

1 **A footprint of plant eco-geographic adaptation on the composition of the barley
2 rhizosphere bacterial microbiota.**

3

4 Rodrigo Alegria Terrazas¹, Katharin Balbirnie-Cumming¹, Jenny Morris², Pete E Hedley²,
5 Joanne Russell², Eric Paterson³, Elizabeth M Baggs⁴, Eyal Fridman⁵ and Davide
6 Bulgarelli^{1*}

7 ¹University of Dundee, Plant Sciences, School of Life Sciences, Dundee, United Kingdom;

8 ²Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom;

9 ³Ecological Sciences, The James Hutton Institute, Aberdeen, United Kingdom;

10 ⁴Global Academy of Agriculture and Food Security, University of Edinburgh, Royal (Dick)
11 School of Veterinary Studies, Midlothian, United Kingdom.

12 ⁵Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani
13 Center, Bet Dagan, Israel.

14

15

16 ***Correspondence:**

17 Davide Bulgarelli

18 d.bulgarelli@dundee.ac.uk

19

20

21 **Abstract**

22 The microbiota thriving in the rhizosphere, the thin layer of soil surrounding plant roots,
23 plays a critical role in plant's adaptation to the environment. Domestication and breeding
24 selection have progressively differentiated the microbiota of modern crops from the ones
25 of their wild ancestors. However, the impact of eco-geographical constraints faced by
26 domesticated plants and crop wild relatives on recruitment and maintenance of the
27 rhizosphere microbiota remains to be fully elucidated. Here we performed a comparative
28 16S rRNA gene survey of the rhizosphere of 4 domesticated and 20 wild barley (*Hordeum*
29 *vulgare*) genotypes grown in an agricultural soil under controlled environmental conditions.
30 We demonstrated the enrichment of individual bacteria mirrored the distinct eco-
31 geographical constraints faced by their host plants. Unexpectedly, Elite varieties exerted a
32 stronger genotype effect on the rhizosphere microbiota when compared with wild barley
33 genotypes adapted to desert environments with a preferential enrichment for members of
34 Actinobacteria. Finally, in wild barley genotypes, we discovered a limited, but significant,
35 correlation between microbiota diversity and host genomic diversity. Our results revealed a
36 footprint of the host's adaptation to the environment on the assembly of the bacteria
37 thriving at the root-soil interface. In the tested conditions, this recruitment cue layered atop
38 of the distinct evolutionary trajectories of wild and domesticated plants and, at least in part,
39 is encoded by the barley genome. This knowledge will be critical to design experimental
40 approaches aimed at elucidating the recruitment cues of the barley microbiota across a
41 range of soil types.

42 **Introduction**

43 By 2050 the world's population is expected to reach 9.5 billion and, to ensure global
44 food security, crop production has to increase by 60% in the same timeframe¹. This target
45 represents an unprecedented challenge for agriculture as it has to be achieved while
46 progressively decoupling yields from non-renewable inputs in the environment² and amidst
47 climatic modifications which are expected to intensify yield-limiting events, such as water
48 scarcity and drought³.

49 A promising strategy proposes to achieve this task by capitalising on the microbiota
50 inhabiting the rhizosphere, the thin layer of soil surrounding plant roots⁴. The rhizosphere
51 microbiota plays a crucial role in plant's adaptation to the environment by facilitating, for
52 example, plant mineral uptake⁵ and enhancing plant's tolerance to both abiotic and biotic
53 stresses⁶.

54 Plant domestication and breeding selection, which have progressively differentiated
55 modern cultivated crops from their wild relatives⁷, have impacted on the composition and
56 functions of the rhizosphere microbiota⁸. These processes were accompanied by an
57 erosion of the host genetic diversity⁹ and there are growing concerns that, in turn, these
58 limited the metabolic diversity of the microbiota of cultivated plants¹⁰. Thus, to fully unlock
59 the potential of rhizosphere microbes for sustainable crop production, it is necessary to
60 study the microbiota thriving at the root-soil interface in the light of the evolutionary
61 trajectories of its host plants¹¹.

62 Barley (*Hordeum vulgare* L.), a global crop¹² and a genetically tractable organism¹³,
63 represents an ideal model to study host-microbiota interactions within a plant
64 domestication framework, due to the fact that wild relatives (*H. vulgare* ssp. *spontaneum*)
65 of domesticated varieties (*H. vulgare* ssp. *vulgare*) are accessible for experimentation¹⁴.
66 We previously demonstrated that domesticated and wild barley genotypes host contrasting
67 bacterial communities¹⁵ whose metabolic potential modulates the turn-over of the organic
68 matter in the rhizosphere¹⁶. However, the impact of eco-geographical constraints faced by
69 domesticated plants and crop wild relatives on recruitment and maintenance of the
70 rhizosphere microbiota remains to be fully elucidated. Tackling this knowledge gap is a key
71 pre-requisite to capitalise on plant-microbiota interactions to achieve the objectives of
72 climate-smart agriculture, in particular sustainably enhancing crop production¹⁷.

73 Here we investigated whether exposure to different environmental conditions during
74 evolution left a footprint on the barley's capacity of shaping the rhizosphere bacterial

75 microbiota. We characterised twenty wild barley genotypes from the 'B1K' collection
76 sampled in the Southern Levant geographic region, one of the centres of domestication of
77 barley^{18,19}. This material represents the three-major barley 'Ecotypes' adapted to different
78 habitats in the region²⁰: the Golan Heights and northern Galilee, ('North Ecotype'); the
79 coastal Mediterranean strip, ('Coast Ecotype'); and the arid regions along the river Jordan
80 and southern Negev ('Desert Ecotype'). We further subdivided these 'Ecotypes' into 5
81 groups of sampling locations according to the average rainfall of the areas, as a proxy for
82 plant's adaptation to limiting growth conditions: 'Coast 1', 'Coast 2', 'Desert 1' and 'Desert
83 2' and 'North', respectively. (Table 1; Figure 1). These wild barley genotypes were grown
84 in a previously characterised soil, representative of barley agricultural areas of Scotland,
85 under controlled environmental conditions, alongside four cultivated 'Elite' varieties
86 encompassing the main usage and genetic diversity of the cultivated germplasm (Table 1).
87 We used an Illumina MiSeq 16S rRNA gene amplicon survey to characterise the
88 microbiota inhabiting the rhizosphere and unplanted soil samples. By using ecological
89 indexes, multivariate statistical analyses and barley genome information we elucidated the
90 impact of eco-geographical constraints and host genetics on the composition of the
91 microbial communities thriving at the barley root-soil interface.

92 **Results**

93 **Evolutionary trajectories and eco-geographic adaptation impact on plant growth**

94 Aboveground dry weight from the barley genotypes was measured at early stem
95 elongation as a proxy for plant growth: this allowed us to identify a 'biomass gradient'
96 across the tested material. The 'Elite' varieties, outperforming wild barley plants, and wild
97 barley genotypes adapted to the more extreme desert environments (i.e., 'Desert 2')
98 defined the uppermost and lowermost ranks of this gradient, respectively ($P < 0.05$,
99 Kruskal-Wallis non-parametric analysis of variance followed by Dunn's post hoc test;
100 Figure 1). Conversely, when we inspected the ratio between above- and belowground
101 biomass we noticed an opposite trend: almost invariably wild barley genotypes allocated
102 more resources than 'Elite' varieties to root growth compared to stem growth ($P < 0.05$,
103 Kruskal-Wallis non-parametric analysis of variance followed by Dunn's post hoc test;
104 Figure 1). As we sampled plants at a comparable developmental stage (Methods; Figure
105 S1), these observations indicate different growth responses of in wild and domesticated
106 genotypes in the tested conditions.

107 **Taxonomic diversification of the barley microbiota across barley genotypes**

108 To study the impact of these differential responses on the composition of the barley
109 microbiota we generated 6,646,864 16S rRNA gene sequencing reads from 76

110 rhizosphere and unplanted soil specimens. These high-quality sequencing reads yielded
111 11,212 Operational Taxonomic Units (OTUs) at 97% identity (Supplementary Dataset 1:
112 worksheet 2). A closer inspection of the taxonomic affiliation of the retrieved OTUs
113 revealed that members of five bacterial phyla, namely *Acidobacteria*, *Actinobacteria*,
114 *Bacteroidetes*, *Proteobacteria* and *Verrucomicrobia*, accounted for more than 97.8% of the
115 observed reads (Figure 2, Supplementary Dataset 1: worksheet 3). Among these dominant
116 phyla, *Bacteroidetes* and *Proteobacteria* were significantly enriched in rhizosphere
117 compared to bulk soil profiles (ANCOM, cut-off 0.6, alpha 0.05, taxa-based corrected,
118 Supplementary Dataset 1: worksheets 4-5).

119 Next, we investigated the lower ranks of the taxonomic assignments (i.e., OTU
120 level) and computed the Observed OTUs, Chao1 and Shannon indexes for each sample
121 type. This analysis further supported the notion of the rhizosphere as a ‘reduced
122 complexity community’, as both the Observed OTUs and Shannon indexes, but not the
123 projected Chao1, identified significantly richer and more even communities in the bulk soil
124 samples compared to plant-associated specimens ($P < 0.05$, Mann–Whitney U test; Figure
125 S3). Interestingly, when we compared the Chao1 index within rhizosphere samples, we
126 observed that members of the ‘Desert 1’ group assembled a richer and more even
127 community compared with the other genotypes ($P < 0.05$, Kruskal–Wallis non-parametric
128 analysis of variance followed by Dunn’s post hoc test; Figure S3).

129 To gain further insights into the impact of the sample type on the barley microbiota
130 we generated a canonical analysis of principal coordinates (CAP) using the weighted
131 Unifrac distance, which is sensitive to OTU relative abundance and phylogenetic
132 relatedness. This analysis revealed a marked effect of the microhabitat, i.e., either bulk soil
133 or rhizosphere, on the composition of the microbiota as evidenced by the spatial
134 separation on the axis accounting for the major variation (Figure 3). Interestingly, we
135 observed a clustering of bacterial community composition within rhizosphere samples,
136 which was more marked between ‘Desert’ and ‘Elite’ samples (Figure 3). These
137 observations were corroborated by a permutational analysis of variance which attributed
138 ~30% of the observed variation to the microhabitat and, within rhizosphere samples, ~17%
139 of the variation to the individual eco-geographic groups (Permanova $P < 0.01$, 5,000
140 permutations, Table 2). Strikingly similar results were obtained when we computed a Bray–
141 Curtis dissimilarity matrix, which is sensitive to OTUs relative abundance only (Table 2;
142 Figure S4).

143 Taken together, these data indicate that the composition of the barley microbiota is
144 fine-tuned by plant recruitment cues which progressively differentiate between unplanted
145 soil and rhizosphere samples and, within these latter, wild ecotypes from elite varieties.

146 **A footprint of host eco-geographic adaptation shapes the wild barley rhizosphere**
147 **microbiota**

148 To gain insights into the bacteria underpinning the observed microbiota
149 diversification we performed a series of pair-wise comparisons between 'Elite' genotypes
150 and each group of the wild barley ecotypes. This approach revealed a marked
151 specialisation of the members of the 'Desert' ecotype compared to 'Elite' varieties as
152 evidenced by the number of OTUs differentially recruited between members of these
153 groups (Wald test, $P < 0.05$, FDR corrected; Figure 4; Supplementary Dataset 1:
154 worksheets 7-11). Thus, the wild barley 'Ecotype' emerged as an element shaping the
155 recruitment cues of the barley rhizosphere microbiota.

156 A closer inspection of the OTUs differentially recruited between 'Desert' wild barley
157 and 'Elite' varieties revealed that the domesticated material exerted the greatest selective
158 impact on the soil biota, as the majority of the differentially enriched OTUs were enriched
159 in 'Elite' varieties (Wald test, $P < 0.05$, FDR corrected; Supplementary Dataset 1:
160 worksheets 7 and 8). Next, the taxonomic assignments of these 'Elite-enriched' OTUs
161 versus the 'Desert' microbiota followed distinct patterns: while the comparison 'Elite'-
162 'Desert 1' produced a subset of enriched OTUs assigned predominantly to *Actinobacteria*,
163 *Bacteroidetes* and *Proteobacteria*, the comparison 'Elite'- 'Desert 2' displayed a marked
164 bias for members of the *Actinobacteria* (i.e., 44 out of 104 enriched OTUs, Figure 5).
165 Consistently, the cumulative abundance of sequencing reads assigned of those
166 Actinobacterial OTUs in 'Elite' samples nearly doubled the one recorded for 'Desert 2'
167 samples (Figure S5). Within this phylum, we identified a broader taxonomic distribution, as
168 those OTUs were assigned to the families *Intrasporangiaceae*, *Micrococcaceae*,
169 *Micromonosporaceae*, *Nocardioidaceae*, *Pseudonocardiaceae*, *Streptomycetaceae*, as
170 well as members of the order *Frankiales*. Interestingly, when we inspect intra-ecotype
171 diversification we identified diagnostic OTUs capable of discriminating between 'Desert 1'
172 and 'Desert 2' (Wald test, $P < 0.05$, FDR corrected; Supplementary Dataset 1: worksheets
173 12 and 13), while no such a feature was identified discriminating between 'Coast 1' and
174 'Coast 2' at the statistical test imposed. Taken together, our data indicate that wild barley
175 'Ecotype' (i.e., the differential effect of 'North', 'Coast, and 'Desert' versus 'Elite') acts as a
176 determinant for the rhizosphere barley microbiota whose composition is ultimately fine-

177 tuned by a sub-specialisation within the ‘Ecotype’ itself (i.e., the differential effect of ‘Desert
178 1’ and ‘Desert 2’).

179 These observations prompted us to investigate whether the differential microbiota
180 recruitment between the tested plants was encoded, at least in part, by the barley genome.
181 We therefore generated a dissimilarity matrix using Single Nucleotide Polymorphisms
182 (SNPs) available for the tested genotypes and we inferred their genetic relatedness using
183 a simple matching coefficient (Supplementary Dataset 1: worksheet 14). With few notable
184 exceptions, this analysis revealed three distinct clusters of genetically related plants,
185 represented by and reflecting the ‘Elite’ material, the ‘Desert’ and the ‘Coast’ wild barley
186 genotypes (Figure S6). The genetic diversity between domesticated material exceeded
187 their microbial diversity (compare relatedness of “Elite” samples in Figure 3 with the ones
188 of Figure S6) as further evidenced by the fact that we failed to identify a significant
189 correlation between these parameters (P value > 0.05). However, when we focused the
190 analysis solely on the pool of wild barley genotypes, we obtained a significant correlation
191 between genetic and microbial distances (Mantel test $r = 0.230$; P value < 0.05 ; Figure 6).

192 Taken together, this revealed a footprint of barley host’s adaptation to the
193 environment on the assembly of the bacteria thriving at the root-soil interface. This
194 recruitment cue interjected the distinct evolutionary trajectories of wild and domesticated
195 plants and, at least in part, is encoded by the barley genome.

196 **Discussion**

197 In this study we investigated how plant genotypes adapted to different eco-
198 geographic niches may recruit a distinct microbiota once exposed to a common
199 environment.

200 As we performed a ‘common environment experiment’ in a Scottish agricultural
201 soil, we first determined how the chosen experimental conditions related to the ones
202 witnessed by wild barleys in their natural habitats. Strikingly, the aboveground biomass
203 gradient observed in our study, with ‘Elite’ material almost invariably outperforming wild
204 genotypes and material sampled at the locations designated ‘Desert 2’ at the bottom of the
205 ranking, “matched” the phenotypic characterisation of members of the ‘B1K’ collection
206 grown in a ‘common garden experiment’ in a local Israeli soil¹⁸. Conversely, belowground
207 resource allocation followed an opposite pattern as evidenced by an increased root:shoot
208 dry weight ratio in wild genotypes compared to ‘Elite’ varieties. As responses to edaphic
209 stress, such as drought tolerance, may modulate the magnitude of above-belowground

210 resource partitioning in plants²¹ and root traits²², our data might reflect the adaptation of
211 the wild barley exposure to dry areas. Taken together, these results suggest adaptive that
212 responses to eco-geographic constraints in barley have a genetic inheritance component
213 which can be detected and studied in controlled conditions.

214 As genetically-inherited root traits have been implicated in shaping the rhizosphere
215 microbiota in barley²³ and other crops²⁴, these observations motivated us to examine
216 whether these below-ground differences were reflected by changes in microbiota
217 recruitment. The distribution of reads assigned to given phyla appears distinct in plant-
218 associated communities which are dominated in terms of abundance by members of the
219 phyla *Acidobacteria*, *Actinobacteria*, *Bacteroidetes* and *Proteobacteria*, with these two
220 latter phyla significantly enriched in rhizosphere samples compared to bulk soil controls.
221 This taxonomic affiliation is consistent with previous investigations in barley in either the
222 same²⁵ or in a different soil type¹⁵ as well as in other crop plants²⁶. In summary, these data
223 indicate that the higher taxonomic ranks of the barley rhizosphere microbiota are
224 conserved across soil types as well as wild and domesticated genotypes.

225 The characterisation of the microbiota at lower taxonomic ranks, i.e., the OTU-level,
226 revealed a significant effect of the microhabitat (i.e., either bulk soil or rhizosphere) and,
227 within plant-associated communities, a footprint of eco-geographic adaptation. For
228 instance, alpha diversity indexes clearly pointed at selective processes modulating
229 bacterial composition as the number of Observed OTUs and the Shannon index indicate
230 simplified and reduced-complexity communities inhabiting the rhizosphere compared to
231 unplanted soil. This can be considered a hallmark of the rhizosphere microbiota as it has
232 been observed in multiple plant species and across soils⁶. Conversely, within rhizosphere
233 samples, alpha-diversity analysis failed to identify a clear pattern, except for the Chao1
234 index revealing a potential for a richer community associated with plants sampled at the
235 'Desert 1' locations. This motivated us to further explore the between-sample diversity,
236 which is beta-diversity. This analysis revealed a clear host-dependent diversification of the
237 bacteria associated to barley plants manifested by ~17% of the variance of the
238 rhizosphere microbiota explained by the eco-geographical location of the sampled
239 material. This value exceeded the host genotype effect on the rhizosphere microbiota we
240 previously observed in wild and domesticated barley plants¹⁵, but is aligned with the
241 magnitude of host effect observed in the rhizosphere microbiota of modern and ancestral
242 genotypes of rice²⁷ and common bean²⁸. As these studies were conducted in different soil

243 types, our data suggest that the magnitude of host control on the rhizosphere microbiota is
244 ultimately fine-tuned by and in response to soil characteristics.

245 The identification of the bacteria underpinning the observed microbiota
246 diversification led to three striking observations. First, the comparison between 'Elite'
247 varieties and the material representing the 'Desert' ecotype was associated with the
248 largest number of differentially recruited OTUs, while the other wild barley genotypes
249 appeared to share a significant proportion of their microbiota with domesticated plants. A
250 prediction of this observation is that the distinct evolutionary trajectories of wild and
251 domesticated plants *per se* cannot explain the host-mediated diversification of the barley
252 microbiota. As aridity and temperature played a prominent role in shaping the phenotypic
253 characteristics of barley^{19,29} it is tempting to speculate that the adaptation to these
254 environmental parameters played a predominant role also in shaping microbiota
255 recruitment.

256 Second, it is the domesticated material which exerted a stronger effect on
257 microbiota recruitment, manifested by the increased number of host-enriched OTUs
258 compared to wild barley genotypes. This suggests that the capacity of shaping the
259 rhizosphere microbiota has not been "lost" during barley domestication and breeding
260 selection. Our findings are consistent with data gathered for domesticated and ancestral
261 common bean genotypes, which revealed that shifts from native soils to agricultural lands
262 led to a stronger host-dependent effect on rhizosphere microbes³⁰. Due to the intrinsic
263 limitation of 16S rRNA gene profiles of predicting the functional potential of individual
264 bacteria, it will be necessary to complement this investigation with whole-genome
265 surveys^{31,32} and metabolic analyses^{16,33} to fully discern the impact of the host genotype on
266 the functions provided by the rhizosphere microbiota to their hosts.

267 The third observation is the marked quantitative enrichment of OTUs assigned to
268 the phylum *Actinobacteria* in 'Elite' varieties when compared to members of the 'Desert'
269 ecotype, in particular plants of the 'Desert 2' locations. At first glance, the 'direction' of this
270 bacterial enrichment is difficult to reconcile with the eco-geographic adaptation of wild
271 barleys and, in particular, the fact that *Actinobacteria* are more tolerant to arid conditions³⁴
272 and, consequently, more abundant in desert vs. non-desert soils³⁵. However, the
273 enrichment of *Actinobacteria* in modern crops compared to ancestral relatives has recently
274 emerged as a distinctive feature of the microbiota of multiple plant species³⁶. Although the
275 ecological significance of this trait of the domesticated microbiota remains to be fully
276 elucidated, studies conducted in rice³⁷ and other grasses, including barley³⁸, indicate a

277 relationship between drought stress and *Actinobacteria* enrichments. These observations
278 suggest that the wild barley genome has evolved the capacity to recognise microbes
279 specifically adapted to the local conditions and, in turn, to repress the growth of others. For
280 instance, among the bacteria differentially enriched between 'Desert 1' and 'Desert 2' we
281 identified genera, such as *Arthrobacter* sp., adapted to extreme environments and long-
282 term nutrient starvation³⁹, possibly reflecting the differential adaptation of 'Desert 1' and
283 'Desert 2' plants to soil with limited organic matter⁴⁰.

284 Interestingly, we were able to trace the host genotype effect on rhizosphere
285 microbes to the genome of wild barley. This suggests that, similar to other wild species¹¹,
286 microbiota recruitment co-evolved with other adaptive traits. Conversely, the genetic
287 diversity in 'Elite' material largely exceeded microbiota diversity. This is reminiscent of
288 studies conducted in maize which failed to identify a significant correlation between
289 polymorphisms in the host genome and alpha- and beta-diversity characteristics of the
290 rhizosphere microbiota^{41,42}. Yet, and again similar to maize⁴³, our data indicate that the
291 recruitment of individual bacterial OTUs in the 'Elite' varieties, rather than community
292 composition as a whole, is the feature of the rhizosphere microbiota under host genetic
293 control.

294 Although these findings were gathered from the individual soil tested and further
295 validation across a range of soil types is required, a prediction from these observations is
296 that the host control of the rhizosphere microbiota is exerted by a limited number of loci in
297 the genome with a relatively large effect. This is congruent with our previous observation
298 that mono-mendelian mutations in a single root trait, root hairs, impact on ~18% of the
299 barley rhizosphere microbiota²⁵.

300 Likewise, this scenario is compatible with a limited number of genes controlling the
301 biosynthesis and rhizodeposition of defensive secondary metabolites which have been
302 implicated in shaping the plant microbiota⁴⁴. Among these compounds, the indol-alkaloids
303 benzoxazinoids recently gained centre-stage as master regulators of the maize-associated
304 microbial communities⁴⁵⁻⁴⁷. Interestingly, *Hordeum vulgare* has evolved a distinct indol-
305 alkaloid compound, gramine⁴⁸, which is preferentially accumulated in the tissues of the
306 wild genotypes compared to 'Elite' varieties⁴⁹ and whose physiological properties are
307 comparable to the ones of benzoxazinoids⁵⁰. Whether gramine or other species-specific
308 secondary metabolites contribute, at least in part, to shape the barley microbiota will be
309 the focus of future investigations.

310 Since modern varieties have been selected with limited or no knowledge of
311 belowground interactions, how was the capacity of shaping the rhizosphere microbiota
312 retained within the cultivated germplasm? The recent observation that genes controlling
313 reproductive traits display pleiotropic effects on root system architecture⁵¹ could provide a
314 direct link between crop selection and microbiota recruitment in modern varieties. These
315 traits, and in particular genes encoding flower developments, show a marked footprint of
316 eco-geographic adaptation and have been selected during plant domestication and
317 breeding²⁹. By manipulating those genes, breeders may have manipulated also
318 belowground traits, and in turn, the microbiota thriving at the root-soil interface. With an
319 increased availability of genetic⁵² and genomic⁵³ resources for wild and domesticated
320 barleys, this hypothesis can now be experimentally tested and the adaptive significance of
321 the barley rhizosphere microbiota ultimately deciphered. Specifically, interspecific
322 populations within the wild⁵⁴ as well as between wild and cultivated⁵² germplasm, could be
323 deployed in genetic mapping experiments aimed at identifying barley genetic determinants
324 of the rhizosphere microbiota.

325 **Conclusions**

326 Our results revealed a footprint of host's adaptation to the environment on the
327 assembly of the bacteria thriving at the root-soil interface in barley. This recruitment cue
328 layered atop of the distinct evolutionary trajectories of wild and domesticated plants and, at
329 least in part, is encoded by the barley genome. Although our study was limited to the
330 individual soil investigated, our sequencing survey will provide a reference dataset for the
331 development of indexed bacterial collections of the barley microbiota. These can be used
332 to infer causal relationships between microbiota composition and plant traits, as
333 demonstrated for *Arabidopsis thaliana*⁵⁵ and rice⁵⁶. Furthermore, this knowledge is critical
334 for the establishment of reciprocal transplantation experiments aimed at elucidating the
335 adaptive value of crop-microbiota interactions, similar to what has recently been proposed
336 for the model plant *A. thaliana*⁵⁷. However, for crop plants like barley, this will necessarily
337 be conditioned by two elements: identifying the host genetic determinants of the
338 rhizosphere microbiota and inferring microbial metabolic potential *in situ*. Ultimately, this
339 will help devising strategies aimed at sustainably enhancing crop production for climate-
340 smart agriculture.

342 **Methods**

343 **Soil**

344 The soil was sampled from the agricultural research fields of the James Hutton
345 Institute, Invergowrie, Scotland, UK in the Quarryfield site (56°27'5"N 3°4'29"W; Sandy Silt
346 Loam, pH 6.2; Organic Matter 5%; Table S1). This field was left unplanted and unfertilised
347 in the three years preceding the investigations and previously used for barley-microbiota
348 interactions investigations²⁵.

349

350 **Plant genotypes**

351 Twenty wild barley genotypes (*Hordeum vulgare* ssp. *spontaneum*) and four 'Elite'
352 cultivars (*Hordeum vulgare* ssp. *vulgare*) were used and described in Table 1. Wild barley
353 genotypes were selected representing eco-geographical variation of the 'B1K'
354 collection^{18,19}. The 'Elite' genotypes were selected as a representation of different types of
355 spring barley in plant genetic studies. The cultivar 'Morex' is an American six-row malting
356 variety whose genome was the first to be sequenced⁵⁸. The cultivars 'Bowman' and 'Barke'
357 are two-row varieties, developed in US for feed and in Germany for malting, respectively,
358 whereas Steptoe is an American six-row type used for animal feed^{52,59,60}.

359 **Plant growth conditions**

360 Barley seeds were surface sterilized as previously reported⁶¹ and germinated on
361 0.5% agar plates at room temperature. Seedlings displaying comparable rootlet
362 development after 5 days post-plating were sown individually in 12-cm diameter pots
363 containing approximately 500g of the 'Quarryfield' soil, plus unplanted pots filled with bulk
364 soil as controls. Plants were arranged in a randomised design with this number of
365 replicates: 'Coast1' number of replicates $n=12$; 'Coast2' $n=12$; 'Desert1' $n=11$; 'Desert2'
366 $n=12$; 'North' $n=12$; 'Elite' $n=13$ (Supplementary Dataset 1: worksheet 1). Plants were
367 grown for 5 weeks in a glasshouse at 18/14 °C (day/night) temperature regime with 16 h
368 day length and watered every two days with 50 ml of deionized water.

369 **Bulk soil and rhizosphere DNA preparation**

370 At early stem elongation, corresponding to Zadoks stages 30-32⁶², plants were
371 pulled from the soil and the stems and leaves were separated from the roots (Figure S1).
372 Above-ground plant parts were dried at 70 °C for 72 h and the dry weight recorded. The
373 roots were shaken manually to remove excess of loosely attached soil. For each barley
374 plant, the top 6 cm of the seminal root system and the attached soil layer was collected
375 and placed in sterile 50 ml falcon tube containing 15 ml phosphate-buffered saline solution

376 (PBS). Rhizosphere was operationally defined, for these experiments, as the soil attached
377 to this part of the roots and extracted through this procedure. The samples were then
378 vortexed for 30s and aseptically transferred to a second 50ml falcon containing 15ml PBS
379 and vortexed again for 30s to ensure the dislodging and suspension of the rhizosphere
380 soil. Then, the two falcon tubes with the rhizosphere suspension were mixed and
381 centrifuged at 1,500 x g for 20min, the supernatant was removed, with the rhizosphere soil
382 collected as the pellet, flash frozen with liquid nitrogen and stored at -80°C, until further
383 use. After the rhizosphere extraction step, these parts of the roots were combined with the
384 rest of the root system for each plant, thoroughly washed with water removing any
385 attached soil particles and dried at 70°C for 72h for root biomass measurement. Bulk soil
386 samples were collected from the 6cm below the surface of unplanted pots and subjected
387 to the same procedure as above.

388 DNA was extracted from the rhizosphere samples using FastDNA SPIN Kit for Soil
389 (MP Biomedicals, Solon, USA) according to the manufacturer's recommendations. The
390 concentration and quality of DNA was checked using a Nanodrop 2000 (Thermo Fisher
391 Scientific, Waltham, USA) spectrophotometer and stored at -20°C until further use. DNA
392 concentration was used as a proxy for the proportion of the sampled microbiota and
393 evaluated across sample type (Figure S2).

394 Preparation of 16 rRNA gene amplicon pools

395 The hypervariable V4 region of the small subunit rRNA gene was the target of
396 amplification using the PCR primer pair 515F (5'-GTGCCAGCMGCCGCGTAA-3') and
397 806R (5'-GGACTACHVGGGTWTCTAAT-3'). The PCR primers had incorporated an
398 Illumina flow cell adapter at their 5' end and the reverse primers contained 12bp unique
399 'barcode' for simultaneous sequencing of several samples⁶³. PCR, including No-Template
400 Controls (NTCs) for each barcoded primer, was performed as previously reported with the
401 exception of the BSA at 10mg/ml concentration per reaction²⁵. Only samples whose NTCs
402 yielded an undetectable PCR amplification were retained for further analysis.

403 Illumina 16S rRNA gene amplicon sequencing

404 The pooled amplicon library was submitted to the Genome Technology group, The
405 James Hutton Institute (Invergowrie, UK) for quality control, processing and sequencing as
406 previously described^{25,64-66}. Briefly, samples were sequenced using an Illumina MiSeq
407 platform with the 2 x 150bp chemistry.

408 **Sequencing reads processing**

409 Sequencing reads were processed and analysed using a custom bioinformatics
410 pipeline. First, QIIME (Quantitative Insights into Microbial Ecology) software, version 1.9.0,
411 was used to process the FASTQ files following default parameters for each step⁶⁷. The
412 forward and reverse read files from individual libraries were decompressed and merged
413 using the command join_paired_ends.py, with a minimum overlap of 30bp between reads.
414 Then, the reads were demultiplexed according to the barcode sequences. Quality filtering
415 was performed using the command split_libraries_fastq.py, imposing a minimum
416 acceptable PHRED score ‘-q’ of 20. Next, these high quality reads were truncated at the
417 250th nucleotide using the function ‘fastq_filter’ implemented in USEARCH⁶⁸. Only these
418 high-quality PE, length-truncated reads were used for clustering in Operational Taxonomic
419 Units (OTUs) a 97% sequence identity. OTUs were identified using the ‘closed reference’
420 approach against Silva database (version 132)⁶⁹. OTU-picking against the Silva database
421 was performed using the SortMeRNA algorithm⁷⁰, producing in an OTU table containing
422 the abundance of OTUs per sample plus a phylogenetic tree. To control for potential
423 contaminant OTUs amplified during library preparation, we retrieved a list of potential
424 environmental contaminant OTUs previously identified in our laboratory⁶⁵ and we used this
425 list to filter the results of the aforementioned OTU-enrichment analysis. Additionally,
426 singleton OTUs, (OTUs accounting for only one sequencing read in the whole dataset) and
427 OTUs assigned to chloroplast and mitochondria (taken as plant derived sequences) were
428 removed using the command filter_ottus_from_ottu_tables.py. Taxonomy matrices,
429 reporting the number of reads assigned to individual phyla, were generated using the
430 command summarize_taxa.py. The OTU table, the phylogenetic tree and the taxonomy
431 matrix, were further used in R for visualizations and statistical analysis.

432 **Statistical analyses I: univariate datasets and 16S rRNA gene alpha and beta-diversity
433 calculations**

434 Analysis of the data was performed in R⁷¹ using a custom script with the following
435 packages: Phyloseq⁷² for processing, Alpha and Beta-diversity metrics; ggplot2⁷³ for data
436 visualisations; Vegan⁷⁴ for statistical analysis of beta-diversity; Ape⁷⁵ for phylogenetic tree
437 analysis. For any univariate dataset used (e.g., aboveground biomass; DNA concentration)
438 the normality of the data’s distribution was checked using Shapiro-Wilk test. Non-
439 parametric analysis of variance were performed by Kruskal-Wallis Rank Sum Test,
440 followed by Dunn’s post hoc test with the functions kruskal.test and the
441 posthoc.kruskal.dunn.test, respectively, from the package PMCMR.

442

443 For Alpha-diversity analysis, the OTU table was rarefied at 11,180 reads per
444 sample and this allowed us to retain 8,744 OTUs for downstream analyses
445 (Supplementary Dataset 1: worksheet 6). The Chao1, Observed OTUs and Shannon
446 indices calculated using the function estimate richness in Phyloseq package. Beta-
447 diversity was analysed using a normalized OTU table (i.e., not rarefied) for comparison.
448 For the construction of the normalized OTU table, low abundance OTUs were further
449 filtered removing those not present at least 5 times in 20% of the samples, to improve
450 reproducibility. Then, to control for the uneven number of reads per specimen, individual
451 OTU counts in each sample were divided over the total number of generated reads for that
452 samples and converted in counts per million. Beta-diversity was analysed using two
453 metrics: Bray-Curtis that considers OTUs relative abundance and Weighted Unifrac that
454 additionally is sensitive to phylogenetic classification⁷⁶. These dissimilarity matrices were
455 visualized using Canonical Analysis of Principal coordinates (CAP)⁷⁷ using the ordinate
456 function in the Phyloseq package and its significance was inspected using a permutational
457 ANOVA over 5,000 permutations.

458 Beta-diversity dissimilarity matrices were assessed by Permutational Multivariate
459 Analysis of Variance (Permanova) using Adonis function in Vegan package over 5,000
460 permutations to calculate effect size and statistical significance.

461 **Statistical analyses II: analysis of Phyla and OTUs differentially enriched among samples**

462 The analysis of the Phyla whose abundances differentiated among rhizosphere and
463 bulk soil samples was performed with analysis of composition of microbiomes (ANCOM)⁷⁸
464 imposing 0.6 cut-off and 0.05 alpha value (taxa-based corrected) as previously
465 described⁷⁹.

466 The analysis of the OTUs whose abundances differentiated among samples was
467 performed a) between individual eco-geographic groups and bulk soil samples to assess
468 the rhizosphere effect and b) between the rhizosphere samples to assess the eco-
469 geographic effect. The eco-geographic effect was further corrected for a microhabitat
470 effect (i.e., for each group, only OTUs enriched against both unplanted soil and at least
471 another barley genotype were retained for further analysis). The analysis was performed
472 using the DESeq2 method⁸⁰ with an adjusted P value < 0.05 (False Discovery Rate, FDR
473 corrected). This method was selected since it outperforms other hypothesis-testing
474 approaches when data are not normally distributed and a limited number of individual
475 replicates per condition (i.e., approximately 10) are available⁸¹. DESeq2 was performed

476 using the eponymous named package in R with the OTU table filtered for low abundance
477 OTUs as an input.

478 The number of OTUs differentially recruited in the pair-wise comparisons between
479 'Elite' and wild barley genotypes was visualised using the package UpSetR⁸².

480 The phylogenetic tree was constructed using the representative sequences of the
481 OTUs significantly differentiating 'Elite' genotypes and either 'Desert1' or 'Desert2'
482 samples annotated with iTOL⁸³.

483 **Statistical analyses III: Correlation plot genetic distance-microbial distance.**

484 To assess the genetic variation on the barley germplasm we used the SNP platform
485 'BOPA1'⁸⁴ comprising 1,536 single nucleotide polymorphisms. We used GenAlex 6.5^{85,86}
486 to construct a genetic distance matrix using the simple matching coefficient. Genetic
487 distance for the barley genotypes was visualised by hierarchical clustering using the
488 function hclust in R. Microbial distance was calculated on the average distances for each
489 ecogeographic group using the Weighted Unifrac metric. Correlation between the plant's
490 genetic and microbial distances was performed using a mantel test with the mantel.rtest of
491 the package ade4 in R. The correlation was visualised using the functions ggscatter of the
492 R packages ggpbur.

493 **Availability of Materials and Data**

494 The sequences generated in the 16S rRNA gene sequencing survey are deposited
495 in the European Nucleotide Archive (ENA) under the accession number PRJEB35359. The
496 version of the individual packages and scripts used to analyse the data and generate the
497 figures of this study are available at https://github.com/BulgarelliD-Lab/Barley_B1K

498

499 **References**

500 1 Alexandratos, N. & Bruinsma, J. World agriculture towards 2030/2050: the 2012
501 revision. (2012).

502 2 Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the
503 sustainable intensification of agriculture. *Proceedings of the National Academy of
504 Sciences of the United States of America* **108**, 20260-20264,
505 doi:10.1073/pnas.1116437108 (2011).

506 3 Porter, J. R. *et al.* Climate change 2014: impacts, adaptation, and vulnerability. Part
507 A: global and sectoral aspects. Contribution of Working Group II to the Fifth
508 Assessment Report of the Intergovernmental Panel on Climate Change. *Food
509 security and food production systems*, 485-533 (2014).

510 4 Schlaeppi, K. & Bulgarelli, D. The plant microbiome at work. *Molecular plant-
511 microbe interactions : MPMI* **28**, 212-217, doi:10.1094/MPMI-10-14-0334-FI (2015).

512 5 Alegria Terrazas, R. *et al.* Plant-Microbiota Interactions as a Driver of the Mineral
513 Turnover in the Rhizosphere. *Adv Appl Microbiol* **95**, 1-67,
514 doi:10.1016/bs.aambs.2016.03.001 (2016).

515 6 Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L. & Schulze-Lefert,
516 P. Structure and functions of the bacterial microbiota of plants. *Annual review of
517 plant biology* **64**, 807-838 (2013).

518 7 Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant
519 domestication. *Nature* **457**, 843-848 (2009).

520 8 Perez-Jaramillo, J. E., Mendes, R. & Raaijmakers, J. M. Impact of plant
521 domestication on rhizosphere microbiome assembly and functions. *Plant Mol Biol*
522 **90**, 635-644, doi:10.1007/s11103-015-0337-7 (2016).

523 9 Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular genetics of crop
524 domestication. *Cell* **127**, 1309-1321 (2006).

525 10 Cordovez, V., Dini-Andreote, F., Carrión, V. J. & Raaijmakers, J. M. Ecology and
526 Evolution of Plant Microbiomes. *Annual review of microbiology* **73** (2019).

527 11 Escudero-Martinez, C. & Bulgarelli, D. Tracing the evolutionary routes of plant-
528 microbiota interactions. *Current opinion in microbiology* **49**, 34-40 (2019).

529 12 Newton, A. C. *et al.* Crops that feed the world 4. Barley: a resilient crop? Strengths
530 and weaknesses in the context of food security. *Food Security* **3**, 141,
531 doi:10.1007/s12571-011-0126-3 (2011).

532 13 Mascher, M. *et al.* A chromosome conformation capture ordered sequence of the
533 barley genome. *Nature* **544**, 426-+, doi:10.1038/nature22043 (2017).

534 14 Milner, S. G. *et al.* Genebank genomics highlights the diversity of a global barley
535 collection. *Nature genetics* **51**, 319-326 (2019).

536 15 Bulgarelli, D. *et al.* Structure and function of the bacterial root microbiota in wild and
537 domesticated barley. *Cell host & microbe* **17**, 392-403,
538 doi:10.1016/j.chom.2015.01.011 (2015).

539 16 Mwafulirwa, L. *et al.* Barley genotype influences stabilization of rhizodeposition-
540 derived C and soil organic matter mineralization. *Soil Biology and Biochemistry* **95**,
541 60-69, doi:10.1016/j.soilbio.2015.12.011 (2016).

542 17 Lipper, L. *et al.* Climate-smart agriculture for food security. *Nature climate change* **4**,
543 1068-1072 (2014).

544 18 Hubner, S. *et al.* Phenotypic landscapes: phenological patterns in wild and
545 cultivated barley. *Journal of evolutionary biology* **26**, 163-174,
546 doi:10.1111/jeb.12043 (2013).

547 19 Hubner, S. *et al.* Strong correlation of wild barley (*Hordeum spontaneum*)
548 population structure with temperature and precipitation variation. *Molecular ecology*
549 **18**, 1523-1536, doi:10.1111/j.1365-294X.2009.04106.x (2009).

550 20 Hübner, S. *et al.* Phenotypic landscapes: phenological patterns in wild and
551 cultivated barley. *Journal of Evolutionary Biology* **26**, 163-174 (2013).

552 21 Bloom, A. J., Chapin III, F. S. & Mooney, H. A. Resource limitation in plants-an
553 economic analogy. *Annual review of Ecology and Systematics* **16**, 363-392 (1985).

554 22 Comas, L., Becker, S., Cruz, V. M. V., Byrne, P. F. & Dierig, D. A. Root traits
555 contributing to plant productivity under drought. *Frontiers in plant science* **4**, 442
556 (2013).

557 23 Robertson-Albertyn, S. *et al.* Root hair mutations displace the barley rhizosphere
558 microbiota. *Frontiers in plant science* **8**, 1094 (2017).

559 24 Pérez-Jaramillo, J. E. *et al.* Linking rhizosphere microbiome composition of wild and
560 domesticated *Phaseolus vulgaris* to genotypic and root phenotypic traits. *The ISME
561 journal* **11**, 2244-2257 (2017).

562 25 Robertson-Albertyn, S. *et al.* Root Hair Mutations Displace the Barley Rhizosphere
563 Microbiota. *Frontiers in plant science* **8**, 1094, doi:10.3389/fpls.2017.01094 (2017).

564 26 Hacquard, S. *et al.* Microbiota and host nutrition across plant and animal kingdoms.
565 *Cell host & microbe* **17**, 603-616 (2015).

566 27 Edwards, J. *et al.* Structure, variation, and assembly of the root-associated
567 microbiomes of rice. *Proceedings of the National Academy of Sciences of the
568 United States of America* **112**, E911-920, doi:10.1073/pnas.1414592112 (2015).

569 28 Perez-Jaramillo, J. E. *et al.* Linking rhizosphere microbiome composition of wild and
570 domesticated *Phaseolus vulgaris* to genotypic and root phenotypic traits. *The ISME journal* **11**, 2244-2257, doi:10.1038/ismej.2017.85 (2017).

571

572 29 Russell, J. *et al.* Exome sequencing of geographically diverse barley landraces and
573 wild relatives gives insights into environmental adaptation. *Nature Genetics* **48**,
574 1024 (2016).

575 30 Pérez-Jaramillo, J. E. *et al.* Deciphering rhizosphere microbiome assembly of wild
576 and modern common bean (*Phaseolus vulgaris*) in native and agricultural soils from
577 Colombia. *Microbiome* **7**, 1-16 (2019).

578 31 Garrido-Oter, R. *et al.* Modular Traits of the Rhizobiales Root Microbiota and Their
579 Evolutionary Relationship with Symbiotic Rhizobia. *Cell host & microbe* **24**, 155+,
580 doi:10.1016/j.chom.2018.06.006 (2018).

581 32 Karasov, T. L. *et al.* *Arabidopsis thaliana* and *Pseudomonas* pathogens exhibit
582 stable associations over evolutionary timescales. *Cell host & microbe* **24**, 168-179.
583 e164 (2018).

584 33 Paterson, E., Gebbing, T., Abel, C., Sim, A. & Telfer, G. Rhizodeposition shapes
585 rhizosphere microbial community structure in organic soil. *New Phytologist* **173**,
586 600-610 (2007).

587 34 Neilson, J. W. *et al.* Significant impacts of increasing aridity on the arid soil
588 microbiome. *MSystems* **2**, e00195-00116 (2017).

589 35 Fierer, N. *et al.* Cross-biome metagenomic analyses of soil microbial communities
590 and their functional attributes. *Proceedings of the National Academy of Sciences of
591 the United States of America* **109**, 21390-21395, doi:10.1073/pnas.1215210110
592 (2012).

593 36 Pérez-Jaramillo, J. E., Carrión, V. J., de Hollander, M. & Raaijmakers, J. M. The
594 wild side of plant microbiomes. *Microbiome* **6**, 143, doi:10.1186/s40168-018-0519-z
595 (2018).

596 37 Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B. & Sundaresan, V.
597 Drought stress results in a compartment-specific restructuring of the rice root-
598 associated microbiomes. *MBio* **8**, e00764-00717 (2017).

599 38 Naylor, D., DeGraaf, S., Purdom, E. & Coleman-Derr, D. Drought and host selection
600 influence bacterial community dynamics in the grass root microbiome. *The ISME journal* **11**, 2691-2704 (2017).

601

602 39 Romaniuk, K., Golec, P. & Dziewit, L. Insight into the diversity and possible role of
603 plasmids in the adaptation of psychrotolerant and metalotolerant *Arthrobacter* spp.
604 to extreme Antarctic environments. *Frontiers in microbiology* **9**, 3144 (2018).

605 40 Hübner, S. *et al.* Strong correlation of wild barley (*Hordeum spontaneum*)
606 population structure with temperature and precipitation variation. *Molecular Ecology*
607 **18**, 1523-1536 (2009).

608 41 Bouffaud, M. L. *et al.* Is diversification history of maize influencing selection of soil
609 bacteria by roots? *Molecular ecology* **21**, 195-206, doi:10.1111/j.1365-
610 294X.2011.05359.x (2012).

611 42 Peiffer, J. A. *et al.* Diversity and heritability of the maize rhizosphere microbiome
612 under field conditions. *Proceedings of the National Academy of Sciences* **110**,
613 6548-6553, doi:10.1073/pnas.1302837110 (2013).

614 43 Walters, W. A. *et al.* Large-scale replicated field study of maize rhizosphere
615 identifies heritable microbes. *Proceedings of the National Academy of Sciences*,
616 doi:10.1073/pnas.1800918115 (2018).

617 44 Rolfe, S. A., Griffiths, J. & Ton, J. Crying out for help with root exudates: adaptive
618 mechanisms by which stressed plants assemble health-promoting soil microbiomes.
619 *Current opinion in microbiology* **49**, 73-82 (2019).

620 45 Cotton, T. A. *et al.* Metabolic regulation of the maize rhizobiome by benzoxazinoids.
621 *The ISME journal* **13**, 1647-1658 (2019).

622 46 Hu, L. *et al.* Root exudate metabolites drive plant-soil feedbacks on growth and
623 defense by shaping the rhizosphere microbiota. *Nature communications* **9**, 1-13
624 (2018).

625 47 Kudjordjie, E. N., Sapkota, R., Steffensen, S. K., Fomsgaard, I. S. & Nicolaisen, M.
626 Maize synthesized benzoxazinoids affect the host associated microbiome.
627 *Microbiome* **7**, 1-17 (2019).

628 48 Grün, S., Frey, M. & Gierl, A. Evolution of the indole alkaloid biosynthesis in the
629 genus *Hordeum*: distribution of gramine and DIBOA and isolation of the
630 benzoxazinoid biosynthesis genes from *Hordeum lechleri*. *Phytochemistry* **66**,
631 1264-1272 (2005).

632 49 Larsson, K. A., Zetterlund, I., Delp, G. & Jonsson, L. M. N-Methyltransferase
633 involved in gramine biosynthesis in barley: Cloning and characterization.
634 *Phytochemistry* **67**, 2002-2008 (2006).

635 50 Matsuo, H. *et al.* Gramine increase associated with rapid and transient systemic
636 resistance in barley seedlings induced by mechanical and biological stresses. *Plant*
637 and *Cell Physiology* **42**, 1103-1111 (2001).

638 51 Voss-Fels, K. P. *et al.* VERNALIZATION1 modulates root system architecture in
639 wheat and barley. *Molecular plant* **11**, 226-229 (2018).

640 52 Maurer, A. *et al.* Modelling the genetic architecture of flowering time control in
641 barley through nested association mapping. *BMC genomics* **16**, 290 (2015).

642 53 Bayer, M. M. *et al.* Development and Evaluation of a Barley 50k iSelect SNP Array.
643 *Frontiers in plant science* **8**, doi:ARTN 1792
644 10.3389/fpls.2017.01792 (2017).

645 54 Bdolach, E. *et al.* Thermal plasticity of the circadian clock is under nuclear and
646 cytoplasmic control in wild barley. *Plant, cell & environment* **42**, 3105-3120 (2019).

647 55 Bai, Y. *et al.* Functional overlap of the *Arabidopsis* leaf and root microbiota. *Nature*
648 **528**, 364-369 (2015).

649 56 Zhang, J. *et al.* NRT1. 1B is associated with root microbiota composition and
650 nitrogen use in field-grown rice. *Nature biotechnology* **37**, 676-684 (2019).

651 57 Thiergart, T. *et al.* Root microbiota assembly and adaptive differentiation among
652 European *Arabidopsis* populations. *Nature Ecology & Evolution* **4**, 122-131 (2020).

653 58 The International Barley Genome Sequencing, C. *et al.* A physical, genetic and
654 functional sequence assembly of the barley genome. *Nature* **491**, 711,
655 doi:10.1038/nature11543
656 <https://www.nature.com/articles/nature11543#supplementary-information> (2012).

657 59 Druka, A. *et al.* Genetic dissection of barley morphology and development. *Plant*
658 *physiology* **155**, 617-627, doi:10.1104/pp.110.166249 (2011).

659 60 Kleinhofs, A. *et al.* A molecular, isozyme and morphological map of the barley
660 (*Hordeum vulgare*) genome. *Theoretical and Applied Genetics* **86**, 705-712 (1993).

661 61 Bulgarelli, D. *et al.* The CC-NB-LRR-Type Rdg2a Resistance Gene Confers
662 Immunity to the Seed-Borne Barley Leaf Stripe Pathogen in the Absence of
663 Hypersensitive Cell Death. *PloS one* **5**, doi:ARTN e12599
664 10.1371/journal.pone.0012599 (2010).

665 62 Tottman, D., Makepeace, R. & Broad, H. An explanation of the decimal code for the
666 growth stages of cereals, with illustrations. *Annals of Applied Biology* **93**, 221-234
667 (1979).

668 63 Caporaso, J. G. *et al.* Ultra-high-throughput microbial community analysis on the
669 Illumina HiSeq and MiSeq platforms. *The ISME journal* **6**, 1621-1624,
670 doi:10.1038/ismej.2012.8 (2012).

671 64 Caradonia, F. *et al.* Nitrogen Fertilizers Shape the Composition and Predicted
672 Functions of the Microbiota of Field-Grown Tomato Plants. *Phytobiomes Journal* **3**,
673 315-325 (2019).

674 65 Pietrangelo, L., Bucci, A., Maiuro, L., Bulgarelli, D. & Naclerio, G. Unraveling the
675 Composition of the Root-Associated Bacterial Microbiota of Phragmites australis
676 and Typha latifolia. *Frontiers in Microbiology* **9**, doi:ARTN 1650
677 10.3389/fmicb.2018.01650 (2018).

678 66 Rathore, R. *et al.* Crop Establishment Practices Are a Driver of the Plant Microbiota
679 in Winter Oilseed Rape (*Brassica napus*). *Frontiers in Microbiology* **8**, doi:ARTN
680 1489
681 10.3389/fmicb.2017.01489 (2017).

682 67 Caporaso, J. G. *et al.* QIIME allows analysis of high-throughput community
683 sequencing data. *Nature methods* **7**, 335-336, doi:10.1038/nmeth.f.303 (2010).

684 68 Edgar, R. C. Search and clustering orders of magnitude faster than BLAST.
685 *Bioinformatics* **26**, 2460-2461, doi:10.1093/bioinformatics/btq461 (2010).

686 69 Quast, C. *et al.* The SILVA ribosomal RNA gene database project: improved data
687 processing and web-based tools. *Nucleic acids research* **41**, D590-596,
688 doi:10.1093/nar/gks1219 (2013).

689 70 Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of
690 ribosomal RNAs in metatranscriptomic data. *Bioinformatics* **28**, 3211-3217 (2012).

691 71 Team, R. C. R: A language and environment for statistical computing. (2013).

692 72 McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive
693 analysis and graphics of microbiome census data. *PloS one* **8**, e61217,
694 doi:10.1371/journal.pone.0061217 (2013).

695 73 Wickham, H. *ggplot2: elegant graphics for data analysis*. (Springer, 2016).

696 74 Oksanen, J. *et al.* vegan: community ecology package. R package version 2.0-7.
697 2013. URL <http://CRAN.R-project.org/package=vegan> (2016).

698 75 Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and
699 evolution in R language. *Bioinformatics* **20**, 289-290 (2004).

700 76 Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an
701 effective distance metric for microbial community comparison. *The ISME journal* **5**,
702 169-172, doi:10.1038/ismej.2010.133 (2011).

703 77 Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful
704 method of constrained ordination for ecology. *Ecology* **84**, 511-525 (2003).

705 78 Mandal, S. *et al.* Analysis of composition of microbiomes: a novel method for
706 studying microbial composition. *Microbial ecology in health and disease* **26**, 27663
707 (2015).

708 79 Morton, J. T. *et al.* Establishing microbial composition measurement standards with
709 reference frames. *Nature communications* **10**, 1-11 (2019).

710 80 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
711 dispersion for RNA-seq data with DESeq2. *Genome biology* **15**, 550,
712 doi:10.1186/s13059-014-0550-8 (2014).

713 81 Weiss, S. *et al.* Normalization and microbial differential abundance strategies
714 depend upon data characteristics. *Microbiome* **5**, 27, doi:10.1186/s40168-017-
715 0237-y (2017).

716 82 Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the
717 visualization of intersecting sets and their properties. *Bioinformatics* **33**, 2938-2940
718 (2017).

719 83 Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic
720 tree display and annotation. *Bioinformatics* **23**, 127-128 (2006).

721 84 Close, T. J. *et al.* Development and implementation of high-throughput SNP
722 genotyping in barley. *Bmc Genomics* **10**, doi:Artn 582
723 10.1186/1471-2164-10-582 (2009).

724 85 PE, P. R. S. GenAIEx 6.5: genetic analysis in Excel. Population genetic software for
725 teaching and research—an update. *Bioinformatics* **28**, 2537 (2012).

726 86 Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population
727 genetic software for teaching and research. *Molecular ecology notes* **6**, 288-295
728 (2006).

729

730

731 **Acknowledgements**

732 We are grateful to Prof Andy Flavell (University of Dundee) for providing us with the
733 'B1K' seeds used in this study. We thank Malcolm Macaulay for the technical assistance
734 during the sequencing library preparation. We thank Dr Timothy George (The James
735 Hutton Institute) for the critical comments on the manuscript.

736 **Funding**

737 This work was supported by a Royal Society of Edinburgh/Scottish Government
738 Personal Research Fellowship co-funded by Marie Curie Actions awarded to DB and a
739 Scottish Food Security Alliance-Crops PhD studentship awarded by the University of
740 Dundee, the University of Aberdeen, and the James Hutton Institute to RAT. RAT and DB
741 are currently supported by the H2020 Innovation Action 'Circles' (European Commission,
742 Grant agreement 818290) awarded to the University of Dundee.

743 **Authors information**

744 **Contributions**

745 The study was conceived by RAT and DB with critical inputs from EP and EB. RAT
746 and KBC performed the experiments. JM and PH generated the 16S rRNA sequencing
747 reads. JR provided access to the molecular marker information of the barley genome. EF
748 provided access to the eco-geographical and phenotypic data of the B1K accessions.
749 RAT and DB analysed the data. All authors critically reviewed and edited the manuscript
750 and approved its publication.

751 **Corresponding author**

752 Correspondence to Davide Bulgarelli

753 **Ethics declarations**

754 **Competing Interests**

755 The authors declare no competing interests

756

757

758

759 **Figure legends**

760 **Figure 1 Plant growth parameters of the wild and domesticated barley genotypes.**

761 (a) Distribution of the twenty wild barley genotypes used in this study in the Israeli
762 geographic region. Individual dots depict the approximate sampling location for a given
763 genotype, colour-coded according to the designated ecogeographic area. (b) Stem dry
764 weight of the barley genotypes at the time of sampling. (c) Ratio between root and shoot
765 dry weight of the indicated samples. In b and c, upper and lower edges of the box plots
766 represent the upper and lower quartiles, respectively. The bold line within the box denotes
767 the median, individual shapes depict measurements of individual biological
768 replicates/genotypes for a given group. Different letters within the individual plots denote
769 statistically significant differences between means by Kruskal-Wallis non-parametric
770 analysis of variance followed by Dunn's post-hoc test ($P < 0.05$).

771 **Figure 2 The dominant phyla of the bulk soil and rhizosphere microbiota are**
772 **conserved across barley genotypes.** Average relative abundance (% of sequencing
773 reads) of the dominant phyla retrieved from the microbial profiles of indicated samples.
774 Only phyla displaying a minimum average relative abundance of 1% included in the
775 graphical representation. Stars depict phyla enriched in and discriminating between
776 rhizosphere and between bulk soil samples (ANCOM, cut-off 0.6, alpha 0.05, taxon-
777 corrected).

778 **Figure 3 Wild and elite barley genotypes fine-tune the composition of the**
779 **rhizosphere bacterial microbiota.** Principal Coordinates Analysis of the Weighted
780 Unifrac dissimilarity matrix of the microbial communities retrieved from the indicated
781 sample types. Individual shape depicts individual biological replicates colour-coded
782 according to the designated ecogeographic area.

783 **Figure 4 Enrichments of individual bacteria discriminates between elite varieties**
784 **and wild barley genotypes.** Horizontal black bars denote the number of OTUs
785 differentially enriched (Wald test, P value < 0.05 , FDR corrected) in the indicated pair-wise
786 comparisons between elite varieties and groups of wild barley genotypes. Vertical bars
787 depict the number of differentially enriched OTUs unique for or shared among two or more
788 comparisons highlighted by the interconnected dots underneath the vertical bars. Coloured
789 vertical bars depict differentially enriched OTUs unique for the pair-wise comparisons
790 between 'Elite' and 'Coast 2' (C2, dark blue), 'Coast 1' (C1, light blue), 'North' (N, green),
791 'Desert 1' (D1, yellow) and 'Desert 2' (D2, orange), respectively.

792 **Figure 5. Actinobacteria are preferentially enriched in and discriminate between elite**
793 **genotypes and wild barley genotypes adapted to desert environments.** Individual
794 external nodes of the tree represent one of the OTUs enriched in the rhizosphere of elite
795 genotypes compared to either (or both) rhizosphere samples desert areas (Wald test, P
796 value < 0.05 , FDR corrected). The colours reflect OTUs' taxonomic affiliation at Phylum
797 level. A black bar in the outer rings depicts whether that given OTU was identified in the
798 comparisons between 'Elite' and either 'Desert 1' or 'Desert 2' genotypes, respectively.
799 Phylogenetic tree constructed using OTUs 16S rRNA gene representative sequences.

800 **Figure 6: Mantel test between genetic distance and microbial distance in the wild**
801 **barley rhizosphere.** Individual dots depict individual comparison of any given pair of wild
802 barley genotypes between average value of weighted unifrac distance (y-axis) and genetic
803 distance shown as simple matching coefficients (x-axis). The blue line depicts the
804 regression line, the grey shadow the 95% confidence interval, respectively.

805

806 **Tables**

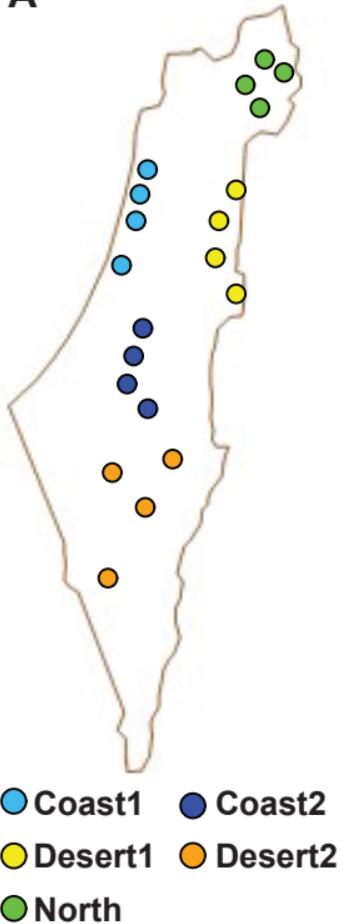
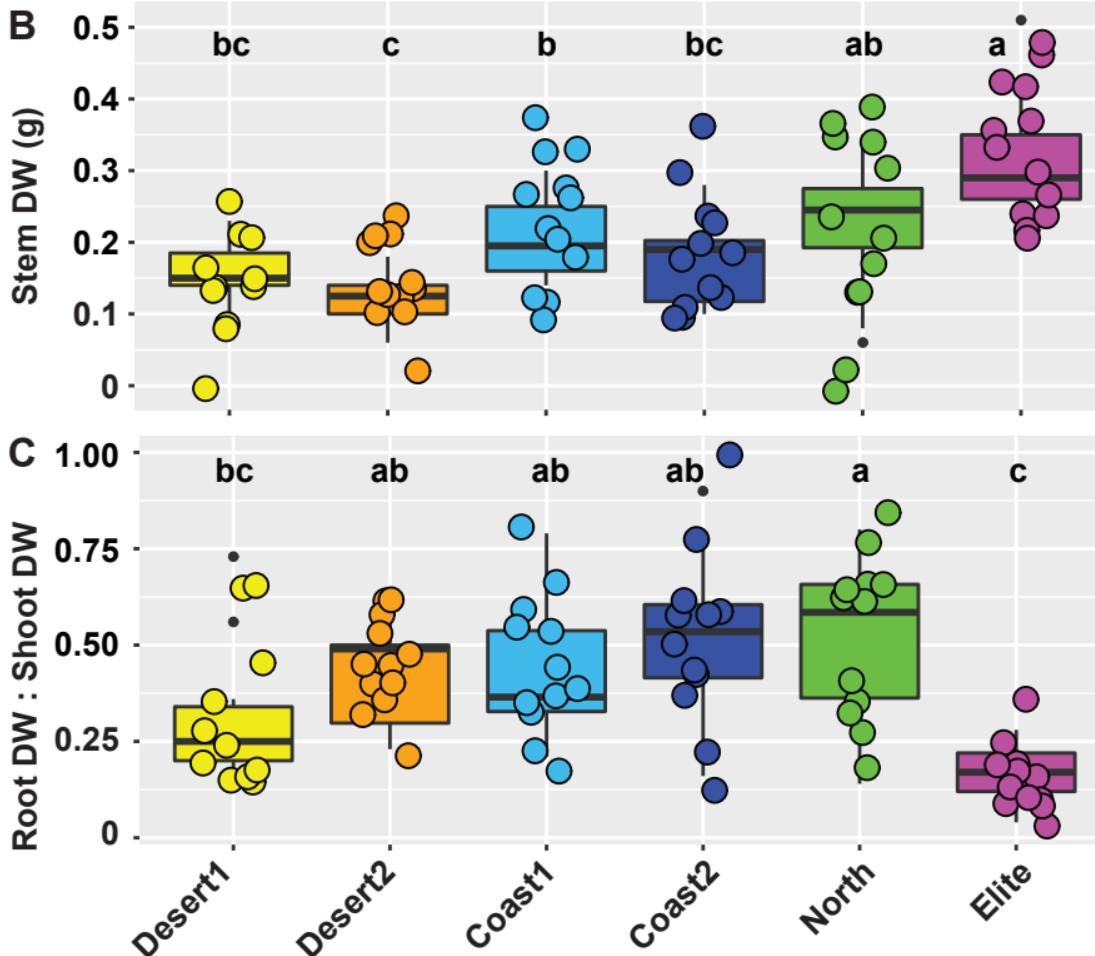
807 **Table 1. Description of the genotypes used in this study. Eco-geographical group;**
 808 **sampling site or type of the Elite material, genotype ID; mean annual rainfall (MAR*),**
 809 **mid-day temperature in January (MDT1*), Elevation, and soil bulk density (Db*),**
 810 **organic matter content (OM*) of the 'B1K' sampling sites from^{19,40}. (**) missing data**

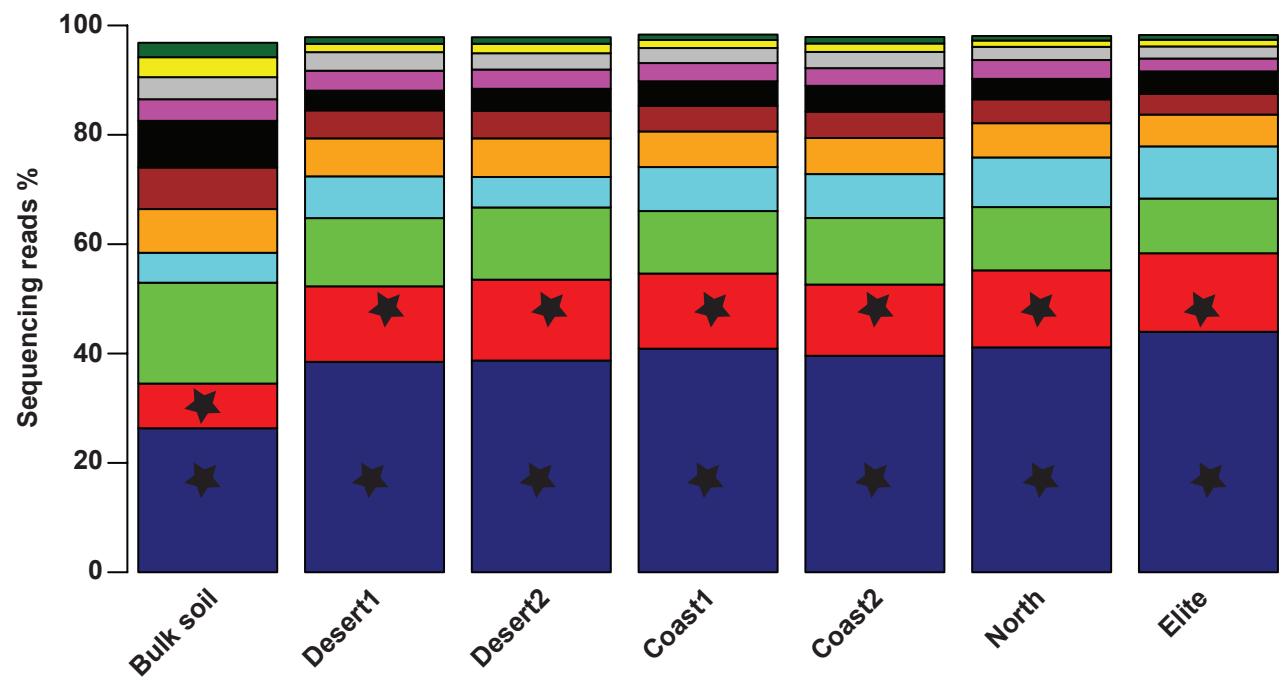
Eco-geo graphical group	Site/ Elite- type	Genotype ID	MAR* (mm)	MDT1* (°C)	Elevation* (m)	Db* (g/ml)	OM* (%)
Coast 1							
	Michmoret	B1K.03.09	569	12.3	19	1.32	0.979
	Dor	B1K.20.13	543	12.3	16	1.06	6.659
	Kerem Maharal	B1K.21.11	602	11.9	92	1.04	11.616
	Oren Canyon	B1K.30.07	623	11.9	98	1.02	9.430
Coast 2							
	Amatzya	B1K.17.10	366	10.5	355	1.21	2.564
	Shomerya	B1K.18.16	318	10.1	441	1.13	3.946
	Beit Govrin	B1K.35.11	386	10.8	303	0.97	5.251
	Sinsan Stream	B1K.48.06	471	10.4	358	1.05	6.242
Desert 1							
	Ein Prat	B1K.04.04	388	10.4	319	m.d. (**)	m.d. (**)
	Neomi	B1K.05.13	153	13.1	-245	1.28	4.460
	Talkid Stream	B1K.08.18	215	12.7	-253	1.05	2.077
	Kidron Stream	B1K.12.10	87	14	-380	1.38	1.609
Desert 2							
	Yeruham	B1K.02.18	112	9.9	535	1.41	0.175
	Shivta	B1K.11.11	88	10.7	358	1.43	1.138
	Mt. Harif	B1K.33.03	74	8.3	860	1.52	0.820
	Havarim Stream	B1K.34.20	93	10.1	485	1.32	1.337
North							
	Susita	B1K.14.04	444	10.5	51	0.93	7.551
	Hamat Gader	B1K.15.19	436	11.3	-69	0.96	4.122
	Avny hill	B1K.31.01	502	10.4	177	1.13	5.161
	Almagor	B1K.37.06	461	11.1	-37	1.11	6.096
Elite							
	Two-row/ malting	Barke					
	Two-row/ feeding	Bowman					
	Six-row/ malting	Morex					
	Six-row/ feeding	Steptoe					

812

813 **Table 2. Proportion of rhizosphere microbiota variance explained by the indicated**
814 **variables and corresponding statistical significance. Levels of the factor**
815 **Microhabitat are either 'Bulk soil' or 'Rhizosphere'. Levels of the factor Eco-**
816 **geography are the groups 'Coast 1'; 'Coast 2'; 'Desert 1'; 'Desert 2'; 'North'; and**
817 **'Elite', respectively.**

Weighted Unifrac		
Factor	R2	Pr(>F)
Microhabitat	0.285	<0.001
Eco-geography*	0.168	<0.001

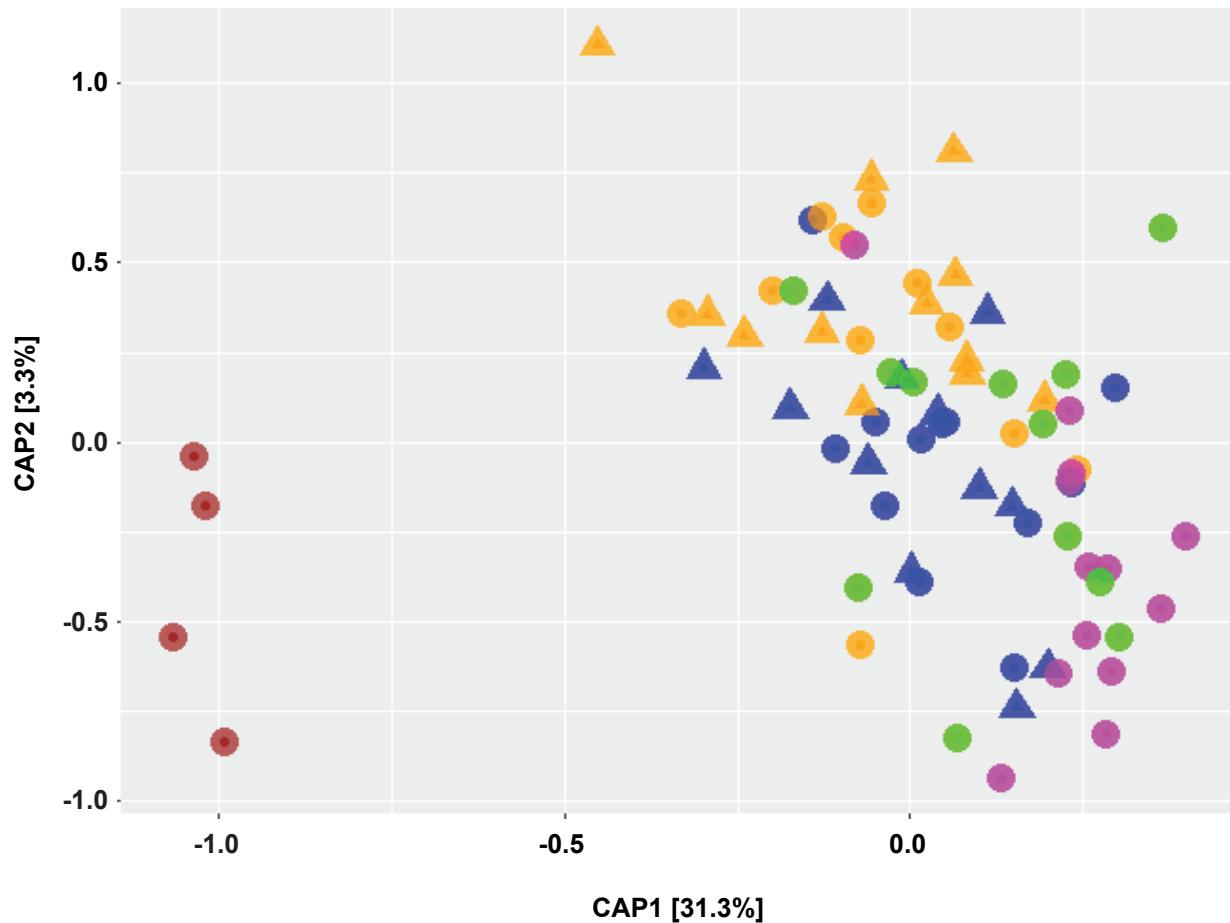




Bray-Curtis		
Factor	R2	Pr(>F)
Microhabitat	0.221	<0.001
Eco-geography*	0.129	<0.001

818 (*) Analysis performed in rhizosphere samples only

819

820


A**B**

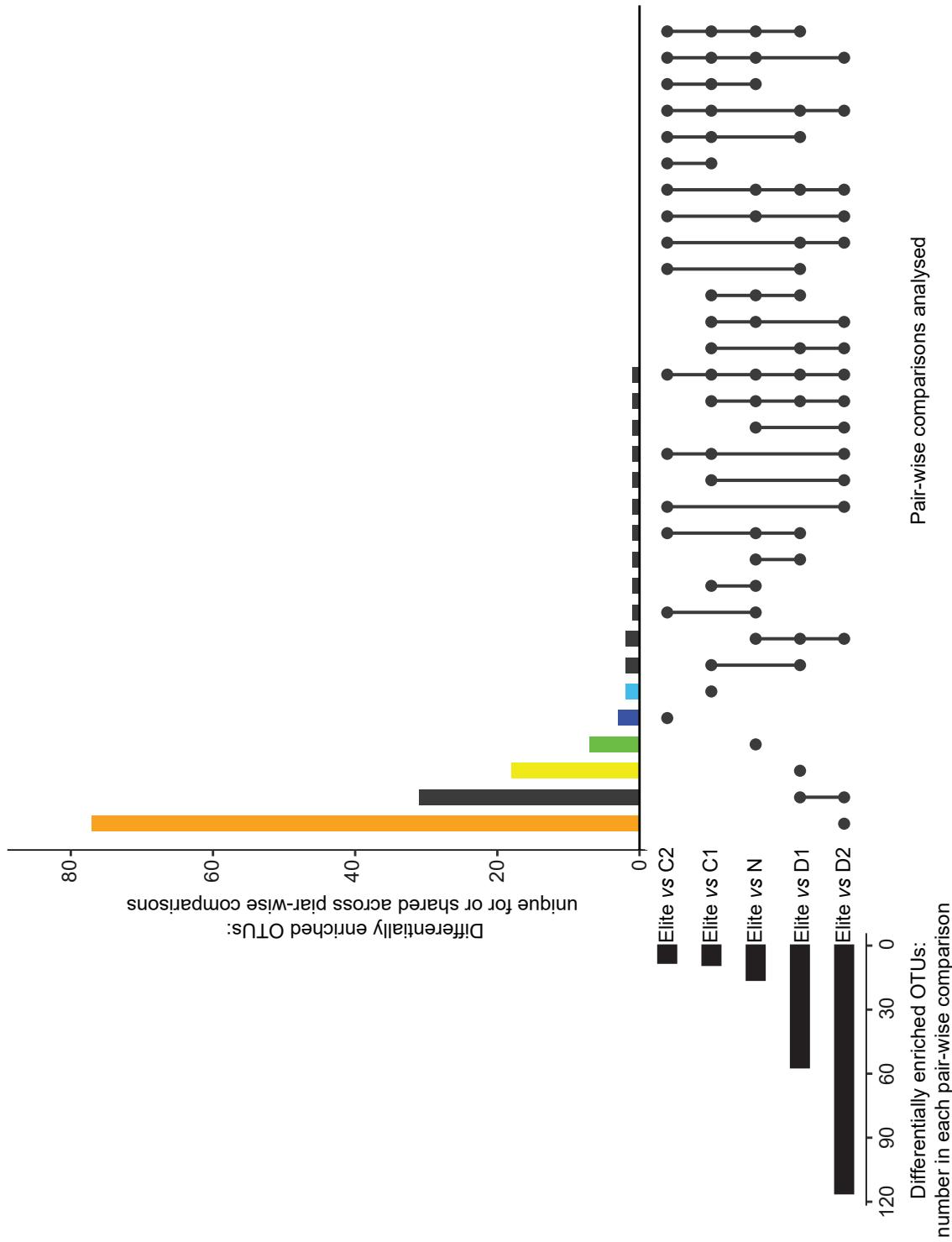
Taxonomy

█ Acidobacteria	█ Actinobacteria	█ Bacteroidetes	█ Chloroflexi
█ Latescibacteria	█ Gemmatimonadetes	█ Planctomycetes	█ Proteobacteria
█ Rokubacteria	█ Verrucomicrobia		█ Thaumarchaeota

Sample type

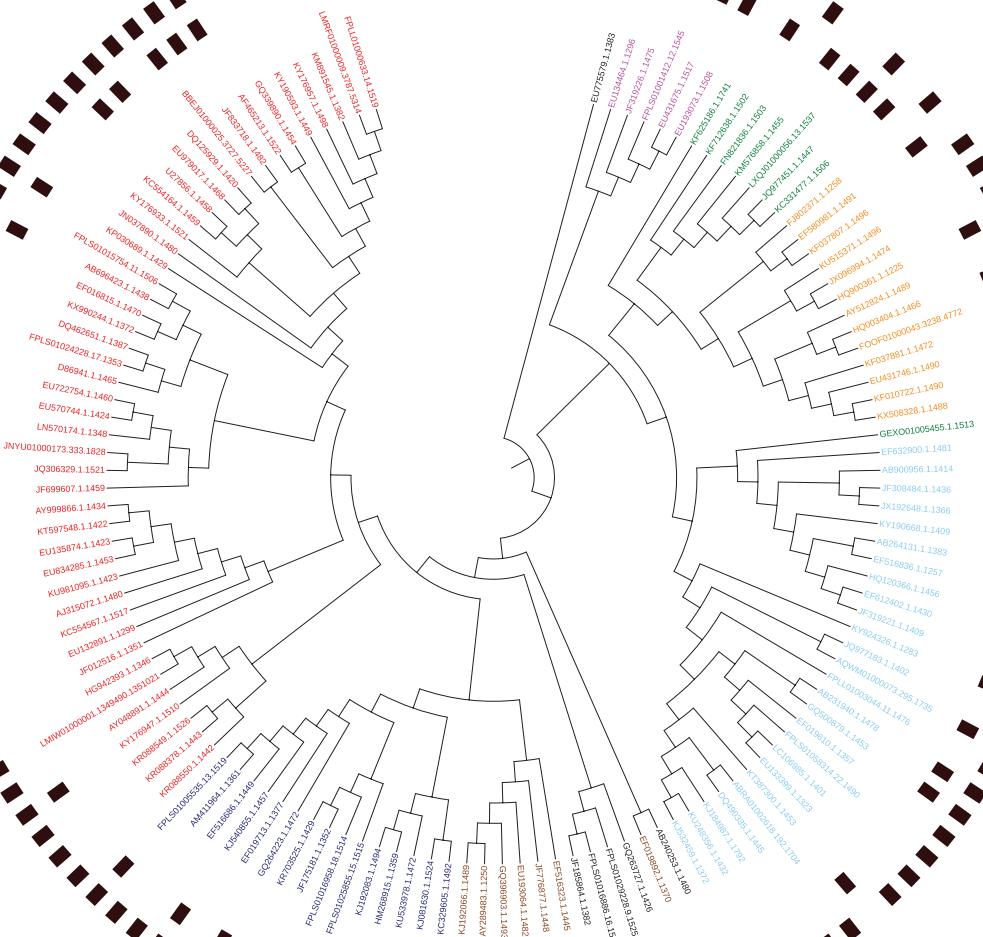
■ Bulk soil

● North


● Coast1

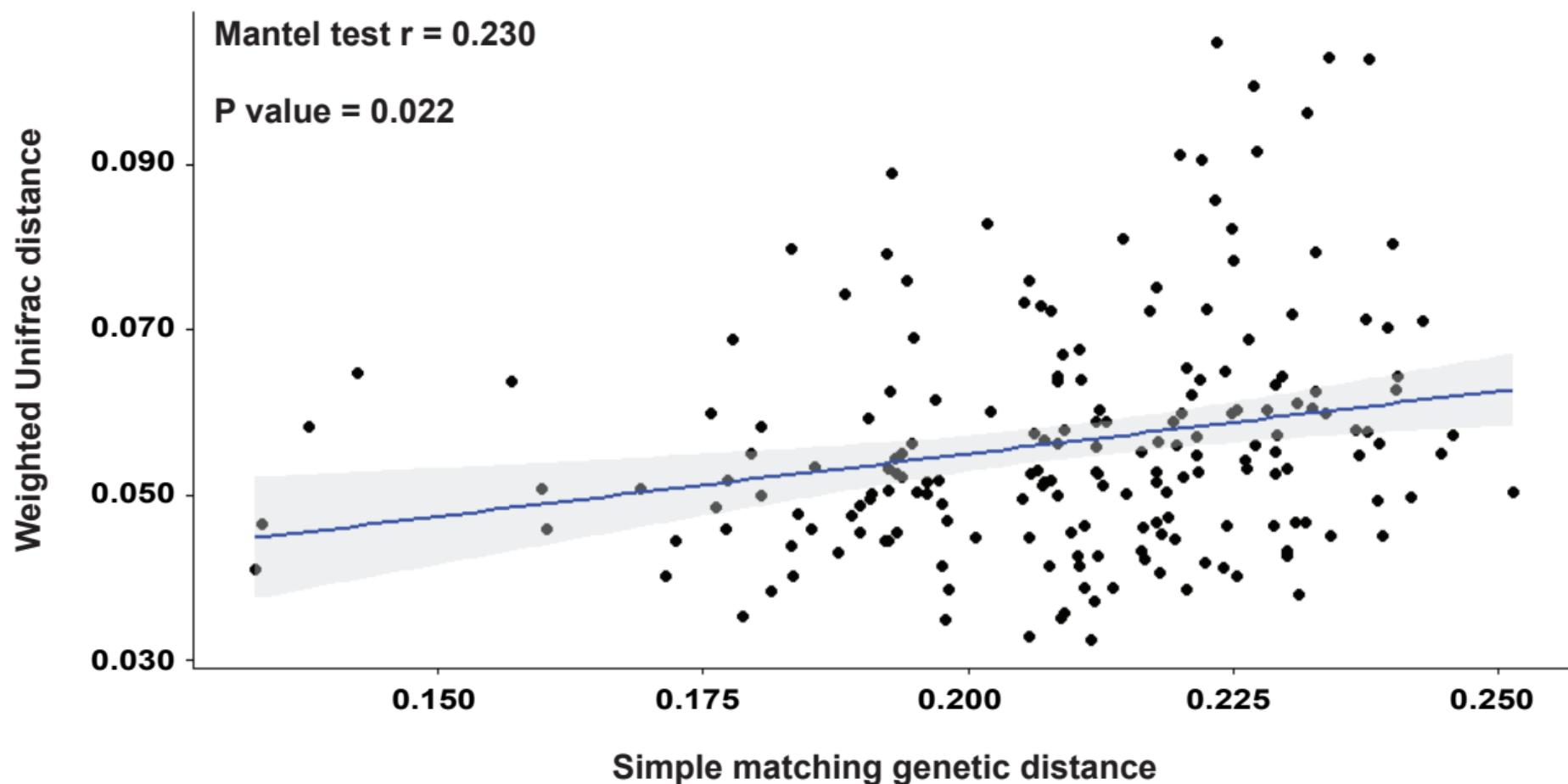
▲ Coast2

● Desert1


▲ Desert2

● Elite

Elite enriched vs D2


Elite enriched vs D1

OTU taxonomy

Legend for the phylogenetic tree:

- Actinobacteria
- Alphaproteobacteria
- Bacteroidetes
- Betaproteobacteria
- Deltaproteobacteria
- Gammaproteobacteria
- Gemmatimonadetes
- Other phyla

