V|1 By =X (1)

where X and Y are the two hash tables, | X NY] and | X UY| are the intersection and union, and
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|X —Y]| and |Y — X| are the differences between the two tables respectively. For this study we used
a=p=0.5.

4.4 Performance evaluation settings

We calculated the Ab-Ligity paratope similarity based on antibody models and their predicted
paratopes. The majority of the antibodies that engage the same epitope have highly similar CDRH3
sequences and would be predicted to bind in the same manner by sequence comparison (such as clono-
type). To test if Ab-Ligity makes accurate predictions for those cases without similar CDRH3s, we
assessed the performance on both the “full set”, and a subset where the CDRH3 identity is < 0.8
(“CDRH3<0.8 set”).

The number of positive and negative cases for these two sets are listed in Table [T} The perfor-
mance at the selected thresholds is reported as precision and recall (see Supplementary Materials).

4.5 Selecting an epitope similarity threshold

For each pair of antibody-antigen complexes, we first calculated the epitope similarity based on the
crystal structures of the antibody-antigen complexes. We selected the epitope similarity thresh-
old by evaluating pairs of proposed crystal paratope and crystal epitope similarity thresholds (see
Supplementary Materials) and chose the epitope similarity score that gives the best classification
performance, i.e. the highest Matthews correlation coefficient (MCC; see Supplementary Materi-
als). This becomes the ground truth for evaluation. For Ab-Ligity, we selected the crystal epitope
similarity threshold at 0.1. (See Supplementary Materials for the corresponding comparisons us-
ing InterComp’s definition of similar epitopes.) Manual inspection of example cases indicated that
pairs of epitopes above this threshold were highly similar. This threshold is used throughout the
manuscript to give the binary classification of similar and dissimilar epitopes.

4.6 Benchmark

We compared our prediction performance and computational time with InterComp, a surface com-
parison tool for protein-protein interfaces [22]. (See Supplementary Materials for the corresponding
analysis using InterComp’s definition.) The algorithm run-time was measured on a single 3.40GHz
i7-6700 CPU core.

Acknowledgement(s)

The authors thank Dr. Jean-Paul Ebejer for providing the original implementation of Ligity,
Matthew Raybould for useful discussion of the residue tokenisation strategy, and members at Roche
and GlaxoSmithKline for helpful discussion.

Disclosure statement

None declared.

12


https://doi.org/10.1101/2020.03.24.004051
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.24.004051; this version posted October 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Funding

This work was supported by funding from the Engineering and Physical Sciences Research Council
and Medical Research Council [grant number EP/L016044/1].

References

[1] Wang M, Zhu D, Zhu J, et al. Local and global anatomy of antibody-protein antigen recognition.
Journal of Molecular Recognition. 2018;31(5):62693.

[2] Dunbar J, Krawczyk K, Leem J, et al. SAbDab: the structural antibody database. Nucleic
Acids Research. 2013;42(D1):D1140-D1146.

[3] Abbott WM, Damschroder MM, Lowe DC. Current approaches to fine mapping of antigen—
antibody interactions. Immunology. 2014;142(4):526-535.

[4] Kwak JW, Yoon CS. A convenient method for epitope competition analysis of two monoclonal
antibodies for their antigen binding. Journal of Immunological Methods. 1996;191(1):49-54.

[5] Abdiche YN, Yeung AY, Ni I, et al. Antibodies targeting closely adjacent or minimally over-
lapping epitopes can displace one another. PloS One. 2017;12(1):e0169535.

[6] Zhang Q, Yang J, Bautista J, et al. Epitope mapping by HDX-MS elucidates the surface cov-
erage of antigens associated with high blocking efficiency of antibodies to birch pollen allergen.
Analytical Chemistry. 2018;90(19):11315-11323.

[7] Puchades C, Kiikrer B, Diefenbach O, et al. Epitope mapping of diverse influenza Hemagglutinin
drug candidates using HDX-MS. Scientific Reports. 2019;9(1):4735.

[8] Galson JD, Triick J, Fowler A, et al. In-depth assessment of within-individual and inter-
individual variation in the b cell receptor repertoire. Frontiers in Immunology. 2015;6:531.

[9] Mason DM, Friedensohn S, Weber CR, et al. Deep learning enables therapeutic antibody opti-
mization in mammalian cells by deciphering high-dimensional protein sequence space. bioRxiv.
2019;:617860.

[10] Trick J, Ramasamy MN, Galson JD, et al. Identification of antigen-specific B cell receptor
sequences using public repertoire analysis. The Journal of Immunology. 2015;194(1):252—-261.

[11] Soto C, Bombardi RG, Branchizio A, et al. High frequency of shared clonotypes in human B
cell receptor repertoires. Nature. 2019;566(7744):398.

[12] Hsiao YC, Chen YJJ, Goldstein LD, et al. Restricted epitope specificity determined by variable
region germline segment pairing in rodent antibody repertoires. mAbs. 2020;12(1):1722541.

[13] North B, Lehmann A, Dunbrack Jr RL. A new clustering of antibody CDR loop conformations.
Journal of Molecular Biology. 2011;406(2):228-256.

[14] Pons J, Stratton JR, Kirsch JF. How do two unrelated antibodies, hyhel-10 and 9. 13.7, rec-
ognize the same epitope of hen egg-white lysozyme? Protein Science. 2002;11(10):2308-2315.

13


https://doi.org/10.1101/2020.03.24.004051
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.24.004051; this version posted October 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

[15] Lensink MF, Nadzirin N, Velankar S, et al. Modeling protein-protein, protein-peptide and
protein-oligosaccharide complexes: CAPRI 7th edition. Proteins: Structure, Function, and
Bioinformatics. 2019;.

[16] Raybould MLJ, Wong WK, Deane CM. Antibody-antigen complex modelling in the era of im-
munoglobulin repertoire sequencing. Molecular Systems Design & Engineering. 2019;4(4):679—
688.

[17] Shulman-Peleg A, Nussinov R, Wolfson HJ. SiteEngines: recognition and comparison of binding
sites and protein—protein interfaces. Nucleic Acids Research. 2005;33(Suppl-2):W337-W341.

[18] Wood DJ, Vlieg Jd, Wagener M, et al. Pharmacophore fingerprint-based approach to binding
site subpocket similarity and its application to bioisostere replacement. Journal of Chemical
Information and Modeling. 2012;52(8):2031-2043.

[19] Ebejer JP, Finn PW, Wong WK, et al. Ligity: A non-superpositional, knowledge-based approach
to virtual screening. Journal of Chemical Information and Modeling. 2019;59(6):2600-2616.

[20] Shulman-Peleg A, Mintz S, Nussinov R, et al. Protein-protein interfaces: Recognition of similar
spatial and chemical organizations. In: International Workshop on Algorithms in Bioinformat-
ics; Springer; 2004. p. 194-205.

[21] Gainza P, Sverrisson F, Monti F, et al. Deciphering interaction fingerprints from protein molec-
ular surfaces using geometric deep learning. Nature Methods. 2020;17(2):184-192.

[22] Mirabello C, Wallner B. Topology independent structural matching discovers novel templates
for protein interfaces. Bioinformatics. 2018;34(17):1787-i794.

[23] Liberis E, Velickovi¢ P, Sormanni P, et al. Parapred: antibody paratope prediction using con-
volutional and recurrent neural networks. Bioinformatics. 2018;34(17):2944-2950.

[24] Leem J, Dunbar J, Georges G, et al. ABodyBuilder: Automated antibody structure prediction
with data—driven accuracy estimation. mAbs. 2016;8(7):1259-1268.

[25] Scheid JF, Mouquet H, Ueberheide B, et al. Sequence and structural convergence of broad and
potent hiv antibodies that mimic cd4 binding. Science. 2011;333(6049):1633-1637.

[26] Kovaltsuk A, Leem J, Kelm S, et al. Observed antibody space: A resource for data mining next-
generation sequencing of antibody repertoires. The Journal of Immunology. 2018;201(8):2502—
2509.

[27] Raybould MI, Marks C, Kovaltsuk A, et al. Evidence of antibody repertoire functional conver-
gence through public baseline and shared response structures. BioRxiv. 2020;Available from:
https://www.biorxiv.org/content/10.1101/2020.03.17.993444v1.

[28] Mohan S, Sinha N, Smith-Gill SJ. Modeling the binding sites of anti-hen egg white lysozyme
antibodies hyhel-8 and hyhel-26: an insight into the molecular basis of antibody cross-reactivity
and specificity. Biophysical journal. 2003;85(5):3221-3236.

[29] Lefranc MP, Giudicelli V, Duroux P, et al. IMGT®), the international ImMunoGeneTics infor-
mation system® 25 years on. Nucleic Acids Research. 2014;43(D1):D413-D422.

14


https://www.biorxiv.org/content/10.1101/2020.03.17.993444v1
https://doi.org/10.1101/2020.03.24.004051
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.24.004051; this version posted October 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

[30] Li Y, O’Dell S, Wilson R, et al. HIV-1 neutralizing antibodies display dual recognition of
the primary and coreceptor binding sites and preferential binding to fully cleaved envelope
glycoproteins. Journal of Virology. 2012;86(20):11231-11241. Available from: https://jvi.
asm.org/content/86/20/11231.

[31] Raybould MIJ, Marks C, Krawczyk K, et al. Five computational developability guidelines
for therapeutic antibody profiling. Proceedings of the National Academy of Sciences. 2019;
116(10):4025-4030.

[32] Cock PJA, Antao T, Chang JT, et al. Biopython: freely available python tools for computational
molecular biology and bioinformatics. Bioinformatics. 2009;25(11):1422-1423.

[33] Dunbar J, Deane CM. ANARCI: antigen receptor numbering and receptor classification. Bioin-
formatics. 2016;32(2):298-300.

15


https://jvi.asm.org/content/86/20/11231
https://jvi.asm.org/content/86/20/11231
https://doi.org/10.1101/2020.03.24.004051
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	Selecting similarity thresholds
	Definition of similar epitopes captured in crystal structures
	Selecting a similarity threshold for predicted paratopes in antibody models

	Using Ab-Ligity to predict antibodies that bind to highly similar epitopes
	Sensitivity analyses
	Distance bin size
	Parapred predictions
	Performance on heavy chains or light chains alone

	Comparing Ab-Ligity to InterComp
	Anti-lysozyme antibodies with dissimilar CDRH3 sequences against highly similar epitopes
	CDRH3 sequences with different lengths engage the same epitope in HIV core gp120

	Discussion
	Methods
	Antibody-antigen co-crystal datasets
	Antibody modelling and paratope prediction
	Ab-Ligity calculations
	Performance evaluation settings
	Selecting an epitope similarity threshold
	Benchmark


