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Abstract

The determination of endometrial carcinoma histological subtypes is a critical diagnostic
process that directly affects patients’ prognosis and treatment options. Recently, molecular
subtyping and mutation status are increasingly utilized in clinical practice as they offer better
inform prognosis and offer the possibility of individualized therapies. Compared to the
histopathological approach, however, the availability of molecular subtyping is limited as it can
only be obtained by genomic sequencing, which may be cost prohibitive. Here, we implemented
deep convolutional neural network models that predict not only the histological subtypes, but
also molecular subtypes and 18 common gene mutations based on digitized H&E stained
pathological images. Taking advantage of the multi-resolution nature of the whole slide images,
we introduced a customized architecture, Panoptes, to integrate features of different
magpnification. The model was trained and evaluated with images from The Cancer Genome
Atlas and Clinical Proteomic Tumor Analysis Consortium. Our models achieved an area under
the receiver operating characteristic curve (AUROC) of 0.969 in predicting histological subtype
and 0.934 to 0.958 in predicting the copy number high (CNV-H) molecular subtype. The
prediction tasks of 4 mutations and microsatellite high (MSI-H) molecular subtype also achieved
a high performance with AUROC ranging from 0.781 to 0.873. Panoptes showed a significantly
better performance than InceptionResnet in most of these top predicted tasks by up to 18%.
Feature extraction and visualization revealed that the model relied on human-interpretable
patterns. Our results suggest that Panoptes can help pathologists determine molecular
subtypes and mutations without sequencing, and our models are generalizable to independent
datasets.
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Introduction

Endometrial cancer is the most common type of gynecologic cancer among women around the
world with a rising occurrence and mortality'™. In the United States, it is one of the top 5 leading
cancer types with 52,600 new cases reported in 2014. This number increased to 60,050 in the
year of 2016, and was estimated to further increase to 61,880 in 2019°*°. Globally, endometrial
cancer caused approximately 42,000 women’s death in 2005, and this annual mortality count
estimate drastically increased to 76,000 in 2016"2. The 5-year survival rate, depending on the
study cohort, is ranging from 74% to 91% for patients without metastasis®.

Clinically, endometrial carcinomas are stratified based on their grade, stage, hormone
receptor expression, and histological characteristics’. Histological classification reflects tumor
cell type and informs the choice of surgical procedure and adjuvant therapy. The majority of
endometrial cancer cases exhibit either endometrioid or serous characteristics, which comprise
approximately 70%-80% and about 10% of all cases, respectively®. Statistically, patients with
serous subtype tumors have a lower 5-year survival rate due to more frequent metastases and
a higher risk of recurrence?®. Thus, it is critical to determine the subtypes in order to determine
patients’ individualized treatment plans and to assess prognosis'®. Histological subtype is
determined by pathologists after thorough examination of hematoxylin and eosin (H&E) stained
tissue sample slides of tumor samples Endometrioid tumors typically exhibit a glandular growth
pattern, while the serous subtype is characterized by the frequent presence of a complex
papillary pattern'®'2. These features are not exclusive for either of the subtypes, however,
making histological classification challenging, especially among high grade cases, even for
experienced pathologists and necessitating ancillary subtyping criteria®'*-'°.

The multi-omics study of The Cancer Genome Atlas (TCGA) introduces a set of novel
criteria that classify endometrial carcinoma into four molecular subtypes, namely POLE ultra-
mutated, high microsatellite instability (MSI-H) hypermutated, copy-number low (CNV-L), and
copy-number high (CNV-H), based on their mutation characteristics, copy number alterations,
and microsatellite instability. This molecular classification standard has been gaining popularity
among pathologists and clinicians in recent years. Among these four subtypes, patients with the
CNV-H subtype, which includes serous carcinomas and a subset of high grade endometrioid
cancers, had the worst outcomes based on progression free survival'®. Exome sequencing also
revealed a panel of genes differentially mutated across the four molecular subtypes, many of
which have been shown to play significant roles in endometrial carcinoma tumorigenesis and
proliferation and can potentially be novel targets of individualized therapies'®"". For example,
most patients in CNV-H subtype are TP53 mutated but PTEN wild-type. Determining the
molecular subtyping and single gene mutations can provide new insights that complement and
refine the histological classification, but the availability of this information is limited by the time
and cost of sequencing.

New powerful computational approaches for analyzing massive biomedical data have
tackled numerous challenges, which accelerates the pace of human health improvement
worldwide. In particular, computational pathology, a discipline that involves the application of
image processing techniques to pathological data, has been especially benefitted from the
advancement of deep learning in recent years'®2'. Convolutional neural network (CNN) models
are capable of segmenting cells in histopathology slides and classifying them into different types
based on their morphology'®??. An InceptionV3-based model achieves a high level of accuracy
in determining melanoma possibility, exhibiting significant diagnostic potential’®. Moreover,
successful deep learning models have also been built to predict molecular and genomic
features in cancer, such as microsatellite instability (MSI) and somatic mutation status,
suggesting that machine learning techniques may be able to assist human experts to further
exploit clinically relevant information in pathological images®*.
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H&E slides are often scanned at multiple resolutions (20X, 10X, 5X) and different
resolutions of the same slides are saved into a single image file. This allows pathologists to
examine features of various sizes at the optimal resolution. Here, we designed a customized
architecture, that we call Panoptes. Panoptes takes advantage of the multi-resolution structure
of the H&E image files. We showed that models using this architecture could classify
endometrial carcinoma histological subtypes, CNV-H and MSI-H molecular subtypes, and
several critical mutations with decent performance based on H&E images and outcompete
existing InceptionResnet models in most top-performing tasks. Using tSNE dimensionality
reduction techniques, we extracted and visualized the features learned by models to classify
H&E images. These histopathological features were mostly human interpretable, suggesting
possibilities of incorporating them into the pathological diagnostic standards. In particular, we
confirmed that tumor grade was the major factor to distinguish CNV-H molecular subtype from
the other 3 molecular subtypes in the histological endometrioid cases.

Results

Data preparation and multi-resolution deep-learning based histopathology image
analysis. The goal of this study was to build multi-resolution deep convolutional neural network
models that could automatically analyze endometrial cancer digital H&E slides and predict their
histological and molecular features. We used diagnostic formalin-fixed paraffin-.embedded
(FFPE) and H&E stained tumor slides and labels from 2 public databases, the GDC data portal
containing data of TCGA, and The Cancer Imaging Archive (TCIA) containing data of Clinical
Proteomic Tumor Analysis Consortium (CPTAC), to train and test our models. TCGA and
CPTAC are two mutually independent cohorts. 107 slides from 98 patients belonged to the
CPTAC cohort and 389 slides from 358 patients were in the TCGA cohort. Overall, 496 slides
from 456 patients, covered in previous publications (Dou et al., 2020; Getz et al., 2013) and
annotated with subtype and gene mutation information, were included to form a mixed dataset
(Fig. 1a, Supplementary Fig. 1a). More than 90% of patients in our cohort had only 1 diagnostic
slide (Supplementary Fig. 1b). As a lot of driver gene mutations in endometrial cancer are
correlated with histological and molecular subtypes, we validated these correlations to ensure
that our cohort was a representative of the patient’s population (Supplementary Fig. 1c). The
general process of training, validation, testing, and visualization followed the workflow in Fig. 1b.
For each prediction task, cases in the mixed dataset were randomly split into training, validation,
and test set such that slides from the same patient were in only one of these sets. This allowed
the test set to be strictly independent of the training process and also made it possible to obtain
per-patient level metrics, which could be more useful in the clinical setting. Each task was
performed on a different random split of cases stratified with the outcome. Due to the extremely
large dimension of the digital H&E slides (Supplementary Fig. 1d), slides were tiled into 299-by-
299-pixel pieces and were packaged into one TFrecords file for each set after color
normalization. All models were trained from scratch. Later, to validate the generalizability of the
prediction models, an independent test set consisted of samples only from the CPTAC cohort
were used to evaluate models that were trained and validated solely on samples from TCGA
cohort (Supplementary Fig. 2a).

We developed a multi-resolution InceptionResnet-based(Szegedy et al., 2017)
convolutional neural network architecture, Panoptes, to capture features of various sizes on the
H&E slides, which resembles the reviewing strategy of human pathologists. Unlike the
conventional CNN architecture, the input of Panoptes is a set of 3 tiles of the same region on
the H&E slide instead of a single tile. The resolution of tiles in a set is 2.5X, 5X, and 10X so that
the higher resolution tile covers one fourth of the region in the next lower resolution tile (Fig. 1c).
Hence, each grid region at 2.5X resolution in Fig. 1c can ideally generate 16 tile sets provided
none of the tiles contained more than 40% of background pixels. Each set of tiles were
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converted into a single matrix as one sample. Panoptes has three InceptionResnet-based
branches, each of which processed the tiles with a specific resolution of the same region
simultaneously (Fig. 1d). These branches worked separately until the third-to-last layer of the
architecture, where inputs from the three branches were concatenated, followed by a global
average pooling layer and the final fully connected layer. This design enabled the branches to
learn features of different scales. More abstract information from each branch was integrated
only at higher levels. We attempted to add an additional 1-by-1 feature pooling convolutional
layer before the global average pooling and introduced a fourth branch processing clinical
features. The effectiveness and comparisons of these modifications are discussed in later
sections. Compared to conventional CNN, the multi-resolution design of Panoptes can at the
same time considers both macro tissue-level features and minute cellular-level features of the
same region, and can therefore capture more comprehensive characteristics of the slides.
Moreover, taking the grouped multi-resolution tile sets as input while having a single output and
loss function preserves the original positional information, which makes Panoptes distinct from
the simply joining decisions from three separate models trained on tiles of three resolutions. To
find the best performing model for different prediction tasks, we tried four different Panoptes
architectures with and without the clinical feature branch, two types of InceptionResnet, and
three types of Inception in this study. InceptionResnet and Inception models were trained on
single resolution 10X tiles. Among all the statistical metrics calculated, we used area under the
receiver operating characteristic curve (AUROC) of the test sets as the major metrics to
evaluate the performance of the models, which is the typical standard in the machine learning
field. Precision, recall, sensitivity, specificity, and F1 scores were also used to evaluate
imbalanced prediction tasks. Per-patient level prediction was obtained by taking the mean of the
predicted probability (prediction score) of all tiles belonging to the same patient. The AUROC
was then calculated by taking each patient as one sample point. For Panoptes models, one set
of grouped tiles was counted as a single tile for the metric calculation purpose since the output
from the model was only one prediction score for each set.
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Fig.1 | Workflow and Panoptes architecture. a, Patients in the cohorts with feature
annotations. b, Overall workflow. (b, I), H&E slide images of endometrial cancers from CPTAC
and TCGA were downloaded; (b, Il), slides were separated at per-patient level into a training
(80%), a validation (10%), and a test set (10%); (b,lll), slides were cut into 299x299-pixel tiles
excluding background and contaminants and qualified tiles were packaged into TFrecord files
for each set; (b, IV), training and validation sets were used to train the convolutional neural
networks and the testing set was used to evaluate trained models; (b, V), activation maps of test
set tiles were extracted and dimensionally reduced by tSNE to visualize features while the per-
tile predictions were aggregated back into intact slides. ¢, Slides were cut into paired tile sets at
2.5X, 5X, and 10X equivalent resolution of the same region to prepare for Panoptes. d,
Panoptes architecture with optional 1X1 convolutional layer and clinical features branch.


https://doi.org/10.1101/2020.02.25.965038
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.25.965038; this version posted August 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Multi-resolution deep-learning architectures achieved better predictive performance on
histopathology images. We trained models to predict histological subtypes, CNV-H subtype
from the entire cohort and the endometrioid patients, MSI-High subtype, and the mutation status
of 18 endometrial-carcinoma-related genes. We applied five baseline models (InceptionV1,
InceptionV2, InceptionV3, InceptionResnetV1, and InceptionResnetV2) and four versions of
multi-resolution models (Panoptes1-4) on all of the tasks. The same data splits were used for all
the models of the same predictive tasks in order to have fair comparisons among different
architectured models. The best performing architectures for each of the prediction tasks and
their corresponding AUROCSs with 95% confidence intervals (Cl) are shown in Table 1. Tasks
with per-patient AUROC less than 0.6 were not listed. We performed 1-tail Wilcoxon tests on
prediction scores between positively and negatively labeled tiles for the results in Table 1 and
they all showed significant differences (Fig. 2a). Therefore, the prediction scores of true-label-
positive tiles were significantly higher than those of true-label-negative tiles, demonstrating that
these models were able to distinguish tiles in the test sets. The complete AUROC performance
of all these trials are shown in Supplementary Fig. 2b-c. ROC curve examples of the top four
prediction tasks are shown in Fig. 2b-c.

Based on the AUROC scores, we observed that Panoptes models were the best
architectures in the top five prediction tasks (Table1). It is also clear that Panoptes performed
better than Inception and InceptionResnet models for most of the tasks (Supplement Fig. 2). To
validate that Panoptes performed better than InceptionResnet, we conducted 1-tail t-test on
AUROC performance of the top eight prediction tasks between the Panoptes models and their
corresponding InceptionResnet models. Panoptes2, which was the best Panoptes architecture
in most of the tasks, showed a significantly higher AUROC than the corresponding
InceptionResnet2 in six out of eight prediction tasks at per-patient level and seven out of eight at
per-tile level (Fig. 2d-e). Similarly, Panoptes1 had a significantly higher AUROC than
InceptionResnet1 in five out of eight prediction tasks at per-patient level and seven out of eight
at per-tile level (Supplementary Fig. 3a-b).

To evaluate the effectiveness of adding an additional 1-by-1 convolutional layer between
concatenation of branches and the global average pooling, we performed a 1-tail t-test between
Panoptes1 and Panoptes3 as well as Panoptes2 and Panoptes4. However, only two tasks at
per-patient level and five tasks at per-tile level showed significant p-values between Panoptes2
and Panoptes4 (Supplementary Fig. 3c-d). Similar results were observed between Panoptes1
and Panoptes3, where only one per-patient level task and four per-tile level tasks showed a
significant difference. By applying the same test to Panoptes with and without clinical feature
branch models, most of the tasks were not statistically significant with an example of Panoptes2
having two significant tasks at per-patient level and four at per-tile level (Supplementary Fig. 3e-
f). In summary, our multi-resolution architectures Panoptes outperformed InceptionResnet in
analyzing endometrial cancer H&E slides in various prediction tasks. The effectiveness of the
additional convolutional layer and the integration of patients’ age and body mass index (BMI)
through a fourth branch was not found to be significant, however.
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Fig.2 | Prediction tasks were statistically successful with promising results and Panoptes
outcompeted baselines in most of top-performing prediction tasks. a, Predicted positive
probability of tiles with 1-tail Wilcoxon test between true label positive and negative groups
(black: true label positive tiles; grey: true label negative tiles) from models in Table 1. b, ¢, ROC
curves at per-patient (b) and per-tile (c) level associated with the top four tasks in a. d, e,
Bootstrapped per-patient (d) and per-tile (e) AUROC of InceptionResnetV2 (light) and
Panoptes?2 (dark) of top eight tasks in a with 1-tail t-test.
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Accurate predictions of histological and molecular subtypes. Panoptes2 achieved a 0.969
(CI: 0.905-1) per-patient level AUROC in classifying samples into endometrioid or serous
histological subtypes with an F1 score of 0.75. The precision was 1 and the recall was 0.6
respectively at per-patient level. Panoptes models were in the leading positions followed by
InceptionV3 and InceptionV2, all of which had per-patient AUROC above 0.9. For molecular
subtyping tasks, we applied all architectures on four binary tasks, each aimed at predicting one
molecular subtype versus all others. Panoptes1 achieved a per-patient AUROC of 0.934 (CI:
0.851-1) in predicting CNV-H while all other Panoptes models achieved an AUROC above 0.88,
outcompeting the baseline models by 5.8% to 23.3%. The best F1 score was 0.8 with precision
of 0.727 and recall of 0.889 respectively. This model also achieved sensitivity of 0.889 and
specificity of 0.906 when using 0.5 as the cutoff point of prediction scores. Apart from CNV-H,
we also trained models classifying another molecular subtype, MSI-High, with a best per-patient
AUROC of 0.827 (Cl: 0.705-0.948) and F1 score of 0.615.

Although most CNV-H cases are of serous subtype, a portion of high-grade
endometrioid cancers are also classified as CNV-H. To further assess whether machine
learning models could capture the heterogeneity within this histological subtype, we trained
models to predict CNV-H status in endometrioid samples. The Panoptes1 architecture was able
to achieve a per-patient AUROC of 0.958 (CI: 0.886-1) and F1 score of 0.667 on this task,
suggesting that the model utilized features that were not strongly associated with histological
subtype to predict molecular subtype. All Panoptes models also outcompeted baseline models
in this task. In addition, we trained models to predict mutation status of 18 driver genes.
Panoptes2 was able to predict a TP53 mutation with a per-patient AUROC of 0.873 (Cl: 0.768-
0.977) and F1 score of 0.56. FAT1 mutation was predicted using Panoptes2 (with clinical
feature branch) with a per-patient AUROC of 0.835 (Cl: 0.666-1) and F1 score of 0.545. Other
gene mutations, including ZFHX3, PTEN, FGFR2, MTOR, CTCF, and PIK3R1, were also
predicted with a per-patient AUROC above 0.7. A table showing the full statistical metrics for all
the prediction models can be found in the supplementary files.
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Table 1 | AUROCSs of the best models for each task with 95% confidence intervals (Cls).

Best Architecture Per-patient AUROC Per-tile AUROC

Histology Panoptes2 0.969 (0.905-1) 0.870 (0.866-0.874)
CNV-H from endometrioid Panoptes1 0.958 (0.886-1) 0.864 (0.859-0.870)
CNV-H Panoptes4 0.934 (0.851-1) 0.731 (0.728-0.734)
TP53 Panoptes2 0.873 (0.768-0.977) 0.713 (0.709-0.717)
FAT1 Panoptes2 with clinical 0.835 (0.666-1) 0.639 (0.635-0.642)
MSI-High InceptionResnetV1 0.827 (0.705-0.948) 0.638 (0.635-0.641)
ZFHX3 InceptionResnetV1 0.824 (0.689-0.959) 0.637 (0.634-0.640)
PTEN InceptionV2 0.781 (0.579-0.984) 0.623 (0.620-0.627)
FGFR2 Panoptes4 with clinical 0.755 (0.540-0.970) 0.550 (0.545-0.554)
MTOR Panoptes1 0.724 (0.496-0.951) 0.674 (0.670-0.678)
CTCF Panoptes4 0.724 (0.518-0.931) 0.571 (0.568-0.575)
PIK3R1 InceptionResnetV1 0.702 (0.524-0.880) 0.596 (0.593-0.599)
PIK3CA Panoptes4 0.689 (0.532-0.847) 0.526 (0.523-0.530)
ARID1A InceptionResnetV2 0.683 (0.513-0.853) 0.542 (0.538-0.545)
JAK1 Panoptes2 with clinical 0.662 (0.410-0.940) 0.612 (0.605-0.618)
CTNNBI1 InceptionResnetV2 0.648 (0.439-0.858) 0.619 (0.616-0.622)
KRAS Panoptes2 with clinical 0.638 (0.404-0.871) 0.515 (0.510-0.519)
FBXW?7 InceptionV3 0.629 (0.366-0.892) 0.606 (0.602-0.609)
RPL22 InceptionV3 0.632 (0.395-0.868) 0.517 (0.512-0.522)
BRCA2 InceptionResnetV1 0.613 (0.318-0.908) 0.624 (0.620-0.629)
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Feature extraction and whole-slide visualization revealed correlations and differences
between histological and molecular features. To visualize and evaluate features learned by
the models for each task, we extracted the activation maps before the final fully connected layer
of the test set tiles. 20000 tiles’ activation maps were then randomly sampled for each task.
These activation maps were dimensionally reduced and displayed on 2D tSNE plots, where
each dot represents a sampled tile and was colored according to the positive prediction scores.
As we expected, tiles were generally clustered by their predicted groups. By replacing dots with
the original input tiles of different resolutions, we were able to discover features that correlated
with the predictions corresponding to the specific histological or molecular classification task.
For example, features of predicted histologically serous and endometrioid were drastically
different (Fig. 3a). In the cluster with high prediction scores of serous subtype, we observed
typical serous carcinoma features, such as high nuclear grade, papillary growth pattern,
elevated mitotic activity, and slit-like spaces. Tiles in the cluster of predicted endometrioid cases
showed low nuclear grade, glandular growth pattern, cribriform architecture, and squamous
differentiation. Myometrium and other non-tumor tissue tiles were located in the middle of the
tSNE plot with prediction scores between 0.4 and 0.6 (Fig. 3a). These observations suggested
that our models were able to focus on the tumor regions of H&E slides and make histological
subtype predictions based on features that were also recognized by human experts in
pathology.

The features learned by molecular subtype prediction models were also revealed with
the same feature extraction method. We noticed that in the CNV-H prediction model, two distinct
subgroups were recognized in the predicted CNV-H cluster, associated with histological serous
and high grade endometrioid subtypes, respectively (Fig. 3b). The predicted-CNV-H serous tiles
mostly showed high nuclear grade, gland formation, and elevated mitotic activity, while the
predicted-CNV-H high grade endometrioid tiles exhibited solid growth pattern and focal
glandular differentiation. On the other hand, in the non-CNV-H cluster, tiles were mostly low-
grade endometrioid carcinoma with low nuclear grade, gland formation, and squamous
differentiation (Fig. 3b). To confirm that the tumor grade was the major factor to distinguish
CNV-H molecular subtype in endometrioid samples, we unveiled the features learned by the
CNV-H prediction model trained only on endometrioid images (Fig. 3c). As we expected, high-
grade endometrioid carcinoma tiles were observed mostly in the CNV-H cluster, leaving the low-
grade tiles in the non-CNV-H cluster. In both of these CNV-H models, the ambiguous regions
were mostly occupied by non-tumor tissue. We also visualized the major pattern learned by the
model to distinguish MSI-H subtype images from others (Fig. 3d). Tiles in the MSI-H cluster
were mostly low grade endometrioid carcinomas with gland formation, tumor infiltrating
lymphocytes, and peritumoral lymphocytes, consistent with the observation that heavy mutation
load of MSI-H tumors lead to high immunogenicity and a host immune response®’28,

In addition to the subtypes, patterns related to some mutations were also revealed. A
PTEN-mutated cluster mostly contained tiles of low grade endometrioid carcinomas with gland
formation and low nuclear grade (Supplementary Fig. 4a) while TP53-mutated tiles were
generally serous carcinomas with high nuclear grade and abundant tufting and budding
(Supplementary Fig. 4b). Furthermore, low grade endometrioid carcinoma tiles with gland
formation, low nuclear grade, and abundant tumor infiltrating lymphocytes were present in the
ZFHX3-mutated cluster while those with much less lymphocytes were in the wild type cluster
(Supplementary Fig. 4c). High grade endometrioid carcinoma tiles with diffuse solid growth and
low nuclear grade were depicted in FAT1-mutated cluster while low grade endometrioid
carcinomas with gland formation, low nuclear grade, and cribriform architecture were in the wild
type cluster (Supplementary Fig. 4d). These findings may result from the correlation between
mutation status and histological or molecular subtypes described above, as PTEN and TP53
mutations were mainly found in endometrioid and serous subtypes, respectively, while ZFHX3
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and FAT1 mutation status showed correlation with the heavily mutated MSI-H and POLE
molecular subtypes(Supplementary Fig. 1c).

Additionally, we were also interested in visualizing distribution of features on the whole
slide level. Prediction of tiles from the test sets were aggregated back to the size of original
slides in the form of heatmaps, where hotter tiles corresponded to higher positive prediction
scores. Whole slide visualization revealed that our models tended to have extreme prediction
scores on tumor regions instead of non-tumor tissues such as myometrium (Supplementary Fig.
5).The first slide in Fig. 4 was from an endometrioid and CNV-H case while the second slide
was from a serous and CNV-H case. Models correctly predicted both tasks for the two slides. By
comparing the prediction of histological subtypes and CNV-H, we found that the models were
focusing on different yet related features in these 2 prediction tasks. In the first slide, the areas
predicted to be endometrioid were largely classified as CNV-H while in the second slide, most
areas predicted as serous were also classified as CNV-H. Although most CNV-H samples were
histologically serous, our models were capable of learning an additional set of features. In other
words, the prediction of CNV-H in our models were not necessarily based on features of
histological subtypes.
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Fig. 4 | Whole slide predictions showing features of histological subtype and CNV-H are
distinct but correlated. a, The first example slide is from a CNV-H but histologically
endometrioid case while the second example slide is from a CNV-H and serous tumor. b, Whole
slide histology prediction of examples in a Panoptes2 model with hotter regions being predictive
more of serous while cooler regions were more endometrioid. ¢, Whole slide CNV-H prediction
of examples in a Panoptes1 (first example) and Panoptes4 (second example) models with
hotter regions being more predictive of CNV-H.
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Generalizability and potential clinical capability of the models was illustrated by testing
with samples from an independent cohort. To prove that our models were generalizable and
the predictions results were consistent and not overfitted, we repeated the training and testing of
models for all the tasks using independent cohort data split and compared statistical metrics
with the previous mixed data split results. In these independent data split trials, models were
trained and validated only on the data from TCGA at a 9:1 split ratio. Slides from CPTAC served
as an independent test set for all the prediction tasks. Therefore, the size of training and
validation sets of these trials were smaller and less diversified than the mixed data slit trials. All
other hyperparameters remained the same for the training, validation, and testing workflow. The
AUROC of CPTAC independent test set indicated that Panoptes-based models still had better
performance than the baseline models in general (Supplementary Fig. 2d-e). The best
performing models based on independent test set were compared side-by-side with the best
models in mixed random split trials (Fig. 5). A Panoptes4 model achieved an AUROC of 0.962
(Cl: 0.926-0.999) with F1 score of 0.696 at per-patient level, which were similar to the best
model trained and tested on the mixed data split. In the CNV-H molecular subtype prediction
task, a Panoptes3 model showed an AUROC of 0.87 (ClI: 0.753-0.987) with F1 score of 0.667 at
per-patient level. Slightly lower performances were also observed in prediction tasks using
independent data split at per-patient level, including CNVH in endometrioid, MSI-high, TP53,
and FAT1. However, higher statistical metrics were observed in some prediction tasks, such as
PTEN, KRAS, BRCA2, and CTNNB1. Interestingly, even though the per-patient level metrics
were lower in the independent data split trials than in the mixed data split trials for some
prediction tasks (CNV-H, TP53, CTCF), their per-tile level metrics were higher. In addition, we
compared Panoptes-based models’ performance side-by-side in mixed random split trials and
CPTAC independent test set trials and the results were similar to the best performing models
comparison (Supplementary Fig. 6). The full table of statistical metrics of the test set in the
independent cohort split trials can be found in the supplementary files.
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Fig. 5 | Side-by-side comparisons of AUROC between the best models in mixed random
split trials and independent cohort split trials revealed the generalizability of the models.
Per-patient (a) and per-tile (b) level AUROC of the best performing models in each task with
mixed random data split (dark grey) and the cohort independent data split (light grey).
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Discussion

Our study introduced a novel multi-resolution InceptionResnet-based convolutional
neural network architecture, Panoptes, which was able to accurately predict endometrial cancer
histological and molecular subtypes as well as mutation status of critical genes based on H&E
slides. The AUROC of classifying endometrioid and serous histological subtypes by our best
architecture model was 0.969 (Cl: 0.905-1). Moreover, the models can distinguish the most
lethal molecular subtype, CNV-H, with exceptionally high accuracy (AUROC 0.934). It is worth
noting that our models can also precisely identify the CNV-H samples from a histologically
endometrioid carcinoma (AUROC 0.958), which is one of the more controversial and complex
patient subgroups in endometrial cancer subtyping. In addition to the CNV-H, we were also able
to predict other molecular features with acceptable performance, which are currently not
possible for pathologists to determine without ancillary studies such as sequencing or
immunohistochemistry. These include the DNA-mismatch repair deficiency-related MSI-high
molecular subtype (AUROC 0.827), the mutation the CNV-H signature gene TP53 (AUROC
0.873) as well as PTEN (AUROC 0.781), FAT1 (AUROC 0.835) and ZFHX3 (AUROC 0.824).
Statistical analyses proved the success of our prediction tasks. In addition, we tested and
showed that our multi-resolution Panoptes-based models performed significantly better than
InceptionResnet-based models in most of our prediction tasks. We attempted two modifications
to Panoptes, including an additional convolutional layer and integration of clinical features, but
failed to observe significant improvement in performance. By extracting and clustering abstract
representation of tiles constructed by the model, we discovered critical features to distinguish
subtypes and mutations, particularly the tumor grade in determining CNV-H cases from non-
CNV-H samples. We justified the generalizability and potential clinical applicability of our models
by training and validating on samples from TCGA while testing solely on an independent cohort
with samples from CPTAC. Although slightly lower performances were observed in the CPTAC
independent testing trials for some prediction tasks, we believe that it was mostly likely caused
by smaller and less diversified TCGA-only training set.

Examining H&E slides is still currently the most widely used techniques for pathologists
to confirm endometrial cancer histological subtypes in the clinical setting. Our models showed
great potential in assisting pathologists making decisions and improving diagnostic accuracy.
Given most H&E slides can be tiled into less than 5000 tile-sets (Supplementary Fig. 1e-g), with
a processing speed of 22 tile-sets per second (1310 tile-sets per minute) on a Quadro P6000
GPU, our models can analyze a slide within 4 minutes. This means that these models can work
simultaneously with pathologists to serve as references. We have shown that the model utilized
human interpretable features to perform histological and molecular classification tasks. With
whole slide visualization, the reassembled per tile predictions can provide a thorough
examination of the H&E slide and a detailed layer containing potential hotspot feature, which
may also include regions that could possibly be neglected by pathologists. However, due to the
time-consuming H&E slide scanning and tiling processes, multiple optimizations need to be
implemented before the system could be deployed in practice.

Both histological and molecular features’ labels of TCGA and CPTAC samples have
been validated by many scientists and clinicians before and after the publication of their studies
However, as tile labels were assigned at per-patient level, within-slide heterogeneity would still
lead to noise in the true labels, such that features in a local region may not match the
characteristics of the assigned classification. Therefore, we believe that the per-patient metrics
are more accurate than per-tile metrics in terms of accessing a models performance. The
performance can be further improved if more detailed annotations existed on the slides. From
the visualization results, we noticed that our models were more likely to give non-tumor tissue
tiles ambiguous prediction scores (0.4-0.6). Therefore, building a segmentation model to
exclude these irrelevant non-tumor tissue, such as myometrium, may also significantly enhance
the overall performance of our models.
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Although the TCGA and CPTAC datasets cover a variety of endometrial carcinoma
samples, it may not reflect the full pathological diversity of endometrial cancer. In this study, we
tried two data split criteria, mixed random split and cohort independent split, to create training,
validation, and test sets. We adopted the random split of the mixed TCGA and CPTAC dataset
to train models that could achieve the best performance as the models can learn from both
datasets instead of TCGA or CPTAC specific features. From the other perspective, we used
cohort independent data split, namely training and validating on TCGA samples while testing on
CPTAC samples to justify the generalizability and indicate potential clinical capability of our
models. Additionally, multiple trials took place to find the best normalization method,
combination of hyperparameters, and architecture designs.

Overall, we demonstrated that our multi-resolution convolutional neural network
architecture, Panoptes, can be a practical tool to assist pathologists classifying endometrial
cancer histological subtypes and, more importantly, to provide additional information about
patients’ molecular subtypes and mutation status in a much more rapid fashion and without the
need for sequencing. In addition to per-patient level prediction, the model would also be able to
highlight regions with human interpretable features on the slide. Moreover, it remains possible
that our models have learned visual patterns which correlated with molecular features that were
not previously annotated by human experts and requires further investigation. From another
perspective, these novel patterns from the H&E slides may be incorporated into the current
standards of histological pathology and contribute to improved prognosis and treatment of
endometrial carcinoma in the future.

Our future plan includes refining the Panoptes architecture, particularly to determine an
effective way to integrate clinical features into the imaging prediction branches to improve the
overall performance. Quantification of features could also be added to the Panoptes. We would
also work on training our existing models with slides labeled with more detail and new datasets
that cover more heterogeneity and diversity of endometrial cancer in order to make the models
more robust and generalizable. Predicting other molecular subtypes and mutations, such as
POLE, CTNNB1, and JAK1, which did not have a well-performing model in this study, will be
possible once more data are available. In addition to the currently available user interface of
Panoptes, we plan to develop a more advanced Graphical User Interface (GUI) that includes all
the trained models and outputs visualization and prediction in a fast and user-friendly way,
which we are hoping to be deployed and tested in a pathologist’s clinical practice. We would try
to train Panoptes-based models to predict features in other types of cancers, such as
glioblastoma, melanoma, and lung carcinoma, and it would be very interesting to see how
Panoptes performs and what features it captures in these new tasks.
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Methods

Data Acquisition and Summary

We used samples from 2 datasets, The Cancer Genome Atlas (TCGA) and CPTAC (Clinical
Proteomic Tumor Analysis Consortium). 392 diagnostic slides from 361 Uterine Corpus
Endometrial Carcinoma (UCEC) patients in TCGA cohort were downloaded from the NCI-GDC
Data Portal. These samples were published in the TCGA pan-cancer atlas. Demographic,
genomic, and other clinical features associated with these samples were downloaded from the
cBioPortal and the original TCGA UCEC paper supplements'®. 107 diagnostic slides from 98
Uterine Corpus Endometrial Carcinoma (UCEC) patients in CPTAC cohort were downloaded
from The Cancer Imaging Archive (TCIA). Demographic, genomic, and other clinical features of
these patients were published in the CPTAC UCEC paper®. The composition of patients with
different features of interests are shown in Fig. 1a. Most of the patients in our cohort have only 1
diagnostic slide (Supplementary Fig. 1b).

H&E Images Preparation

Digital histopathologic images were in SVS format, which were tuples of the same images with 3
or 4 different resolution levels. Slides from the TCGA cohort were scanned with a maximum
resolution of 40x while those from the CPTAC cohort were at 20x maximum resolution. A
Python package, Openslide, was used to maneuver the SVS files. Due to the extremely large
size of these images (Supplementary Fig. 1d), they were cut into small tiles in order to be fed
into the training pipeline. Multi-threading was used to accelerate this process. Tiles were cut at
10x, 5x, and 2.5x equivalent resolutions for both cohort and algorithm was used to exclude tiles
with more than 40% pixels of white background and irrelevant contaminants (Supplementary
Fig. 1e-g). Stain colors of the useful tiles were normalized using the Vahadane’s method during
this process?®®. For each of the tasks, the labels were one-hot encoded at per-tile level. The
datasets were separated into training, validation, and testing sets at per-patient level with a ratio
of 8:1:1. To take advantage of the Tensorflow API and accelerate the training and testing
process, tiles were loaded and saved into a single TFrecords file for each set.

Baseline Models

InceptionV1, InceptionV2, InceptionV3, InceptionResnetV1, and InceptionResnetV2 architecture
were trained from scratch and used as the baseline models. InceptionResnets are enhanced
architectures of Inceptions with residual connections and a previous study has shown that they
are performed generally better than Inceptions in imaging prediction tasks?® . The auxiliary
classifiers of these architectures were opened. We did not modify any part of the backbone of
these architectures. Tiles with 10x resolution were input and we used back-propagation,
softmax cross entropy loss weighed by training data composition, and Adam optimization
algorithm in the training workflow. Here, each single tile image with a label is considered 1
sample. Batch sizes were set to 64 with an initial learning rate of 0.0001 and a drop-out keep
rate of 0.3. We tested multiple combinations of hyperparameters and found that this one
achieved optimal results for most tasks. The training jobs were run with no fixed epoch number.
100 batches of validation were carried out every 1000 iterations of training and when the
training loss achieved a new minimum value after 30000 iterations of training. If the mean of
these 100-batch validation loss achieved minimum, the model was saved as the temporary best
performing model. The training process stopped when the validation loss did not decrease for at
least 10000 iterations. This stopping criterion was only initiated after 100000 iterations of
training.

Panoptes Models
We used 4 different Panoptes architectures with and without the integration of patients’ BMI and
age in a fourth branch. Panoptes1 has 3 branches based on InceptionResnet1 and Panoptes2
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has 3 branches based on InceptionResnet2. The maijor difference of Panoptes3 to Panoptes1
and of Panoptes4 to Panoptes?2 is the additional 1-by-1 convolutional layer between the
concatenation of branches and the global average pooling. All of our Panoptes architectures
were trained with randomly initialized network parameters with auxiliary classifiers opened on
each branch. Unlike the baseline models, tiles of 10x, 5x, and 2.5x resolutions of the same
region on the H&E slide with label were paired and considered as 1 sample as only 1 prediction
score is associated with a multi-resolution matrix. Batch size was set to 24, which was the
largest number that could fit in the memory of our GPUs. Optimization algorithm, weighted loss
function, and other hyperparameters were the same as the baselines. In addition, we applied
the same validation method to pick the best performing models and kept the same stopping
criterion as the baselines.

Statistical Analyses

The performance was evaluated by applying the trained models to the test set. Each of the
classification tasks has its own test set, which consists of slides from patients that had not been
in the training or validation sets. Evaluation was performed at both per-patient level and per-tile
level. Per-patient level metrics were obtained by taking the mean of all tiles’ metrics that
belonged to the same patient. For Panoptes model, a 3-multi-resolution-tile matrix is considered
as 1 tile for statistical analyses. Receiver Operating Characteristic (ROC) curve, plotting true
positive rate against false positive rate, and the area under the ROC curve (AUROC) were the
major factors in evaluation. In addition, Precision Recall Curve (PRC), as well as average
precision score (AUPR score), were used to determine the trade-off between false negative rate
and false positive rate. We also used accuracy with softmax prediction score directly from the
models. If the prediction score was greater than 0.5, it was counted as a positively predicted
case. 95% Confidence intervals (Cl) of AUROC, AUPR, and accuracy were estimated by the
bootstrap method. Other statistical metrics, including sensitivity, specificity, precision, recall, F1
score, etc., were also generated and referred to evaluate the predictive models’ performance.
To further validate the effectiveness of the classification models, we did 1-tail Wilcoxon tests
between positive and negative tiles in the test sets for each of the tasks. In order to compare
performance between Panoptes models and the baselines, for each of the tasks with a patient
level AUROC score greater than 0.75, we bootstrapped 50 times at an 80% sampling rate at
both patient and tile level and calculated the AUROC for each of these sampled sets. Then, an
unpaired 1-tail t-test between the AUROCs of Panoptes and its corresponding baseline model
was performed. We performed a similar t-test between Panoptes with and without the additional
convolutional layer as well as between Panoptes with and without the fourth branch of patients’
BMI and age. Statistical analyses and plotting codes were written in R3.6 and Python3.

Feature Visualization Based on Tiles

For models with per-patient level AUROC above 0.75 of the test set, we randomly sampled
20000 tiles (tile sets for Panoptes) together with their feature maps before the last fully
connected layer in the model, in which each tile or tile set is represented as a 1-dimensional
vector. We then used tSNE with initial dimensions of 100 to reduce these 20000 vectors into 2-
dimensional space where each point represents a tile or tile set. Generally, points clustered
according to their predicted class. By replacing the points on tSNE plots with the original tiles,
the features learned by the model for each of the specific class can be observed. We asked
experienced pathologists to summarize the typical histological features in each of these
clusters.

Whole Slide Prediction
We built an implementation pipeline that could apply trained models to whole H&E slides and
output predictions as heatmaps. The heatmaps could be overlaid on the original slides, which
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showed the prediction results of different areas. The maximum prediction resolution (each cell of
the heatmap) is 299 by 299 pixel at 10x resolution level. Depending on the size of the H&E
slides, the time of predicting an intact H&E slides can range from 2 to 40 minutes. The average
speed of prediction with Panoptes models is 22 tile-sets per second, or 1310 tile-sets per
minute.

Computational Resources and Code Availability

3 types of GPUs, NVIDIA Tesla P40, V100, and Quadro P6000 were used to train the models.
We also used the NYU Prince HPC and NYU BigPurple HPC facilities for this project. The
model training and testing codes were solely written in Python3 with Tensorflow 1.13 and they
are compatible with Tensorflow 2. Statistical analyses and plotting codes were written in R3.6
and Python3. The analytic codes are available on GitHub in the following link:
https://github.com/rhong3/CPTAC-UCEC. The Panoptes codes with user interface are available
on Github in the following link: https://github.com/rhong3/Panoptes. The Panoptes Python3
package version is on PyPI with the following link: https://pypi.org/project/panoptes-he/
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Supplementary Fig.1 | Data summary. a, Number of patients and composition of true labels in
each task. b, Number of slides per patient in the cohort. ¢, Coefficient of colligation between
subtypes and mutations. d, dimensions of slides in pixel (black: height; grey: width). e, f, g,
Number of tiles per slide at 10X (e), 5X (f), and 2.5X (g) equivalent resolution.
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Supplementary Fig.2 | Two data split methods (a) and AUROCSs achieved for Panoptes
and baseline models on each prediction tasks using mixed random data split (b, ¢) and
cohort independent data split (d, e) at per-patient and per-tile level. P represents Panoptes,
PC represents Panoptes with clinical features, | represents Inception, and IR represents
InceptionResnet.
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Supplementary Fig.3 | Comparisons of AUC between architectures on the top eight
prediction tasks. a, b, 1-tail t-test of per-patient (a) and per-tile (b) AUROC between
InceptionResnetV1 (light) and Panoptes1 (dark) of the top eight tasks. ¢, d, 1-tail t-test of per-
patient (¢) and per-tile (d) AUROC of Panoptes2 (light) and Panoptes4 (dark) of top eight tasks.

e, f, Bootstrapped per-patient (e) and per-tile (f) 1-tail t-test of AUROC of Panoptes2 (light) and
Panoptes2 with clinical features (dark) of top eight tasks.
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Supplementary Fig.5 | Whole slide predictions with color representing positive prediction
scores. a, Slide from a MSI-High (positive) patient using a Panoptes1 model. b, Slide from a
PTEN wild-type (negative) patient using a Panoptes2 model. ¢, Slide from a FAT1 mutated
(positive) patient using a Panoptes3 model. d, Slide from a TP53 mutated (positive) patient

using a Panoptes2 model. e, Slide from a ZFHX3 mutated (positive) patient using a Panoptes1
model.
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Supplementary Fig. 6 | Side-by-side comparisons of AUROC between the Panoptes
models in mixed random split trials and independent cohort split trials. Per-patient and
per-tile level AUROC of Panoptes1 (a, b), Panoptes2 (c, d), Panoptes3 (e, f), and Panoptes4
(g, h) models in each task with mixed random data split (dark grey) and the cohort independent
data split (light grey).
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