
Predicting Endometrial Cancer Subtypes and Molecular Features from 
Histopathology Images Using Multi-resolution Deep Learning Models 

 
Runyu Hong1,2, Wenke Liu1,2, Deborah DeLair3, Narges Razavian4, David Fenyö1,2 

David.Fenyo@nyulangone.org 
1.Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA 
2.Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New 
York, NY 10016, USA 
3.Department of Pathology, NYU Langone Health, New York, NY 10016, USA 
4.Department of Population Health, NYU Langone Health, New York, NY 10016, USA 
 

Abstract 
The determination of endometrial carcinoma histological subtypes is a critical diagnostic 
process that directly affects patients’ prognosis and treatment options. Recently, molecular 
subtyping and mutation status are increasingly utilized in clinical practice as they offer better 
inform prognosis and offer the possibility of individualized therapies. Compared to the 
histopathological approach, however, the availability of molecular subtyping is limited as it can 
only be obtained by genomic sequencing, which may be cost prohibitive. Here, we implemented 
deep convolutional neural network models that predict not only the histological subtypes, but 
also molecular subtypes and 18 common gene mutations based on digitized H&E stained 
pathological images. Taking advantage of the multi-resolution nature of the whole slide images, 
we introduced a customized architecture, Panoptes, to integrate features of different 
magnification. The model was trained and evaluated with images from The Cancer Genome 
Atlas and Clinical Proteomic Tumor Analysis Consortium. Our models achieved an area under 
the receiver operating characteristic curve (AUROC) of 0.969 in predicting histological subtype 
and 0.934 to 0.958 in predicting the copy number high (CNV-H) molecular subtype. The 
prediction tasks of 4 mutations and microsatellite high (MSI-H) molecular subtype also achieved 
a high performance with AUROC ranging from 0.781 to 0.873. Panoptes showed a significantly 
better performance than InceptionResnet in most of these top predicted tasks by up to 18%. 
Feature extraction and visualization revealed that the model relied on human-interpretable 
patterns. Our results suggest that Panoptes can help pathologists determine molecular 
subtypes and mutations without sequencing, and our models are generalizable to independent 
datasets.  
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Introduction 
Endometrial cancer is the most common type of gynecologic cancer among women around the 
world with a rising occurrence and mortality1–4. In the United States, it is one of the top 5 leading 
cancer types with 52,600 new cases reported in 2014. This number increased to 60,050 in the 
year of 2016, and was estimated to further increase to 61,880 in 20193–6. Globally, endometrial 
cancer caused approximately 42,000 women’s death in 2005, and this annual mortality count 
estimate drastically increased to 76,000 in 20161,2. The 5-year survival rate, depending on the 
study cohort, is ranging from 74% to 91% for patients without metastasis3.   

Clinically, endometrial carcinomas are stratified based on their grade, stage, hormone 
receptor expression, and histological characteristics7. Histological classification reflects tumor 
cell type and informs the choice of surgical procedure and adjuvant therapy. The majority of 
endometrial cancer cases exhibit either endometrioid or serous characteristics, which comprise 
approximately 70%-80% and about 10% of all cases, respectively8. Statistically, patients with 
serous subtype tumors have a lower 5-year survival rate due to more frequent metastases and 
a higher risk of recurrence2. Thus, it is critical to determine the subtypes in order to determine 
patients’ individualized treatment plans and to assess prognosis1,9. Histological subtype is 
determined by pathologists after thorough examination of hematoxylin and eosin (H&E) stained 
tissue sample slides of tumor samples Endometrioid tumors typically exhibit a glandular growth 
pattern, while the serous subtype is characterized by the frequent presence of a complex 
papillary pattern10–12. These features are not exclusive for either of the subtypes, however, 
making histological classification challenging, especially among high grade cases, even for 
experienced pathologists and necessitating ancillary subtyping criteria2,13–15.  

The multi-omics study of The Cancer Genome Atlas (TCGA) introduces a set of novel 
criteria that classify endometrial carcinoma into four molecular subtypes, namely POLE ultra-
mutated, high microsatellite instability (MSI-H) hypermutated, copy-number low (CNV-L), and 
copy-number high (CNV-H), based on their mutation characteristics, copy number alterations, 
and microsatellite instability. This molecular classification standard has been gaining popularity 
among pathologists and clinicians in recent years. Among these four subtypes, patients with the 
CNV-H subtype, which includes serous carcinomas and a subset of high grade endometrioid 
cancers, had the worst outcomes based on progression free survival15. Exome sequencing also 
revealed a panel of genes differentially mutated across the four molecular subtypes, many of 
which have been shown to play significant roles in endometrial carcinoma tumorigenesis and 
proliferation and can potentially be novel targets of individualized therapies16,17. For example, 
most patients in CNV-H subtype are TP53 mutated but PTEN wild-type. Determining the 
molecular subtyping and single gene mutations can provide new insights that complement and 
refine the histological classification, but the availability of this information is limited by the time 
and cost of sequencing.               

New powerful computational approaches for analyzing massive biomedical data have 
tackled numerous challenges, which accelerates the pace of human health improvement 
worldwide. In particular, computational pathology, a discipline that involves the application of 
image processing techniques to pathological data, has been especially benefitted from the 
advancement of deep learning in recent years18–21. Convolutional neural network (CNN) models 
are capable of segmenting cells in histopathology slides and classifying them into different types 
based on their morphology18,22. An InceptionV3-based model achieves a high level of accuracy 
in determining melanoma possibility, exhibiting significant diagnostic potential19. Moreover, 
successful deep learning models have also been built to predict molecular and genomic 
features in cancer, such as microsatellite instability (MSI) and somatic mutation status, 
suggesting that machine learning techniques may be able to assist human experts to further 
exploit clinically relevant information in pathological images23,24.  
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H&E slides are often scanned at multiple resolutions (20X, 10X, 5X) and different 
resolutions of the same slides are saved into a single image file. This allows pathologists to 
examine features of various sizes at the optimal resolution. Here, we designed a customized 
architecture, that we call Panoptes. Panoptes takes advantage of the multi-resolution structure 
of the H&E image files. We showed that models using this architecture could classify 
endometrial carcinoma histological subtypes, CNV-H and MSI-H molecular subtypes, and 
several critical mutations with decent performance based on H&E images and outcompete 
existing InceptionResnet models in most top-performing tasks. Using tSNE dimensionality 
reduction techniques, we extracted and visualized the features learned by models to classify 
H&E images. These histopathological features were mostly human interpretable, suggesting 
possibilities of incorporating them into the pathological diagnostic standards. In particular, we 
confirmed that tumor grade was the major factor to distinguish CNV-H molecular subtype from 
the other 3 molecular subtypes in the histological endometrioid cases.  

 

Results 
Data preparation and multi-resolution deep-learning based histopathology image 
analysis. The goal of this study was to build multi-resolution deep convolutional neural network 
models that could automatically analyze endometrial cancer digital H&E slides and predict their 
histological and molecular features. We used diagnostic formalin-fixed paraffin-embedded 
(FFPE) and H&E stained tumor slides and labels from 2 public databases, the GDC data portal 
containing data of TCGA, and The Cancer Imaging Archive (TCIA) containing data of Clinical 
Proteomic Tumor Analysis Consortium (CPTAC), to train and test our models. TCGA and 
CPTAC are two mutually independent cohorts. 107 slides from 98 patients belonged to the 
CPTAC cohort and 389 slides from 358 patients were in the TCGA cohort. Overall, 496 slides 
from 456 patients, covered in previous publications (Dou et al., 2020; Getz et al., 2013) and 
annotated with subtype and gene mutation information, were included to form a mixed dataset 
(Fig. 1a, Supplementary Fig. 1a). More than 90% of patients in our cohort had only 1 diagnostic 
slide (Supplementary Fig. 1b). As a lot of driver gene mutations in endometrial cancer are 
correlated with histological and molecular subtypes, we validated these correlations to ensure 
that our cohort was a representative of the patient’s population (Supplementary Fig. 1c). The 
general process of training, validation, testing, and visualization followed the workflow in Fig. 1b. 
For each prediction task, cases in the mixed dataset were randomly split into training, validation, 
and test set such that slides from the same patient were in only one of these sets. This allowed 
the test set to be strictly independent of the training process and also made it possible to obtain 
per-patient level metrics, which could be more useful in the clinical setting. Each task was 
performed on a different random split of cases stratified with the outcome. Due to the extremely 
large dimension of the digital H&E slides (Supplementary Fig. 1d), slides were tiled into 299-by-
299-pixel pieces and were packaged into one TFrecords file for each set after color 
normalization. All models were trained from scratch. Later, to validate the generalizability of the 
prediction models, an independent test set consisted of samples only from the CPTAC cohort 
were used to evaluate models that were trained and validated solely on samples from TCGA 
cohort (Supplementary Fig. 2a).  
            We developed a multi-resolution InceptionResnet-based(Szegedy et al., 2017) 
convolutional neural network architecture, Panoptes, to capture features of various sizes on the 
H&E slides, which resembles the reviewing strategy of human pathologists. Unlike the 
conventional CNN architecture, the input of Panoptes is a set of 3 tiles of the same region on 
the H&E slide instead of a single tile. The resolution of tiles in a set is 2.5X, 5X, and 10X so that 
the higher resolution tile covers one fourth of the region in the next lower resolution tile (Fig. 1c). 
Hence, each grid region at 2.5X resolution in Fig. 1c can ideally generate 16 tile sets provided 
none of the tiles contained more than 40% of background pixels. Each set of tiles were 
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converted into a single matrix as one sample. Panoptes has three InceptionResnet-based 
branches, each of which processed the tiles with a specific resolution of the same region 
simultaneously (Fig. 1d). These branches worked separately until the third-to-last layer of the 
architecture, where inputs from the three branches were concatenated, followed by a global 
average pooling layer and the final fully connected layer. This design enabled the branches to 
learn features of different scales. More abstract information from each branch was integrated 
only at higher levels. We attempted to add an additional 1-by-1 feature pooling convolutional 
layer before the global average pooling and introduced a fourth branch processing clinical 
features. The effectiveness and comparisons of these modifications are discussed in later 
sections. Compared to conventional CNN, the multi-resolution design of Panoptes can at the 
same time considers both macro tissue-level features and minute cellular-level features of the 
same region, and can therefore capture more comprehensive characteristics of the slides. 
Moreover, taking the grouped multi-resolution tile sets as input while having a single output and 
loss function preserves the original positional information, which makes Panoptes distinct from 
the simply joining decisions from three separate models trained on tiles of three resolutions. To 
find the best performing model for different prediction tasks, we tried four different Panoptes 
architectures with and without the clinical feature branch, two types of InceptionResnet, and 
three types of Inception in this study. InceptionResnet and Inception models were trained on 
single resolution 10X tiles. Among all the statistical metrics calculated, we used area under the 
receiver operating characteristic curve (AUROC) of the test sets as the major metrics to 
evaluate the performance of the models, which is the typical standard in the machine learning 
field. Precision, recall, sensitivity, specificity, and F1 scores were also used to evaluate 
imbalanced prediction tasks. Per-patient level prediction was obtained by taking the mean of the 
predicted probability (prediction score) of all tiles belonging to the same patient. The AUROC 
was then calculated by taking each patient as one sample point. For Panoptes models, one set 
of grouped tiles was counted as a single tile for the metric calculation purpose since the output 
from the model was only one prediction score for each set.  
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Fig.1 | Workflow and Panoptes architecture. a, Patients in the cohorts with feature 
annotations. b, Overall workflow. (b, I), H&E slide images of endometrial cancers from CPTAC 
and TCGA were downloaded; (b, II), slides were separated at per-patient level into a training 
(80%), a validation (10%), and a test set (10%); (b,III), slides were cut into 299x299-pixel tiles 
excluding background and contaminants and qualified tiles were packaged into TFrecord files 
for each set; (b, IV), training and validation sets were used to train the convolutional neural 
networks and the testing set was used to evaluate trained models; (b, V), activation maps of test 
set tiles were extracted and dimensionally reduced by tSNE to visualize features while the per-
tile predictions were aggregated back into intact slides. c, Slides were cut into paired tile sets at 
2.5X, 5X, and 10X equivalent resolution of the same region to prepare for Panoptes. d, 
Panoptes architecture with optional 1X1 convolutional layer and clinical features branch.  
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Multi-resolution deep-learning architectures achieved better predictive performance on 
histopathology images. We trained models to predict histological subtypes, CNV-H subtype 
from the entire cohort and the endometrioid patients, MSI-High subtype, and the mutation status 
of 18 endometrial-carcinoma-related genes. We applied five baseline models (InceptionV1, 
InceptionV2, InceptionV3, InceptionResnetV1, and InceptionResnetV2) and four versions of 
multi-resolution models (Panoptes1-4) on all of the tasks. The same data splits were used for all 
the models of the same predictive tasks in order to have fair comparisons among different 
architectured models. The best performing architectures for each of the prediction tasks and 
their corresponding AUROCs with 95% confidence intervals (CI) are shown in Table 1. Tasks 
with per-patient AUROC less than 0.6 were not listed. We performed 1-tail Wilcoxon tests on 
prediction scores between positively and negatively labeled tiles for the results in Table 1 and 
they all showed significant differences (Fig. 2a). Therefore, the prediction scores of true-label-
positive tiles were significantly higher than those of true-label-negative tiles, demonstrating that 
these models were able to distinguish tiles in the test sets. The complete AUROC performance 
of all these trials are shown in Supplementary Fig. 2b-c. ROC curve examples of the top four 
prediction tasks are shown in Fig. 2b-c.  

Based on the AUROC scores, we observed that Panoptes models were the best 
architectures in the top five prediction tasks (Table1). It is also clear that Panoptes performed 
better than Inception and InceptionResnet models for most of the tasks (Supplement Fig. 2). To 
validate that Panoptes performed better than InceptionResnet, we conducted 1-tail t-test on 
AUROC performance of the top eight prediction tasks between the Panoptes models and their 
corresponding InceptionResnet models. Panoptes2, which was the best Panoptes architecture 
in most of the tasks, showed a significantly higher AUROC than the corresponding 
InceptionResnet2 in six out of eight prediction tasks at per-patient level and seven out of eight at 
per-tile level (Fig. 2d-e). Similarly, Panoptes1 had a significantly higher AUROC than 
InceptionResnet1 in five out of eight prediction tasks at per-patient level and seven out of eight 
at per-tile level (Supplementary Fig. 3a-b).  

To evaluate the effectiveness of adding an additional 1-by-1 convolutional layer between 
concatenation of branches and the global average pooling, we performed a 1-tail t-test between 
Panoptes1 and Panoptes3 as well as Panoptes2 and Panoptes4. However, only two tasks at 
per-patient level and five tasks at per-tile level showed significant p-values between Panoptes2 
and Panoptes4 (Supplementary Fig. 3c-d). Similar results were observed between Panoptes1 
and Panoptes3, where only one per-patient level task and four per-tile level tasks showed a 
significant difference. By applying the same test to Panoptes with and without clinical feature 
branch models, most of the tasks were not statistically significant with an example of Panoptes2 
having two significant tasks at per-patient level and four at per-tile level (Supplementary Fig. 3e-
f). In summary, our multi-resolution architectures Panoptes outperformed InceptionResnet in 
analyzing endometrial cancer H&E slides in various prediction tasks. The effectiveness of the 
additional convolutional layer and the integration of patients’ age and body mass index (BMI) 
through a fourth branch was not found to be significant, however.   
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Fig.2 | Prediction tasks were statistically successful with promising results and Panoptes 
outcompeted baselines in most of top-performing prediction tasks. a, Predicted positive 
probability of tiles with 1-tail Wilcoxon test between true label positive and negative groups 
(black: true label positive tiles; grey: true label negative tiles) from models in Table 1. b, c, ROC 
curves at per-patient (b) and per-tile (c) level associated with the top four tasks in a. d, e, 
Bootstrapped per-patient (d) and per-tile (e) AUROC of InceptionResnetV2 (light) and 
Panoptes2 (dark) of top eight tasks in a with 1-tail t-test.  
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Accurate predictions of histological and molecular subtypes. Panoptes2 achieved a 0.969 
(CI: 0.905-1) per-patient level AUROC in classifying samples into endometrioid or serous  
histological subtypes with an F1 score of 0.75. The precision was 1 and the recall was 0.6 
respectively at per-patient level. Panoptes models were in the leading positions followed by 
InceptionV3 and InceptionV2, all of which had per-patient AUROC above 0.9. For molecular 
subtyping tasks, we applied all architectures on four binary tasks, each aimed at predicting one 
molecular subtype versus all others. Panoptes1 achieved a per-patient AUROC of 0.934 (CI: 
0.851-1) in predicting CNV-H while all other Panoptes models achieved an AUROC above 0.88, 
outcompeting the baseline models by 5.8% to 23.3%. The best F1 score was 0.8 with precision 
of 0.727 and recall of 0.889 respectively. This model also achieved sensitivity of 0.889 and 
specificity of 0.906 when using 0.5 as the cutoff point of prediction scores. Apart from CNV-H, 
we also trained models classifying another molecular subtype, MSI-High, with a best per-patient 
AUROC of 0.827 (CI: 0.705-0.948) and F1 score of 0.615.  

Although most CNV-H cases are of serous subtype, a portion of high-grade 
endometrioid cancers are also classified as CNV-H. To further assess whether machine 
learning models could capture the heterogeneity within this histological subtype, we trained 
models to predict CNV-H status in endometrioid samples. The Panoptes1 architecture was able 
to achieve a per-patient AUROC of 0.958 (CI: 0.886-1) and F1 score of 0.667 on this task, 
suggesting that the model utilized features that were not strongly associated with histological 
subtype to predict molecular subtype. All Panoptes models also outcompeted baseline models 
in this task. In addition, we trained models to predict mutation status of 18 driver genes. 
Panoptes2 was able to predict a TP53 mutation with a per-patient AUROC of 0.873 (CI: 0.768-
0.977) and F1 score of 0.56. FAT1 mutation was predicted using Panoptes2 (with clinical 
feature branch) with a per-patient AUROC of 0.835 (CI: 0.666-1) and F1 score of 0.545. Other 
gene mutations, including ZFHX3, PTEN, FGFR2, MTOR, CTCF, and PIK3R1, were also 
predicted with a per-patient AUROC above 0.7. A table showing the full statistical metrics for all 
the prediction models can be found in the supplementary files.  
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Table 1 | AUROCs of the best models for each task with 95% confidence intervals (CIs).  
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Feature extraction and whole-slide visualization revealed correlations and differences 
between histological and molecular features. To visualize and evaluate features learned by 
the models for each task, we extracted the activation maps before the final fully connected layer 
of the test set tiles. 20000 tiles’ activation maps were then randomly sampled for each task. 
These activation maps were dimensionally reduced and displayed on 2D tSNE plots, where 
each dot represents a sampled tile and was colored according to the positive prediction scores. 
As we expected, tiles were generally clustered by their predicted groups. By replacing dots with 
the original input tiles of different resolutions, we were able to discover features that correlated 
with the predictions corresponding to the specific histological or molecular classification task. 
For example, features of predicted histologically serous and endometrioid were drastically 
different (Fig. 3a). In the cluster with high prediction scores of serous subtype, we observed 
typical serous carcinoma features, such as high nuclear grade, papillary growth pattern, 
elevated mitotic activity, and slit-like spaces. Tiles in the cluster of predicted endometrioid cases 
showed low nuclear grade, glandular growth pattern, cribriform architecture, and squamous 
differentiation. Myometrium and other non-tumor tissue tiles were located in the middle of the 
tSNE plot with prediction scores between 0.4 and 0.6 (Fig. 3a). These observations suggested 
that our models were able to focus on the tumor regions of H&E slides and make histological 
subtype predictions based on features that were also recognized by human experts in 
pathology. 

The features learned by molecular subtype prediction models were also revealed with 
the same feature extraction method. We noticed that in the CNV-H prediction model, two distinct 
subgroups were recognized in the predicted CNV-H cluster, associated with histological serous 
and high grade endometrioid subtypes, respectively (Fig. 3b). The predicted-CNV-H serous tiles 
mostly showed high nuclear grade, gland formation, and elevated mitotic activity, while the 
predicted-CNV-H high grade endometrioid tiles exhibited solid growth pattern and focal 
glandular differentiation. On the other hand, in the non-CNV-H cluster, tiles were mostly low-
grade endometrioid carcinoma with low nuclear grade, gland formation, and squamous 
differentiation (Fig. 3b). To confirm that the tumor grade was the major factor to distinguish 
CNV-H molecular subtype in endometrioid samples, we unveiled the features learned by the 
CNV-H prediction model trained only on endometrioid images (Fig. 3c). As we expected, high-
grade endometrioid carcinoma tiles were observed mostly in the CNV-H cluster, leaving the low-
grade tiles in the non-CNV-H cluster. In both of these CNV-H models, the ambiguous regions 
were mostly occupied by non-tumor tissue. We also visualized the major pattern learned by the 
model to distinguish MSI-H subtype images from others (Fig. 3d). Tiles in the MSI-H cluster 
were mostly low grade endometrioid carcinomas with gland formation, tumor infiltrating 
lymphocytes, and peritumoral lymphocytes, consistent with the observation that heavy mutation 
load of MSI-H tumors lead to high immunogenicity and a host immune response27,28. 

In addition to the subtypes, patterns related to some mutations were also revealed.  A 
PTEN-mutated cluster mostly contained tiles of low grade endometrioid carcinomas with gland 
formation and low nuclear grade (Supplementary Fig. 4a) while TP53-mutated tiles were 
generally serous carcinomas with high nuclear grade and abundant tufting and budding 
(Supplementary Fig. 4b). Furthermore, low grade endometrioid carcinoma tiles with gland 
formation, low nuclear grade, and abundant tumor infiltrating lymphocytes were present in the 
ZFHX3-mutated cluster while those with much less lymphocytes were in the wild type cluster 
(Supplementary Fig. 4c). High grade endometrioid carcinoma tiles with diffuse solid growth and 
low nuclear grade were depicted in FAT1-mutated cluster while low grade endometrioid 
carcinomas with gland formation, low nuclear grade, and cribriform architecture were in the wild 
type cluster (Supplementary Fig. 4d). These findings may result from the correlation between 
mutation status and histological or molecular subtypes described above, as PTEN and TP53 
mutations were mainly found in endometrioid and serous subtypes, respectively, while ZFHX3 
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and FAT1 mutation status showed correlation with the heavily mutated MSI-H and POLE 
molecular subtypes(Supplementary Fig. 1c).   
             Additionally, we were also interested in visualizing distribution of features on the whole 
slide level. Prediction of tiles from the test sets were aggregated back to the size of original 
slides in the form of heatmaps, where hotter tiles corresponded to higher positive prediction 
scores. Whole slide visualization revealed that our models tended to have extreme prediction 
scores on tumor regions instead of non-tumor tissues such as myometrium (Supplementary Fig. 
5).The first slide in Fig. 4 was from an endometrioid and CNV-H case while the second slide 
was from a serous and CNV-H case. Models correctly predicted both tasks for the two slides. By 
comparing the prediction of histological subtypes and CNV-H, we found that the models were 
focusing on different yet related features in these 2 prediction tasks. In the first slide, the areas 
predicted to be endometrioid were largely classified as CNV-H while in the second slide, most 
areas predicted as serous were also classified as CNV-H. Although most CNV-H samples were 
histologically serous, our models were capable of learning an additional set of features. In other 
words, the prediction of CNV-H in our models were not necessarily based on features of 
histological subtypes.   
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Fig.3 | Extraction and 
visualization of features 
learned by the models with 
tSNE. Each point represents a 
tile and is colored according to 
its corresponding positive 
prediction score. a, Histologically 
serous and endometrioid 
features from a Panoptes1 
model. b, CNV-H positive and 
negative features from a 
Panoptes4 model. c, CNV-H 
positive and negative features in 
the histologically endometrioid 
samples from a Panoptes1 
model. d, MSI-High positive and 
negative features in the 
histologically endometrioid 
samples from a Panoptes3 with 
clinical features model. 
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Fig. 4 | Whole slide predictions showing features of histological subtype and CNV-H are 
distinct but correlated. a, The first example slide is from a CNV-H but histologically 
endometrioid case while the second example slide is from a CNV-H and serous tumor. b, Whole 
slide histology prediction of examples in a Panoptes2 model with hotter regions being predictive  
more of serous while cooler regions were more endometrioid. c, Whole slide CNV-H prediction 
of examples in a Panoptes1 (first example) and Panoptes4 (second example) models with 
hotter regions being more predictive of CNV-H.  
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Generalizability and potential clinical capability of the models was illustrated by testing 
with samples from an independent cohort. To prove that our models were generalizable and 
the predictions results were consistent and not overfitted, we repeated the training and testing of 
models for all the tasks using independent cohort data split and compared statistical metrics 
with the previous mixed data split results. In these independent data split trials, models were 
trained and validated only on the data from TCGA at a 9:1 split ratio. Slides from CPTAC served 
as an independent test set for all the prediction tasks. Therefore, the size of training and 
validation sets of these trials were smaller and less diversified than the mixed data slit trials. All 
other hyperparameters remained the same for the training, validation, and testing workflow. The 
AUROC of CPTAC independent test set indicated that Panoptes-based models still had better 
performance than the baseline models in general (Supplementary Fig. 2d-e). The best 
performing models based on independent test set were compared side-by-side with the best 
models in mixed random split trials (Fig. 5). A Panoptes4 model achieved an AUROC of 0.962 
(CI: 0.926-0.999) with F1 score of 0.696 at per-patient level, which were similar to the best 
model trained and tested on the mixed data split. In the CNV-H molecular subtype prediction 
task, a Panoptes3 model showed an AUROC of 0.87 (CI: 0.753-0.987) with F1 score of 0.667 at 
per-patient level. Slightly lower performances were also observed in prediction tasks using 
independent data split at per-patient level, including CNVH in endometrioid, MSI-high, TP53, 
and FAT1. However, higher statistical metrics were observed in some prediction tasks, such as 
PTEN, KRAS, BRCA2, and CTNNB1. Interestingly, even though the per-patient level metrics 
were lower in the independent data split trials than in the mixed data split trials for some 
prediction tasks (CNV-H, TP53, CTCF), their per-tile level metrics were higher. In addition, we 
compared Panoptes-based models’ performance side-by-side in mixed random split trials and 
CPTAC independent test set trials and the results were similar to the best performing models 
comparison (Supplementary Fig. 6). The full table of statistical metrics of the test set in the 
independent cohort split trials can be found in the supplementary files.  
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Fig. 5 | Side-by-side comparisons of AUROC between the best models in mixed random 
split trials and independent cohort split trials revealed the generalizability of the models. 
Per-patient (a) and per-tile (b) level AUROC of the best performing models in each task with 
mixed random data split (dark grey) and the cohort independent data split (light grey).  
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Discussion 
 Our study introduced a novel multi-resolution InceptionResnet-based convolutional 
neural network architecture, Panoptes, which was able to accurately predict endometrial cancer 
histological and molecular subtypes as well as mutation status of critical genes based on H&E 
slides. The AUROC of classifying endometrioid and serous histological subtypes by our best 
architecture model was 0.969 (CI: 0.905-1). Moreover, the models can distinguish the most 
lethal molecular subtype, CNV-H, with exceptionally high accuracy (AUROC 0.934). It is worth 
noting that our models can also precisely identify the CNV-H samples from a histologically 
endometrioid carcinoma (AUROC 0.958), which is one of the more controversial and complex 
patient subgroups in endometrial cancer subtyping. In addition to the CNV-H, we were also able 
to predict other molecular features with acceptable performance, which are currently not 
possible for pathologists to determine without ancillary studies such as sequencing or 
immunohistochemistry. These include the DNA-mismatch repair deficiency-related MSI-high 
molecular subtype (AUROC 0.827), the mutation the CNV-H signature gene TP53 (AUROC 
0.873) as well as PTEN (AUROC 0.781), FAT1 (AUROC 0.835) and ZFHX3 (AUROC 0.824). 
Statistical analyses proved the success of our prediction tasks. In addition, we tested and 
showed that our multi-resolution Panoptes-based models performed significantly better than 
InceptionResnet-based models in most of our prediction tasks. We attempted two modifications 
to Panoptes, including an additional convolutional layer and integration of clinical features, but 
failed to observe significant improvement in performance. By extracting and clustering abstract 
representation of tiles constructed by the model, we discovered critical features to distinguish 
subtypes and mutations, particularly the tumor grade in determining CNV-H cases from non-
CNV-H samples. We justified the generalizability and potential clinical applicability of our models 
by training and validating on samples from TCGA while testing solely on an independent cohort 
with samples from CPTAC. Although slightly lower performances were observed in the CPTAC 
independent testing trials for some prediction tasks, we believe that it was mostly likely caused 
by smaller and less diversified TCGA-only training set.  

Examining H&E slides is still currently the most widely used techniques for pathologists 
to confirm endometrial cancer histological subtypes in the clinical setting. Our models showed 
great potential in assisting pathologists making decisions and improving diagnostic accuracy. 
Given most H&E slides can be tiled into less than 5000 tile-sets (Supplementary Fig. 1e-g), with 
a processing speed of 22 tile-sets per second (1310 tile-sets per minute) on a Quadro P6000 
GPU, our models can analyze a slide within 4 minutes. This means that these models can work 
simultaneously with pathologists to serve as references. We have shown that the model utilized 
human interpretable features to perform histological and molecular classification tasks. With 
whole slide visualization, the reassembled per tile predictions can provide a thorough 
examination of the H&E slide and a detailed layer containing potential hotspot feature, which 
may also include regions that could possibly be neglected by pathologists. However, due to the 
time-consuming H&E slide scanning and tiling processes, multiple optimizations need to be 
implemented before the system could be deployed in practice. 

Both histological and molecular features’ labels of TCGA and CPTAC samples have 
been validated by many scientists and clinicians before and after the publication of their studies 
However, as tile labels were assigned at per-patient level, within-slide heterogeneity would still 
lead to noise in the true labels, such that features in a local region may not match the 
characteristics of the assigned classification. Therefore, we believe that the per-patient metrics 
are more accurate than per-tile metrics in terms of accessing a models performance. The 
performance can be further improved if more detailed annotations existed on the slides. From 
the visualization results, we noticed that our models were more likely to give non-tumor tissue 
tiles ambiguous prediction scores (0.4-0.6). Therefore, building a segmentation model to 
exclude these irrelevant non-tumor tissue, such as myometrium, may also significantly enhance 
the overall performance of our models.  
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Although the TCGA and CPTAC datasets cover a variety of endometrial carcinoma 
samples, it may not reflect the full pathological diversity of endometrial cancer. In this study, we 
tried two data split criteria, mixed random split and cohort independent split, to create training, 
validation, and test sets. We adopted the random split of the mixed TCGA and CPTAC dataset 
to train models that could achieve the best performance as the models can learn from both 
datasets instead of TCGA or CPTAC specific features. From the other perspective, we used 
cohort independent data split, namely training and validating on TCGA samples while testing on 
CPTAC samples to justify the generalizability and indicate potential clinical capability of our 
models. Additionally, multiple trials took place to find the best normalization method, 
combination of hyperparameters, and architecture designs. 
            Overall, we demonstrated that our multi-resolution convolutional neural network 
architecture, Panoptes, can be a practical tool to assist pathologists classifying endometrial 
cancer histological subtypes and, more importantly, to provide additional information about 
patients’ molecular subtypes and mutation status in a much more rapid  fashion and  without the 
need for sequencing. In addition to per-patient level prediction, the model would also be able to 
highlight regions with human interpretable features on the slide. Moreover, it remains possible 
that our models have learned visual patterns which correlated with molecular features that were 
not previously annotated by human experts and requires further investigation. From another 
perspective, these novel patterns from the H&E slides may be incorporated into the current 
standards of histological pathology and contribute to improved prognosis and treatment of 
endometrial carcinoma in the future.  
            Our future plan includes refining the Panoptes architecture, particularly to determine an 
effective way to integrate clinical features into the imaging prediction branches to improve the 
overall performance. Quantification of features could also be added to the Panoptes. We would 
also work on training our existing models with slides labeled with more detail and new datasets 
that cover more heterogeneity and diversity of endometrial cancer in order to make the models 
more robust and generalizable. Predicting other molecular subtypes and mutations, such as 
POLE, CTNNB1, and JAK1, which did not have a well-performing model in this study, will be 
possible once more data are available. In addition to the currently available user interface of 
Panoptes, we plan to develop a more advanced Graphical User Interface (GUI) that includes all 
the trained models and outputs visualization and prediction in a fast and user-friendly way, 
which we are hoping to be deployed and tested in a pathologist’s clinical practice. We would try 
to train Panoptes-based models to predict features in other types of cancers, such as 
glioblastoma, melanoma, and lung carcinoma, and it would be very interesting to see how 
Panoptes performs and what features it captures in these new tasks.  
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Methods 
Data Acquisition and Summary 
We used samples from 2 datasets, The Cancer Genome Atlas (TCGA) and CPTAC (Clinical 
Proteomic Tumor Analysis Consortium). 392 diagnostic slides from 361 Uterine Corpus 
Endometrial Carcinoma (UCEC) patients in TCGA cohort were downloaded from the NCI-GDC 
Data Portal. These samples were published in the TCGA pan-cancer atlas. Demographic, 
genomic, and other clinical features associated with these samples were downloaded from the 
cBioPortal and the original TCGA UCEC paper supplements15. 107 diagnostic slides from 98 
Uterine Corpus Endometrial Carcinoma (UCEC) patients in CPTAC cohort were downloaded 
from The Cancer Imaging Archive (TCIA). Demographic, genomic, and other clinical features of 
these patients were published in the CPTAC UCEC paper25. The composition of patients with 
different features of interests are shown in Fig. 1a. Most of the patients in our cohort have only 1 
diagnostic slide (Supplementary Fig. 1b). 
  
H&E Images Preparation 
Digital histopathologic images were in SVS format, which were tuples of the same images with 3 
or 4 different resolution levels. Slides from the TCGA cohort were scanned with a maximum 
resolution of 40x while those from the CPTAC cohort were at 20x maximum resolution. A 
Python package, Openslide, was used to maneuver the SVS files. Due to the extremely large 
size of these images (Supplementary Fig. 1d), they were cut into small tiles in order to be fed 
into the training pipeline. Multi-threading was used to accelerate this process. Tiles were cut at 
10x, 5x, and 2.5x equivalent resolutions for both cohort and algorithm was used to exclude tiles 
with more than 40% pixels of white background and irrelevant contaminants (Supplementary 
Fig. 1e-g). Stain colors of the useful tiles were normalized using the Vahadane’s method during 
this process29. For each of the tasks, the labels were one-hot encoded at per-tile level. The 
datasets were separated into training, validation, and testing sets at per-patient level with a ratio 
of 8:1:1. To take advantage of the Tensorflow API and accelerate the training and testing 
process, tiles were loaded and saved into a single TFrecords file for each set.  
  
Baseline Models 
InceptionV1, InceptionV2, InceptionV3, InceptionResnetV1, and InceptionResnetV2 architecture 
were trained from scratch and used as the baseline models. InceptionResnets are enhanced 
architectures of Inceptions with residual connections and a previous study has shown that they 
are performed generally better than Inceptions in imaging prediction tasks26 . The auxiliary 
classifiers of these architectures were opened. We did not modify any part of the backbone of 
these architectures. Tiles with 10x resolution were input and we used back-propagation, 
softmax cross entropy loss weighed by training data composition, and Adam optimization 
algorithm in the training workflow. Here, each single tile image with a label is considered 1 
sample. Batch sizes were set to 64 with an initial learning rate of 0.0001 and a drop-out keep 
rate of 0.3. We tested multiple combinations of hyperparameters and found that this one 
achieved optimal results for most tasks. The training jobs were run with no fixed epoch number. 
100 batches of validation were carried out every 1000 iterations of training and when the 
training loss achieved a new minimum value after 30000 iterations of training. If the mean of 
these 100-batch validation loss achieved minimum, the model was saved as the temporary best 
performing model. The training process stopped when the validation loss did not decrease for at 
least 10000 iterations. This stopping criterion was only initiated after 100000 iterations of 
training.  
  
Panoptes Models 
We used 4 different Panoptes architectures with and without the integration of patients’ BMI and 
age in a fourth branch. Panoptes1 has 3 branches based on InceptionResnet1 and Panoptes2 
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has 3 branches based on InceptionResnet2. The major difference of Panoptes3 to Panoptes1 
and of Panoptes4 to Panoptes2 is the additional 1-by-1 convolutional layer between the 
concatenation of branches and the global average pooling. All of our Panoptes architectures 
were trained with randomly initialized network parameters with auxiliary classifiers opened on 
each branch. Unlike the baseline models, tiles of 10x, 5x, and 2.5x resolutions of the same 
region on the H&E slide with label were paired and  considered as 1 sample as only 1 prediction 
score is associated with a multi-resolution matrix. Batch size was set to 24, which was the 
largest number that could fit in the memory of our GPUs. Optimization algorithm, weighted loss 
function, and other hyperparameters were the same as the baselines. In addition, we applied 
the same validation method to pick the best performing models and kept the same stopping 
criterion as the baselines.  
  
Statistical Analyses 
The performance was evaluated by applying the trained models to the test set. Each of the 
classification tasks has its own test set, which consists of slides from patients that had not been 
in the training or validation sets. Evaluation was performed at both per-patient level and per-tile 
level. Per-patient level metrics were obtained by taking the mean of all tiles’ metrics that 
belonged to the same patient. For Panoptes model, a 3-multi-resolution-tile matrix is considered 
as 1 tile for statistical analyses. Receiver Operating Characteristic (ROC) curve, plotting true 
positive rate against false positive rate, and the area under the ROC curve (AUROC) were the 
major factors in evaluation. In addition, Precision Recall Curve (PRC), as well as average 
precision score (AUPR score), were used to determine the trade-off between false negative rate 
and false positive rate. We also used accuracy with softmax prediction score directly from the 
models. If the prediction score was greater than 0.5, it was counted as a positively predicted 
case. 95% Confidence intervals (CI) of AUROC, AUPR, and accuracy were estimated by the 
bootstrap method. Other statistical metrics, including sensitivity, specificity, precision, recall, F1 
score, etc., were also generated and referred to evaluate the predictive models’ performance. 
To further validate the effectiveness of the classification models, we did 1-tail Wilcoxon tests 
between positive and negative tiles in the test sets for each of the tasks. In order to compare 
performance between Panoptes models and the baselines, for each of the tasks with a  patient 
level AUROC score greater than 0.75, we bootstrapped 50 times at an 80% sampling rate at 
both patient and tile level and calculated the AUROC for each of these sampled sets. Then, an 
unpaired 1-tail t-test between the AUROCs of Panoptes and its corresponding baseline model 
was performed. We performed a similar t-test between Panoptes with and without the additional 
convolutional layer as well as between Panoptes with and without the fourth branch of patients’ 
BMI and age. Statistical analyses and plotting codes were written in R3.6 and Python3.  
  
Feature Visualization Based on Tiles 
For models with per-patient level AUROC above 0.75 of the test set, we randomly sampled 
20000 tiles (tile sets for Panoptes) together with their feature maps before the last fully 
connected layer in the model, in which each tile or tile set is represented as a 1-dimensional 
vector. We then used tSNE with initial dimensions of 100 to reduce these 20000 vectors into 2-
dimensional space where each point represents a tile or tile set.  Generally, points clustered 
according to their predicted class. By replacing the points on tSNE plots with the original tiles, 
the features learned by the model for each of the specific class can be observed. We asked 
experienced pathologists to summarize the typical histological features in each of these 
clusters.  
  
Whole Slide Prediction 
We built an implementation pipeline that could apply trained models to whole H&E slides and 
output predictions as heatmaps. The heatmaps could be overlaid on the original slides, which 
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showed the prediction results of different areas. The maximum prediction resolution (each cell of 
the heatmap) is 299 by 299 pixel at 10x resolution level. Depending on the size of the H&E 
slides, the time of predicting an intact H&E slides can range from 2 to 40 minutes. The average 
speed of prediction with Panoptes models is 22 tile-sets per second, or 1310 tile-sets per 
minute.  
  
Computational Resources and Code Availability 
3 types of GPUs, NVIDIA Tesla P40, V100, and Quadro P6000 were used to train the models. 
We also used the NYU Prince HPC and NYU BigPurple HPC facilities for this project. The 
model training and testing codes were solely written in Python3 with Tensorflow 1.13 and they 
are compatible with Tensorflow 2. Statistical analyses and plotting codes were written in R3.6 
and Python3. The analytic codes are available on GitHub in the following link: 
https://github.com/rhong3/CPTAC-UCEC. The Panoptes codes with user interface are available 
on Github in the following link: https://github.com/rhong3/Panoptes. The Panoptes Python3 
package version is on PyPI with the following link: https://pypi.org/project/panoptes-he/ 
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Supplementary figures 

 
Supplementary Fig.1 | Data summary. a, Number of patients and composition of true labels in 
each task. b, Number of slides per patient in the cohort. c, Coefficient of colligation between 
subtypes and mutations. d, dimensions of slides in pixel (black: height; grey: width). e, f, g, 
Number of tiles per slide at 10X (e), 5X (f), and 2.5X (g) equivalent resolution.  
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Supplementary Fig.2 | Two data split methods (a) and AUROCs achieved for Panoptes 
and baseline models on each prediction tasks using mixed random data split (b, c) and 
cohort independent data split (d, e) at per-patient and per-tile level. P represents Panoptes, 
PC represents Panoptes with clinical features, I represents Inception, and IR represents 
InceptionResnet.  
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Supplementary Fig.3 | Comparisons of AUC between architectures on the top eight 
prediction tasks. a, b, 1-tail t-test of per-patient (a) and per-tile (b) AUROC between 
InceptionResnetV1 (light) and Panoptes1 (dark) of the top eight tasks. c, d, 1-tail t-test of per-
patient (c) and per-tile (d) AUROC of Panoptes2 (light) and Panoptes4 (dark) of top eight tasks. 
e, f, Bootstrapped per-patient (e) and per-tile (f) 1-tail t-test of AUROC of Panoptes2 (light) and 
Panoptes2 with clinical features (dark) of top eight tasks. 
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Supplementary 
Fig.4 | 
Extraction and 
visualization of 
features 
learned by the 
models with 
tSNE. Each 
point represents 
a tile and is 
colored 
according to its 
corresponding 
positive 
prediction score. 
a, PTEN from a 
Panoptes2 
model. b, TP53 
from a 
Panoptes2 
model. c, 
ZFHX3 from a 
Panoptes1 
model. d, FAT1 
from a 
Panoptes2 with 
clinical features 
model. 
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Supplementary Fig.5 | Whole slide predictions with color representing positive prediction 
scores. a, Slide from a MSI-High (positive) patient using a Panoptes1 model. b, Slide from a 
PTEN wild-type (negative) patient using a Panoptes2 model. c, Slide from a FAT1 mutated 
(positive) patient using a Panoptes3 model.  d, Slide from a TP53 mutated (positive) patient 
using a Panoptes2 model. e, Slide from a ZFHX3 mutated (positive) patient using a Panoptes1 
model.  
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Supplementary Fig. 6 | Side-by-side comparisons of AUROC between the Panoptes 
models in mixed random split trials and independent cohort split trials. Per-patient and 
per-tile level AUROC of Panoptes1 (a, b), Panoptes2 (c, d), Panoptes3 (e, f), and Panoptes4 
(g, h) models in each task with mixed random data split (dark grey) and the cohort independent 
data split (light grey).  
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