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Abstract

Improvements in quantitative measurements of human physical activity are proving extraordi-
narily useful for studying the underlying musculoskeletal system. Dynamic models of human
movement support clinical efforts to analyze, rehabilitate injuries. They are also used in
biomechanics to understand and diagnose motor pathologies, find new motor strategies that
decrease the risk of injury, and predict potential problems from a particular procedure. In
addition, they provide useful constraints for underlying neural circuits. This paper describes
a physics-based movement analysis method for analyzing and simulating bipedal humanoid
movements. A 48 degree of freedom dynamic model of humans has been developed to report
humanoid movements’ energetic components. It has sufficient speed and accuracy to analyze and
synthesize real-time interactive applications, such as psychophysics experiments using virtual
reality or human-in-the-loop teleoperation of a simulated robotic system. The dynamic model is
fast and robust while still providing results sufficiently accurate to be used to believably animate
a humanoid character or estimate internal joint forces used during a movement for creating
effort-contingent experimental stimuli. A virtual reality environment developed as part of this

research supports controlled experiments for systematically recording human behaviors.

Introduction ]

The complexity of human motion was first dramatically captured via the Muybridge high-speed
photographs [1] which spawned a number of separate analysis techniques in different disciplines. 3
Visualization first used keyframing techniques but later sophisticated models used in advanced 4
rendering for computer graphics e.g. [2]. The early cognitive analyses of human behavior [3] s
focused on human motion in problem-solving, using an essentially logical approach. In robotics, s
sights have been obtained by building physical systems directly |4] that straddle the boundary 7

between humans and robotics that have shed light on the human design. However, these efforts s
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are characteristically specialized. In another development, machine learning techniques have ¢
been introduced for use in analyzing animal-like motion [5]. 10

Most recent advances in the speed of computing and novel formulations of the dynamic u
equations of motion have engendered a new approach to understanding human movement 1
fundamentals. Large scale human movement models can be built with the objective of under- 13
standing how the human generates goal-oriented behaviors in real-time. However, modeling all 14
the complexity of the human musculoskeletal system can be daunting, with over 600 muscles 15
controlling a complex skeletal system with over 300 degrees of freedom. Moreover, to control this 16
complexity, in addition to its vast cortical memory system, the forebrain coordinates specialized 17
subsystems such as the Basal Ganglia and Thalamus in realizing human real-time movement 1s
coordination. The upshot is that progress tends to be specialized [6], and there are many open 19
problems [7]. 20

In the face of these complex challenges, a major alternate modeling route is to forego the 21
neural level of detail as well as one that features muscles and model more abstract versions 22
of the human system that still use multiple degrees of freedom but summarize muscle effects 23
through joint torques. The computation of the dynamics of such multi-jointed systems recently 24
has also experienced significant advances. The foremost of these, use a kinematic plan to 25
integrate the dynamic equations directly. Several different systems exist, such as MuJoCo, 2
Bullet, Havok, Open Dynamic Engine(ODE)] and PhysX, but an evaluation by [§] found them 2
roughly comparable in capability, and only MuJoC(ﬂ has been applied to human modeling. 28

Thus there is a need for an exclusively human movement based model that could be used to 29
inform laboratory experiments [9], clinical studies e.g [10] also verify experiments that have only 30
qualitative results [11,/12]. Our human dynamic model (HDM)E] has a singular focus on human
movement modeling and uses a unique approach to integrating the dynamic equations. A direct 32
dynamics integration method to extracts torques from human subjects in real-time [13H15] using 33
a unifying spring constraint formalism. 34

The HDM system is built on top of the physics engine ODE, but has two significant innovations 35
added in order to handle the closed-loop kinematic chains of bipedal movements and the contact 36
constraints they introduce, which have proven difficult to model. One is to allow the kinematic 37
makers of a motion capture system to be modeled as very large point masses. The result is to  3s
stabilize the integration of the underlying dynamic equations. The other is to allow the reduction 39
of contact constraints into stiff springs, which has the result of allowing the incorporation of 4
external forces and points of contact. a1

Most of the computation of the joint torques uses the kinematic data, but there is a balance 4
issue to be dealt with.For example human motions for familiar tasks such as balancing while 43

putting on socks can use on remembered protocols, if they can depend ancillary system such 44

!OpenDE: http://www.ode.org/
*MuJoCo http://www.mujoco.org/
3The HDM mode: https://github.com/EmbodiedCognition/QtVR
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as the vestibular to correct errors.In the same way we use use a similar closed loop system to s
generate small corrections. 46

The focus of the paper is to describe the HDM simulator as a useful laboratory instrument as 47
well as describe demonstrations that lend support to the kinematic plan approach to movement s
memory. These goals are illustrated and evaluated in several different demonstrations to illustrate 4o

the versatility of the method. 50

Model Overview 51

The HDM is a fast, robust, intuitive, and inexpensive multi-purpose tool for simulating, analyzing, s
and synthesizing humanoid movement. Fig.[I|shows a frame from a study of the cost of movements s3
used in a virtual tracing experiment [16]. The model interfaceE] shown in allows the construction 4
of the human model using the physics engine via a multi-purpose graphical interface for analyzing ss
movement data captured through interaction with the virtual environment. With this tool, it =6
is possible to interactively fit a model to marker data, dynamically adjust parameters to test sz
different effects, and visualize the results of kinematic and dynamic analysis. Another example ss
is shown in Fig[2] which shows frames from a jumping sequence made originally by a human s
subject and then recreated by the HDM system using the inverse dynamic method. 60

Analysis of human motions utilizing the human dynamic model is implemented in the following &

five steps: 62

1. Motion synthesis: it simulates human motion by following the motion capture data [14]

2. Inverse kinematics: it calls the ODE built-in functions to compute the joint angles and 6

joint angular velocities at each frame. 65

3. Forward kinematics: it simulates human motion based on the computed joint properties. es

This step is to check the correctness of recovered kinematic properties. 67
4. Inverse dynamics: it calls the ODE built-in function to compute the required joint torques. es

5. Forward dynamics: it simulates human motion based on the computed torques/forces. e

This step is to check the correctness of recovered dynamic properties. 70

At each frame, instantaneous power was computed from the product of net joint torque =
and joint angular velocity. The work performed at each joint were determined by numerically 72
integrating the instantaneous powers over the entire tracing task. In this way, the the energy 73
cost of human motions can be computed given motion capture data. 74

More details of building the HDM are described in the Method section. The derivation of 75

the mathematics underlying the physics simulation is presented separately in S1 Appendix. 7

“HDM UI Demo https://youtu.be/ASs4Wo5PQcM
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Fig 1. The HDM user interface. It supports various visualizations of relevant data and
control for analyzing and producing physically-based movements. The programmed parameters
of the model consist of physical world parameters, joints constraints, and the model’s
body-marker relative positions. In this depiction shows how users can get the current HMD
configurations by clicking the buttons on the rightmost vertical menu. “Marker” is selected,

meaning the marker information is shown:(1) The first column represents marker index buttons.

Buttons in blue means the corresponding markers are attached to the HDM. Users can
attach/detach markers by clicking index buttons. (2) The second column shows body segments
where markers are attached. Each spin box is a collective item of all body segment names.
Users can use it to change the body-marker attachment relationship. (3) The three-five columns
present the marker-body relative positions. Users can modify the values directly using this
interface. (4) The ”Connect” button and ”Release” button on the top are to attach or detach
all the markers, respectively. The ”Update Anchor” button automatically updates the
marker-body relative positions based on the current motion posture.

This section focuses on describing the model’s capabilities through a series of examples in
different settings. Several test experiments provide qualitative and quantitative validation of

the physics-based movement analysis techniques described here.

Test 1: Model Performance

Given that the torque recovery technique will be the basis for our experiments, it is essential to

establish its accuracy in absolute terms. A straightforward to do this is to use a particular model
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Fig 2. Model capability illustration. A jump sequence reproduced with
physics-engine-based inverse dynamics using recorded motion capture data from a human
subject. The recreated jump height is achieved completely from ground forces, with small
residual torques (< 100Nm) keeping the model from tipping over.

to generate joint torque data and then verify that these generating torques can be recovered with
sufficient accuracy. To test the model accuracy and noise sensitivity, we first use the PhaseSpace
motion capture system to gather the walking data and then let the model simulate the walking
motion. To simulate possible sensor errors in the PhaseSpace system, we introduce noise into

the simulated marker positions and study the accuracy of recovery with increasing noise levels.

Noise tolerance Inverse dynamics computations rely on first finding the model’s pose. There-
fore, given motion capture data, it is essential to synthesize the pose sequence precisely. We
used the HDM to synthesize treadmill walking and then compute its accuracy. The aim of this
study was to assess the effect of sensor noise on the results and compare the joint angles and
torques found with our method to those used to generate marker data. We used an experimental
process similar to that employed in [17]. In this experiment, both steps were tested by studying
eight steps of marker data captured from treadmill walking. The movement lasts a little longer
than 4 seconds, giving us 260 frames of data. For this computation, we used data sampled at 60
Hz.

We used a preliminary pass through the motion capture data to generate synthesized “ground
truth” marker, pose, and torque data. After using the physics-based inverse kinematics to
compute joint angles, we constrained the body to use forward dynamics to reproduce the joint
angles with internal torques (and residual forces at the waist segment). As the model performed
the movement, we recorded the global position of the marker attachment points. We also
recorded the forces used and the resulting joint angles. Thus we had synthetic “ground truth”
data directly from the model.

Using the synthetic marker data, we analyzed the process by perturbing all marker positions
at each frame in time along all three axes with mean-centered Gaussian noise of a controlled
standard deviation. Applying physics-based pose-fitting followed by inverse dynamics produced
a new set of virtual marker positions, joint angles, and torques. The results are shown in Fig

Gaussian perturbations render the marker data dynamically inconsistent. This dynamic

inconsistency also pushes a constrained system toward singularity, making it more challenging
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Fig 3. Model noise sensitivity. Error of joint angles, and internal torques resulting from
physics-based inverse kinematics and inverse dynamics used to analyze perturbed marker data.
We repeated the process twenty times for each noise-level at nine different standard-deviations.
Standard-deviations, in mm, were (0.1, 0.5, 1, 2, 4, 8, 16, 32, 64). Error bars show standard
error of the mean.(a) The accuracy of the PhaseSpace motion capture device is approximately
Smm over its 3 x 6 meter workspace, resulting an average angular error of 1 degree. (b) The
same estimates for torque error are between 5 and 10 Nm, typically approximately 1%. These
small errors are well within the requirements for our experiments. (c) Poses generated by
forward dynamics using forces obtained from three inverse dynamics simulations based on
Gaussian perturbed walking data (0.1mm, 8mm, and 64mm noise levels). Although at very
high levels of noise, the model follows the reference motion poorly, the movement still looks,
qualitatively, like walking.

to solve numerically. We included very high levels of noise to see if they would slow the system 110
down, or prevent it from finding any solution. In all cases, the system analyzed the perturbed 1
data in real-time, finding pose data and dynamics data to fit the marker data. 112

After running through an inverse kinematics pass, an inverse dynamics pass, and a forward 13
dynamics pass for each trial run; we compared the marker attachment points, joint angles, and 114
joint torques from the forward dynamics pass to the synthetic ground truth data. Fig. [3]shows s
the mean error for across all degrees of freedom and frames of time for each quantity measured. 116

Although the perturbations make the marker data dynamically inconsistent, small amounts of 117
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Fig 4. Trajectory reconstruction. Trajectories of selected degrees of freedom from the
perturbation study. Solid lines show ground truth. Dashed lines show computed data.
Simulated spring forces make the computed data lag behind and smooth the ground truth.

noise have minimal effect on the computed measurements. Fig [3| shows that functional recovery
is possible with up to 8mm standard error deviations. A +1mm PhaseSpace marker position
accuracy translates in our model into an average joint angle error of 0.02 radians and average
force errors of 3 Newtons.

There is a systematic error in both the marker positions and joint angles caused by the fact
that the constraints behave like springs. The spring-like behavior causes the marker positions and
joint angles to lag behind their targets by a small amount and dampens the overall movement.
This lag and damping are apparent in Fig. [d] comparing individual trajectories for selected
dimensions of the joint angles and torques. As shown in Fig [ the data follow ground truth

very well under low noise conditions.

Residual torques/forces and ground forces The inverse dynamics uses measured kine-
matics and external forces to calculate net joint torques in a rigid body linked segment model. [18]
However, discrepancies between the dynamic forces of the model and the kinematic of the reality
make it so that the dynamic model falls over unless action is taken to stabilize it. Adjustments
to internal joint torques can be used to stabilize the body but cause the body’s pose to deviate
from its intended pose. A common way to compensate this problem is by introducing "residual
forces and torques.” In humans, these additions would be consequential of measurements inthe
human vestibular system. The HDM includes a joint to the model’s waist to constrain it to
reproduce orientation deviations found during the pose-fitting pass. To minimize the effect of
these external forces, we used torque limits on the amount of stabilizing torque available.

The system fully configured system could be tested against an objective set of measurements.
We compaired HDM data together with ground force data from a pair of balance boards. Fig

shows the calibration of the ground force computed from our method compared to those taken
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from WiiT™ force plates. A subject standing on two force plates, varied their stance from one 14
being supported exclusively by leg standing on one plate and then shifted their weight to the 14
other leg to be supported by the other plate. For this simple movement of transitioning from 143
standing on one foot or the other, residual angular torques of 30Nm were sufficient to keep the 14
dynamic model quite close to its target trajectory. 145

The residual torques are very modest, being within £5% of the maximum excursion. The 14
correspondence is actually a little better as the faux vestibular balance forces are not factored 1
into the comparison. Note also that we cannot expect the correspondence to be exact during 14
the phase between the two stances as there is no attempt in the model in this test to make 140
the dynamics of the changing stance match that of the force plates. To generate independent 1s0
movements, such as grasping might need additional accuracy [19], but for estimating a subject’s 1
energetic cost, the accuracy is well within range. 152

Fig |5 also shows the comparison results between the sensor-measured ground forces for 1ss
the right and left feet (red and green lines) with the computed ground forces found through 1
physics-based inverse dynamics (blue and pink lines). During bipedal stance phase, the forces 1ss
come surprisingly close. The largest discrepancies come during the transition from one foot to 1s6
the other. These discrepancies can be blamed largely on poor collision detection resulting from 157
an abstract model of the foot. 158
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Fig 5. Comparing ground forces between the model and the Wii force plate. (Top)

Two Wii force plates serve as accurate calibration reference. A subject stood on the two plates
and then changed stances, balancing first on the left foot and next on the right. (Bottom) The
comparison between the measurement systems is surprisingly good, during the stance phases,
showing only a 10% difference between the measured ground forces and the computed forces.
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Test2: Model Validation 159

The previous demonstrations report on tests of the accuracy of the system in completely artificial 160
situations. Herein we describe three tests of the whole body model’s ability to fit data obtained 1e
from human subjects. The first test uses a subject carrying out successively more difficult 1s2
reaches in a virtual reality environment to test whether the model’s estimate of movement costs 163
correlate with increasing task difficulty. The second test simulates data from an issue facing 14
movements in an aging population. Do aging subjects’ reduced use of arm swing while walking 165
incur a movement cost, and does the HDM’s estimate correspond to laboratory treadmill data? 1e6
The final test demonstrates an essential property of the model concerning its degrees of freedom. 167
The critical observation is that virtues of their interconnections constrain the degree of freedom 16s
of the model; thus, the control of a posture can be achieved with a very reduced set of key 169

marker positions. This has implications for movement control programs. 170

Whole body reaching The movement accuracy test is encouraging, but the importance of 11
the method depends on its usefulness to capture the energetic cost of whole-body movements in 172
a complex experimental setting. One such venue is a three-dimensional Virtual Reality (VR) 173
environment. The advantage of the VR environment for studying human movements is that the 17
dimensions and the dynamic variations of the parametric quantities describing the setting can 175
be varied with full experimental control. 176

In this experiment, we studied where human subjects needed to use whole-body movements 177
cost choosing actions. From a particular start, a human subject touched targets suspended 17s
in 3D space. The experimental setup is demonstrated in Fig. [6] The subject is wearing the 17
PhaseSpace motion capture suit and the nVisor head-mounted stereo display. From a fixed 1s0
starting position, a subject is instructed to touch one of the targets and return to the starting 1s
position. 182

Tests were able to establish that, just focusing on integrated net torque and avoiding stiffness, 1s3
the total cost of a movement recorded by our system reliably discriminates the energetic costs 1ss
of the movement in the way hypothesized. The hypothesized cost of reaching for and touching 1ss
each of the targets was ranked on the basis of distance and height relative to the subject. Note 16
that target 2 is the least expensive as the subject does not have to crouch or extend significantly 1s7
to touch it. Targets 5 through 8 are more costly than targets 1 through 4 as they require that 1ss
the subject take a step to touch them. These results were expected, but the point was to show 180
that the overall setting and model could produce reliable torque estimates. 190

This demonstration shows that the model can be used in any setting where the cost of a 10
movement is hypothesized to be a constituent factor. We develop this technique further in the 102

next demonstration. 193
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Fig 6. Reaching in a virtual reality environment. A) A subject reaches to touch virtual
targets seen in a HMD. The Ss’ reach is unconstrained. B) The subject reaches to the different
numbered targets on separate trials. C) The average integrated torque over 10 trials per reach
shows that the method reliably discriminates between movement costs for the further and
higher locations.

Comparing the HDM with a prior experimental result Once the joint stiffness pa-
rameters were adjusted appropriately, can it reproduce the results of a stiffness modulating
experiment? The experiment we tried was to replicate that of Ortega et al. . They showed
that arresting the arm swing during treadmill walking incurred an increased metabolic cost of
6%. Our hypothesis was that to reproduce this result we could modify our walking data for the
model so that the arms were clamped by the sides with stiff stationary markers.

To test this feasibility, we used one of our HDM walking data sets in a test situation. The
cost of walking was computed and with a modification designed to model the data in . To
simulate their experiment, we modified the model data so the arms could swing with the walking
gait for the standard case, but for the restricted case, the arms were constrained by markers that
move with the stride but are not allowed to swing. Since the arms under restricted situation
were not allowed to balance the leg movements, we expected the energetic cost to be higher. As
shown in Figure |7, the result was that the constrained walk was about 6 % more expensive than
the standard walk, which was essentially the value obtained by the Farley lab [20]. The use of
the HDM in imitating this experiment shows off the utility of the model; no elaborate tuning

was necessary to obtain the preliminary result other than restraining the arms.

Controlling poses using reduced marker sets Tests of movement accuracy revealed that
the dynamics engine was able to tolerate significant noise levels added to the marker positions.
Another possibility is to use a subset of the markers to constrain the dynamics and still produce
reasonable walking gaits. Human pose sequences from simple single-behavior motions lie on a
very low-dimensional linear subspace . However, original feature space of human motions

has two many dimensions, e.g. the HDM uses 51 markers, so one pose is represented by a
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Fig 7. Comparison of efforts while walking with/without arm swing. (a) In a
preliminary test of our design, the energetic cost of normal walking is compared to the case
where the arms are constrained from swinging. Our hypothesis is that if subjects are instructed
to walk without moving their arms, they will accomplish this by using muscle co-contraction
and that this effect can be realized in the HDM with stationary markers that keep the arms
vertical. (b)The increased cost measured by the HDM is 6.1 %, extremely close to the 6 %
result obtained by Ortega .

123-dimension coordinate system. Tests show that for many movements, with suitable internal
stiffness, it is only necessary to control the location of a reduced set consisting of the head,
hands, and feet markers . This property could have been expected from studies of muscle
synergies, which show that muscle contractions coordinate in movement generation .
Fig. 8| shows a qualitative comparison between a pose found using the whole marker set (on
the left) and one found using only head, hands, and feet(on the right). To achieve the reduced
marker pose, we started the model in an upright stance with the arms by the side, and then the
reduced set markers are moved slowly along trajectories that leave them in the final posture.
The straight arms take advantage of the elbow joint angle limitation. Joint limits on the knees

and elbows and general joint stiffness naturally bias the physics engine to find a pose that is
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very close to the fully constrained pose. Body inertia and joint stiffness naturally clean up 22
minor noise and occlusions in the captured marker data. The resulting joint angles in transit 22
allow the specification of the complete set of dynamic torques. To test this feature of HDM 223
quantitatively, the recovered joints angles while walking according to the reduced marker set 22
were compared with those from the full marker set. Fig. [J illustrates the recovered joints angles 230
are quite similar with the original joints angles. 231

This result has important general implications. First of all, the finding suggests that the 23
kinematic plan for movements can be compressed into a subset of formative trajectories, leaving 233
the remaining degrees of freedom interpolated using the body’s dynamic constraint. Another 234
aspect of this observation is that the reduced set can be used to adjust movements to individual 235

circumstances, again leaving the detailed interpolation to the dynamics. 236

(a) pose with full marker set (b) pose with reduced marker set

Fig 8. Movement control using dynamic synergies (a) Body configuration using all
marker constraints.Note the similarity to the sparsely constrained pose. (b) Body configuration
using constraints on only the head, hands, and feet. In many cases, the pose found using a full
set of marker constraints is quite close to that found by a sparse set of constraints. These two
images show almost no differences between using a full or a sparse set of marker constraints.

Discussion 237

The paper has aimed to publicize a novel system for quantitatively modeling whole-body 233
movements. Its 48 degrees of freedom and generalized spring constraints allow models of scale 239
that are robust to disturbances. In addition to being an analytical tool, it can also generate 240
movements from a kinematic plan. 241

The core of our simulations exploits the observation that realizations of constraints behave like 242
implicit springs. The parameters that soften constraints into springs exhibit many advantageous 243

properties. They stabilize the simulation, pushing a constrained system away from singularities, 24
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Fig 9. Comparison of joint angles along selected degree of freedom Solid lines show
joint angels recovered based on full marker set. Dashed lines show joint angels recovered based
on reduced marker set.

and reducing constraint error. A fundamental question concerned with the HDM system is

whether it can recover the trajectories and the cost of a known physical system’s complex motion.

The experiments described above showing the HDM synthesizing human motions with high levels
of accuracy. One further principle behind our tests is that one way of illustrating the method’s
robustness is to combine a kinematic data set from the source with another set of dynamic
parameters. In tests, the data gathered with a different motion capture device is combined with
the inertial data from another model to make a composite. Our tests used the Carnegie Mellon
University’s graphics laboratory’s motion capture database E This beneficial and extensive
database contains whole-body motion data sets for different human subjects performing various
natural motions. The database was created by motion capture, and the positions of markers
on the bodies are one of the primary sources of motion data. We did not know the individual
dynamic parameters. However, by adopting the database’s marker conventions, we could use
our dynamics calculation to compute joint torques for the hybrid system. Although the estimate

is thus done for a synthetic pairing of kinematic data and dynamic parameters, the point is to

show that, even with this combination, the integration is stable and leads to identifiable torques.

A central feature of the system is the production of the movements’ energetic cost to provide
the capability to compare different movement scenarios. Achieving this aim can be tricky, owing

to the lack of systems that can provide independent cost measures. Energetic cost measurement

SCMU Graphics Lab Motion Capture Database: http://mocap.cs.cmu. edu/
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of human movements has been studied for decades. The most straightforward and frequently used 263
method is to measure the metabolic cost,e.g., subjects breath through a mouthpiece to measure 264
rates of oxygen consumption (VO2) [25-31]. Measuring the changes in muscle coactivation and 265
stiffness using Electromyographic (EMG) is another common way to reflect metabolic changes 25
[32]. However, these methods are time-consuming, and the required configuration restricts the 267
variety of experiments. For example, the VO2 process does not work for virtual-reality tasks as 268
subjects need to wear the VR helmet on their head, leaving little space for a mouthpiece. 260

By comparison with the above methods, the HDM provides a stable and versatile platform 270
with several uses. One is the use with force plates, as shown in our experiment, to measure the on
stance’s change. Another option is to use the HDM system to produce correlations with similar 27
tests with human subjects, such as our research with stiff-arm walking. Once we have vetted the 273
system in many such areas, it can be used as a predictive tool, as in the experiment showing the 27
different costs of reaching targets. We have developed a large-scale three-dimensional tracing s
experiment in virtual reality [33] to elicit natural whole-body movements under common goals. 276
Our future work is to analyze the energetic cost using the HDM. 277

Besides its use of a mechanism for interpreting experiments, the system can also serve as 27
a good base for theorizing about the human system’s organization concerning its space-time 279
performance since many of these issues are open. While an enormous amount of research in 280
human motor control has produced ever more refined subsystem components’ elucidations, a 2s1
comprehensive theory at the level of large scale dynamics is still unsettled. One main obstacle is 282
a description of how the motor cortex can communicate control information to drive the high 2s3
temporal bandwidths of the spinal cord circuitry. Several possibilities were debated at the Neural 28
Control of Movement conference in 2013 without definitive result. We have emphasized is that 2ss
the motor cortex communicates a coded kinematic plan together with stiffness settings. A study 2ss
with kinematics coded with temporal basis functions has shown that a kinematic plan can be 287
coded to reduce the bandwidth needed by a factor of approximately 103 [3435]. The HDM shows 2ss
that such a model can play a useful role in studying the kinematic-plan model’s consequences. 289
In particular, the reduced degree of freedom control demonstration supports the uncontrolled 200
manifold view wherein a subset of crucial degrees of freedom can direct a movement with the 20
uncontrolled degrees of freedom interpolating the movement using the system’s dynamics [36L37] 202

In regard to the uncontrolled manifold concept, a very important insight was the use of 203
reduced degrees of freedom constraints in computing the dynamics. If the limitations are near 204
the number of DOF's of the system, then the torque recovery can quickly become numerically 205
unstable. However, between 20 to 41 markers in the HDM provide sufficient constraints to 206
integrate the dynamic equations reliably by allowing the system’s natural dynamics to interpolate 207
the motion appropriately. 208

The method has several advantages over alternative methods. First, it can be easily imple- 200

mented in a single robust framework of the physics engine. Using the physics engine for multiple 300
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tasks allows a unique human model to be used from start to finish, rather than being forced to s3m
use the conventions built into a commercial package. Second, the method is fast. The simulation 30
engine is designed for performance, making it possible to analyze movement in real-time and 303
create interactive experiments with stimuli dependent on the feedback results. Third, the 30
software is free. Freely accessible code, such as ODE, is useful because it facilitates comparison 305
and collaboration in research. Fourth, the method handles multiple ground contacts and noisy 306
data challenging to related approaches. Kinematic loops do not require any special treatment. 307
The method is robust even to large perturbations making data dynamically inconsistent. Finally, 3os
the tunable parameters (CFM), couched in the physics framework, are intuitive. It is more 300
straightforward to specify the importance of a constraint in force and mass rather than arbitrary suo
gains and weightings. We illustrate these advantages by using ODE to analyze and reproduce 3u
movement recorded from optical motion capture. 312

There are several ways to improve the system, but three are the most important. One 313
limitation of our method for computing torque is that it is insensitive to muscle stiffness, which 314
is both passive and can be actively modulated [38,39]. Increasing stiffness will increase the 35
overall net movement energetic cost and needs to be taken into account. The observation 36
somewhat ameliorates this issue that in most natural tasks, subjects will try to minimize sz
energetic costs and thus exploit natural dynamics whenever they can [36},40,41], reducing high 31
levels of co-contraction. However, the ubiquitous use of spring as constraints means opening up s
the possibility that one can add springs to the joint degrees of freedom to model stiffness. These 320
could also have parametric programmable spring constants to model muscle co-contraction. s
The second feature that could be added is a system to keep the human model upright. Any s
of the three human sources of this needed information - visual, vestibular, and proprioception 32
- would be candidates for this practical constraint. At present, the HDM uses a faux system 32
of rotational torques at the center of gravity, but these could easily be replaced with more 32
appropriate ankle torques. The third feature to be added is the separation of gravitational sz
torques from control torques as only the latter effect metabolic cost directly. This improvement 327
is a matter of modifying ODE’s low-level code, and the plan is that this will be tackled shortly. sz

In summary, the forty-eight degree of freedom dynamic human model is a fast, robust, intuitive, s
and inexpensive multi-purpose tool for simulating, analyzing, and synthesizing humanoid ss0
movement. The system’s capability is a very stable set of integrations that readily handle the 3u
inclusion of multiple points of surface contact. The HDM uses a closed-loop step at each time 332
step so that the computed torques are appropriate for the new posture. In contrast, when the 333
computed torques are saved and replayed, small errors in the kinematics accumulate. Each set 334
of torques is no longer appropriate for the computed posture, and the overall system rapidly sss
becomes unstable. These results’ significance extends beyond the simulation stability issue and 336
provides a strong argument for the suitability of the kinematic plan’s close-loop control as a 337

biological model. 338
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Methods

A novel way to compute the energy cost of human movements has been developed by building a

human dynamic model on the top of a physical engine ODE.

Human Model

Our techniques use a simulated model of the human whose movement is analyzed. The first
order of business is to build a physical model capable of representing human movements, of
which the accuracy influences the outcome of the analysis. Fig.[10] shows the body segments
and topology of the model. The humanoid model is a collection of rigid bodies connected by
joints. Each joint connects two rigid bodies with anchor points (center of rotation) defined in

the reference frame of both bodies. The locations of these anchor points determine the segment

dimensions (bone lengths) of the character model.

B
A

Joint Part 1 Part 2 DOF/joint Total DOF

Cervical Head Neck 3 3

Thoracic Neck Upper Torso 3 3

) Lumbar Upper Torso  Lower Torso 3 3

Sacral Lower Torso  Pelvis 3 3

] c.Clavicle Upper Torso  c.Collar 3 6

c.Shoulder  c.Collar c.Upper Arm 3 6

E P c.Elbow c.Upper Arm  c.Lower Arm 2 4

‘” ! c.Wrist c.Lower Arm  c.Hand 2 4

‘,b c.Hip c.Pelvis c.Upper.Leg 3 6

c.Knee c.Upper Leg  c.Lower Leg 2 4

c.Ankle c.Lower Leg  c.Heel 2 4

c.Tarsal c.Heel c.Sesamoid 1 2

Fig 10. The 48 degree of freedom model A. Four ball-and-socket joints connect five
body-segments along the spine from the head to the waist. Ball-and-socket joints are also used
at the collar-bone, shoulder, and hip. B. A summary of the joints used in the model. ¢. =
chiral: there are two of each of these joints (left and right). Universal joints are used at the
elbows, wrists, knees, and ankles. Hinge joints connect the toes to the heels. All joints limit the
range of motion to angles plausible for human movement. Our model assumes that joint DOF's
summarize the effects of component muscles.

Model degree of freedom details The model structure consists of 21 separate rigid bodies
connected by 20 joints (Fig . The relative orientation of some bodies is constrained by using
universal joints for the elbows, wrists, knees, and ankles and hinge joints to connect the toes to
the heels. Universal joints restrict one angular degree of freedom; e.g., when the arm is bent
at the elbow, the forearm cannot rotate around the principal axis of the upper arm unless the
upper arm itself rotates. However, the forearm can rotate at the elbow around its own principal

axis (modeling the twisting movement of the radius and ulnar bones). All other joints are left
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as ball-and-socket joints with three angular degrees of freedom: hips, shoulders, collar-bones, 357
upper-neck, lower-neck, upper spine, and lower spine. This arrangement of joints leaves a total sss
of 48 unconstrained internal degrees of freedom. An advantage of building humanoid model in 350
this way is that joint connections are not treated as holonomic (perfectly rigid) constraints, but ss

rather as very stiff springs that hold body parts together like tendons and muscles. 361

Data Fitting 362

The technique for fitting a model to data begins with a character model that serves as a template, 363
Fig. providing the number of body segments and topology of the model. We further require 364
that labeled markers used in motion capture be assigned to specific model segments. It may ses
be straightforward to derive these using a technique such as in [42,43]. However, it is also not 3
difficult to do by hand. It would become tedious if one had to go through the process for many 36
different models. Fortunately, the motion capture suit typically puts the markers on the same 368
body segments (Fig. , even if they are in slightly different places, and the body segments ss0
have different dimensions. 370

We present a method in S2 Appendix section, for using marker data to help determine the sn
dimensions of the model segments and where markers attach to the model. Although this 37
method could easily be automated, in practice, the research did not rely on very many different s73
models and so the system uses a mechanism for relaxing the marker attachment points and 37
joint anchors with the click of a button in the graphical user interface (Fig. . With a new 315
data set, a handful of iterations proved sufficient to produce a reasonable model with marker 37
attachments that fit the data well enough for further analysis. This algorithm does not address 377
joint limits on a range of motion. These can also be learned [44], but in our case, the range of s
motion for each joint is set a priori. After determining segment lengths, we set other segment 37
dimensions as appropriate to fit against the markers. Mass properties for each segment assume 3so
uniform density by volume. 381

Given motion capture data of a subject, the model is fit to the subject’s dimensions and ss2
joint-range-of-motion is constrained to approximate the subject’s flexibility. Additionally, the 383
model segments have inertial matrix properties. The initial mass assignment to each segment 3s4
assumes a uniform density of water (1000%) for the volume associated with each rigid body. 3ss
The mass assignment should be modified to roughly match that of a specific subject. The 386
increased fidelity, required for individual subjects in clinical biomechanics research would employ 387
more sophisticated techniques for a better approximation of mass distribution in the model. sss
Interestingly, however, the experimental results discussed above show that even this low fidelity s3so
model is sufficient to produce high-quality data that compares favorably with data gathered s

from independent sensors. 391
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Fig 11. Marker arrangement on the motion capture suit. The suit contains 51
markers as shown by the LEDs in total but only 41 are used in the model e.g. Markers that are
used are present on the fingers. Markers can easily assigned to specific model segments. For
example, the markers of RBHD, RFHD, LFHD and LBHD are assigned to Head segment while
the markers of RBWT, REWT, LFWT and LBWT belong to Pelvis segment.

Pose Fitting

Having addressed the issues in attaching the model to motion capture data, we turn to the
construction of its capability of representing human movements. Various commercial packages
provide different methods for converting marker trajectories into sequences of body poses, but
they can be time-consuming, expensive, or difficult to use. This section describes an approach
related to and that is free, fast, uses intuitive parameters, and allows the user to fit
markers to whatever model they wish.

The method uses the physics engine to constrain a character model to fit marker data and
other constraints. Markers are modelled as infinitely massed points attached to the character
model. Given a frame of marker data, the position and orientation of all body segments can be
found by balancing internal joint targets and external marker data. From the global position
and orientation of the different body segments, it becomes a simple matter to compute relative
orientations (joint angles).

The internal degrees of freedom are limited by range of motion constraints, e.g. the elbows
and knees cannot bend backwards. All other joints have similar range-of-motion limitations
based on the subject’s flexibility. Furthermore, each joint is set to have a “target state”, a
preferred relative orientation between its connected bodies. These preferences can be thought of
as “muscle stiffnesses” and are modeled as weak constraints with limited force. Joint limits and
stiffness serve as a prior over possible poses so that in the absence of any marker data at all,

the model still takes on a pose. Consequently, every internal degree of freedom is constrained
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to some degree. These constraints hold the model together and give it a default pose. Marker

data pull the model from the default pose into a new pose, e.g. Fig For a given frame of

motion capture data, each marker is connected to a body segment using a ball-and-socket joint

constraint. A total of 41 markers, which do not contribute any degrees of freedom because of

their infinite mass, attach to the character model, adding an additional 3 x 41 = 123 constraint

dimensions.

Finally, collisions between the ground and the feet also influence the model pose. Each foot

can form up to three contact points with the ground. Inequality constraints at these points

prevent penetration with the ground. When both feet are firmly on the ground, all markers are

actively pulling the body into a pose, all joints are holding the body together, and joint limits

and stiffness are biasing the relative orientation of the bodies. The experiments described above

show that the model can simulated the ground force correctly.

This approach is simple intuitive: attach markers to the model with springs and then drag

the body along. The parameter, tunable for each constraint, which is known in ODE as the

constraint force mixing parameter (CFM), allows a constraint to slip proportional to the amount

of force that would be required to maintain the constraint. For the regular internal body joints

and contact constraints, we use a CFM value of 1x107° while for the constraints between

markers and body parts we use 1x107%. Both of these values represent very stiff springs

although they are different by an order of magnitude. This stiffness stabilizes the simulation

by allowing the markers to stretch slightly from their mapped locations in the event that the

marker constraints are not compatible with the character model. Fig |12 shows that when the

markers move, the constraints drag the character along with them.

Fig 12. Pose fitting. Initially the motion capture data points are in a very different

configuration than the initial stance of the model. To find the appropriate correspondences,
simulated markers attach to the humanoid model through ball-and-socket joints and pull the
body parts into place, subject to model joint constraints. The left to right sequence in the

figure shows the body targets being gradually reconciled with the external markers.
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Inverse Dynamics 434

It can be useful to know the torques to apply at each joint or the required effort to accomplish 135
a particular movement. Given a kinematic sequence of body poses, the physics engine ODE can 436
archive the computation with minimal effort. Given the constraints, such as each joint’s angular 37
velocity, it can correctly compute the desired torques/forces measurements. 438

The process is straightforward. Given the current joint angle and the desired joint angle 439
for the next frame, the relative angular velocity of the body parts is constrained as to achieve 440
the target orientation on the next frame. Contact constraints are necessary to prevent ground aa
surface penetration as well. The ODE physics library handles the constraints and solves the 4
torques and forces that are used to satisfy each constraint in the process. 443

For computing inverse dynamics, the first step is to initialize the model to a starting dynamic 44
state. The initial state can be found from the first and second frames of kinematic pose data. s
The model pose is set by using the second frame of data, and the initial linear and angular 46
velocity of each joint is computed by taking the finite difference between the two frames (and 447
dividing by the timestep). Computing velocity through finite differences is appropriate for a s
physics engine using first-order semi-implicit Euler integration. After that, continuously find the 440
torques between two consecutive frames of pose data using the finite difference between poses 1so
to compute angular velocities that will move the model from the current to the next pose. 451

Differentiating again, this time between the current and future velocity gives a target as
acceleration that becomes a constraint on the model. The primary difference between this step as3
and the previously discussed method for finding pose from marker data is that there are no s
marker constraints dragging the body into place, and the internal muscle stiffness drives the 4s5
model toward a target pose on each frame instead of toward a ‘default’ pose. Because there 1s6
are fewer constraints in play, stiffer muscle forces are used, but the absolute forces the muscles 457
can apply are limited to prevent muscle forces from being unreasonably large. Again, in this ass
case, we can use the relative spring stiffnesses to express the confidence in the measurements. aso
We use very stiff springs (CFM = 107!) to keep the model segments together. We use looser 40
constraints to keep the feet from penetrating the ground (CFM = 107°) and to constrain the s
model to adopt the appropriate pose (CFM = 107%) 462

Residual torques/forces The torque calculation by the HDM is ideal in the sense of solving 463
the dynamic equations, but in the actual situation there needs to be a corrective system for 464
incidental errors. In the human system there are multiple corrective system based on vision, 465
proprioception and the vestibular system. Such corrective systems have been extensively studied 4es
e.g. [18,[19,47]. 467

In classical inverse dynamic area, discrepancies between the model and human that created 4ss
the data necessitate non-realistic “residual” forces to keep the model from falling over when 60

dynamically reproducing most movements. A 6 degree of freedom joint between the waist 470
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segment and the global frame generate the external forces. A weak, limited spring constrains the 4n
waist segment to achieve its recorded pose relative to the global frame. The experiments show 72
that attaching the external constraint to the head or the feet has little noticeable difference. a3
The non-realistic external forces (residuals) account for noise as well as discrepancies between 474
the model and the human generating the data. In particular, differences in how the feet interact a7
with the ground cause errors in our analysis. In most cases it is only necessary to constrain two 47
of the 6 angular degrees of freedom (pitch and roll), leaving the other four external degrees of 477
freedom disabled. The two angular constraints keep the body from falling over but allow it to 47s
move about through simulated ground interactions. 479

The stabilization system completes the model. It can be implemented in parallel, with the 4s0
control used to stabilize the residual necessary to balance. With this included, The simulation 4
can reproduce highly dynamic motions, e.g. see Fig[2| which shows a jumping sequence made 4s2
originally by a human subject and recreated using the torques computed by the inverse dynamics ss3

mo del . 484

Method summary a5

For each human subject we construct a dynamic model and force that model to follow the 4s6
subject’s motion capture data, which leads directly to the recovery of joint angles. Our algorithm 4s7
constrains the dynamic model to track these angles and consequently can estimate the correct 4ss
joint torques. This concept was originally demonstrated in two dimensions for human walking 4s
by [48]. We have extended the method to the significantly more demanding case of 48 DOFs in 90
three dimensions and arbitrary posture changes. Fig.[10|lists the body segments. The dimensions s
of each segment are matched those of an individual subject. The principal difficulty is that the 4o
constraints in the high DOF 3D model present many delicate numerical issues for the ODE 403
solver that need to be addressed [14]. Currently the dynamic model does not attempt to model a0
stiffness components, with the consequence that it can only directly recover the net torques at 4o
each DOF. 496

The body segments are used by the simulation for both collision detection and the calculation 407
of mass properties. Mass and inertial properties are computed from the volume of the body e
parts using a constant density of 1000%. The dimensions and articulation are designed to a9
allow the model to reproduce most movements the human can make. For example, joints at the soo
elbows have two DOFs to reproduce the hinge movement of the elbow as well as the twisting so
movement of the radius and ulna bones in the arm. Joint DOFs are also limited to prevent s
impossible movements such as reverse bending of the elbows or knees. 503

For data capture a subject wears the motion capture system developed by PhaseSpace. Each sos
PhaseSpace LED marker is mapped to a corresponding point on the model. The markers are sos
then introduced into the physics simulation as kinematic bodies without collision geometry. As a  sos

heuristic, each marker kinematic body is effectively treated as having infinite mass so that when s
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another dynamic body is attached through a joint constraint to a marker, only the dynamic sos
body’s trajectory can be changed by the constraint. 500

The PhaseSpace motion capture system records 41 3-dimension positions of specific human s
body locations over time and maps these markers to appropriate locations on the model. When su
the simulation is stepped forward, a constraint solver attempts to find a body state that satisfies si2
the internal joint constraints, the external marker constraints, and other constraints such as s
ground forces, joint stiffnesses, and conservation of momentum. Knowing the kinematics allows s
the recovery of the dynamics, since the joint velocities allow the equations of motion to be sis
inverted. The retrieved forces can be used to generate feed-forward torque profiles for actuating sis
the character. 517

The overall idea behind the method for calculating joint torques is straightforward and has s
been implemented in ODE. The mathematics underlying the rigid body simulation software s

used in our work is explained in the S1 Appendix section. 520

Supporting information 521

S1 Appendix. The principal insight in this section is that ODE can be used as an effective 52
controller. We present a derivation of the mathematics underlying the physics simulation. The s
derivation comes from directly analyzing the ODE codebase and it consequently differs from 52
other derivations using Lagrange multipliers to arrive at the same final result (e.g., [49]). We s
present another derivation illustrating the equivalence between softened constraints in ODE and s
implicit springs. 527

When modeling human movements, we assume that the human body does not collide s
significantly with itself and so typically only process collisions between the model and the s
ground. Collisions between the model and the ground, however, play an important role in sso
analyzing and synthesizing movement data such as walking. Collision handling involves creating s
a constraint between the colliding bodies and is the primary contribution of the model. We will 532

describe this methodology after first introducing the physical simulation details. 533

Notation Physical simulation involves a large number of different variables to represent s
constraints and relevant physical quantities. Table [I] presents specific symbols and their s3s
meanings for reference. 536

Scalars are represented with lower-case, un-bolded symbols: z. Bold lower-case symbols ss7

represent column vectors, 538
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Symbol | Meaning

position or state of one or more rigid bodies

velocity (usu. linear and angular)

acceleration (usu. linear and angular)

rotation matrix representing orientation of a body
angular velocity

quaternion representation of an orientation or rotation
mass of a single rigid body

mass matrix

identity matrix

moment of inertia tensor

np,ne | number of bodies, number of constraints

stabilizing parameters added to the equations of motion
error or energy function for a single constraint

matrix of partial derivatives of constraint error functions
timestep

forces (and torques)

torques

constraint forces

N~ 3o € s s s

R
— @

RIS Y

Table 1. Meanings of specific symbols used to discuss dynamic simulation

Bold, upper-case symbols to represent matrices:

X = [ml mQ} -

T11 le]

Ta1 T22

Dot-notation to indicates time derivative: & = %. The circumflex accent indicates a 3d vector

being used as a skew-symmetric matrix representing a cross-product operation:

0 —23 =z Y1
Ty = | x3 0 —x1| || =Xy
-T2 X1 0 Y3

Coordinates are typically relative to a global reference frame. However, a tilde, &, indicates
a quantity that uses a local reference frame, e.g., a body-relative frame, rather than the global
frame. We use subscripts to indicate that a quantity refers to a specific dimension, a particular
rigid body, a point in time, but clarify the subscript’s meaning when necessary to remove
ambiguity. Table [1| introduces the primary symbols within the text.

For conciseness in notation, we typically combine angular and linear quantities as a single
symbol. This representation is used both for position and orientation even though orientation
does not conveniently fit into a 3x 1 vector. Fortunately, angular velocity and angular acceleration,
wand w, do combine well with linear velocity and acceleration @and &, and it is these quantities

that feature primarily when dealing with a constrained system. We will also represent the state
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of multiple bodies using a single symbol when convenient. For example, for a system with two ss2
bodies, we will represent the combined linear and angular accelerations (a 12d vector) as &;. ss

For this same 2-body system, Newton’s law relating force, mass, and acceleration is as follows: ssa

flt mlI 0 0 0 jélt
T1 0 Il 0 0 djl
| = ' = fo= Mg
th 0 0 mgI 0 ot
T2t 0 0 0 Igt dJQt
where I and Z;; are 3 x 3 block matrices. 555

Dynamic State Coordinates in the simulation world are defined relative to an arbitrary sse
origin and basis set of directions. We refer to this inertial frame as the “global frame”. Each ss7
rigid body also has its own point of reference and set of directions. Any point in the global sss
frame can also be described relative to a body’s frame of reference. It is convenient to define the sso
point of reference of a body as its center of mass and use its principal inertial axes of symmetry seo
as directions. 561

The position of the center of mass and orientation of a body within the global frame are here se

defined as & and R respectively. In 3d space, x is a 3 x 1 vector: 563

where z, y, and z are the distance from the origin along each of the three directions that establish ses
the global frame of reference. For consistency, we deal with these distances in meters and assign ses
“up” to the positive z axis. The orientation R of a body is a 3 x 3 orthonormal matrix whose ss6

columns give the body’s local direction frame relative to the global frame: 567

11 T2 T3
R= 21 T22 T23

31 T32 T33

Conservation of momentum makes it necessary to keep track of the time derivative of these ses
quantities: @ and R. Instead of explicitly representing R, it is convenient to keep track of the seo

angular velocity: 570
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The relationship between these quantities is
R=0R

Representing orientation as a 3 x 3 matrix can be unwieldy. To properly represent an
orientation (or pure rotation) it must be an orthonormal matrix. An orthonormal matrix uses
nine elements to represent a property with only three degrees of freedom. Unfortunately, any
three-element representation of orientation suffers from singularities [50]. We make use of
unit-length quaternions to represent orientations and changes in orientation. Quaternions are
convenient because of their close relationship to angular velocities. Quaternions are similar to
an axis-angle representation of a rotation. A quaternion g represents a rotation by # around

unit vector v with four elements:

0
Quw COS 5
qx U Sin g
q = = 2
i 0
Qy vy Sin 5
s 0
qs vy Sin 5

From an arbitrary angular velocity w, we can make a quaternion that represents the change
in rotation that would occur during a timestep of h. After finding the amount of rotation

0; = h||w¢||, one might naively find a “rotation quaternion” by normalizing w; and then re-scaling

0

cos 3
GE sin %t
unstable as 6; approaches zero. To avoid that instability, we use the “sinc” function where

by sin % for a final quaternion: g, = . However, the normalization step becomes

sincf = %. The sinc function allows us to remove the discontinuity that would result from

division by zero and adds numerical stability. When 6 is small, sinc (f) can be approximated to

within machine precision using the first two non-zero terms of its Taylor expansion (see [50]).

The result is a discrete-time “rotation quaternion”:

cos %
9= [gsinc %wt] )
Given ny bodies, the dynamic state of the it" body at time ¢ is its position, orientation, linear
velocity, and angular velocity: { iy Ry i wi } We will assume that all of these values
are framed in the global coordinate system unless specified otherwise. The body dynamics are
also affected by the body’s constant mass m; and inertia tensor Z;;. The moment of inertia
tensor, Z, is indexed by time because the body’s orientation changes how the the mass is
distributed relative to the world frame: Z;; = RitfiRiTt. We assume that the inertia tensor is
constant relative to the body-local frame of reference (i.e., bodies are rigid).

In simulation, the forces f applied to the rigid bodies come from three general sources. These
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are constraint forces (fc), gravitational and gyroscopic forces (fg), and user/control forces (fy): so

f:fc+fg+fu~ 597

Integration Step When a force is applied to a body, it translates into acceleration that ses
is inversely proportional to the mass. Velocity is the time integral of acceleration, &; = s
Ti0 + f(f M Z-_l f+dt, and position is the time integral of velocity, x;; = x;o + fot x;;dt. Because s00
f+ may depend on x; and &; as well as on discontinuous collisions and control inputs, analytic o
descriptions of body state are not usually possible. Instead we discretize the equations of motion o2
and use a small, discrete timestep, i, to numerically approximate system dynamics. The most o3

obvious thing to do is to linearize the force function, f,, and then take all the quantities from cos

time ¢ and use them to find the state at time ¢ + h: 605
Bppp=d + M f, (2)
Tiph = Tt + hEipp (3)

This “semi-implicit Euler” integration uses using the future velocity for computing position and eos
is more stable than the standard formulation. 607

Although we lump orientation and position together as a single symbol, in practice there are a  cos
few distinctions that need mentioning. For example, gravity only applies to the linear state, while oo
gyroscopic torques only apply to angular state. Gravitational forces are very straightforward, s
ferav = Mg, where g indicates the direction and magnitude of gravitational acceleration and is eu
often very simple; e.g., for a single rigid body g = [O 0 —98 0 0 O T. 612

Rotation is a non-linear phenomenon. However, we can approximate the motion of a rotating 613
body by adding torques that imitate gyroscopic effects, see [51]. Gyroscopic torques are applied e
to maintain conservation of angular momentum. Explicitly applying gyroscopic torques to bodies 15
allows us to treat the rest of the system as though it conserved angular velocity rather than 16
angular momentum. Thereafter, we can deal with the combined linear and angular quantities as 617
a linear system. 618

The gyroscopic torques for each body are linearly approximated by 619

s _[0 0o olfo
ger_OL:JtOItwt

These forces are zero if the three principal moments of the inertia tensor are equal. Otherwise, 620
they represent the forces necessary for conservation of angular momentum. Unfortunately, this ez
approximation tends to introduce energy into the system. We have reduced this problem in 22
ODE by adding in additional terms as described in [51]. 623

The constrained system is solved using mostly accelerations and velocities. At the end, 62
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however, it is necessary to integrate the velocities into new positions and orientations. Position 62
and orientation are updated differently. For position, it is sufficient to multiply the linear velocity 62
by the timestep and add it to the current position. Adding angular velocity to orientation is not ez
as straightforward. We integrate angular velocity into orientation by converting w;4p) into e
a quaternion and then use the quaternion to rotate the current orientation forward in time 629

following [50]. 630

Constraint Equation When a rigid body is moving or spinning freely through space, the 63
integration equations are sufficient to simulate dynamics. Adding constraints modifies the 32
bodies’ movements. Maintaining a relationship between two bodies requires forming a constraint ess
on the state of the bodies. The integration equations tell us how to go from force to velocity 634
and from there to position and orientation. To simulate an articulated model using maximal 635
coordinates, we need to know what forces constraints apply to the bodies in the system. 636

To find the constraint forces, one must be able to mathematically describe the constraint. es7
We define a multi-dimensional function over the combined position and orientation of all bodies 638
in the system, ¢(x;), that produces a vector of size n. specifying how much each constraint e
is violated, where n. is the number of constraints acting on the system. For example, if the 40
ith constraint keeps body by a distance d above body by in the z direction, we would have o4
oi(x) = T2, — 1, — d. If by is not separated from b; by a distance of d in the z direction, ¢;(x) e
reports the signed magnitude of that constraint error. For additional information on forming s
constraint equations, see [49}52]. 644

In general, the error for a constraint is non-zero. Given a measure of the error for a given e
state, we seek to find constraint forces, fe, that reduce the error over subsequent time steps [53]. 46
Specifically, over the timestep h, we seek a force to reduce the magnitude of the constraint error 647

by a fraction «. That is 648

¢(@in) = (I — a)p(xy) (4)

where « is a k x k diagonal matrix with each a; € [0,1] representing the fraction of error e
reduction over a time step. In ODE, the « value is controlled through the error reduction eso
parameter (ERP) which can be set independently for each constrained degree of freedom. In s
practice, it is not possible to remove constraint error completely (o« = 1) when using maximal es
coordinates because of error introduced by the various approximations employed to make the es3
simulation linear and fast. Values of « typically fall within [0.2,0.8]. Manipulating this value s
results in useful elastic and damping effects discussed later. 655

We use the symbol J; to represent the n. x 6n;, matrix of partial derivatives of ¢(a;). This ess

matrix is a linear approximation of how the constraint error for each of the n. constraints s
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changes when the positions and orientations of the bodies change: 658
O . 01
0x1t 0T (6, )t
Jy=Veo(z) = | : . :
Odr .. Oy
0x1t 0T (6, )t

Finding the constraint forces that satisfy Eq. [4] involves removing all references to unknown eso
future quantities. The Taylor expansion of ¢(x;yp) at @, truncated after the first order term, eeo

approximates the future constraint error: 661

(I —a)p(xt) = P(xi1n) = P(xt) + Ji(Ti1n — 1) (5)

This truncation has the effect of treating all constraints as linear. Many constraints used to es2
simulate various joints are linear; others, however, contain higher-order terms and this truncation ee3
is one potential source of error in simulation. 664

Combining the two integrator equations, Eqs. 2/ and 3], gives the future position/orientation ees

in terms of the present position, velocity, and forces: 666
Torn = e+ hite + DPM (Fo+ For + Fur) (6)

Equations and [6] combine to eliminate all references to future quantities: 667
(I — a)p(m) = p(m) + T (z + hity + WM (For + For + Fur) — @) (7)

This leaves one unknown vector at time ¢: the constraint forces f.,. Rearranging and simplifying, ess

we get 669

_ 1 1. _
J M, 1fct = —ﬁag‘b(azt) - EJtivt - JM, ! (fgt+fut) (8)

Note that in rearranging the terms this way, we divided both sides by the squared timestep, h?, 670
effectively changing the problem from one dealing with positions to one dealing with accelerations. en
This conversion is possible because of the relationship established between acceleration and e
position by the semi-implicit Euler integrator. 673

Equation [8] is almost the equation that ODE solves when simulating physics. The right 674
hand side is a desired acceleration. The first term on the right is the acceleration that would 675
result in a velocity that would remove a fraction («) of the constraint error. The second and e
third terms account for the effects of momentum (current velocity), gravity, and other forces 7
(e.g., user control forces) applied to the bodies. Each constraint becomes its own dimension s
in a “constraint space”. The Jacobian matrix J projects accelerations from global forces into 679
constraint space. 680

In general, the matrix on the left hand side of Eq. [8]is not square, making the problem under- s
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constrained (or in some cases, potentially over-constrained). However, we can use d’Alembert’s es2
principle [54] to restrict the constraint forces to lie in the constraint space. 683

Another method for arriving at the constraint equation is through the use of Lagrange ess
multipliers. Consequently, the constraint-space forces are typically denoted with A. The ess
Jacobian transpose gives the relationship between a force applied in constraint space and ess
force/torque applied in the full coordinate space: f., = Ji As. 687

The vector, A, holds the generalized forces applied by each constraint on all the bodies ess
involved in that constraint, whereas f. holds the sum of the constraint forces applied to each s

individual degree of freedom of each rigid body. The LHS of Eq. |8 can then be rewritten as 690

JtMt_lJtT)\t, where JtMt_lJtT is now a n. X n. positive semi-definite matrix. 691
Returning to maximal coordinates, we will compress Eq. [§] down to 692
JM I A =w (9)

In general, the matrix JM ~'JT may be singular. It is very easy to end up with redundant ess
or conflicting constraints. For example, a box resting on the ground may get a contact constraint 6o
at each corner. If each contact prevents interpenetration and sliding (i.e., applies friction) then 65
the contacts constrain a total of 12 degrees of freedom on a single rigid body with only 6 degrees 696
of freedom to be constrained. Conflicting or redundant constraints can break the solver if not o7
dealt with beforehand. The means for dealing with the conflict is clever. The physics engine 608
softens the constraint, allowing it to “slip” proportional to the amount of force necessary to e
maintain it. 700

Because mass is always positive, the force, A\, applied to a particular constraint and the 7o
resulting constraint-space acceleration will have the same sign. Softening the constraint is 7
therefore a matter of subtracting a scaled copy of A from the desired acceleration (the right 70
hand side): JM~'JTA = w — B\, where B is an n. x n. diagonal matrix of (typically small) 7os
non-negative values. This subtraction, of course, is equivalent to adding 3 to the LHS. Adding 705
these small values to the diagonal of the effective inverse-mass-matrix makes the constraints 7os

seem lighter to the solver and moves the matrix away from singularity: 707

igaqb(mt) - lJztil'fht + M (Foe+ Fur) (10)

(JtMt_lJ;P‘F/@)}\t:—h "

The original programmers built soft constraints into the ODE simulation code. The variable, 708
B, tunable for each constraint, is known in ODE as the constraint force mixing parameter 7oo
(CFM). At first glance, the addition of these parameters may seem loose and unprincipled. 710
However, correctly setting the parameters, o and 3, changes a hard constraint into a simulated 71
implicit spring with first order integration (see [55]). 712
It is well-known that the formula for ideal damped spring force is identical to the formula 73

for PD control. However, connecting these two facts, namely that (1) ODE’s constraints are 71
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mathematically equivalent to implicit damped springs and (2) damped springs are equivalent to 75
PD controllers, has not been exploited. This insight is key to the success of the methods presented 716
here. Our derivation shows that ODE’s constraints are, in fact, stable PD controllers along with 717
examples of how to take advantage of this fact. We proceed by discussing proportional-derivative 71s

control and the mass-spring-damper equation. 719

Implicit Simulated Springs Proportional-derivative (PD) control is a common method used 720
to compute forces that drive a system toward a target state. The PD control equation is the 7z
same as a mass-spring-damper system. There are two parameters, k, and kg4, that determine 72
what force should be applied to a degree of freedom at any point in time. The stiffness, also 72
called proportional gain (kj), specifies a force driving a degree of freedom toward its setpoint, 724
T with strength proportional to the distance from the setpoint. The damping, also known 725
as derivative gain (kgq), counteracts the current velocity, slowing the system down to avoid 72
overshooting. When a system uses PD control to encourage a degree of freedom to move toward 727
a target state, the control force f,; at any instant in time is a function of the current position 72s

and velocity of the effective mass being controlled relative to its target: 720
fut = —kpri — kgt (11)

In a continuous time system, this controller is guaranteed to be stable as long as kg and &k, 730
are non-negative. With zero damping (kg = 0) the system oscillates in a sinusoidal wave pattern 73
whose frequency is determined by the stiffness and mass and whose magnitude is determined 732
by the initial conditions. With zero stiffness and positive damping, the velocity of the system 733
decays exponentially with higher damping converging to zero more steeply. Discrete sampling of 73
these forces, however, ruins the stability conditions. The potential for instability is apparent 735

if we consider a mass m that only experiences damping forces. Using the semi-implicit Euler 736

integrator, Eq. 2, we plug in the damping forces from Eq. [11] to get 737
. kg hky\ .
Tt4h = Tt — — Tt = (1 - > Tt (12)
m m

Time (t), mass (m), and damping (kg) should all be non-negative values. It is clear, then, from 738
this equation, that if % > 2, the velocity will oscillate between positive and negative values and 730
grow in magnitude. This oscillation rapidly causes the simulation to “explode” and is annoyingly 740
common when using PD control. Overly stiff springs hit a similar limit with explicit discrete 7a
integration that causes them to gain energy and explode. Consequently, explicit PD control 74
gains are tricky to tune. They must fall within certain limits that depend on the timestep and 743
the effective mass experienced by the system. 744

The cause for this instability lies in the discrete integration which is similar to approximating 745

the area under a curve as the sum of multiple rectangles computed forward from the present 74
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Fig 13. Explicit integration of damping forces is similar to the forward-method for
approximating the area under a curve as a sum of rectangles. In this case it severely
overestimates, leading to instability.

(Fig. . One solution is to solve for the forces implicitly. Implicit integration is similar to
approximating the area under a curve with fixed-width rectangles that end rather than begin
on the curve. Rather than overestimate, this method tends to underestimate the area under an
exponential curve. The resulting system does not explode, although it tends to dissipate rather
than conserve energy. The implicit form of the damped-spring-law depends on the integrator
it is applied to. Being ‘implicit’, in this case, specifies that spring forces are computed from
the future state of the system. Consequently, Eq. [11] becomes the following, (note the changed

temporal indices):

Jut = —kpTipn — kaTepn (13)

We do not know the future position or velocity, but using the integrator equations, Egs. [3| and

we reframe Eq. [13|in terms of the current quantities and then solve for f,; to get

_ kdi"t + kp:(}t + hkpi}t
1+ m~thkq +m~1h2k,

Jut = (14)

If we analyze a pure damped system as before but using Eq. we end up with

hk?d.’tt m

_m"f—hkd _m—l-hkdmt

Tpyp = Iy

With kg now in the denominator, even an infinite damping gain is stable, corresponding to the
damping force that completely eliminates the current velocity in a single timestep. This stability
allows us to make PD controllers with extremely stiff gains.

Stability is a nice property for a controller or simulator to have. We now show that the «
and S terms added to the constraint equation change them into implicit springs. To see the
correspondence between Eq. [I0]and Eq. [T4] we consider a constraint that keeps a point mass
at the origin along a single dimension: ¢(x;) = x;. The displacement function for this system

has a trivial Jacobian: J = 1, meaning that A = f.. Assuming that external forces are zero,
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fg=fu=0, Eq. simplifies to

1

(m™ 4+ B) fu = *%Sﬂt — Eit (15)

. hk : .
Assigning the « and (8 parametersﬁ to be, a = Wfkd and 8 = m, and isolating f.,
Eq. [15| reduces to the implicit spring equation Eq:
hkp hi
5 Rlepthg ) Tt + Tt kaic + kpxy + hkyiy

ct — — - -

2,,—1 1 12 1 1+ m~thky +m~1h2k

h m =+ h (m) d P

The consequence of this relationship is that every constraint in ODE can be thought of as
an implicit spring. An important feature of this formulation is that the equations are solved
simultaneously. When the implicit springs are solved simultaneously in the physics framework,
the forces account for each other; without this change the system would be very fragile. Softening
the constraints to springs makes it so that we can solve a system that would otherwise be over

constrained. We can add more constraints than there are degrees of freedom.

Solving with Complementarity Conditions For simplicity, we compress Eq. [10| down to
AX = w. When A is non-singular, we can solve for A by inverting, or preferentially, using a fast,
numerically-stable solver such as a Cholesky decomposition. Some constraints, however, come
with additional conditions that need to be solved with extra machinery. In simulation literature,
these are known as inequality constraints. For example, a contact constraint keeps two bodies
from moving towards each other by defining an error function that is the separation of the
contacting surfaces in the direction of one of the surface normals. If the surfaces are overlapping,
then the error function has a negative value and a positive constraint force will accelerate the
surfaces apart. This acceleration is as it should be. However, the linear system also applies
forces to correct positive error; so the same constraint would also prevent the surfaces from
separating.

The solution to this problem is to limit the amount of force available for satisfying the

constraint. A contact constraint, in particular, limits the force to be non-negative. Contact

friction constraints are limited on both sides to be proportional to the contact normal force.

This limitation places upper and lower bounds on the constraint force variable: Ajo < A < Ap;,
allowing constrained bodies to accelerate without bounds if the force necessary to hit the
acceleration target falls outside of the limits. In ODE, the result is three possible conditions to

satisfy a constraint:

1. a; A = w; with \; € P\ilm )\ihi]>

SThese values are presented without derivation in the ODE user-manual: http://ode-wiki.org/wiki/index

php?title=Manual:_All#How_To_Use_ERP_and_CFM. Note that our formulation of 5 has an extra h in the
denominator which is added automatically by ODE.
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2. a; X > w; with A\; = N\, or 791
3. a; A < w; with A\; = A\ 792
where —00 < Ajjo <0 < Ajpi < o0. 793

A linear solver cannot handle these extra conditions on the constraint forces. To solve this 79
type of system, physics engines employ a mixed Linear Complementarity Problem (mLCP) 705
solver. ODE offers two different solving methods for satisfying constraints under limited-force 796
conditions. One method, known as Projected-Gauss-Seidel, solves constraints iteratively and 707
accumulates the effects [56]. Iterative methods tend to be faster, but also tend to be inaccurate 70
when the system is near-singular or ill-conditioned. Simulated humanoid systems, particularly 799
with two feet on the ground, tend to behave badly with this faster solver. The slower, pivot-based oo
method, follows the algorithm presented by Baraff [57]. Baraff’s method is still easily fast so:
enough for our purposes. 802

Each row in matrix A represents a constraint. The corresponding values of w and A represent sos
a “target” acceleration along the degree of freedom constrained by that row and the generalized sos
force used to achieve it. For the i*" row of A, the diagonal element, a;;, behaves like the eos
inverse mass of the constraint. A force, )\;, imposes an acceleration of a;;A; = w; within the sos
constraint error-space. The rest of the elements in a row of A encode the force’s effects on other s
constraint dimensions. A change in the " constraint force ); affects the j™ constraint space by sos
accelerating it according to dw; = a;;6\;. The order of the constraints is arbitrary and they s
can be rearranged as long as every row-swap is accompanied by the corresponding column-swap s
that maintains the proper symmetry. 811

Baraff’s solving algorithm (based on Dantzig’s simplex method) takes advantage of this s
arbitrary ordering by dividing constraints into different sets: a satisfied set S, a limited set N, s3
and an unaddressed set U. All constraints fit into one of these categories. The first step in s

finding a solution is to reorder and satisfy all the unlimited constraints, without considering the sis

rest, using a basic linear solver. The resulting system looks like 816
A A A w
1T1 12 1 _ . 1 (16)

Set S holds the rows of Ay;. Set U holds the rest. At this point it helps to look at some sz
figures to see what is going on. Each constraint’s target conditions can be represented as a s
piecewise line through force-acceleration space (Fig . We will call this multi-segmented line s19
the target manifold for each constraint. Viewing constraints this way is another contribution of s
this work. The diagonal element of A associated with the constraint gives the slope of a line sz
through the origin that represents the relationship between force (A) and actual acceleration s2
(A is the effective inverse-mass of the i*! constraint). The solver seeks to find a joint solution s

so that, for all rows of A, the pairs of (A;, w;) fall on the acceptable manifold. Forces from other s
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Fig 14. Each constraint on a single degree of freedom can be thought of as a monotonically
decreasing, piece-wise linear target manifold through acceleration-force space.

constraints move the entire manifold up or down relative to the origin.

The 8 parameter takes the horizontal portion of the target manifold and tilts it so that when

bigger forces are used, there is a lower target acceleration. Hence the constraint is spring-like.

The vertical portions of the constraint represent places where the constraint has hit its force
limits. No additional force can be applied by that constraint; so the acceleration must be allowed
to increase freely. Otherwise, the constraint would be “obligated” to apply more force to try to
get closer to its target acceleration.

Constraints are addressed one-at-a-time. When dealing with ground contact force without
softened constraints, once the solver found a sufficient force to keep a body from penetrating
the ground, any remaining ground contact constraints would have nothing to do, resulting
in inappropriate distribution of ground forces. With spring-like constraints, if one contact

constraint supporting a body reaches its target force/acceleration, a second, redundant contact

constraint will see whatever distance remains between the current acceleration and the target.

Forces applied by the second constraint attempting to reach its target push the target manifold
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of the first constraint toward the origin. The force required to achieve the first constraint’s

target decreases until the forces balance appropriately. The balancing forces make it possible to

more accurately compute inverse dynamics forces.

manifold=—— — 4 -

manifold =—— —

4 4 4L
I l | | | |
4 2 0 2 4 4 2

A

| 1 I I
4 - ! manifold=— —
2 b : -
=1 AR SN -
2L _
4 - _|
|

4 2 0 2 4

Fig 15. Adding a small value to the diagonal elements of the projected inverse mass matrix
turns the constraint into a spring. Viewing constraints as piecewise linear targets provides
insights into how to make more complicated constraints consisting of additional piecewise

segments.

The algorithm for solving the mLCP progresses through each unaddressed constraint, one
at a time, and finds the change in forces that will satisfy the new constraint without moving
any of the current constraints off their piecewise target. Each iteration of the algorithm draws
a new constraint from the unaddressed set U and addresses the change in force, A, that will
satisfy the new row without pushing any previously addressed rows off their manifold, until the

new row can be added to S or N. In the process other rows may change between sets S and N,

but each row remains on its target manifold in acceleration/force space.
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Consider this partitioned matrix: 849
Al A ais| [ w1
Aly Axn as| (X = |v (17)
aj; axs as] [0 U3

Adding a new force, A3, will change the accelerations of the other constraints. Accelerations sso
of constraints at their limit are allowed to change, but those in set S must remain at their ss
target. So we find the d A3 that moves v3 toward ws and find the simultaneous dA; that keeps ss2
constraints in S satisfied. The constraint force takes the largest step that will not push any ss3
row out of its set. This step will either satisfy the constraint or move another constraint to an sss
intersection point on its manifold. We then pivot the sets around and continue until all of our sss
rows are in S or N. For additional detail, see [57]. 856

Recognizing that the solver deals with each constraint target as a piecewise linear manifold ss7
provides useful insight into how the simulation mechanism can be improved. One obvious sss
extension is to increase the number of linear segments in the target manifold beyond three sso
(Fig. . This innovation becomes obvious when constraints are considered as target manifolds seo
rather than Lagrange multipliers. With a multi-segment target manifold, it is possible to create se
a spring-like constraint that is loose near its setpoint, but then becomes stiffer. 862

We can make spring constraints that get more or less stiff as additional force is required. We se3
can also introduce constraints with “deadzones” in their PD control (Fig. . This type of se4
constraint is particularly interesting because it allows us to introduce controllers that only come ses
into play when a dimension of interest drifts out of an acceptable range. This type of controller sss
takes inspiration from the idea of “uncontrolled manifolds” in human motor control theory [58]. ss
With this constraint acting as a controller, if a perturbation will not hurt performance, the ses
controller does nothing. 869

From deadzone controllers, we can introduce novel constraints with secondary targets. A s
constraint whose forces and accelerations fall within acceptable tolerances has flexibility to “help” sn
another constraint that has reached its limit. For example, we can specify a target range for s
the knee, hip, and ankle joints of a simulated character. When these leg joints fall within their s73
stated ranges, they can be allowed to pursue a secondary goal such as keeping the torso upright s
or at a given height. This type of constraint can serve as a method for reducing the need for s
unrealistic residual forces. Removing residual forces implies deviating from original kinematic s
data. Constraints with secondary targets make it intuitive and clear how this deviation will s
occur can be extremely beneficial when using the simulation engine for analyzing or synthesizing s7s
movement data. We have created and submitted code for allowing controller constraints with a s

deadzone in acceleration space. [] 880

"Full implementation of secondary targets for constraints is still in progress. It promises to be useful for
creating intelligent constraint-based controllers.
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S2 Appendix. The model consists of n; rigid bodies connected by n; joints. In this case, sa
each joint consists of three to five constraints. Each joint connects two rigid bodies with anchor ss
points (center of rotation) defined in the reference frame of both bodies. The joint constraints ss
keep the anchor points relative to the two bodies together in the global frame. If bodies b; ss
and by are connected, a joint constrains them together at a common point. The joint anchor sss
relative to body b; is €;,. The anchor for body by, is €x;. The joint constraint drives these points sse

together in the global frame, creating three constraint rows: 887
(»bjk = Rjéjk +x; — Rkékj + T

The locations of these anchor points determine the segment dimensions (bone lengths) of the sss
character model. 889

Markers, each assigned to a specific rigid segment, represent a point on the human body. s
We seek anchor points that allow markers to remain approximately stationary relative to their so
assigned body segment. It is generally impossible to precisely find such a configuration (without se
creating an unreasonable number of body segments) because of soft-tissue artifacts (STAs). Skin o
and joints are not rigid. They stretch and give as muscles pull the bones. Modeling the body in s
maximal coordinates provides a way to model STAs explicitly. 895

Given a pre-defined model topology and markers assigned to specific model segments, we s
seek to find the joint anchor points between segments and the marker attachment points relative so7
to the model segments. If the 7" marker is assigned to the j*" rigid body (p; — b;) at relative o

point 8;;, we model the marker’s attachment as a three dof constraint: 899
¢y =p; — RjSij —x;

The process models markers from an arbitrary point in time as infinite point masses. As bodies a0

of infinite mass, constraint forces do not affect the markers’ trajectories but only the bodies oo

0

they are anchored to. Initially, markers are anchored at 8;; = |0|. This mapping attaches the o0
0

marker to body b;’s center of mass. 903

This mapping is a very rough estimate of the marker attachment points on the model o4
segments, but it is sufficient because of the flexible nature of constraints in the simulation oos
software. Setting the CFM parameter of the marker constraints to 3 = 1072 and setting the oos
model joint constraint CFM to 3 = 10~° makes the body segments hold together tightly, while o7
still allowing the markers to pull the body into shape. Several timesteps of simulation allow the o0s
model to relax to a fixed pose. We then take the markers in their current configuration and oo
reattach them to their respective segments. Relaxing the marker attachments this way improves o0

the fit for this particular frame of marker data. Iteratively repeating this process with multiple on
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frames of marker data, we therafter update the marker attachment points by some learning rate, o
N 8ij = (1= 0m)3ij + nijT (p; — x;). Gradually updating attachment points, using different o3
frames of data, effectively descends the error gradient of the marker positions relative to the o1

body: 015

T nm

min > b — R;8i; — x|

t=1 i=1
The decrease in marker error affected by model dimension error. Conveniently, joint anchor o
constraints behave the same as the marker attachment constraints. With an arbitrary frame o7
of marker data and using a marker CEM of 8 = 1074, if the markers constraints cannot be o
satisfied, they will pull the joint anchors apart slightly. For each joint we find a new common o9
anchor point in the global frame by taking the average between the two unsatisfied anchor points o0
that the joint constraint is trying to pull together. We then move the anchor points toward that o2

point according to learning rate 7;: 922
&= (1—m)&x + mR] (Riérj + i — ;)

For any frame, errors will cause the markers to stretch from their attachment points and joint o3
anchor points to stretch apart from each other. Both marker attachment points and the joint o924
anchors can be updated simultaneously to decrease the error for that frame. However, the local o2s
solution that perfectly satisfies one frame may make another frame worse. This step presents o6
an evident gradient descent approach to finding the joint anchors and marker attachments: o2
using several frames, compute an average adjustment to the marker attachments, and joint s
anchors that reduce the error. Make the adjustment to both anchors and attachments and then o2
iterate. It may be advisable to employ the standard machine learning practice of a validation o3
set to ensure that the error continues to decrease and avoid overfitting. This technique relies on oa
spring-like constraints made possible in maximal coordinates. 032

Although this method could easily be automated, in practice, the research did not rely on very o33
many different models and so the system uses a mechanism for relaxing the marker attachment o34
points and joint anchors with the click of a button in the graphical user interface (Fig. . With o35
a new data set, a handful of iterations proved sufficient to produce a reasonable model with os6
marker attachments that fit the data well enough for further analysis. This algorithm does not os7
address joint limits on a range of motion. These can also be learned [44], but in our case, the o3
range of motion for each joint is set a priori. After determining segment lengths, we set other o3
segment dimensions as appropriate to fit against the markers. Mass properties for each segment 40

assume uniform density by volume. 041
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