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Abstract

Improvements in quantitative measurements of human physical activity are proving extraordi-

narily useful for studying the underlying musculoskeletal system. Dynamic models of human

movement support clinical efforts to analyze, rehabilitate injuries. They are also used in

biomechanics to understand and diagnose motor pathologies, find new motor strategies that

decrease the risk of injury, and predict potential problems from a particular procedure. In

addition, they provide useful constraints for underlying neural circuits. This paper describes

a physics-based movement analysis method for analyzing and simulating bipedal humanoid

movements. A 48 degree of freedom dynamic model of humans has been developed to report

humanoid movements’ energetic components. It has sufficient speed and accuracy to analyze and

synthesize real-time interactive applications, such as psychophysics experiments using virtual

reality or human-in-the-loop teleoperation of a simulated robotic system. The dynamic model is

fast and robust while still providing results sufficiently accurate to be used to believably animate

a humanoid character or estimate internal joint forces used during a movement for creating

effort-contingent experimental stimuli. A virtual reality environment developed as part of this

research supports controlled experiments for systematically recording human behaviors.

Introduction 1

The complexity of human motion was first dramatically captured via the Muybridge high-speed 2

photographs [1] which spawned a number of separate analysis techniques in different disciplines. 3

Visualization first used keyframing techniques but later sophisticated models used in advanced 4

rendering for computer graphics e.g. [2]. The early cognitive analyses of human behavior [3] 5

focused on human motion in problem-solving, using an essentially logical approach. In robotics, 6

sights have been obtained by building physical systems directly [4] that straddle the boundary 7

between humans and robotics that have shed light on the human design. However, these efforts 8
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are characteristically specialized. In another development, machine learning techniques have 9

been introduced for use in analyzing animal-like motion [5]. 10

Most recent advances in the speed of computing and novel formulations of the dynamic 11

equations of motion have engendered a new approach to understanding human movement 12

fundamentals. Large scale human movement models can be built with the objective of under- 13

standing how the human generates goal-oriented behaviors in real-time. However, modeling all 14

the complexity of the human musculoskeletal system can be daunting, with over 600 muscles 15

controlling a complex skeletal system with over 300 degrees of freedom. Moreover, to control this 16

complexity, in addition to its vast cortical memory system, the forebrain coordinates specialized 17

subsystems such as the Basal Ganglia and Thalamus in realizing human real-time movement 18

coordination. The upshot is that progress tends to be specialized [6], and there are many open 19

problems [7]. 20

In the face of these complex challenges, a major alternate modeling route is to forego the 21

neural level of detail as well as one that features muscles and model more abstract versions 22

of the human system that still use multiple degrees of freedom but summarize muscle effects 23

through joint torques. The computation of the dynamics of such multi-jointed systems recently 24

has also experienced significant advances. The foremost of these, use a kinematic plan to 25

integrate the dynamic equations directly. Several different systems exist, such as MuJoCo, 26

Bullet, Havok, Open Dynamic Engine(ODE)1, and PhysX, but an evaluation by [8] found them 27

roughly comparable in capability, and only MuJoCo2 has been applied to human modeling. 28

Thus there is a need for an exclusively human movement based model that could be used to 29

inform laboratory experiments [9], clinical studies e.g [10] also verify experiments that have only 30

qualitative results [11, 12]. Our human dynamic model (HDM)3 has a singular focus on human 31

movement modeling and uses a unique approach to integrating the dynamic equations. A direct 32

dynamics integration method to extracts torques from human subjects in real-time [13–15] using 33

a unifying spring constraint formalism. 34

The HDM system is built on top of the physics engine ODE, but has two significant innovations 35

added in order to handle the closed-loop kinematic chains of bipedal movements and the contact 36

constraints they introduce, which have proven difficult to model. One is to allow the kinematic 37

makers of a motion capture system to be modeled as very large point masses. The result is to 38

stabilize the integration of the underlying dynamic equations. The other is to allow the reduction 39

of contact constraints into stiff springs, which has the result of allowing the incorporation of 40

external forces and points of contact. 41

Most of the computation of the joint torques uses the kinematic data, but there is a balance 42

issue to be dealt with.For example human motions for familiar tasks such as balancing while 43

putting on socks can use on remembered protocols, if they can depend ancillary system such 44

1OpenDE: http://www.ode.org/
2MuJoCo http://www.mujoco.org/
3The HDM mode: https://github.com/EmbodiedCognition/QtVR
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as the vestibular to correct errors.In the same way we use use a similar closed loop system to 45

generate small corrections. 46

The focus of the paper is to describe the HDM simulator as a useful laboratory instrument as 47

well as describe demonstrations that lend support to the kinematic plan approach to movement 48

memory. These goals are illustrated and evaluated in several different demonstrations to illustrate 49

the versatility of the method. 50

Model Overview 51

The HDM is a fast, robust, intuitive, and inexpensive multi-purpose tool for simulating, analyzing, 52

and synthesizing humanoid movement. Fig. 1 shows a frame from a study of the cost of movements 53

used in a virtual tracing experiment [16]. The model interface4 shown in allows the construction 54

of the human model using the physics engine via a multi-purpose graphical interface for analyzing 55

movement data captured through interaction with the virtual environment. With this tool, it 56

is possible to interactively fit a model to marker data, dynamically adjust parameters to test 57

different effects, and visualize the results of kinematic and dynamic analysis. Another example 58

is shown in Fig 2, which shows frames from a jumping sequence made originally by a human 59

subject and then recreated by the HDM system using the inverse dynamic method. 60

Analysis of human motions utilizing the human dynamic model is implemented in the following 61

five steps: 62

1. Motion synthesis: it simulates human motion by following the motion capture data [14] 63

2. Inverse kinematics: it calls the ODE built-in functions to compute the joint angles and 64

joint angular velocities at each frame. 65

3. Forward kinematics: it simulates human motion based on the computed joint properties. 66

This step is to check the correctness of recovered kinematic properties. 67

4. Inverse dynamics: it calls the ODE built-in function to compute the required joint torques. 68

5. Forward dynamics: it simulates human motion based on the computed torques/forces. 69

This step is to check the correctness of recovered dynamic properties. 70

At each frame, instantaneous power was computed from the product of net joint torque 71

and joint angular velocity. The work performed at each joint were determined by numerically 72

integrating the instantaneous powers over the entire tracing task. In this way, the the energy 73

cost of human motions can be computed given motion capture data. 74

More details of building the HDM are described in the Method section. The derivation of 75

the mathematics underlying the physics simulation is presented separately in S1 Appendix. 76

4HDM UI Demo https://youtu.be/ASs4Wo5PQcM
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Fig 1. The HDM user interface. It supports various visualizations of relevant data and
control for analyzing and producing physically-based movements. The programmed parameters
of the model consist of physical world parameters, joints constraints, and the model’s
body-marker relative positions. In this depiction shows how users can get the current HMD
configurations by clicking the buttons on the rightmost vertical menu.“Marker” is selected,
meaning the marker information is shown:(1) The first column represents marker index buttons.
Buttons in blue means the corresponding markers are attached to the HDM. Users can
attach/detach markers by clicking index buttons. (2) The second column shows body segments
where markers are attached. Each spin box is a collective item of all body segment names.
Users can use it to change the body-marker attachment relationship. (3) The three-five columns
present the marker-body relative positions. Users can modify the values directly using this
interface. (4) The ”Connect” button and ”Release” button on the top are to attach or detach
all the markers, respectively. The ”Update Anchor” button automatically updates the
marker-body relative positions based on the current motion posture.

This section focuses on describing the model’s capabilities through a series of examples in 77

different settings. Several test experiments provide qualitative and quantitative validation of 78

the physics-based movement analysis techniques described here. 79

Test 1: Model Performance 80

Given that the torque recovery technique will be the basis for our experiments, it is essential to 81

establish its accuracy in absolute terms. A straightforward to do this is to use a particular model 82
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Fig 2. Model capability illustration. A jump sequence reproduced with
physics-engine-based inverse dynamics using recorded motion capture data from a human
subject. The recreated jump height is achieved completely from ground forces, with small
residual torques (≤ 100Nm) keeping the model from tipping over.

to generate joint torque data and then verify that these generating torques can be recovered with 83

sufficient accuracy. To test the model accuracy and noise sensitivity, we first use the PhaseSpace 84

motion capture system to gather the walking data and then let the model simulate the walking 85

motion. To simulate possible sensor errors in the PhaseSpace system, we introduce noise into 86

the simulated marker positions and study the accuracy of recovery with increasing noise levels. 87

Noise tolerance Inverse dynamics computations rely on first finding the model’s pose. There- 88

fore, given motion capture data, it is essential to synthesize the pose sequence precisely. We 89

used the HDM to synthesize treadmill walking and then compute its accuracy. The aim of this 90

study was to assess the effect of sensor noise on the results and compare the joint angles and 91

torques found with our method to those used to generate marker data. We used an experimental 92

process similar to that employed in [17]. In this experiment, both steps were tested by studying 93

eight steps of marker data captured from treadmill walking. The movement lasts a little longer 94

than 4 seconds, giving us 260 frames of data. For this computation, we used data sampled at 60 95

Hz. 96

We used a preliminary pass through the motion capture data to generate synthesized “ground 97

truth” marker, pose, and torque data. After using the physics-based inverse kinematics to 98

compute joint angles, we constrained the body to use forward dynamics to reproduce the joint 99

angles with internal torques (and residual forces at the waist segment). As the model performed 100

the movement, we recorded the global position of the marker attachment points. We also 101

recorded the forces used and the resulting joint angles. Thus we had synthetic “ground truth” 102

data directly from the model. 103

Using the synthetic marker data, we analyzed the process by perturbing all marker positions 104

at each frame in time along all three axes with mean-centered Gaussian noise of a controlled 105

standard deviation. Applying physics-based pose-fitting followed by inverse dynamics produced 106

a new set of virtual marker positions, joint angles, and torques. The results are shown in Fig 3. 107

Gaussian perturbations render the marker data dynamically inconsistent. This dynamic 108

inconsistency also pushes a constrained system toward singularity, making it more challenging 109
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(a) joint angle error (b) joint torque error

(c) treadmill walking synthesis with noise

Fig 3. Model noise sensitivity. Error of joint angles, and internal torques resulting from
physics-based inverse kinematics and inverse dynamics used to analyze perturbed marker data.
We repeated the process twenty times for each noise-level at nine different standard-deviations.
Standard-deviations, in mm, were (0.1, 0.5, 1, 2, 4, 8, 16, 32, 64). Error bars show standard
error of the mean.(a) The accuracy of the PhaseSpace motion capture device is approximately
5mm over its 3 x 6 meter workspace, resulting an average angular error of 1 degree. (b) The
same estimates for torque error are between 5 and 10 Nm, typically approximately 1%. These
small errors are well within the requirements for our experiments. (c) Poses generated by
forward dynamics using forces obtained from three inverse dynamics simulations based on
Gaussian perturbed walking data (0.1mm, 8mm, and 64mm noise levels). Although at very
high levels of noise, the model follows the reference motion poorly, the movement still looks,
qualitatively, like walking.

to solve numerically. We included very high levels of noise to see if they would slow the system 110

down, or prevent it from finding any solution. In all cases, the system analyzed the perturbed 111

data in real-time, finding pose data and dynamics data to fit the marker data. 112

After running through an inverse kinematics pass, an inverse dynamics pass, and a forward 113

dynamics pass for each trial run; we compared the marker attachment points, joint angles, and 114

joint torques from the forward dynamics pass to the synthetic ground truth data. Fig. 3 shows 115

the mean error for across all degrees of freedom and frames of time for each quantity measured. 116

Although the perturbations make the marker data dynamically inconsistent, small amounts of 117
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Fig 4. Trajectory reconstruction. Trajectories of selected degrees of freedom from the
perturbation study. Solid lines show ground truth. Dashed lines show computed data.
Simulated spring forces make the computed data lag behind and smooth the ground truth.

noise have minimal effect on the computed measurements. Fig 3 shows that functional recovery 118

is possible with up to 8mm standard error deviations. A ±1mm PhaseSpace marker position 119

accuracy translates in our model into an average joint angle error of 0.02 radians and average 120

force errors of 3 Newtons. 121

There is a systematic error in both the marker positions and joint angles caused by the fact 122

that the constraints behave like springs. The spring-like behavior causes the marker positions and 123

joint angles to lag behind their targets by a small amount and dampens the overall movement. 124

This lag and damping are apparent in Fig. 4 comparing individual trajectories for selected 125

dimensions of the joint angles and torques. As shown in Fig 4, the data follow ground truth 126

very well under low noise conditions. 127

Residual torques/forces and ground forces The inverse dynamics uses measured kine- 128

matics and external forces to calculate net joint torques in a rigid body linked segment model. [18] 129

However, discrepancies between the dynamic forces of the model and the kinematic of the reality 130

make it so that the dynamic model falls over unless action is taken to stabilize it. Adjustments 131

to internal joint torques can be used to stabilize the body but cause the body’s pose to deviate 132

from its intended pose. A common way to compensate this problem is by introducing ”residual 133

forces and torques.” In humans, these additions would be consequential of measurements inthe 134

human vestibular system. The HDM includes a joint to the model’s waist to constrain it to 135

reproduce orientation deviations found during the pose-fitting pass. To minimize the effect of 136

these external forces, we used torque limits on the amount of stabilizing torque available. 137

The system fully configured system could be tested against an objective set of measurements. 138

We compaired HDM data together with ground force data from a pair of balance boards. Fig 5 139

shows the calibration of the ground force computed from our method compared to those taken 140
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from WiiTM force plates. A subject standing on two force plates, varied their stance from one 141

being supported exclusively by leg standing on one plate and then shifted their weight to the 142

other leg to be supported by the other plate. For this simple movement of transitioning from 143

standing on one foot or the other, residual angular torques of 30Nm were sufficient to keep the 144

dynamic model quite close to its target trajectory. 145

The residual torques are very modest, being within ±5% of the maximum excursion. The 146

correspondence is actually a little better as the faux vestibular balance forces are not factored 147

into the comparison. Note also that we cannot expect the correspondence to be exact during 148

the phase between the two stances as there is no attempt in the model in this test to make 149

the dynamics of the changing stance match that of the force plates. To generate independent 150

movements, such as grasping might need additional accuracy [19], but for estimating a subject’s 151

energetic cost, the accuracy is well within range. 152

Fig 5 also shows the comparison results between the sensor-measured ground forces for 153

the right and left feet (red and green lines) with the computed ground forces found through 154

physics-based inverse dynamics (blue and pink lines). During bipedal stance phase, the forces 155

come surprisingly close. The largest discrepancies come during the transition from one foot to 156

the other. These discrepancies can be blamed largely on poor collision detection resulting from 157

an abstract model of the foot. 158

Fig 5. Comparing ground forces between the model and the Wii force plate. (Top)
Two Wii force plates serve as accurate calibration reference. A subject stood on the two plates
and then changed stances, balancing first on the left foot and next on the right. (Bottom) The
comparison between the measurement systems is surprisingly good, during the stance phases,
showing only a 10% difference between the measured ground forces and the computed forces.
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Test2: Model Validation 159

The previous demonstrations report on tests of the accuracy of the system in completely artificial 160

situations. Herein we describe three tests of the whole body model’s ability to fit data obtained 161

from human subjects. The first test uses a subject carrying out successively more difficult 162

reaches in a virtual reality environment to test whether the model’s estimate of movement costs 163

correlate with increasing task difficulty. The second test simulates data from an issue facing 164

movements in an aging population. Do aging subjects’ reduced use of arm swing while walking 165

incur a movement cost, and does the HDM’s estimate correspond to laboratory treadmill data? 166

The final test demonstrates an essential property of the model concerning its degrees of freedom. 167

The critical observation is that virtues of their interconnections constrain the degree of freedom 168

of the model; thus, the control of a posture can be achieved with a very reduced set of key 169

marker positions. This has implications for movement control programs. 170

Whole body reaching The movement accuracy test is encouraging, but the importance of 171

the method depends on its usefulness to capture the energetic cost of whole-body movements in 172

a complex experimental setting. One such venue is a three-dimensional Virtual Reality (VR) 173

environment. The advantage of the VR environment for studying human movements is that the 174

dimensions and the dynamic variations of the parametric quantities describing the setting can 175

be varied with full experimental control. 176

In this experiment, we studied where human subjects needed to use whole-body movements 177

cost choosing actions. From a particular start, a human subject touched targets suspended 178

in 3D space. The experimental setup is demonstrated in Fig. 6. The subject is wearing the 179

PhaseSpace motion capture suit and the nVisor head-mounted stereo display. From a fixed 180

starting position, a subject is instructed to touch one of the targets and return to the starting 181

position. 182

Tests were able to establish that, just focusing on integrated net torque and avoiding stiffness, 183

the total cost of a movement recorded by our system reliably discriminates the energetic costs 184

of the movement in the way hypothesized. The hypothesized cost of reaching for and touching 185

each of the targets was ranked on the basis of distance and height relative to the subject. Note 186

that target 2 is the least expensive as the subject does not have to crouch or extend significantly 187

to touch it. Targets 5 through 8 are more costly than targets 1 through 4 as they require that 188

the subject take a step to touch them. These results were expected, but the point was to show 189

that the overall setting and model could produce reliable torque estimates. 190

This demonstration shows that the model can be used in any setting where the cost of a 191

movement is hypothesized to be a constituent factor. We develop this technique further in the 192

next demonstration. 193
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Fig 6. Reaching in a virtual reality environment. A) A subject reaches to touch virtual
targets seen in a HMD. The Ss’ reach is unconstrained. B) The subject reaches to the different
numbered targets on separate trials. C) The average integrated torque over 10 trials per reach
shows that the method reliably discriminates between movement costs for the further and
higher locations.

Comparing the HDM with a prior experimental result Once the joint stiffness pa- 194

rameters were adjusted appropriately, can it reproduce the results of a stiffness modulating 195

experiment? The experiment we tried was to replicate that of Ortega et al. [20]. They showed 196

that arresting the arm swing during treadmill walking incurred an increased metabolic cost of 197

6%. Our hypothesis was that to reproduce this result we could modify our walking data for the 198

model so that the arms were clamped by the sides with stiff stationary markers. 199

To test this feasibility, we used one of our HDM walking data sets in a test situation. The 200

cost of walking was computed and with a modification designed to model the data in [20]. To 201

simulate their experiment, we modified the model data so the arms could swing with the walking 202

gait for the standard case, but for the restricted case, the arms were constrained by markers that 203

move with the stride but are not allowed to swing. Since the arms under restricted situation 204

were not allowed to balance the leg movements, we expected the energetic cost to be higher. As 205

shown in Figure 7, the result was that the constrained walk was about 6 % more expensive than 206

the standard walk, which was essentially the value obtained by the Farley lab [20]. The use of 207

the HDM in imitating this experiment shows off the utility of the model; no elaborate tuning 208

was necessary to obtain the preliminary result other than restraining the arms. 209

Controlling poses using reduced marker sets Tests of movement accuracy revealed that 210

the dynamics engine was able to tolerate significant noise levels added to the marker positions. 211

Another possibility is to use a subset of the markers to constrain the dynamics and still produce 212

reasonable walking gaits. Human pose sequences from simple single-behavior motions lie on a 213

very low-dimensional linear subspace [21]. However, original feature space of human motions 214

has two many dimensions, e.g. the HDM uses 51 markers, so one pose is represented by a 215
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(a) walking with arm swing (left) and stiff arm (right).

(b) energy cost

Fig 7. Comparison of efforts while walking with/without arm swing. (a) In a
preliminary test of our design, the energetic cost of normal walking is compared to the case
where the arms are constrained from swinging. Our hypothesis is that if subjects are instructed
to walk without moving their arms, they will accomplish this by using muscle co-contraction
and that this effect can be realized in the HDM with stationary markers that keep the arms
vertical. (b)The increased cost measured by the HDM is 6.1 %, extremely close to the 6 %
result obtained by Ortega [20].

123-dimension coordinate system. Tests show that for many movements, with suitable internal 216

stiffness, it is only necessary to control the location of a reduced set consisting of the head, 217

hands, and feet markers [22]. This property could have been expected from studies of muscle 218

synergies, which show that muscle contractions coordinate in movement generation [23,24]. 219

Fig. 8 shows a qualitative comparison between a pose found using the whole marker set (on 220

the left) and one found using only head, hands, and feet(on the right). To achieve the reduced 221

marker pose, we started the model in an upright stance with the arms by the side, and then the 222

reduced set markers are moved slowly along trajectories that leave them in the final posture. 223

The straight arms take advantage of the elbow joint angle limitation. Joint limits on the knees 224

and elbows and general joint stiffness naturally bias the physics engine to find a pose that is 225
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very close to the fully constrained pose. Body inertia and joint stiffness naturally clean up 226

minor noise and occlusions in the captured marker data. The resulting joint angles in transit 227

allow the specification of the complete set of dynamic torques. To test this feature of HDM 228

quantitatively, the recovered joints angles while walking according to the reduced marker set 229

were compared with those from the full marker set. Fig. 9 illustrates the recovered joints angles 230

are quite similar with the original joints angles. 231

This result has important general implications. First of all, the finding suggests that the 232

kinematic plan for movements can be compressed into a subset of formative trajectories, leaving 233

the remaining degrees of freedom interpolated using the body’s dynamic constraint. Another 234

aspect of this observation is that the reduced set can be used to adjust movements to individual 235

circumstances, again leaving the detailed interpolation to the dynamics. 236

(a) pose with full marker set (b) pose with reduced marker set

Fig 8. Movement control using dynamic synergies (a) Body configuration using all
marker constraints.Note the similarity to the sparsely constrained pose. (b) Body configuration
using constraints on only the head, hands, and feet. In many cases, the pose found using a full
set of marker constraints is quite close to that found by a sparse set of constraints. These two
images show almost no differences between using a full or a sparse set of marker constraints.

Discussion 237

The paper has aimed to publicize a novel system for quantitatively modeling whole-body 238

movements. Its 48 degrees of freedom and generalized spring constraints allow models of scale 239

that are robust to disturbances. In addition to being an analytical tool, it can also generate 240

movements from a kinematic plan. 241

The core of our simulations exploits the observation that realizations of constraints behave like 242

implicit springs. The parameters that soften constraints into springs exhibit many advantageous 243

properties. They stabilize the simulation, pushing a constrained system away from singularities, 244
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Fig 9. Comparison of joint angles along selected degree of freedom Solid lines show
joint angels recovered based on full marker set. Dashed lines show joint angels recovered based
on reduced marker set.

and reducing constraint error. A fundamental question concerned with the HDM system is 245

whether it can recover the trajectories and the cost of a known physical system’s complex motion. 246

The experiments described above showing the HDM synthesizing human motions with high levels 247

of accuracy. One further principle behind our tests is that one way of illustrating the method’s 248

robustness is to combine a kinematic data set from the source with another set of dynamic 249

parameters. In tests, the data gathered with a different motion capture device is combined with 250

the inertial data from another model to make a composite. Our tests used the Carnegie Mellon 251

University’s graphics laboratory’s motion capture database 5. This beneficial and extensive 252

database contains whole-body motion data sets for different human subjects performing various 253

natural motions. The database was created by motion capture, and the positions of markers 254

on the bodies are one of the primary sources of motion data. We did not know the individual 255

dynamic parameters. However, by adopting the database’s marker conventions, we could use 256

our dynamics calculation to compute joint torques for the hybrid system. Although the estimate 257

is thus done for a synthetic pairing of kinematic data and dynamic parameters, the point is to 258

show that, even with this combination, the integration is stable and leads to identifiable torques. 259

A central feature of the system is the production of the movements’ energetic cost to provide 260

the capability to compare different movement scenarios. Achieving this aim can be tricky, owing 261

to the lack of systems that can provide independent cost measures. Energetic cost measurement 262

5CMU Graphics Lab Motion Capture Database: http://mocap.cs.cmu.edu/
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of human movements has been studied for decades. The most straightforward and frequently used 263

method is to measure the metabolic cost,e.g., subjects breath through a mouthpiece to measure 264

rates of oxygen consumption (VO2) [25–31]. Measuring the changes in muscle coactivation and 265

stiffness using Electromyographic (EMG) is another common way to reflect metabolic changes 266

[32]. However, these methods are time-consuming, and the required configuration restricts the 267

variety of experiments. For example, the VO2 process does not work for virtual-reality tasks as 268

subjects need to wear the VR helmet on their head, leaving little space for a mouthpiece. 269

By comparison with the above methods, the HDM provides a stable and versatile platform 270

with several uses. One is the use with force plates, as shown in our experiment, to measure the 271

stance’s change. Another option is to use the HDM system to produce correlations with similar 272

tests with human subjects, such as our research with stiff-arm walking. Once we have vetted the 273

system in many such areas, it can be used as a predictive tool, as in the experiment showing the 274

different costs of reaching targets. We have developed a large-scale three-dimensional tracing 275

experiment in virtual reality [33] to elicit natural whole-body movements under common goals. 276

Our future work is to analyze the energetic cost using the HDM. 277

Besides its use of a mechanism for interpreting experiments, the system can also serve as 278

a good base for theorizing about the human system’s organization concerning its space-time 279

performance since many of these issues are open. While an enormous amount of research in 280

human motor control has produced ever more refined subsystem components’ elucidations, a 281

comprehensive theory at the level of large scale dynamics is still unsettled. One main obstacle is 282

a description of how the motor cortex can communicate control information to drive the high 283

temporal bandwidths of the spinal cord circuitry. Several possibilities were debated at the Neural 284

Control of Movement conference in 2013 without definitive result. We have emphasized is that 285

the motor cortex communicates a coded kinematic plan together with stiffness settings. A study 286

with kinematics coded with temporal basis functions has shown that a kinematic plan can be 287

coded to reduce the bandwidth needed by a factor of approximately 103 [34,35]. The HDM shows 288

that such a model can play a useful role in studying the kinematic-plan model’s consequences. 289

In particular, the reduced degree of freedom control demonstration supports the uncontrolled 290

manifold view wherein a subset of crucial degrees of freedom can direct a movement with the 291

uncontrolled degrees of freedom interpolating the movement using the system’s dynamics [36,37] 292

In regard to the uncontrolled manifold concept, a very important insight was the use of 293

reduced degrees of freedom constraints in computing the dynamics. If the limitations are near 294

the number of DOFs of the system, then the torque recovery can quickly become numerically 295

unstable. However, between 20 to 41 markers in the HDM provide sufficient constraints to 296

integrate the dynamic equations reliably by allowing the system’s natural dynamics to interpolate 297

the motion appropriately. 298

The method has several advantages over alternative methods. First, it can be easily imple- 299

mented in a single robust framework of the physics engine. Using the physics engine for multiple 300
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tasks allows a unique human model to be used from start to finish, rather than being forced to 301

use the conventions built into a commercial package. Second, the method is fast. The simulation 302

engine is designed for performance, making it possible to analyze movement in real-time and 303

create interactive experiments with stimuli dependent on the feedback results. Third, the 304

software is free. Freely accessible code, such as ODE, is useful because it facilitates comparison 305

and collaboration in research. Fourth, the method handles multiple ground contacts and noisy 306

data challenging to related approaches. Kinematic loops do not require any special treatment. 307

The method is robust even to large perturbations making data dynamically inconsistent. Finally, 308

the tunable parameters (CFM), couched in the physics framework, are intuitive. It is more 309

straightforward to specify the importance of a constraint in force and mass rather than arbitrary 310

gains and weightings. We illustrate these advantages by using ODE to analyze and reproduce 311

movement recorded from optical motion capture. 312

There are several ways to improve the system, but three are the most important. One 313

limitation of our method for computing torque is that it is insensitive to muscle stiffness, which 314

is both passive and can be actively modulated [38, 39]. Increasing stiffness will increase the 315

overall net movement energetic cost and needs to be taken into account. The observation 316

somewhat ameliorates this issue that in most natural tasks, subjects will try to minimize 317

energetic costs and thus exploit natural dynamics whenever they can [36, 40,41], reducing high 318

levels of co-contraction. However, the ubiquitous use of spring as constraints means opening up 319

the possibility that one can add springs to the joint degrees of freedom to model stiffness. These 320

could also have parametric programmable spring constants to model muscle co-contraction. 321

The second feature that could be added is a system to keep the human model upright. Any 322

of the three human sources of this needed information - visual, vestibular, and proprioception 323

- would be candidates for this practical constraint. At present, the HDM uses a faux system 324

of rotational torques at the center of gravity, but these could easily be replaced with more 325

appropriate ankle torques. The third feature to be added is the separation of gravitational 326

torques from control torques as only the latter effect metabolic cost directly. This improvement 327

is a matter of modifying ODE’s low-level code, and the plan is that this will be tackled shortly. 328

In summary, the forty-eight degree of freedom dynamic human model is a fast, robust, intuitive, 329

and inexpensive multi-purpose tool for simulating, analyzing, and synthesizing humanoid 330

movement. The system’s capability is a very stable set of integrations that readily handle the 331

inclusion of multiple points of surface contact. The HDM uses a closed-loop step at each time 332

step so that the computed torques are appropriate for the new posture. In contrast, when the 333

computed torques are saved and replayed, small errors in the kinematics accumulate. Each set 334

of torques is no longer appropriate for the computed posture, and the overall system rapidly 335

becomes unstable. These results’ significance extends beyond the simulation stability issue and 336

provides a strong argument for the suitability of the kinematic plan’s close-loop control as a 337

biological model. 338
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Methods 339

A novel way to compute the energy cost of human movements has been developed by building a 340

human dynamic model on the top of a physical engine ODE. 341

Human Model 342

Our techniques use a simulated model of the human whose movement is analyzed. The first 343

order of business is to build a physical model capable of representing human movements, of 344

which the accuracy influences the outcome of the analysis. Fig. 10 shows the body segments 345

and topology of the model. The humanoid model is a collection of rigid bodies connected by 346

joints. Each joint connects two rigid bodies with anchor points (center of rotation) defined in 347

the reference frame of both bodies. The locations of these anchor points determine the segment 348

dimensions (bone lengths) of the character model. 349

A
B

Joint Part 1 Part 2 DOF/joint Total DOF
Cervical Head Neck 3 3
Thoracic Neck Upper Torso 3 3
Lumbar Upper Torso Lower Torso 3 3
Sacral Lower Torso Pelvis 3 3
c.Clavicle Upper Torso c.Collar 3 6
c.Shoulder c.Collar c.Upper Arm 3 6
c.Elbow c.Upper Arm c.Lower Arm 2 4
c.Wrist c.Lower Arm c.Hand 2 4
c.Hip c.Pelvis c.Upper.Leg 3 6
c.Knee c.Upper Leg c.Lower Leg 2 4
c.Ankle c.Lower Leg c.Heel 2 4
c.Tarsal c.Heel c.Sesamoid 1 2

Fig 10. The 48 degree of freedom model A. Four ball-and-socket joints connect five
body-segments along the spine from the head to the waist. Ball-and-socket joints are also used
at the collar-bone, shoulder, and hip. B. A summary of the joints used in the model. c. =
chiral: there are two of each of these joints (left and right). Universal joints are used at the
elbows, wrists, knees, and ankles. Hinge joints connect the toes to the heels. All joints limit the
range of motion to angles plausible for human movement. Our model assumes that joint DOFs
summarize the effects of component muscles.

Model degree of freedom details The model structure consists of 21 separate rigid bodies 350

connected by 20 joints (Fig 10). The relative orientation of some bodies is constrained by using 351

universal joints for the elbows, wrists, knees, and ankles and hinge joints to connect the toes to 352

the heels. Universal joints restrict one angular degree of freedom; e.g., when the arm is bent 353

at the elbow, the forearm cannot rotate around the principal axis of the upper arm unless the 354

upper arm itself rotates. However, the forearm can rotate at the elbow around its own principal 355

axis (modeling the twisting movement of the radius and ulnar bones). All other joints are left 356
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as ball-and-socket joints with three angular degrees of freedom: hips, shoulders, collar-bones, 357

upper-neck, lower-neck, upper spine, and lower spine. This arrangement of joints leaves a total 358

of 48 unconstrained internal degrees of freedom. An advantage of building humanoid model in 359

this way is that joint connections are not treated as holonomic (perfectly rigid) constraints, but 360

rather as very stiff springs that hold body parts together like tendons and muscles. 361

Data Fitting 362

The technique for fitting a model to data begins with a character model that serves as a template, 363

Fig. 10, providing the number of body segments and topology of the model. We further require 364

that labeled markers used in motion capture be assigned to specific model segments. It may 365

be straightforward to derive these using a technique such as in [42,43]. However, it is also not 366

difficult to do by hand. It would become tedious if one had to go through the process for many 367

different models. Fortunately, the motion capture suit typically puts the markers on the same 368

body segments (Fig. 11), even if they are in slightly different places, and the body segments 369

have different dimensions. 370

We present a method in S2 Appendix section, for using marker data to help determine the 371

dimensions of the model segments and where markers attach to the model. Although this 372

method could easily be automated, in practice, the research did not rely on very many different 373

models and so the system uses a mechanism for relaxing the marker attachment points and 374

joint anchors with the click of a button in the graphical user interface (Fig. 1). With a new 375

data set, a handful of iterations proved sufficient to produce a reasonable model with marker 376

attachments that fit the data well enough for further analysis. This algorithm does not address 377

joint limits on a range of motion. These can also be learned [44], but in our case, the range of 378

motion for each joint is set a priori. After determining segment lengths, we set other segment 379

dimensions as appropriate to fit against the markers. Mass properties for each segment assume 380

uniform density by volume. 381

Given motion capture data of a subject, the model is fit to the subject’s dimensions and 382

joint-range-of-motion is constrained to approximate the subject’s flexibility. Additionally, the 383

model segments have inertial matrix properties. The initial mass assignment to each segment 384

assumes a uniform density of water (1000 kg
m3 ) for the volume associated with each rigid body. 385

The mass assignment should be modified to roughly match that of a specific subject. The 386

increased fidelity, required for individual subjects in clinical biomechanics research would employ 387

more sophisticated techniques for a better approximation of mass distribution in the model. 388

Interestingly, however, the experimental results discussed above show that even this low fidelity 389

model is sufficient to produce high-quality data that compares favorably with data gathered 390

from independent sensors. 391
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Fig 11. Marker arrangement on the motion capture suit. The suit contains 51
markers as shown by the LEDs in total but only 41 are used in the model e.g. Markers that are
used are present on the fingers. Markers can easily assigned to specific model segments. For
example, the markers of RBHD, RFHD, LFHD and LBHD are assigned to Head segment while
the markers of RBWT, RFWT, LFWT and LBWT belong to Pelvis segment.

Pose Fitting 392

Having addressed the issues in attaching the model to motion capture data, we turn to the 393

construction of its capability of representing human movements. Various commercial packages 394

provide different methods for converting marker trajectories into sequences of body poses, but 395

they can be time-consuming, expensive, or difficult to use. This section describes an approach 396

related to [45] and [46] that is free, fast, uses intuitive parameters, and allows the user to fit 397

markers to whatever model they wish. 398

The method uses the physics engine to constrain a character model to fit marker data and 399

other constraints. Markers are modelled as infinitely massed points attached to the character 400

model. Given a frame of marker data, the position and orientation of all body segments can be 401

found by balancing internal joint targets and external marker data. From the global position 402

and orientation of the different body segments, it becomes a simple matter to compute relative 403

orientations (joint angles). 404

The internal degrees of freedom are limited by range of motion constraints, e.g. the elbows 405

and knees cannot bend backwards. All other joints have similar range-of-motion limitations 406

based on the subject’s flexibility. Furthermore, each joint is set to have a “target state”, a 407

preferred relative orientation between its connected bodies. These preferences can be thought of 408

as “muscle stiffnesses” and are modeled as weak constraints with limited force. Joint limits and 409

stiffness serve as a prior over possible poses so that in the absence of any marker data at all, 410

the model still takes on a pose. Consequently, every internal degree of freedom is constrained 411
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to some degree. These constraints hold the model together and give it a default pose. Marker 412

data pull the model from the default pose into a new pose, e.g. Fig 12. For a given frame of 413

motion capture data, each marker is connected to a body segment using a ball-and-socket joint 414

constraint. A total of 41 markers, which do not contribute any degrees of freedom because of 415

their infinite mass, attach to the character model, adding an additional 3× 41 = 123 constraint 416

dimensions. 417

Finally, collisions between the ground and the feet also influence the model pose. Each foot 418

can form up to three contact points with the ground. Inequality constraints at these points 419

prevent penetration with the ground. When both feet are firmly on the ground, all markers are 420

actively pulling the body into a pose, all joints are holding the body together, and joint limits 421

and stiffness are biasing the relative orientation of the bodies. The experiments described above 422

show that the model can simulated the ground force correctly. 423

This approach is simple intuitive: attach markers to the model with springs and then drag 424

the body along. The parameter, tunable for each constraint, which is known in ODE as the 425

constraint force mixing parameter (CFM), allows a constraint to slip proportional to the amount 426

of force that would be required to maintain the constraint. For the regular internal body joints 427

and contact constraints, we use a CFM value of 1×10−5 while for the constraints between 428

markers and body parts we use 1×10−4. Both of these values represent very stiff springs 429

although they are different by an order of magnitude. This stiffness stabilizes the simulation 430

by allowing the markers to stretch slightly from their mapped locations in the event that the 431

marker constraints are not compatible with the character model. Fig 12 shows that when the 432

markers move, the constraints drag the character along with them. 433

Fig 12. Pose fitting. Initially the motion capture data points are in a very different
configuration than the initial stance of the model. To find the appropriate correspondences,
simulated markers attach to the humanoid model through ball-and-socket joints and pull the
body parts into place, subject to model joint constraints. The left to right sequence in the
figure shows the body targets being gradually reconciled with the external markers.
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Inverse Dynamics 434

It can be useful to know the torques to apply at each joint or the required effort to accomplish 435

a particular movement. Given a kinematic sequence of body poses, the physics engine ODE can 436

archive the computation with minimal effort. Given the constraints, such as each joint’s angular 437

velocity, it can correctly compute the desired torques/forces measurements. 438

The process is straightforward. Given the current joint angle and the desired joint angle 439

for the next frame, the relative angular velocity of the body parts is constrained as to achieve 440

the target orientation on the next frame. Contact constraints are necessary to prevent ground 441

surface penetration as well. The ODE physics library handles the constraints and solves the 442

torques and forces that are used to satisfy each constraint in the process. 443

For computing inverse dynamics, the first step is to initialize the model to a starting dynamic 444

state. The initial state can be found from the first and second frames of kinematic pose data. 445

The model pose is set by using the second frame of data, and the initial linear and angular 446

velocity of each joint is computed by taking the finite difference between the two frames (and 447

dividing by the timestep). Computing velocity through finite differences is appropriate for a 448

physics engine using first-order semi-implicit Euler integration. After that, continuously find the 449

torques between two consecutive frames of pose data using the finite difference between poses 450

to compute angular velocities that will move the model from the current to the next pose. 451

Differentiating again, this time between the current and future velocity gives a target 452

acceleration that becomes a constraint on the model. The primary difference between this step 453

and the previously discussed method for finding pose from marker data is that there are no 454

marker constraints dragging the body into place, and the internal muscle stiffness drives the 455

model toward a target pose on each frame instead of toward a ‘default’ pose. Because there 456

are fewer constraints in play, stiffer muscle forces are used, but the absolute forces the muscles 457

can apply are limited to prevent muscle forces from being unreasonably large. Again, in this 458

case, we can use the relative spring stiffnesses to express the confidence in the measurements. 459

We use very stiff springs (CFM = 10−10) to keep the model segments together. We use looser 460

constraints to keep the feet from penetrating the ground (CFM = 10−5) and to constrain the 461

model to adopt the appropriate pose (CFM = 10−8) 462

Residual torques/forces The torque calculation by the HDM is ideal in the sense of solving 463

the dynamic equations, but in the actual situation there needs to be a corrective system for 464

incidental errors. In the human system there are multiple corrective system based on vision, 465

proprioception and the vestibular system. Such corrective systems have been extensively studied 466

e.g. [18, 19,47]. 467

In classical inverse dynamic area, discrepancies between the model and human that created 468

the data necessitate non-realistic “residual” forces to keep the model from falling over when 469

dynamically reproducing most movements. A 6 degree of freedom joint between the waist 470
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segment and the global frame generate the external forces. A weak, limited spring constrains the 471

waist segment to achieve its recorded pose relative to the global frame. The experiments show 472

that attaching the external constraint to the head or the feet has little noticeable difference. 473

The non-realistic external forces (residuals) account for noise as well as discrepancies between 474

the model and the human generating the data. In particular, differences in how the feet interact 475

with the ground cause errors in our analysis. In most cases it is only necessary to constrain two 476

of the 6 angular degrees of freedom (pitch and roll), leaving the other four external degrees of 477

freedom disabled. The two angular constraints keep the body from falling over but allow it to 478

move about through simulated ground interactions. 479

The stabilization system completes the model. It can be implemented in parallel, with the 480

control used to stabilize the residual necessary to balance. With this included, The simulation 481

can reproduce highly dynamic motions, e.g. see Fig 2, which shows a jumping sequence made 482

originally by a human subject and recreated using the torques computed by the inverse dynamics 483

model. 484

Method summary 485

For each human subject we construct a dynamic model and force that model to follow the 486

subject’s motion capture data, which leads directly to the recovery of joint angles. Our algorithm 487

constrains the dynamic model to track these angles and consequently can estimate the correct 488

joint torques. This concept was originally demonstrated in two dimensions for human walking 489

by [48]. We have extended the method to the significantly more demanding case of 48 DOFs in 490

three dimensions and arbitrary posture changes. Fig. 10 lists the body segments. The dimensions 491

of each segment are matched those of an individual subject. The principal difficulty is that the 492

constraints in the high DOF 3D model present many delicate numerical issues for the ODE 493

solver that need to be addressed [14]. Currently the dynamic model does not attempt to model 494

stiffness components, with the consequence that it can only directly recover the net torques at 495

each DOF. 496

The body segments are used by the simulation for both collision detection and the calculation 497

of mass properties. Mass and inertial properties are computed from the volume of the body 498

parts using a constant density of 1000Kg
m3 . The dimensions and articulation are designed to 499

allow the model to reproduce most movements the human can make. For example, joints at the 500

elbows have two DOFs to reproduce the hinge movement of the elbow as well as the twisting 501

movement of the radius and ulna bones in the arm. Joint DOFs are also limited to prevent 502

impossible movements such as reverse bending of the elbows or knees. 503

For data capture a subject wears the motion capture system developed by PhaseSpace. Each 504

PhaseSpace LED marker is mapped to a corresponding point on the model. The markers are 505

then introduced into the physics simulation as kinematic bodies without collision geometry. As a 506

heuristic, each marker kinematic body is effectively treated as having infinite mass so that when 507

21/43

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2021. ; https://doi.org/10.1101/2020.08.23.262048doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.23.262048
http://creativecommons.org/licenses/by-nc-nd/4.0/


another dynamic body is attached through a joint constraint to a marker, only the dynamic 508

body’s trajectory can be changed by the constraint. 509

The PhaseSpace motion capture system records 41 3-dimension positions of specific human 510

body locations over time and maps these markers to appropriate locations on the model. When 511

the simulation is stepped forward, a constraint solver attempts to find a body state that satisfies 512

the internal joint constraints, the external marker constraints, and other constraints such as 513

ground forces, joint stiffnesses, and conservation of momentum. Knowing the kinematics allows 514

the recovery of the dynamics, since the joint velocities allow the equations of motion to be 515

inverted. The retrieved forces can be used to generate feed-forward torque profiles for actuating 516

the character. 517

The overall idea behind the method for calculating joint torques is straightforward and has 518

been implemented in ODE. The mathematics underlying the rigid body simulation software 519

used in our work is explained in the S1 Appendix section. 520

Supporting information 521

S1 Appendix. The principal insight in this section is that ODE can be used as an effective 522

controller. We present a derivation of the mathematics underlying the physics simulation. The 523

derivation comes from directly analyzing the ODE codebase and it consequently differs from 524

other derivations using Lagrange multipliers to arrive at the same final result (e.g., [49]). We 525

present another derivation illustrating the equivalence between softened constraints in ODE and 526

implicit springs. 527

When modeling human movements, we assume that the human body does not collide 528

significantly with itself and so typically only process collisions between the model and the 529

ground. Collisions between the model and the ground, however, play an important role in 530

analyzing and synthesizing movement data such as walking. Collision handling involves creating 531

a constraint between the colliding bodies and is the primary contribution of the model. We will 532

describe this methodology after first introducing the physical simulation details. 533

Notation Physical simulation involves a large number of different variables to represent 534

constraints and relevant physical quantities. Table 1 presents specific symbols and their 535

meanings for reference. 536

Scalars are represented with lower-case, un-bolded symbols: x. Bold lower-case symbols 537

represent column vectors, 538

x =

[
x1

x2

]
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Symbol Meaning

x position or state of one or more rigid bodies
ẋ velocity (usu. linear and angular)
ẍ acceleration (usu. linear and angular)
R rotation matrix representing orientation of a body
ω angular velocity
q quaternion representation of an orientation or rotation
m mass of a single rigid body
M mass matrix
I identity matrix
I moment of inertia tensor

nb, nc number of bodies, number of constraints
α,β stabilizing parameters added to the equations of motion
φ() error or energy function for a single constraint
J matrix of partial derivatives of constraint error functions
h timestep
f forces (and torques)
τ torques
λ constraint forces

Table 1. Meanings of specific symbols used to discuss dynamic simulation

Bold, upper-case symbols to represent matrices: 539

X =
[
x1 x2

]
=

[
x11 x12

x21 x22

]

Dot-notation to indicates time derivative: ẋ = dx
dt . The circumflex accent indicates a 3d vector 540

being used as a skew-symmetric matrix representing a cross-product operation: 541

x̂y =

 0 −x3 x2

x3 0 −x1
−x2 x1 0


y1y2
y3

 = x× y

Coordinates are typically relative to a global reference frame. However, a tilde, x̃, indicates 542

a quantity that uses a local reference frame, e.g., a body-relative frame, rather than the global 543

frame. We use subscripts to indicate that a quantity refers to a specific dimension, a particular 544

rigid body, a point in time, but clarify the subscript’s meaning when necessary to remove 545

ambiguity. Table 1 introduces the primary symbols within the text. 546

For conciseness in notation, we typically combine angular and linear quantities as a single 547

symbol. This representation is used both for position and orientation even though orientation 548

does not conveniently fit into a 3×1 vector. Fortunately, angular velocity and angular acceleration, 549

ωand ω̇, do combine well with linear velocity and acceleration ẋand ẍ, and it is these quantities 550

that feature primarily when dealing with a constrained system. We will also represent the state 551
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of multiple bodies using a single symbol when convenient. For example, for a system with two 552

bodies, we will represent the combined linear and angular accelerations (a 12d vector) as ẍt. 553

For this same 2-body system, Newton’s law relating force, mass, and acceleration is as follows: 554
f1t

τ 1t

f2t

τ 2t

 =


m1I 0 0 0

0 I1t 0 0

0 0 m2I 0

0 0 0 I2t



ẍ1t

ω̇1t

ẍ2t

ω̇2t

⇒ f t = M tẍt

where I and I it are 3× 3 block matrices. 555

Dynamic State Coordinates in the simulation world are defined relative to an arbitrary 556

origin and basis set of directions. We refer to this inertial frame as the “global frame”. Each 557

rigid body also has its own point of reference and set of directions. Any point in the global 558

frame can also be described relative to a body’s frame of reference. It is convenient to define the 559

point of reference of a body as its center of mass and use its principal inertial axes of symmetry 560

as directions. 561

The position of the center of mass and orientation of a body within the global frame are here 562

defined as x and R respectively. In 3d space, x is a 3× 1 vector: 563

x =

xy
z


where x, y, and z are the distance from the origin along each of the three directions that establish 564

the global frame of reference. For consistency, we deal with these distances in meters and assign 565

“up” to the positive z axis. The orientation R of a body is a 3× 3 orthonormal matrix whose 566

columns give the body’s local direction frame relative to the global frame: 567

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33


Conservation of momentum makes it necessary to keep track of the time derivative of these 568

quantities: ẋ and Ṙ. Instead of explicitly representing Ṙ, it is convenient to keep track of the 569

angular velocity: 570

ω =

ωxωy
ωz


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The relationship between these quantities is

Ṙ = ω̂R

Representing orientation as a 3 × 3 matrix can be unwieldy. To properly represent an 571

orientation (or pure rotation) it must be an orthonormal matrix. An orthonormal matrix uses 572

nine elements to represent a property with only three degrees of freedom. Unfortunately, any 573

three-element representation of orientation suffers from singularities [50]. We make use of 574

unit-length quaternions to represent orientations and changes in orientation. Quaternions are 575

convenient because of their close relationship to angular velocities. Quaternions are similar to 576

an axis-angle representation of a rotation. A quaternion q represents a rotation by θ around 577

unit vector v with four elements: 578

q =


qw

qx

qy

qz

 =


cos θ2
vx sin θ

2

vy sin θ
2

vz sin θ
2


From an arbitrary angular velocity ω, we can make a quaternion that represents the change 579

in rotation that would occur during a timestep of h. After finding the amount of rotation 580

θt = h‖ωt‖, one might naively find a “rotation quaternion” by normalizing ωt and then re-scaling 581

by sin θt
2 for a final quaternion: qt =

[
cos θt2

ωt
θt

sin θt
2

]
. However, the normalization step becomes 582

unstable as θt approaches zero. To avoid that instability, we use the “sinc” function where 583

sinc θ = sin θ
θ . The sinc function allows us to remove the discontinuity that would result from 584

division by zero and adds numerical stability. When θ is small, sinc (θ) can be approximated to 585

within machine precision using the first two non-zero terms of its Taylor expansion (see [50]). 586

The result is a discrete-time “rotation quaternion”: 587

qt =

[
cos θt2

h
2 sinc θt

2 ωt

]
(1)

Given nb bodies, the dynamic state of the ith body at time t is its position, orientation, linear 588

velocity, and angular velocity:
{
xit Rit ẋit ωit

}
. We will assume that all of these values 589

are framed in the global coordinate system unless specified otherwise. The body dynamics are 590

also affected by the body’s constant mass mi and inertia tensor I it. The moment of inertia 591

tensor, I, is indexed by time because the body’s orientation changes how the the mass is 592

distributed relative to the world frame: I it = RitĨ iRT
it. We assume that the inertia tensor is 593

constant relative to the body-local frame of reference (i.e., bodies are rigid). 594

In simulation, the forces f applied to the rigid bodies come from three general sources. These 595
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are constraint forces (fc), gravitational and gyroscopic forces (fg), and user/control forces (fu): 596

f = fc + fg + fu. 597

Integration Step When a force is applied to a body, it translates into acceleration that 598

is inversely proportional to the mass. Velocity is the time integral of acceleration, ẋt = 599

ẋi0 +
∫ t
0 M

−1
i f tdt, and position is the time integral of velocity, xit = xi0 +

∫ t
0 ẋitdt. Because 600

f t may depend on xt and ẋt as well as on discontinuous collisions and control inputs, analytic 601

descriptions of body state are not usually possible. Instead we discretize the equations of motion 602

and use a small, discrete timestep, h, to numerically approximate system dynamics. The most 603

obvious thing to do is to linearize the force function, f t, and then take all the quantities from 604

time t and use them to find the state at time t+ h: 605

ẋt+h = ẋt + hM−1f t (2)

xt+h = xt + hẋt+h (3)

This “semi-implicit Euler” integration uses using the future velocity for computing position and 606

is more stable than the standard formulation. 607

Although we lump orientation and position together as a single symbol, in practice there are a 608

few distinctions that need mentioning. For example, gravity only applies to the linear state, while 609

gyroscopic torques only apply to angular state. Gravitational forces are very straightforward, 610

fgrav = Mg, where g indicates the direction and magnitude of gravitational acceleration and is 611

often very simple; e.g., for a single rigid body g =
[
0 0 −9.8 0 0 0

]T
. 612

Rotation is a non-linear phenomenon. However, we can approximate the motion of a rotating 613

body by adding torques that imitate gyroscopic effects, see [51]. Gyroscopic torques are applied 614

to maintain conservation of angular momentum. Explicitly applying gyroscopic torques to bodies 615

allows us to treat the rest of the system as though it conserved angular velocity rather than 616

angular momentum. Thereafter, we can deal with the combined linear and angular quantities as 617

a linear system. 618

The gyroscopic torques for each body are linearly approximated by 619

fgyro =

[
0 0

0 ω̂t

][
0 0

0 It

][
0

ωt

]

These forces are zero if the three principal moments of the inertia tensor are equal. Otherwise, 620

they represent the forces necessary for conservation of angular momentum. Unfortunately, this 621

approximation tends to introduce energy into the system. We have reduced this problem in 622

ODE by adding in additional terms as described in [51]. 623

The constrained system is solved using mostly accelerations and velocities. At the end, 624
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however, it is necessary to integrate the velocities into new positions and orientations. Position 625

and orientation are updated differently. For position, it is sufficient to multiply the linear velocity 626

by the timestep and add it to the current position. Adding angular velocity to orientation is not 627

as straightforward. We integrate angular velocity into orientation by converting ωi(t+h) into 628

a quaternion and then use the quaternion to rotate the current orientation forward in time 629

following [50]. 630

Constraint Equation When a rigid body is moving or spinning freely through space, the 631

integration equations are sufficient to simulate dynamics. Adding constraints modifies the 632

bodies’ movements. Maintaining a relationship between two bodies requires forming a constraint 633

on the state of the bodies. The integration equations tell us how to go from force to velocity 634

and from there to position and orientation. To simulate an articulated model using maximal 635

coordinates, we need to know what forces constraints apply to the bodies in the system. 636

To find the constraint forces, one must be able to mathematically describe the constraint. 637

We define a multi-dimensional function over the combined position and orientation of all bodies 638

in the system, φ(xt), that produces a vector of size nc specifying how much each constraint 639

is violated, where nc is the number of constraints acting on the system. For example, if the 640

ith constraint keeps body b2 a distance d above body b1 in the z direction, we would have 641

φi(x) = x2z − x1z − d. If b2 is not separated from b1 by a distance of d in the z direction, φi(x) 642

reports the signed magnitude of that constraint error. For additional information on forming 643

constraint equations, see [49,52]. 644

In general, the error for a constraint is non-zero. Given a measure of the error for a given 645

state, we seek to find constraint forces, fc, that reduce the error over subsequent time steps [53]. 646

Specifically, over the timestep h, we seek a force to reduce the magnitude of the constraint error 647

by a fraction α. That is 648

φ(xt+h) = (I −α)φ(xt) (4)

where α is a k × k diagonal matrix with each αi ∈ [0, 1] representing the fraction of error 649

reduction over a time step. In ODE, the α value is controlled through the error reduction 650

parameter (ERP) which can be set independently for each constrained degree of freedom. In 651

practice, it is not possible to remove constraint error completely (α = 1) when using maximal 652

coordinates because of error introduced by the various approximations employed to make the 653

simulation linear and fast. Values of α typically fall within [0.2, 0.8]. Manipulating this value 654

results in useful elastic and damping effects discussed later. 655

We use the symbol J t to represent the nc × 6nb matrix of partial derivatives of φ(xt). This 656

matrix is a linear approximation of how the constraint error for each of the nc constraints 657
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changes when the positions and orientations of the bodies change: 658

J t = ∇φ(xt) =


∂φ1
∂x1t

· · · ∂φ1
∂x(6nb)t

...
. . .

...
∂φk
∂x1t

· · · ∂φk
∂x(6nb)t


Finding the constraint forces that satisfy Eq. 4 involves removing all references to unknown 659

future quantities. The Taylor expansion of φ(xt+h) at xt, truncated after the first order term, 660

approximates the future constraint error: 661

(I −α)φ(xt) = φ(xt+h) ≈ φ(xt) + J t(xt+h − xt) (5)

This truncation has the effect of treating all constraints as linear. Many constraints used to 662

simulate various joints are linear; others, however, contain higher-order terms and this truncation 663

is one potential source of error in simulation. 664

Combining the two integrator equations, Eqs. 2 and 3, gives the future position/orientation 665

in terms of the present position, velocity, and forces: 666

xt+h = xt + hẋt + h2M−1
t

(
f ct + fgt + fut

)
(6)

Equations 4, 5, and 6 combine to eliminate all references to future quantities: 667

(I −α)φ(xt) = φ(xt) + J t
(
xt + hẋt + h2M−1

t

(
f ct + fgt + fut

)
− xt

)
(7)

This leaves one unknown vector at time t: the constraint forces f ct. Rearranging and simplifying, 668

we get 669

J tM
−1
t f ct = − 1

h2
αφ(xt)−

1

h
J tẋt − J tM−1

t

(
fgt + fut

)
(8)

Note that in rearranging the terms this way, we divided both sides by the squared timestep, h2, 670

effectively changing the problem from one dealing with positions to one dealing with accelerations. 671

This conversion is possible because of the relationship established between acceleration and 672

position by the semi-implicit Euler integrator. 673

Equation 8 is almost the equation that ODE solves when simulating physics. The right 674

hand side is a desired acceleration. The first term on the right is the acceleration that would 675

result in a velocity that would remove a fraction (α) of the constraint error. The second and 676

third terms account for the effects of momentum (current velocity), gravity, and other forces 677

(e.g., user control forces) applied to the bodies. Each constraint becomes its own dimension 678

in a “constraint space”. The Jacobian matrix J projects accelerations from global forces into 679

constraint space. 680

In general, the matrix on the left hand side of Eq. 8 is not square, making the problem under- 681
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constrained (or in some cases, potentially over-constrained). However, we can use d’Alembert’s 682

principle [54] to restrict the constraint forces to lie in the constraint space. 683

Another method for arriving at the constraint equation is through the use of Lagrange 684

multipliers. Consequently, the constraint-space forces are typically denoted with λ. The 685

Jacobian transpose gives the relationship between a force applied in constraint space and 686

force/torque applied in the full coordinate space: f ct = JT
t λt. 687

The vector, λt, holds the generalized forces applied by each constraint on all the bodies 688

involved in that constraint, whereas f ct holds the sum of the constraint forces applied to each 689

individual degree of freedom of each rigid body. The LHS of Eq. 8 can then be rewritten as 690

J tM
−1
t J

T
t λt, where J tM

−1
t J

T
t is now a nc × nc positive semi-definite matrix. 691

Returning to maximal coordinates, we will compress Eq. 8 down to 692

JM−1JTλ = w (9)

In general, the matrix JM−1JT may be singular. It is very easy to end up with redundant 693

or conflicting constraints. For example, a box resting on the ground may get a contact constraint 694

at each corner. If each contact prevents interpenetration and sliding (i.e., applies friction) then 695

the contacts constrain a total of 12 degrees of freedom on a single rigid body with only 6 degrees 696

of freedom to be constrained. Conflicting or redundant constraints can break the solver if not 697

dealt with beforehand. The means for dealing with the conflict is clever. The physics engine 698

softens the constraint, allowing it to “slip” proportional to the amount of force necessary to 699

maintain it. 700

Because mass is always positive, the force, λ, applied to a particular constraint and the 701

resulting constraint-space acceleration will have the same sign. Softening the constraint is 702

therefore a matter of subtracting a scaled copy of λ from the desired acceleration (the right 703

hand side): JM−1JTλ = w − βλ, where β is an nc × nc diagonal matrix of (typically small) 704

non-negative values. This subtraction, of course, is equivalent to adding β to the LHS. Adding 705

these small values to the diagonal of the effective inverse-mass-matrix makes the constraints 706

seem lighter to the solver and moves the matrix away from singularity: 707

(
J tM

−1
t J

T
t + β

)
λt = − 1

h2
αφ(xt)−

1

h
J tẋt + J tM

−1
t

(
fgt + fut

)
(10)

The original programmers built soft constraints into the ODE simulation code. The variable, 708

β, tunable for each constraint, is known in ODE as the constraint force mixing parameter 709

(CFM). At first glance, the addition of these parameters may seem loose and unprincipled. 710

However, correctly setting the parameters, α and β, changes a hard constraint into a simulated 711

implicit spring with first order integration (see [55]). 712

It is well-known that the formula for ideal damped spring force is identical to the formula 713

for PD control. However, connecting these two facts, namely that (1) ODE’s constraints are 714
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mathematically equivalent to implicit damped springs and (2) damped springs are equivalent to 715

PD controllers, has not been exploited. This insight is key to the success of the methods presented 716

here. Our derivation shows that ODE’s constraints are, in fact, stable PD controllers along with 717

examples of how to take advantage of this fact. We proceed by discussing proportional-derivative 718

control and the mass-spring-damper equation. 719

Implicit Simulated Springs Proportional-derivative (PD) control is a common method used 720

to compute forces that drive a system toward a target state. The PD control equation is the 721

same as a mass-spring-damper system. There are two parameters, kp and kd, that determine 722

what force should be applied to a degree of freedom at any point in time. The stiffness, also 723

called proportional gain (kp), specifies a force driving a degree of freedom toward its setpoint, 724

x̄ with strength proportional to the distance from the setpoint. The damping, also known 725

as derivative gain (kd), counteracts the current velocity, slowing the system down to avoid 726

overshooting. When a system uses PD control to encourage a degree of freedom to move toward 727

a target state, the control force fut at any instant in time is a function of the current position 728

and velocity of the effective mass being controlled relative to its target: 729

fut = −kpxt − kdẋt (11)

In a continuous time system, this controller is guaranteed to be stable as long as kd and kp 730

are non-negative. With zero damping (kd = 0) the system oscillates in a sinusoidal wave pattern 731

whose frequency is determined by the stiffness and mass and whose magnitude is determined 732

by the initial conditions. With zero stiffness and positive damping, the velocity of the system 733

decays exponentially with higher damping converging to zero more steeply. Discrete sampling of 734

these forces, however, ruins the stability conditions. The potential for instability is apparent 735

if we consider a mass m that only experiences damping forces. Using the semi-implicit Euler 736

integrator, Eq. 2, we plug in the damping forces from Eq. 11 to get 737

ẋt+h = ẋt −
hkd
m

ẋt =

(
1− hkd

m

)
ẋt (12)

Time (t), mass (m), and damping (kd) should all be non-negative values. It is clear, then, from 738

this equation, that if hkd
m > 2, the velocity will oscillate between positive and negative values and 739

grow in magnitude. This oscillation rapidly causes the simulation to “explode” and is annoyingly 740

common when using PD control. Overly stiff springs hit a similar limit with explicit discrete 741

integration that causes them to gain energy and explode. Consequently, explicit PD control 742

gains are tricky to tune. They must fall within certain limits that depend on the timestep and 743

the effective mass experienced by the system. 744

The cause for this instability lies in the discrete integration which is similar to approximating 745

the area under a curve as the sum of multiple rectangles computed forward from the present 746
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Fig 13. Explicit integration of damping forces is similar to the forward-method for
approximating the area under a curve as a sum of rectangles. In this case it severely
overestimates, leading to instability.

(Fig. 13). One solution is to solve for the forces implicitly. Implicit integration is similar to 747

approximating the area under a curve with fixed-width rectangles that end rather than begin 748

on the curve. Rather than overestimate, this method tends to underestimate the area under an 749

exponential curve. The resulting system does not explode, although it tends to dissipate rather 750

than conserve energy. The implicit form of the damped-spring-law depends on the integrator 751

it is applied to. Being ‘implicit’, in this case, specifies that spring forces are computed from 752

the future state of the system. Consequently, Eq. 11 becomes the following, (note the changed 753

temporal indices): 754

fut = −kpxt+h − kdẋt+h (13)

We do not know the future position or velocity, but using the integrator equations, Eqs. 3 and 2, 755

we reframe Eq. 13 in terms of the current quantities and then solve for fut to get 756

fut = − kdẋt + kpxt + hkpẋt
1 +m−1hkd +m−1h2kp

(14)

If we analyze a pure damped system as before but using Eq. 14, we end up with

ẋt+h = ẋt −
hkdẋt
m+ hkd

=
m

m+ hkd
ẋt

With kd now in the denominator, even an infinite damping gain is stable, corresponding to the 757

damping force that completely eliminates the current velocity in a single timestep. This stability 758

allows us to make PD controllers with extremely stiff gains. 759

Stability is a nice property for a controller or simulator to have. We now show that the α 760

and β terms added to the constraint equation change them into implicit springs. To see the 761

correspondence between Eq. 10 and Eq. 14, we consider a constraint that keeps a point mass 762

at the origin along a single dimension: φ(xt) = xt. The displacement function for this system 763

has a trivial Jacobian: J = 1, meaning that λ = fc. Assuming that external forces are zero, 764
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fg = fu = 0, Eq. 10 simplifies to 765

(m−1 + β)fct = − α

h2
xt −

1

h
ẋt (15)

Assigning the α and β parameters6 to be, α =
hkp

hkp+kd
and β = 1

h2kp+hkd
, and isolating fct,

Eq. 15 reduces to the implicit spring equation Eq: 14:

fct = −

(
hkp

hkp+kd

)
xt + hẋt

h2m−1 + h2
(

1
h2kp+hkd

) = − kdẋt + kpxt + hkpẋt
1 +m−1hkd +m−1h2kp

The consequence of this relationship is that every constraint in ODE can be thought of as 766

an implicit spring. An important feature of this formulation is that the equations are solved 767

simultaneously. When the implicit springs are solved simultaneously in the physics framework, 768

the forces account for each other; without this change the system would be very fragile. Softening 769

the constraints to springs makes it so that we can solve a system that would otherwise be over 770

constrained. We can add more constraints than there are degrees of freedom. 771

Solving with Complementarity Conditions For simplicity, we compress Eq. 10 down to 772

Aλ = w. When A is non-singular, we can solve for λ by inverting, or preferentially, using a fast, 773

numerically-stable solver such as a Cholesky decomposition. Some constraints, however, come 774

with additional conditions that need to be solved with extra machinery. In simulation literature, 775

these are known as inequality constraints. For example, a contact constraint keeps two bodies 776

from moving towards each other by defining an error function that is the separation of the 777

contacting surfaces in the direction of one of the surface normals. If the surfaces are overlapping, 778

then the error function has a negative value and a positive constraint force will accelerate the 779

surfaces apart. This acceleration is as it should be. However, the linear system also applies 780

forces to correct positive error; so the same constraint would also prevent the surfaces from 781

separating. 782

The solution to this problem is to limit the amount of force available for satisfying the 783

constraint. A contact constraint, in particular, limits the force to be non-negative. Contact 784

friction constraints are limited on both sides to be proportional to the contact normal force. 785

This limitation places upper and lower bounds on the constraint force variable: λlo ≤ λ ≤ λhi, 786

allowing constrained bodies to accelerate without bounds if the force necessary to hit the 787

acceleration target falls outside of the limits. In ODE, the result is three possible conditions to 788

satisfy a constraint: 789

1. aiλ = wi with λi ∈ [λilo, λihi], 790

6These values are presented without derivation in the ODE user-manual: http://ode-wiki.org/wiki/index.
php?title=Manual:_All#How_To_Use_ERP_and_CFM. Note that our formulation of β has an extra h in the
denominator which is added automatically by ODE.

32/43

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2021. ; https://doi.org/10.1101/2020.08.23.262048doi: bioRxiv preprint 

http://ode-wiki.org/wiki/index.php?title=Manual:_All##How_To_Use_ERP_and_CFM
http://ode-wiki.org/wiki/index.php?title=Manual:_All##How_To_Use_ERP_and_CFM
https://doi.org/10.1101/2020.08.23.262048
http://creativecommons.org/licenses/by-nc-nd/4.0/


2. aiλ > wi with λi = λilo, or 791

3. aiλ < wi with λi = λihi 792

where −∞ ≤ λilo ≤ 0 ≤ λihi ≤ ∞. 793

A linear solver cannot handle these extra conditions on the constraint forces. To solve this 794

type of system, physics engines employ a mixed Linear Complementarity Problem (mLCP) 795

solver. ODE offers two different solving methods for satisfying constraints under limited-force 796

conditions. One method, known as Projected-Gauss-Seidel, solves constraints iteratively and 797

accumulates the effects [56]. Iterative methods tend to be faster, but also tend to be inaccurate 798

when the system is near-singular or ill-conditioned. Simulated humanoid systems, particularly 799

with two feet on the ground, tend to behave badly with this faster solver. The slower, pivot-based 800

method, follows the algorithm presented by Baraff [57]. Baraff’s method is still easily fast 801

enough for our purposes. 802

Each row in matrix A represents a constraint. The corresponding values of w and λ represent 803

a “target” acceleration along the degree of freedom constrained by that row and the generalized 804

force used to achieve it. For the ith row of A, the diagonal element, aii, behaves like the 805

inverse mass of the constraint. A force, λi, imposes an acceleration of aiiλi = wi within the 806

constraint error-space. The rest of the elements in a row of A encode the force’s effects on other 807

constraint dimensions. A change in the ith constraint force λi affects the jth constraint space by 808

accelerating it according to δwj = aijδλi. The order of the constraints is arbitrary and they 809

can be rearranged as long as every row-swap is accompanied by the corresponding column-swap 810

that maintains the proper symmetry. 811

Baraff’s solving algorithm (based on Dantzig’s simplex method) takes advantage of this 812

arbitrary ordering by dividing constraints into different sets: a satisfied set S, a limited set N , 813

and an unaddressed set U . All constraints fit into one of these categories. The first step in 814

finding a solution is to reorder and satisfy all the unlimited constraints, without considering the 815

rest, using a basic linear solver. The resulting system looks like 816[
A11 A12

AT
12 A22

][
λ1

0

]
=

[
w1

AT
12λ1

]
(16)

Set S holds the rows of A1i. Set U holds the rest. At this point it helps to look at some 817

figures to see what is going on. Each constraint’s target conditions can be represented as a 818

piecewise line through force-acceleration space (Fig 14). We will call this multi-segmented line 819

the target manifold for each constraint. Viewing constraints this way is another contribution of 820

this work. The diagonal element of A associated with the constraint gives the slope of a line 821

through the origin that represents the relationship between force (λ) and actual acceleration 822

(Aii is the effective inverse-mass of the ith constraint). The solver seeks to find a joint solution 823

so that, for all rows of A, the pairs of (λi, wi) fall on the acceptable manifold. Forces from other 824
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Fig 14. Each constraint on a single degree of freedom can be thought of as a monotonically
decreasing, piece-wise linear target manifold through acceleration-force space.

constraints move the entire manifold up or down relative to the origin. 825

The β parameter takes the horizontal portion of the target manifold and tilts it so that when 826

bigger forces are used, there is a lower target acceleration. Hence the constraint is spring-like. 827

The vertical portions of the constraint represent places where the constraint has hit its force 828

limits. No additional force can be applied by that constraint; so the acceleration must be allowed 829

to increase freely. Otherwise, the constraint would be “obligated” to apply more force to try to 830

get closer to its target acceleration. 831

Constraints are addressed one-at-a-time. When dealing with ground contact force without 832

softened constraints, once the solver found a sufficient force to keep a body from penetrating 833

the ground, any remaining ground contact constraints would have nothing to do, resulting 834

in inappropriate distribution of ground forces. With spring-like constraints, if one contact 835

constraint supporting a body reaches its target force/acceleration, a second, redundant contact 836

constraint will see whatever distance remains between the current acceleration and the target. 837

Forces applied by the second constraint attempting to reach its target push the target manifold 838
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of the first constraint toward the origin. The force required to achieve the first constraint’s 839

target decreases until the forces balance appropriately. The balancing forces make it possible to 840

more accurately compute inverse dynamics forces. 841

Fig 15. Adding a small value to the diagonal elements of the projected inverse mass matrix
turns the constraint into a spring. Viewing constraints as piecewise linear targets provides
insights into how to make more complicated constraints consisting of additional piecewise
segments.

The algorithm for solving the mLCP progresses through each unaddressed constraint, one 842

at a time, and finds the change in forces that will satisfy the new constraint without moving 843

any of the current constraints off their piecewise target. Each iteration of the algorithm draws 844

a new constraint from the unaddressed set U and addresses the change in force, λ, that will 845

satisfy the new row without pushing any previously addressed rows off their manifold, until the 846

new row can be added to S or N . In the process other rows may change between sets S and N , 847

but each row remains on its target manifold in acceleration/force space. 848
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Consider this partitioned matrix: 849A11 A12 a13

AT
12 A22 a23

aT13 a23 a33


λ1

λ2

0

 =

w1

v2

v3

 (17)

Adding a new force, λ3, will change the accelerations of the other constraints. Accelerations 850

of constraints at their limit are allowed to change, but those in set S must remain at their 851

target. So we find the δλ3 that moves v3 toward w3 and find the simultaneous δλ1 that keeps 852

constraints in S satisfied. The constraint force takes the largest step that will not push any 853

row out of its set. This step will either satisfy the constraint or move another constraint to an 854

intersection point on its manifold. We then pivot the sets around and continue until all of our 855

rows are in S or N . For additional detail, see [57]. 856

Recognizing that the solver deals with each constraint target as a piecewise linear manifold 857

provides useful insight into how the simulation mechanism can be improved. One obvious 858

extension is to increase the number of linear segments in the target manifold beyond three 859

(Fig. 15). This innovation becomes obvious when constraints are considered as target manifolds 860

rather than Lagrange multipliers. With a multi-segment target manifold, it is possible to create 861

a spring-like constraint that is loose near its setpoint, but then becomes stiffer. 862

We can make spring constraints that get more or less stiff as additional force is required. We 863

can also introduce constraints with “deadzones” in their PD control (Fig. 15). This type of 864

constraint is particularly interesting because it allows us to introduce controllers that only come 865

into play when a dimension of interest drifts out of an acceptable range. This type of controller 866

takes inspiration from the idea of “uncontrolled manifolds” in human motor control theory [58]. 867

With this constraint acting as a controller, if a perturbation will not hurt performance, the 868

controller does nothing. 869

From deadzone controllers, we can introduce novel constraints with secondary targets. A 870

constraint whose forces and accelerations fall within acceptable tolerances has flexibility to “help” 871

another constraint that has reached its limit. For example, we can specify a target range for 872

the knee, hip, and ankle joints of a simulated character. When these leg joints fall within their 873

stated ranges, they can be allowed to pursue a secondary goal such as keeping the torso upright 874

or at a given height. This type of constraint can serve as a method for reducing the need for 875

unrealistic residual forces. Removing residual forces implies deviating from original kinematic 876

data. Constraints with secondary targets make it intuitive and clear how this deviation will 877

occur can be extremely beneficial when using the simulation engine for analyzing or synthesizing 878

movement data. We have created and submitted code for allowing controller constraints with a 879

deadzone in acceleration space. 7
880

7Full implementation of secondary targets for constraints is still in progress. It promises to be useful for
creating intelligent constraint-based controllers.
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S2 Appendix. The model consists of nb rigid bodies connected by nj joints. In this case, 881

each joint consists of three to five constraints. Each joint connects two rigid bodies with anchor 882

points (center of rotation) defined in the reference frame of both bodies. The joint constraints 883

keep the anchor points relative to the two bodies together in the global frame. If bodies bj 884

and bk are connected, a joint constrains them together at a common point. The joint anchor 885

relative to body bj is c̃jk. The anchor for body bk is c̃kj . The joint constraint drives these points 886

together in the global frame, creating three constraint rows: 887

φjk = Rj c̃jk + xj −Rkc̃kj + xk

The locations of these anchor points determine the segment dimensions (bone lengths) of the 888

character model. 889

Markers, each assigned to a specific rigid segment, represent a point on the human body. 890

We seek anchor points that allow markers to remain approximately stationary relative to their 891

assigned body segment. It is generally impossible to precisely find such a configuration (without 892

creating an unreasonable number of body segments) because of soft-tissue artifacts (STAs). Skin 893

and joints are not rigid. They stretch and give as muscles pull the bones. Modeling the body in 894

maximal coordinates provides a way to model STAs explicitly. 895

Given a pre-defined model topology and markers assigned to specific model segments, we 896

seek to find the joint anchor points between segments and the marker attachment points relative 897

to the model segments. If the ith marker is assigned to the jth rigid body (pi → bj) at relative 898

point s̃ij , we model the marker’s attachment as a three dof constraint: 899

φij = pi −Rj s̃ij − xj

The process models markers from an arbitrary point in time as infinite point masses. As bodies 900

of infinite mass, constraint forces do not affect the markers’ trajectories but only the bodies 901

they are anchored to. Initially, markers are anchored at s̃ij =

0

0

0

. This mapping attaches the 902

marker to body bj ’s center of mass. 903

This mapping is a very rough estimate of the marker attachment points on the model 904

segments, but it is sufficient because of the flexible nature of constraints in the simulation 905

software. Setting the CFM parameter of the marker constraints to β = 10−3 and setting the 906

model joint constraint CFM to β = 10−5 makes the body segments hold together tightly, while 907

still allowing the markers to pull the body into shape. Several timesteps of simulation allow the 908

model to relax to a fixed pose. We then take the markers in their current configuration and 909

reattach them to their respective segments. Relaxing the marker attachments this way improves 910

the fit for this particular frame of marker data. Iteratively repeating this process with multiple 911
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frames of marker data, we therafter update the marker attachment points by some learning rate, 912

ηm: s̃′ij = (1− ηm)s̃ij + ηmR
T
j (pi − xj). Gradually updating attachment points, using different 913

frames of data, effectively descends the error gradient of the marker positions relative to the 914

body: 915

min
s̃

T∑
t=1

nm∑
i=1

‖pi −Rj s̃ij − xj‖

The decrease in marker error affected by model dimension error. Conveniently, joint anchor 916

constraints behave the same as the marker attachment constraints. With an arbitrary frame 917

of marker data and using a marker CFM of β = 10−4, if the markers constraints cannot be 918

satisfied, they will pull the joint anchors apart slightly. For each joint we find a new common 919

anchor point in the global frame by taking the average between the two unsatisfied anchor points 920

that the joint constraint is trying to pull together. We then move the anchor points toward that 921

point according to learning rate ηl: 922

c̃′jk = (1− ηl)c̃jk + ηlR
T
j (Rk c̃kj + xk − xj)

For any frame, errors will cause the markers to stretch from their attachment points and joint 923

anchor points to stretch apart from each other. Both marker attachment points and the joint 924

anchors can be updated simultaneously to decrease the error for that frame. However, the local 925

solution that perfectly satisfies one frame may make another frame worse. This step presents 926

an evident gradient descent approach to finding the joint anchors and marker attachments: 927

using several frames, compute an average adjustment to the marker attachments, and joint 928

anchors that reduce the error. Make the adjustment to both anchors and attachments and then 929

iterate. It may be advisable to employ the standard machine learning practice of a validation 930

set to ensure that the error continues to decrease and avoid overfitting. This technique relies on 931

spring-like constraints made possible in maximal coordinates. 932

Although this method could easily be automated, in practice, the research did not rely on very 933

many different models and so the system uses a mechanism for relaxing the marker attachment 934

points and joint anchors with the click of a button in the graphical user interface (Fig. 1). With 935

a new data set, a handful of iterations proved sufficient to produce a reasonable model with 936

marker attachments that fit the data well enough for further analysis. This algorithm does not 937

address joint limits on a range of motion. These can also be learned [44], but in our case, the 938

range of motion for each joint is set a priori. After determining segment lengths, we set other 939

segment dimensions as appropriate to fit against the markers. Mass properties for each segment 940

assume uniform density by volume. 941
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