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Abstract 

Motivation 
Genome Architecture Mapping (GAM) was recently introduced as a digestion- and ligation-free 
method to detect chromatin conformation. Orthogonal to existing approaches based on chromatin 
conformation capture (3C), GAM’s ability to capture both inter- and intra-chromosomal contacts 
from low amounts of input data makes it particularly well suited for allele-specific analyses in a 
clinical setting. Allele-specific analyses are powerful tools to investigate the effects of genetic 
variants on many cellular phenotypes including chromatin conformation, but require the haplotypes 
of the individuals under study to be known a-priori. So far however, no algorithm exists for 
haplotype reconstruction and phasing of genetic variants from GAM data, hindering the allele-
specific analysis of chromatin contact points in non-model organisms or individuals with unknown 
haplotypes. 

Results 
We present GAMIBHEAR, a tool for accurate haplotype reconstruction from GAM data. GAMIBHEAR 
aggregates allelic co-observation frequencies from GAM data and employs a GAM-specific 
probabilistic model of haplotype capture to optimise phasing accuracy. Using a hybrid mouse 
embryonic stem cell line with known haplotype structure as a benchmark dataset, we assess 
correctness and completeness of the reconstructed haplotypes, and demonstrate the power of 
GAMIBHEAR to infer accurate genome-wide haplotypes from GAM data.  

Availability 
GAMIBHEAR is available as an R package under the open source GPL-2 license at 
https://bitbucket.org/schwarzlab/gamibhear  
Maintainer: julia.markowski@mdc-berlin.de  
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1 Introduction 
Genome Architecture Mapping (GAM) is a novel digestion- and ligation-free experimental technique 
for assessing the 3D chromatin structure from a collection of thin nuclear profiles (NuPs) (Beagrie 
et al. 2017). NuPs are generated through cryosectioning of cellular nuclei followed by next-
generation sequencing. Chromatin contacts between DNA loci can be inferred by analysing the 
frequency at which the loci are captured in the same NuP. In contrast to ligation-based chromatin 
conformation capture (3C) type approaches, such as Hi-C (Lieberman-Aiden et al. 2009), GAM is able 
to resolve complex contacts with three or more loci with high resolution, does not suffer from non-
uniformity biases (Chandradoss et al. 2020) and only requires several hundreds of cells to obtain 
high-resolution contact maps (Kempfer and Pombo 2019; Beagrie et al. 2020; Fiorillo et al. 2020). 
This makes GAM particularly useful for the study of chromatin contacts in rare biological materials, 
such as human biopsies.  
 
Recently, there has been increasing interest in the allele-specific analysis of chromatin contacts, for 
which haplotyping, i.e. phasing of single nucleotide variants (SNVs) is key (Chen et al. 2017; Rivera-
Mulia et al. 2018; Cavalli et al. 2019; Zahn 2020). Traditionally, haplotypes are inferred through read-
based phasing methods such as HapCut and WhatsHap (Bansal and Bafna 2008; Patterson et al. 
2015; Edge, Bafna, and Bansal 2017) or statistically using population-level or reference-phasing 
approaches such as SHAPEIT and BEAGLE (Loh et al. 2016; Browning and Browning 2007). Read-
based haplotype phasing can be formalised in a number of ways. Variants of the Minimum Error 
Correction (MEC) problem have frequently been used in the presence of different error distributions 
and insert lengths (Bansal and Bafna 2008). MEC views the given data (a fragments by SNV sites 
matrix of observed allele states) as potentially erroneous and asks for the least invasive way to 
correct the observations in order to enable conflict-free phasing. The MEC problem has been 
demonstrated to be computationally hard under a variety of conditions (Bafna et al. 2005).  
 
Initial efficient MEC heuristics for short-read sequencing data such as HapCut, which converts MEC 
to a minimum cut problem, only allowed for single base pair errors (Bansal and Bafna 2008). 
Motivated by observations that homologous chromosomes tend to occupy distant chromosome 
territories (Meaburn and Misteli 2007), Selvaraj et al. (2013) proposed HaploSeq to leverage Hi-C 
data with an extension of the HapCut algorithm to accommodate Hi-C specific h-trans errors. H-
trans errors are haplotype switch errors that occur when a piece of DNA interacts with a DNA 
fragment from the homologous chromosome rather than the same chromosome. HapCut2, which 
was recently released, includes population-based statistical phasing (Bansal 2019) and implements 
a variety of different error models to accommodate different sequencing technologies (Edge, Bafna, 
and Bansal 2017). 
 
Another approach that yields an NP-hard minimum cut problem seeks to partition the observed 
fragments into two classes corresponding to the two haplotypes, again by minimising a measure of 
inconsistency (Duitama et al. 2010). Other methods first use an aggregation step to collect co-
occurrence frequency evidence of SNVs at different positions and then seek to reconstruct one of 
the two haplotypes by partitioning the SNV sites into two classes; this can be written as a well-
known problem from physics: finding a ground state of a spin glass system, which is also a minimum 
cut problem (Tourdot and Zhang 2019).  
 
We here ask the question to what degree GAM data can be used effectively for haplotyping. The 
coverage and error distributions of the GAM cryosectioning process are sufficiently different from 
Hi-C based approaches that existing MEC solvers are not directly applicable. Hi-C data yields ligated 
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reads of genomic loci which can be very distant in linear genomic space but typically from the same 
chromosomal haplotype. In contrast, most GAM NuPs yield individual short reads of both 
haplotypes and only maintain haplotype fidelity locally. Thus, in contrast to Hi-C, where h-trans 
errors remain rare, GAM NuPs frequently switch haplotypes. In addition, SNV coverage in GAM data 
varies greatly and non-uniformly, which interferes with MEC solvers that require the maximum 
coverage per SNV to be low (Patterson et al. 2015). 
 
To explore the potential of GAM for haplotyping, we present GAMIBHEAR (GAM-Incidence Based 
Haplotype Estimation And Reconstruction), a novel computational tool for whole-genome phasing 
of genetic variants from GAM NuPs. Similar to previous haplotyping approaches for other types of 
data, we use an aggregation step and formulate the problem on co-occurrence evidence derived 
from the raw GAM data (see Sec. 2.1). GAMIBHEAR then employs a graph representation of the co-
occurence of SNV alleles in NuPs to reconstruct the haplotype structure. It thereby accounts for the 
GAM-specific probabilities in capturing parental chromosomal segments as part of the random 
cryosectioning process. The formulation is similar to the above mentioned physics problem of 
finding a ground state of a spin glass system (Tourdot and Zhang 2019). We assess the performance 
of GAMIBHEAR on the hybrid mouse embryonic stem cell line F123 with known haplotype structure. 
Despite the sparsity of GAM data, GAMIBHEAR allows for accurate long-distance haplotype 
reconstruction. GAMIBHEAR is available as an efficient R package with parallel implementations of 
the most compute-intensive tasks and is available at https://bitbucket.org/schwarzlab/gamibhear. 

2 Methods 

2.1 Definitions, problem statement and objective 
Our goal is to reconstruct haplotypes from GAM data. A sequenced GAM dataset consists of reads 
from many nuclear profiles (NuPs). Each NuP is the result of random sectioning of the nucleus and 
captures ultra-sparse local sequence information, where local refers to genomic loci in close 
proximity in the 3D arrangement of the genome, including but not limited to loci proximal in linear 
distance. Thus, reads from single NuPs cover a small proportion of the whole genome with 
consecutive stretches of genomic DNA that reflect chromatin looping in and out of a thin nuclear 
slice (illustrated in Fig. 2B). Our underlying assumption for haplotype reconstruction is that alleles 
of any two heterozygous SNVs captured in a nuclear slice are likely to originate from the same 
parental copy, and that this likelihood decreases with increasing genomic distance of the co-
observed alleles. 
 
We assume that the set of heterozygous SNVs is given and that the SNV alleles have been 
determined per NuP. The input data to the GAM haplotype reconstruction problem can thus be 
described as follows: Let 𝑁 be the number of NuPs and 𝑀 be the number of heterozygous SNVs in 
the genomic region of interest (e.g., a chromosome or chromosome arm; sites with homozygous 
SNVs are ignored). Then the problem input is a ternary 𝑁 ×𝑀 matrix 𝐷 with 𝐷%& = 1 if the reference 
allele is observed in NuP 𝑖 at SNV site 𝑗, 𝐷%& = 	−1if the alternative allele is observed, and 𝐷%& = 0if 
there is no unique observation (e.g. due to lack of coverage or if both alleles are observed in the 
same NuP). 
 
The goal is to reconstruct the two haplotypes (allele states on the same parental copy). Formally, a 
haplotype is a vector ℎ ∈ {−1,1}3with ℎ& = 1 if the reference allele is found at site 𝑗 and ℎ& =
	−1for the alternative allele. One of the two haplotypes ℎ determines the other one as −ℎ. 
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The GAM input data in principle contains the information to inferℎ. Consider the relation between 
SNV sites 𝑗 and 𝑘 in NuP 𝑖. The two sites can be in a “flip” relation, where the alternative (alt) allele 
(-1) of one site is observed with the reference allele (+1) of the other site (product𝐷%& ⋅ 𝐷%6 = 	−1), 
and a “stay” relation, where both SNVs show either the reference or alternative allele (product 𝐷%& ⋅
𝐷%6 = 1). 
We thus compute the 𝑀 ×𝑀 evidence matrix 𝐴 ∶= 𝐷9𝐷	, which contains the accumulated counts 
of the stay-flip relations summed over all NuPs, i.e. 𝐴&6 = ∑ 𝐷%&;

%<= ⋅ 𝐷%6, such that positive values 
indicate more stay observations (𝐴&6 > 	0: ‘stay’ between sites 𝑗 and 𝑘; 𝑗, 𝑘 = 1, . . . , 𝑀) and negative 
values indicate more flip observations (𝐴&6 < 	0: ‘flip’ between sites 𝑗 and 𝑘). An equal number of 
observed stays and flips leads to zero entries (𝐴&6 = 	0). In principle, we can additionally introduce 
NuP-specific reliability weights 𝜆 = (𝜆%) 	> 0 with mean 1, and more generally define𝐴 ∶= 𝐷9𝛬𝐷 , 
where 𝛬 is the 𝑁 × 𝑁 diagonal matrix containing the 𝜆%. 
 
The goal of the haplotype reconstruction algorithms we develop here is to solve ℎ using the 
information contained in 𝐴: If 𝐴&6 > 	0, then we should have ℎ& = ℎ6, and if 𝐴&6 < 	0, then ℎ& 	=
	−ℎ6. However, the information in 𝐴 may be conflicting when considering transitivity: Consider 
three sites 𝑗, 𝑘, 𝑙 with 𝐴&6 > 0, 𝐴6F > 0, 𝐴&F < 0. Thus, decisions need to be made on how to resolve 
conflicting information in the evidence matrix 𝐴. 
 
One possible formulation of the problem is as follows: Given the 𝑀 ×𝑀 matrix 𝐴, we seek ℎ ∈
{−1,1}3	to 

maximise 𝐹(ℎ) ∶= ∑ ℎ&𝐴&6ℎ6&H6 = ℎ9𝐴ℎ. 
This formulation encourages ℎ&  and ℎ6	to take the same sign if 𝐴&6 > 0 and different signs if 𝐴&6 <
0. This maximization problem is equivalent to finding an exact ground state for a spin glass in physics 
and is known to be NP-hard in general and can be cast as a minimum cut problem on a graph induced 
by 𝐴 (Tourdot and Zhang 2019). Here we propose heuristic algorithms that make use of known 
properties of the evidence matrix 𝐴 (potentially proximity-scaled; see below) and evaluate them 
against a dataset with a known correct solution. 
 
Before we state two such algorithms, let us first relax our notion of what we accept as a solution. 
Above, we defined a (fully resolved) haplotype as a vector ℎ ∈ {−1,1}3with ℎ& = 1 if the reference 
allele is found at site 𝑗 and ℎ& = 	−1for the alternative allele. However, the available data may not 
be sufficient to fully resolve the haplotype. Instead of guessing, we allow partial solutions ("blocks") 
as follows. Let 𝒥 ∶= 	 (𝐽=, 𝐽K, … , 𝐽M) be a partition (disjoint union) of {1, … ,𝑀}into 𝐾 blocks. Then a 
solution of the GAM haplotype reconstruction problem for input matrix 𝐷 with partition 𝒥 is a 
collection of 𝐾 binary vectors ℎ= ∈ {−1,1}OP, … , ℎM ∈ {−1,1}OQ. Each of the 𝐾 blocks is solved 
independently, and no statement is made about the connection between these blocks. The blocks 
are often intervals, but may be arbitrary subsets of all sites, especially for GAM data. Obviously, 
solutions with fewer independent blocks are more desirable. 

2.2 Haplotype reconstruction algorithms 

2.2.1 Neighbour phasing 
We first consider a baseline phasing strategy that leverages the most reliable short-range haplotype 
information on neighbouring SNVs only ("neighbour phasing"). In the above notation, we only 
consider the first off-diagonal of 𝐴, i.e., 𝐴&,(&R=)for 𝑗 = 1,… ,𝑀. Essentially, this resolves possible 
conflicting information by ignoring a large fraction of the available data, and only considering a 
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single path between any two sites 𝑗 ≤ 𝑘: 𝑗 → 𝑗 + 1 → ⋯ → 𝑘. The reconstructed haplotype starts 
(arbitrarily) with the reference allele, thus ℎ= = 1. Once ℎ&  is determined, we set ℎ&R=: =
ℎ& ⋅sign(𝐴&,(,&R=)), i.e. we stay or flip according to the sign of 𝐴&,(&R=). In case of a tie or when SNV j 
and j+1 are never co-observed in the same NuP (𝐴&,(&R=) = 0), we start a new independent block 
where ℎ&R= = 1. Solutions produced by neighbour phasing consist of blocks that are intervals. The 
resolved blocks can be expected to be correct with high probability, but also short, and therefore of 
limited use. 

2.2.2 Graph phasing with optional proximity scaling 
We extend the considered local proximity of SNVs from immediate neighbours to larger genomic 
windows using a graph-based approach (Figure 1). To improve efficiency, each chromosome is 
segmented into windows of a fixed number 𝐿	of SNV sites with half a window size overlap. To 
process a window, we restrict the 𝑁 ×𝑀	input matrix 𝐷 = (𝐷%&) to the window's sites and only 
consider the reduced 𝑁 × 𝐿	matrix 𝐷 and the derived 𝐿 × 𝐿 evidence matrix 𝐴 = (𝐴&6). 
 
As we assume that the reliability of phasing information within a NuP decreases with genomic 
distance, we include an option to scale the information in 𝐴 element-wise by a weight matrix 𝑊 =
(𝑊&6), where 𝑊&6	depends on the genomic distance 𝑑&6 between sites 𝑗 and 𝑘. We use a simple 
exponential decay model, where 𝑊&6 = 𝐶 ⋅𝑒𝑥𝑝 (−𝜆	𝑑&6)for 𝑑&6 in a certain range [𝐷`%a, 𝐷`bc], and 
𝑊&6 = 1 for 𝑑&6 < 𝐷`%a and 𝑊&6 = 0for 𝑑&6 > 𝐷`bc. The choice of appropriate parameters 𝐶 >
0, 𝜆 > 0 and 0 ≤ 𝐷`%a < 𝐷`bc is discussed below. In the following, 𝐴 represents the proximity-
scaled evidence matrix (𝐴&6 ← 𝑊&6 ⋅ 𝐴&6). 
 
At this point, there are four potential reasons for 𝐴&6 = 0: First, sites 𝑗 and 𝑘 may never co-occur in 
any NuP. Second, they may never be considered in the same window of 𝐿 sites. Third, their genomic 
distance may be larger than 𝐷`bc. Fourth, an equal number of observations of stay and flip relations 
may be encountered between sites 𝑗and 𝑘.  
 
The non-zero entries in 𝐴 induce an undirected weighted graph. Its 𝐿 vertices are the sites of the 
current window. An edge between sites 𝑗 and 𝑘 exists with weight 𝐴&6 if 𝐴&6 	≠ 	0. Two sites in the 
same connected component of this graph are typically connected by many paths. Consider a single 
arbitrary path between sites 𝑗 and 𝑘. The number of negative-weighted edges along the path 
determines the haplotype assignment: if the number is even, then ℎ6 = ℎ&;	if it is odd, thenℎ6 =
−ℎ&. Different paths between the two sites can be conflicting in their haplotype assignment. 
However, if the graph is reduced to a tree (or forest in case of more than one connected 
component), there is a unique path between each pair of sites (in the same connected component). 
Because the absolute values |𝐴&6| indicate strength of direct evidence for the flip or stay operation 
between sites 𝑗and 𝑘, we compute a maximum spanning tree (MaxST) of each connected 
component based on absolute edge weights |𝐴&6|. This is done by Kruskal's algorithm, which is 
typically used to compute a minimum spanning tree in 𝑂(𝑚	 𝑙𝑜𝑔 𝑛) time for a graph with 𝑚 edges 
and 𝑛 vertices, but can also be used to find a MaxST by negating the weights. Recall that the problem 
is solved on (potentially dense graphs of) windows, so the required running time is 𝑂(𝐿K 𝑙𝑜𝑔 𝐿)for 
each window. The MaxST approach has the property that the resulting path between any two sites 
𝑗 and 𝑘 maximises the minimum weight of the path's edges among all possible paths between 𝑗 and 
𝑘 (Hu 1961), so we construct the graph by maximising the weakest evidence link between each pair 
of sites of the window, which appears to be a reasonable heuristic for the given problem. The 
computed MaxST then determines the haplotypes (or set of haplotype blocks in case of a forest of 
MaxSTs) for the current window. 
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To infer haplotypes across the whole chromosome, the MaxSTs of overlapping windows must then 
be joined into a chromosome-wide tree. For this, we join the (overlapping) MaxSTs of all windows 
into a new graph consisting of all 𝑀 SNV sites as nodes and the union of edges of all MaxSTs. Because 
each node is in at most two MaxSTs, the number of edges in the union is bounded by 2(𝑀 − 1). For 
this sparse graph, we again determine a MaxST (if necessary, on each connected component 
separately) in 𝑂(𝑀	 𝑙𝑜𝑔 𝑀)	time to obtain a unique path between any two connected sites. 
 
For the output, each connected component defines an independent block. We arbitrarily set the 
haplotype state of leftmost SNV site ℎ= (with smallest genomic coordinate) in each block to ℎ=:= 	1 
(alternative allele), and compute the other states ℎ&  according to the number of negative-weighted 
edges on the unique MaxST path between the first site and 𝑗. 
 
Including phasing information from non-adjacent SNV pairs will improve completeness and yield 
larger, potentially chromosome-spanning haplotype blocks. In the reconstructed haplotypes of the 
graph phasing approach, blocks can be nested. The inclusion of phasing information from more 
distant SNV pairs might compromise the overall accuracy of the results, however the proximity 
scaling is expected to keep the introduction of misleading information to a minimum.  

 
 

 
Figure 1: Schematic overview of the graph phasing algorithm. The location of alternative alleles 
of heterozygous SNVs on the two parental chromosomes describes the true haplotypes (top). NuPs 
1-4 are sparse local samples of the true haplotype structure. In overlapping windows, graphs of co-
observed SNVs are built over all NuPs. Edges are of either stay (orange) or flip (black) type and 
edge weights correspond to the co-observation frequency (line width) and are optionally proximity-
scaled. MaxSTs are calculated per window and combined to yield a chromosome-spanning MaxST. 
Finally, the chromosome-spanning MaxST is used to assign alternative alleles to the final 
reconstructed haplotypes. 
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2.3 Performance measures 
The overall quality of reconstructed haplotypes depends on both the completeness of the 
reconstructed haplotype blocks as well as the phasing accuracy of the SNVs contained. In addition 
to the total proportion of heterozygous SNVs that have been phased, metrics of completeness and 
contiguity assess the genomic distances spanned by the reconstructed haplotype blocks. Metrics 
proposed for this purpose include the N50 (Lander et al. 2001) , S50 (Lo et al. 2011) and AN50 (Lo et 
al. 2011) metrics. Briefly, in N50, the phased haplotype blocks are sorted by decreasing span (in base 
pairs; bp), and the span of the block at which 50% of variants are phased is determined. Analogously, 
the S50 metric uses the number of SNVs phased within the blocks instead of the genomic span in bp 
to determine the 50% phased threshold, thus accounting for species-specific SNV densities in 
genomes. To enable comparisons with previous investigations into the F123 cell line (Selvaraj et al. 
2013) we report N50 as percent of the phasable genome (range between leftmost SNV and 
rightmost SNV per chromosome) and S50 as percent of phasable variants (number of input variants). 
We additionally report the adjusted N50 (AN50), which corrects the N50 measure for cases where 
smaller isolated haplotype blocks are contained within blocks spanning them, a typical scenario in 
graph-based phasing algorithms. Thus the genomic span is adjusted by the fraction of SNV phased 
in the range of the respective block. 
 
To assess the accuracy of the reconstructed haplotypes we compare GAMIBHEAR estimates with 
the haplotypes of the F123 mouse embryonic stem cell (mESC) line obtained from whole-genome 
sequencing of the parental mouse strains (see Supplementary Note S1 ‘Benchmark genome (F123)’). 
Two measures are considered: First, the Switch Error Rate (SER), defined as the proportion of 
adjacent variant pairs that were phased incorrectly out of all phased variant pairs. The SER metric 
can be adjusted for highly fragmented results by introducing a penalty of 0.5 switch errors per 
unphased transition of neighbouring SNVs. The second measure is the global haplotype agreement 
calculated by direct comparison of the reconstructed and true haplotypes (i.e. alt-ref configurations) 
within haplotype blocks. SER is a more lenient metric compared to global haplotype accuracy, as a 
single switch error in the middle of a haplotype block will lead to half the haplotype block being 
assigned to the opposite haplotype. 
 
To evaluate how the quality of the reconstructed haplotypes depends on the number of available 
NuPs, we reconstructed haplotypes using different sample sizes. In 10 iterations each, increasing 
numbers of NuPs were randomly sampled from the full dataset and haplotypes were reconstructed 
from the subsampled datasets.    
 
All metrics are calculated per chromosome and the mean value and standard deviation over all 
chromosomes are reported. 

2.4 GAMIBHEAR implementation  
The presented haplotype reconstruction algorithms are implemented in the R package GAMIBHEAR. 
The package includes functions for parsing and cleaning of called variants from GAM experiments 
and different output functions in addition to the two phasing algorithms (neighbour phasing and 
graph phasing with optional proximity scaling). The user can visualise, process and compare 
intermediate results, restrict the analysis to target chromosomes or specific genomic regions, and 
apply custom filters such as individual quality cut-offs. The basic and proximity-scaled graph phasing 
algorithm is time and memory efficiently implemented and parallelised to improve performance. 
GAMIBHEAR is open source and freely available under the GPL-2 license at 
https://bitbucket.org/schwarzlab/gamibhear. 
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3 Results 

3.1 Dataset Statistics 
Benchmark genome (F123). The F123 mouse embryonic stem cell line was derived from a hybrid F1 
mouse resulting from the cross of the two inbred, homozygous mouse strains CAST (Mus musculus 
castaneus) and J129 (Mus musculus domesticus J129). The parental mouse strains are both fully 
sequenced, their exclusively homozygous genomic variants with respect to the reference mouse 
genome mm10, which was derived from the mouse strain C57BL/6, are known. The F1 generation 
resulting from the cross of CAST and J129 is thus heterozygous at al loci for which their parents have 
different alleles. Their haplotypes are known, making them an ideal model for benchmarking 
phasing algorithms. Relative to the mouse reference genome mm10, CAST and J129 show 
18,892,144 and 4,778,766 germline variants respectively, in concordance with their estimated 
evolutionary distance from C57BL/6, 371,000 ± 91,000 years (Goios et al. 2007) and approximately 
100 years (Simpson et al. 1997), respectively. After exclusion of 2,200,819 overlapping SNV positions 
and 1,119,044 SNVs located in genomic regions of low mappability, the F123 reference set contains 
18,150,228 variants in total, all of which are heterozygous due to inbreeding of the parental strains. 
This yields an average SNV density of 1 SNV per 132bp, with a median genomic distance of 56 bp.  
 
Nuclear profiles. We obtained 1261 GAM NuPs of the F123 mESC cell line (4D Nucleome Consortium 
data portal accession number 4DNBSTO156AZ), out of which 1123 passed quality screening (see 
Supplementary Note S2). 
We extracted on average 305,377 reads from each NuP, covering 0.171% (± 0.167) of the 18,150,228 
heterozygous SNVs per nuclear slice (Figure 2A); exemplary data of genomic regions captured in a 
single NuP is shown in Figure 2B. Out of all F123 SNVs, 11,741,055 (64.69%) were observed at least 
once across all 1123 NuPs and 7,605,321 SNVs (41.9%) were observed at least twice (Figure 2C). Due 
to this sparsity and the fact that homologous chromosome pairs occupy distinct chromosomal 
territories (Khalil et al. 2007), 96.54% of SNV observations showed counts from only one parental 
allele within one sample. Thus, we removed observed variants with read counts from both parental 
alleles without substantial loss of information. Since the slicing of nuclei in the GAM experiments is 
a random process, a balanced observation ratio of alternative and reference alleles of heterozygous 
SNVs is expected. To minimise possibly confounding observations, statistically mono-allelic 
observations of SNVs were excluded from the dataset (binomial test against 0.5, p-values corrected 
for multiple testing). 

3.2 Exponential proximity scaling 
Our method includes the option of exponentially downweighting evidence information 𝐴&6 with 
increasing genomic distance (see Section 2.2.2). This raises the question whether indeed alleles of 
any two SNVs captured in a nuclear slice are more likely to originate from the same parental copy 
and whether this probability decreases with increasing genomic distance of the co-observed alleles.  
With the benchmark dataset with known haplotypes available, we were able to examine the 
empirical probability 𝑝 of two alleles coming from the same haplotype based on their genomic 
distance 𝑑 and fit an exponential function 𝑝 = 𝐶 ⋅ 𝑒op⋅(qorstu) using non-linear least squares. For 
this model we only considered pairs of sites within the interval [𝐷`%a, 𝐷`bc]= [1 bp, 10 Mbp], where 
the decay in phasing information is most pronounced (Figure 2D). For pairs outside that distance 
range, which can be individually assigned by the user, probabilities 1 and 0 were assumed, 
respectively. Parameter 𝐶 = 1 then describes the co-observation probability at a genomic distance 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.01.30.927061doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.927061
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

of 1 bp with an exponential decay parameter of 𝜆	 = 	3.173 ⋅ 10ox. The simple exponential 
dependency well describes the empirical distribution (Figure 2D) and thus appears to be a good 
model for the reliability of the raw evidence as a function of genomic distance. In the following, we 
evaluate our graph phasing approach with and without proximity scaling. 
 
 

 
 
Figure 2: GAM captures local phasing information: A) Histogram of the number of observed 
SNVs per NuP in the F123 dataset (fraction of all SNVs at top, mean = 0.171%, red line). B) Example 
of read counts supporting the CAST (orange, downwards) and J129 (red, upwards) alleles in a single 
NuP on chromosome 19, visualising the sparsity of GAM data. Inset schematises physical capturing 
of respective genomic regions in a slice (grey area) by cryosectioning in a GAM experiment. C) 
Cumulative fraction of SNV observation frequencies. 64.69% of SNVs are observed at least once, 
41.9% of SNVs are observed at least twice across all NuPs. D) The fraction of correct phasing 
information decreases exponentially with increasing genomic distance of observed SNV pairs. The 
fit of the exponential curve to the fraction of correct phasing information of SNV pairs with genomic 
distance between 1 bp and 10 Mbp is shown in red. The inset shows the decrease of correct phasing 
information on a logarithmic scale. 

3.3 Performance of GAMIBHEAR 

3.3.1 High quality haplotype reconstruction from GAM samples 
We evaluated the quality of the haplotypes reconstructed with GAMIBHEAR in terms of 
completeness and accuracy using the true haplotypes of the F123 cell line, which were generated 
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from the known genotypes of the parental strains (see Supplementary Note S1). A summary of the 
following scores can be found in Table 1. 
 
Neighbour phasing performance. The neighbour phasing algorithm was built to exploit the most 
reliable short-range haplotype information of neighbouring co-observed SNVs, at the expense of 
completeness. The low switch error rate of 0.76% (±0.13%) (Figure 3A) of the haplotypes 
reconstructed with the strict neighbour phasing algorithm demonstrates strong local phasing 
information in GAM NuPs. However, adjusting the SER by penalising each unphased transition 
between adjacent SNVs by 0.5 switch errors (Figure 3A) results in a mean adjusted SER of 6.61% 
(±0.18%). Due to the sparsity of the GAM data (Figure 2B), neighbour phasing completeness is low 
(Figure 3C) and neighbour phasing cannot generate chromosome-spanning haplotypes. Although 
95.94% (±0.25%) of input SNVs were phased into haplotypes blocks of size 2 or larger, due to the 
large number of gaps between blocks only 83.02% (±0.58%) of possible transitions between 
neighbouring SNV pairs could be phased (Figure 3D). Half of the SNVs were phased in blocks 
connecting less than 11 SNVs (± 1) (S50) and spanning less than 742 bp (±41bp) (N50, Figure 3C). 
Since this algorithm does not allow for blocks spanning unphased variants or nested blocks, N50 
does not need to be adjusted. As each small block can be placed arbitrarily on either of the two 
haplotypes, a global measure of haplotype accuracy is uninformative and we thus omitted 
neighbour phasing from the global accuracy measure (Figure 3B).  

 
 
Figure 3: Quality of reconstructed haplotypes using the neighbour phasing algorithm (orange) 
and the basic (light blue) and proximity-scaled (blue) graph phasing algorithm. Haplotypes were 
predicted from an increasing number of included NuPs, with 10 iterations of random sampling of 
NuPs each. Lines show the median value, shaded areas indicate the interquartile range of results 
from 10 iterations of 19 mouse autosomes. A) Switch Error Rate (SER): Due to the large number 
of unconnected phased blocks, results from neighbour phasing show very low SER even with low 
sample size (dashed orange line). Adjusting the SER by introducing a penalty for unphased 
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transitions shows the impact of low completeness on neighbour phasing performance (solid orange 
line). Graph phasing performance improves with the number of NuPs considered and the proximity-
scaled graph phasing shows lowest SER overall (dark blue line). Lines showing SER and adjusted 
SER overlap due to the small number of unconnected phasing blocks resulting from graph phasing. 
B) Global Accuracy: Graph phasing builds one main chromosome-spanning block which is 
susceptible to single local phasing errors. Results substantially improve with increasing sample size 
as more evidence for the correct haplotype structure is collected and proximity scaling improves 
performance overall. Neighbour phasing results are not shown due to the unknown relationship 
between the large number of unconnected blocks. C) Phasing completeness (adjusted N50, 
AN50): Graph phasing shows high completeness even for a low number of NuPs (dark blue), which 
is independent of proximity scaling. Almost all SNVs are phased within one major, chromosome-
spanning haplotype block. Neighbour phasing yields a large number of small fragmented blocks 
(median 10 SNVs) with low overall completeness (orange). D) Percent of phased transitions. All 
pairwise transitions between neighbouring SNVs are considered. Between 14.5% and 62.2% of all 
transitions in the F123 genome were observed. Graph phasing phases 99.96% of all observed 
transitions, whereby neighbour phasing only phases 83.02% of all observed transitions. 
 
Graph phasing performance. The additional higher-order phasing information considered by the 
graph phasing algorithm substantially improved the completeness of the reconstructed haplotypes 
independent of proximity scaling (Figure 3C). 99.97% (±0.004%) of input SNVs were phased into 
haplotype blocks (Figure 3D), 99.94% (±0.01%) of them into one main haplotype block (S50), 
spanning more than 99.99% (± 0.00003%) of the phasable genome (N50). Adjusting the span of the 
largest block by the fraction of phased SNVs yields an AN50 value of 99.94% (±0.010%) (Figure 3C). 
The graph phasing algorithm thus reconstructs dense chromosome-spanning haplotypes (Table 1). 
  
Considering larger SNV windows increases the risk of integrating incorrect phasing information from 
co-observed SNV pairs located on homologous chromosome copies. Consequently, the accuracy of 
reconstructed haplotypes is lower than with strict neighbour phasing. The basic graph phasing 
approach yielded reconstructed haplotypes with a mean 95.14 % (±0.56%) and median 95.20% (IQR: 
25.66%) global accuracy (Figure 3B) and 5.42% (±0.50%) switch errors (Figure 3A). To improve local 
accuracy while maintaining completeness we applied proximity scaling to the graph phasing 
approach. Proximity scaling increased global accuracy in general (median: 97.98%, IQR: 2.26%, 
Figure 3B), but the high standard deviation of ±8.45% at a mean of 94.29% indicates the presence 
of outliers. When a switch error occurs within a haplotype block, the assignment of subsequent 
alleles is inverted, reducing global accuracy while maintaining SER. The low occurrence of switch 
errors at a rate of 2.09% (±0.26%) demonstrates the improved performance compared to the basic 
graph phasing algorithm (Figure 3A). Thus proximity-scaled graph phasing shows best performance 
overall and results in accurate, chromosome-spanning haplotypes. 
 
Table 1: Comparison of quality measures for the neighbour phasing algorithm, basic and proximity-
scaled graph phasing algorithm for the full dataset. The mean of per-chromosome values is 
reported, standard deviation in brackets.  

 Neighbour phasing Graph phasing  
(basic) 

Graph phasing 
(proximity-scaled) 

% phased SNVs 95.94 % (±0.25) 99.97 % (±0.004) 

S50 10.84 SNVs (±0.5) 617,561.5 SNVs / 99.94 % (±0.010) 

N50 741.74 bp (±40.54) 126,454,374 bp / > 99.99 % (±0.00003) 
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AN50 -  126,374,367 bp / 99.94 % (±0.010) 

Global accuracy 99.00 % (±0.15) 95.14 % (±0.56) 94.29 % (±8.45) 

SER 0.76 % (±0.13) 5.42 % (±0.50) 2.09 % (±0.26) 

3.3.2 Performance at lower SNV density 
The F123 mESC cell line has a relatively high SNV density (8 SNVs per 1kbp) compared to humans 
(approximately 1-1.5 SNVs per 1kbp, (1000 Genomes Project Consortium et al. 2015)). To show the 
effect of SNV density on the quality of haplotype reconstructions, we randomly subsampled the 
F123 SNV set to resemble human SNV density and evaluated the resulting haplotypes. In order to 
obtain an average SNV density of 1 SNV per 1kb, we retained 2,462,745 (13.57%) out of the known 
18,150,228 F123 SNVs in the 2.46 billion bp mm10 mouse reference genome. The distribution of 
SNVs along the parental chromosomes remained constant (full SNV set: 87.11% CAST, 12.89% J129; 
subsampled: 87.14% CAST, 12.86% J129). Variants were randomly subsampled from the true 
parental haplotypes irrespective of their observation in the GAM NuPs. Similar to the full dataset 
(64.69% of known SNVs observed), 64.66% of all SNVs were observed in the subsampled dataset. 
 
We explored accuracy and completeness of the best-performing proximity-scaled graph phasing 
algorithm on the subsampled dataset. All parameters, including the proximity scaling parameters, 
remained unchanged for the haplotype reconstruction. Despite the reduced SNV density and thus 
increased genomic distance between co-observed SNVs, GAMIBHEAR reconstructed accurate, 
dense, chromosome-spanning haplotypes: 99.96% of input SNVs were phased into haplotype blocks 
of minimum size 2, on average 99.95% (± 0.0096%) of those were phased in the main, chromosome-
spanning haplotype block, covering 100% (± 0.00%) of the phasable genome.  
The mean global accuracy of 87.46% is still fairly high, the high standard deviation of ± 15.21% 
indicates a large span in the results. The median global accuracy of 96.64% and the switch error rate 
of 4.84% (± 0.6%) show that the quality of the reconstructed haplotypes in a subsampled dataset is 
only slightly different from that of the haplotypes reconstructed from the full dataset, indicating 
that the algorithmic approach is largely independent of SNV density and thus applicable to human 
data. 

3.3.3 Time and Memory usage  
Running GAMIBHEAR on the full 1123 NuP GAM dataset and phasing 11,741,055 heterozygous 
variants took on average 9.8 min elapsed time per chromosome using the neighbour phasing 
algorithm, 19.1 min using the basic and 20.4 min using the proximity-scaled graph phasing algorithm 
with a set window size of 20k SNVs on a desktop PC with 64GB of RAM without parallelisation. The 
neighbour and graph phasing algorithms required on average 7.6GB and 30GB per chromosome, 
respectively. Reducing or increasing the window size only marginally affected the performance of 
the methods in terms of completeness or accuracy; however, it did show a definite impact on the 
runtime and memory usage and changes to the default parameters should be made with care in 
order to assure successful completion of calculations. Reconstructing haplotypes from the dataset 
subsampled to human SNV density using the proximity-scaled graph phasing algorithm in sequential 
mode took 2.5 min on average per chromosome.  
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3.4 Comparison with WhatsHap 
We explored if the spatial phasing information from GAM data could be readily transformed for the 
use in existing algorithms. One approach is to combine the reads of captured genomic regions of 
single NuPs into long, chromosome-spanning pseudo reads to use with the long-read MEC solver 
WhatsHap (Patterson et al. 2015). This transformation could possibly deliver the phasing 
information captured with GAM experiments. WhatsHap tackles the NP-hard minimum error 
correction (MEC) problem with a fixed parameter tractable (FPT) approach, with its only parameter 
being the read coverage of SNVs. The algorithm is limited by a maximum coverage of 25 reads per 
SNV. Upon exceeding this threshold, the most informative reads are selected using a heuristic. Since 
internally WhatsHap uses a read by SNV matrix representation of genomic data, we directly 
transformed the GAM data for chromosome 1 into a 1105 pseudo reads by 974,770 heterozygous 
variant matrix. Within chromosome 1, 0.0074% of SNVs exceeded the upper coverage limit of 25 
reads, forcing WhatsHap to select the most informative reads to meet the maximum read coverage 
constraint. That selection process led WhatsHap to discard the majority of reads (72 out of 1105 
input reads remained), which consequently led to a loss of the majority of SNVs captured: only 
14,400 SNVs (< 1.5% of all input SNVs) were kept. Out of these, 14,395 SNVs were phased and 5 
SNVs showed equal evidence for both haplotypes. The reconstructed haplotype was not 
chromosome-spanning. The largest block contained approximately half of the phased variants (7367 
SNVs, 51.16%). Accuracy was nonetheless high with 94.80% of considered variants phased correctly 
(compared to a global accuracy of 98.03% using GAMIBHEAR on chromosome 1) and a low switch 
error of 2.54% (GAMIBHEAR: 1.98%). However, due to the discard of over 98% of observed SNVs, 
the phasing results of WhatsHap on transformed GAM data are not practical. 
 

4 Discussion 
The phasing problem has been extensively studied, and different approaches have been proposed 
to solve it. These approaches are typically specific to and optimised for certain experimental designs 
and datatypes, such as Hi-C (Edge, Bafna, and Bansal 2017) and long reads (Patterson et al. 2015). 
Although both GAM and Hi-C capture the spatial proximity of SNVs in the nucleus, GAM data shows 
fundamentally different characteristics which makes existing methods ill-suited for GAM data. In Hi-
C experiments, chimeric fragments are generated with parts originating from sequentially distal but 
spatially proximal functionally interacting genomic regions. When both parts of a chimeric fragment 
span at least one SNV each, the fragment provides long-range pairwise phasing information, 
because interactions between homologous chromosome pairs (h-trans errors) are captured rarely 
(Selvaraj et al. 2013)) although they do occur as frequently as intra-chromosomal interactions, but 
at further spatial distance and are thus not as efficiently captured in Hi-C experiments (Maass et al. 
2018). In contrast, in GAM, while spatially close genomic regions are more likely to be captured 
within the same nuclear slice, GAM almost always captures fragments of both parental copies of a 
chromosome. Hence, the combination of all individual SNV-spanning reads of a NuP provides 
potential phasing information, albeit locally constrained. This property also separates GAM NuPs 
from long reads, where multiple SNVs can be captured by a single read and these SNVs are then 
guaranteed to have originated from the same parental chromosomal copy. To ascertain these 
differences we tested GAM data on the long-read MEC solver WhatsHap. While initial results were 
not convincing, we believe the results could be improved, for example by breaking the NuP into 
multiple reads of consecutive captured genomic regions using a distance threshold between 
captured SNVs. With GAMIBHEAR we implemented a phasing strategy based on GAM data 
characteristics and directly applicable to GAM data in the form of the presented neighbour and 
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graph phasing approaches. We did not attempt to transform GAM data for use with HapCut2, as it 
has been well known and stated by the authors that the performance of HapCut2 strongly depends 
on the correct error model being used and no such model exists for GAM data (Edge, Bafna, and 
Bansal 2017). 
 
In comparison to Selvaraj et al. (2013), who reconstructed F123 haplotypes using HaploSeq, a 
phasing approach which combines proximity ligation experiments with the HapCUT algorithm, the 
chromosome-spanning largest blocks resulting from GAMIBHEAR and HaploSeq both span over 
99.99% of the phasable genome. However, the major block from GAMIBHEAR’s proximity-scaled 
graph-phasing algorithm includes >99.9% of observed variants compared to about 95% of observed 
variants using HaploSeq, an improvement due to the large genomic span covered by GAM NuPs. 
Although the graph phasing algorithm generates highly complete results from its input data even at 
low coverage, a drawback of the presented method is in the sparsity of the data itself. While in the 
Hi-C data of Selvaraj et al. (2013) 99.6% of variants were covered by at least one read, in the GAM 
data set only 64.69 % of variants are captured. While this creates no challenge in the generation and 
analysis of highly accurate and informative 3D chromatin contact maps from GAM data, it does 
affect the overall completeness of reconstructed haplotypes. Co-phasing of sequentially close by 
but uncovered SNVs or incorporation of statistical phasing provide means of expanding the 
reconstructed haplotypes by uncovered SNVs.   
 
By combining a graph-based approach with a GAM-specific probabilistic model of chromosome 
capture we achieve high accuracy both in our global and local assessments of phasing performance. 
Within this probabilistic model we observed a stark decline in phasing information within 10 Mb 
distance from the source SNV. This decline is likely due to the formation of highly interacting 
genomic regions and corresponding organisational chromatin structures such as self-interacting 
TADs (Mb scale) and higher order metaTADs which form depending on the transcriptional activity 
of the genomic region (Razin et al. 2016; Fraser et al. 2015; Ulianov et al. 2016). 
Our proximity scaling model improves the haplotype reconstruction accuracy by not only assigning 
importance to variant relations based on the frequency of their observation, but also by taking 
genomic distances between variants into account. The MaxST obtained through this proximity-
scaled weighted graph reveals the most likely haplotype by discarding potential noise and assigning 
more importance to more likely co-observations of SNVs within neighbouring genomic regions. This 
approach runs the theoretical risk of breaking phasing blocks in situations where the only connecting 
variants were distant in genomic coordinates. In our analysis, no phasing blocks were broken due to 
proximity scaling of edge weights.  
Relevant allele-specific research of single genes or small genomic regions describes the primary use 
case of the highly accurate neighbour-phasing. This approach is most suitable if the major interest 
concentrates on local phasing results such as when disease causing genes with disturbed expression 
are in focus and no chromosome-spanning haplotypes are of need.  
 
While GAMIBHEAR is ultimately intended to be used on human data, no GAM dataset of sufficient 
size is yet available on human samples. In the meantime, the F123 cell line is well-suited to 
accurately measure phasing performance due to its known haplotype structure before adapting the 
algorithm to the characteristics of human genomes. Application of our proximity-scaled graph 
phasing algorithm on F123 GAM data downsampled to human SNV density suggests that the 
reconstruction of haplotypes is suitable and well applicable for the use in human data as well. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.01.30.927061doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.927061
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

5 Conclusion 
Understanding the effect of genetic variation on chromatin conformation and gene regulation is a 
key question in genomics research. Large consortia, such as the 4D Nucleome project (Dekker et al. 
2017), are now bundling resources to address open questions in this field and thus allele-specific 
analyses of chromatin conformation and other sources of genomic variation are moving increasingly 
into the spotlight (Cavalli et al. 2019). The recently established GAM method (Beagrie et al. 2017) 
offers a unique opportunity towards high-resolution allele-specific analyses of chromatin contacts 
in humans, and GAMIBHEAR provides the necessary algorithmic advances towards generating highly 
accurate, chromosome-spanning haplotypes from GAM data on human samples in the future. 
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Supplement 

S1 Benchmark Genome 
We use the hybrid mouse embryonic stem cell line (clone F123) as a benchmark system for assessing 
the quality of reconstructed haplotypes from GAM data. The F123 line is derived from the F1 
generation of two fully inbred homozygous mouse strains: Mus musculus castaneus (CAST) and 
129S4/SvJae (J129) (Gribnau et al. 2003). With the haplotype structure thus known, this cell line 
serves as the benchmark for all downstream experiments and analyses. 
 
Whole-genome sequencing (WGS) data of CAST and J129 were downloaded from the European 
Nucleotide Archive (accession number ERP000042) and the Sequence Read Archive (accession 
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number SRX037820), respectively. To determine the haplotypes of the F123 line, WGS reads were 
trimmed using Cutadapt (Martin 2011) and mapped to the mouse reference genome mm10 using 
BWA (Heng Li and Durbin 2009). SNVs were identified using bcftools (Heng Li 2011) and SNVs 
covered by <5 reads and quality <30 were excluded.  
 

S2 GAM dataset, pre-processing and quality control 
1261 individual GAM NuPs of the F123 line were obtained from the 4D Nucleome Consortium data 
portal under accession number 4DNBSTO156AZ. The F123 SNVs were N-masked in the mm10 
reference genome and reads were mapped using Bowtie2 (Langmead and Salzberg 2012). Duplicate 
reads were removed using samtools (H. Li et al. 2009). After mapping, all BAM files and WGS results 
underwent standard quality control using FastQC (Andrews 2010) and multiQC (Ewels et al. 2016). 
Reads were trimmed using BamUtil (Jun et al. 2015) with function trimBam where necessary. 
 
For quality assessment of each sample, the genome was split into fixed windows of size 50kb. For 
each NuP 𝑖 and each window 𝑗, the number of reads 𝑟%&and number of nucleotides covered 𝑐%&  were 
determined using bedtools (Quinlan and Hall, 2010). Windows were then classified as positive or 
negative based on 𝑟%&and 𝑐%&as follows: From the coverage 𝑐%∙of all windows for NuP𝑖 the empirical 
nucleotide coverage distribution 𝑃%  was computed. From 𝑃%, the minimum coverage percentile 
𝑀𝐶𝑃%was chosen such that every window contains three or more reads. The average 𝑀𝐶𝑃	across all 
NuPs then determined the sample-specific nucleotide coverage thresholds 𝑡%  (in bp) for each NuP. 
Windows 𝑤%&were called positive iff 𝑐%& > 𝑡%  , i.e. if the number of nucleotides covered in each 
window was greater than the sample-specific threshold and negative otherwise. Positive windows 
flanked by negative windows on each side were defined as orphan windows. 
NuPs selected for further analysis had < 60% orphan windows and > 20,000 uniquely mapped reads. 
1123 NuPs (89%) passed these quality thresholds.  
Reads were then counted at known heterozygous SNV positions using samtools mpileup (H. Li et al. 
2009). Because of the frequently low coverage from independent (i.e. non-duplicate) reads at most 
positions (30% of observed SNVs are covered by 2 or less reads, 50% by 5 or less reads), we counted 
an allele as present if it was observed in at least one read at the examined position. 
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