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Abstract  30 

Although genome-wide DNA methylomes have demonstrated their clinical value as reliable 31 

biomarkers for tumor detection, subtyping, and classification, their direct biological impacts at 32 

the individual gene level remain elusive. Here we present MethylationToActivity (M2A), a 33 

machine learning framework that uses convolutional neural networks to infer promoter activities 34 

(H3K4me3 and H3K27ac enrichment) from DNA methylation patterns for individual genes. 35 

Using publicly available datasets in real-world test scenarios, we demonstrate that M2A is highly 36 

accurate and robust in revealing promoter activity landscapes in various pediatric and adult 37 

cancers, including both solid and hematologic malignant neoplasms.  38 

Keywords: 39 

DNA methylation, histone modifications, convolutional neural network, transfer learning 40 

 41 
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Transcriptional regulation is fundamental to the identity and function of cells. Deregulation of 43 

gene expression is a defining feature of common diseases, including cancers. Promoters, the 44 

regulatory regions surrounding the transcription starting sites (TSSs), integrate signals from 45 

distal enhancers and local histone modifications (HMs) to initiate transcription. Almost half of 46 

human protein-coding genes harbor multiple TSSs; consequently, promoter activities determine 47 

both the level of transcription and the transcript isoforms that are expressed, with the latter 48 

potentially having different translation efficiencies and encoding different protein sequences [1]. 49 

Tumors frequently use alternative promoters to increase the isoform diversity [2, 3], to activate 50 

oncogenes that are normally repressed [1-3], and to evade host immune attacks by 51 

immunoediting [3, 4]. Compared to cancers in adults, pediatric tumors harbor fewer mutations [5, 52 

6] and use epigenetic deregulation to promote tumorigenesis and progression [7]. 53 

Promoter activities can be determined experimentally through transcriptomic approaches, 54 

such as CAP analysis gene expression (CAGE), or through epigenomic approaches, including 55 

chromatin immunoprecipitation followed by sequencing (ChIP-seq) [8]. Because of transcript 56 

degradation by 5′ RNA exonucleases, ChIP-seq approaches for specific HMs have been the 57 

gold standard for studying promoter activities [9]. Several studies [10-12] have demonstrated 58 

that HMs and other epigenetic features can be used to predict gene expression. Using a linear 59 

regression model, Karlić et al. show that approximately 50%–60% of the variation in gene 60 

expression can be accounted for, and that ~50% of the variation in gene expression can be 61 

modeled by promoter H3K27ac enrichment alone [10]. Subsequent work by Dong et al. further 62 

explained 69% of gene expression variance using a hybrid random forest/linear regression 63 

model with features derived from 11 HMs, one histone variant, and DNase I hypersensitivity  64 

[11]. More recently, Singh et al. used deep-learning models on five HMs to predict gene 65 

expression status (high/low) and achieved an average AUC of 0.80 [12]. However, the scarcity 66 

of pediatric tumors, the limited amounts of fresh starting material available, and the 67 
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extensive workload involved in acquiring the promoter activity landscapes constrain their 68 

interrogation for individual patient tumors [13, 14]. 69 

DNA methylation (DNAm) is a well-studied, relatively stable, and inheritable epigenetic 70 

regulatory mechanism that involves transferring a methyl group to cytosine (C) to form 5-71 

methylcytosine (5mC), mostly in the CpG context. In contrast to HMs, DNAm can be accurately 72 

and robustly profiled in various tissues, including archival formalin-fixed, paraffin-embedded 73 

(FFPE) tumor samples, through both array [15, 16] and sequencing [17] platforms; therefore, it 74 

has exceptional applicability to studying epigenetic deregulation in tumors. Consequently, 75 

genome-wide DNAm profiles represent a widely available epigenetic asset for studying 76 

epigenetic abnormalities in primary tumors.  77 

The DNAm pattern is mechanistically connected with transcription factor binding and HMs 78 

[18-25]. It also plays critical roles in establishing the chromatin structure in physiologic and 79 

pathologic conditions [26, 27]. Moreover, recent applications of machine learning to genome-80 

wide DNAm patterns have demonstrated that DNAm can accurately predict the patterns of 81 

chromatin packaging (A/B compartments, the square of the Pearson correlation coefficient R2 = 82 

0.50–0.66) [28-30] and can reveal distinct subgroups with prognostic significance among 83 

patients with cancer [31, 32]. Recently, DNAm signature–based molecular classifiers were 84 

shown to improve diagnostic accuracy, as compared to that of traditional schemes, further 85 

demonstrating the critical regulatory roles of DNAm in tumor development [33, 34]. However, 86 

unlike HMs, where established biological interpretations of various marks have resulted in a 87 

general “histone code” hypothesis [35, 36], the relation between DNAm signatures and their 88 

transcriptional regulatory roles is complex and nonlinear. In many cases, even promoter DNAm 89 

may positively and negatively correlate with gene expression depending on the genomic 90 

structure involved in a given tumor [37]. Consequently, with few exceptions (e.g., 91 

hypermethylation of the promoters of RB1, CDKN2A, and MGMT) [38], the contribution of 92 
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DNAm to the regulation of expression of individual genes remains largely elusive [39-41]. 93 

Recent attempts to use DNAm signatures to account for gene expression levels have had 94 

limited success, with the best model  (binomial distribution probit regression [BPR] model) 95 

capturing 25%–49% of the expression variations [42]. Undoubtedly, the lack of interpretability 96 

of the DNAm pattern at the individual gene level has severely hampered our understanding of 97 

the biological significance of DNAm signatures. 98 

To address these challenges, we have developed MethylationToActivity (M2A), a deep-99 

learning framework. The central hypothesis of M2A is that the complex relation between DNAm 100 

signatures and promoter activities (measured as H3K4me3 and H3K27ac enrichment in the 101 

TSS ± 1 kb region) can be captured by incorporating both summary statistics extracted from 102 

window-based CpG methylation levels and high-order spatial information from these windows in 103 

the promoter and flanking regions (up to 25 kb from the TSS). Using a cohort of six pediatric 104 

neuroblastoma (NBL) orthoptic patient-derived xenograft (O-PDX) samples profiled in the 105 

Pediatric Cancer Genome Project (PCGP) [43], we trained the model using whole-genome 106 

bisulfite sequencing (WGBS) data to predict the enrichment of H3K4me3 and H3K27ac (two 107 

HMs critical for promoter [10]) for genome-wide annotated promoters. We validated the 108 

predictive accuracy of the model in the remaining NBL samples (N�=�10, WGBS) from the 109 

same cohort. We further confirmed its accuracy and generalizability in diverse tumor types from 110 

four publicly available datasets representing real-world applications, including (1) pediatric 111 

rhabdomyosarcoma (RMS) O-PDX tumors profiled in the Pediatric Cancer Genome Project 112 

(N�=�16, WGBS) [44]; (2) a set of commonly used cell lines profiled in ENCODE (N�=�9, 113 

WGBS) [45]; (3) primary acute myeloid leukemias (AMLs) profiled by the BLUEPRINT 114 

consortium (N�=�19, WGBS) [46]; and (4) a large primary Ewing sarcoma (EWS) cohort using 115 

reduced representation bisulfite sequencing (RRBS) (N�=�140) [22]. These 116 

applications demonstrate that M2A can accurately reveal promoter activities from DNAm 117 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.06.09.143172doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.143172
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

6 

 

patterns, which will be of great use not only in functionally interpreting differential DNAm 118 

patterns but also in profiling promoter usage in individual patient tumors. This will facilitate 119 

precision medicine by tailoring treatments based on both genetic variants and epigenetic 120 

deregulations. 121 

 122 

Results 123 

Extensive diversity of promoter activity among MYCN-amplified NBL cell lines 124 

and O-PDX models 125 

To date, most cancer HM profiling studies have made use of tumor models, including cell 126 

lines, xenografts, and more recently, organoids. Technical limitations and challenges when 127 

working with human tumor tissues prevent the generation of high-quality ChIP-seq profiles for 128 

primary patient specimens [47]. Despite the documented epigenetic heterogeneity [48], a 129 

common practice in deciphering major HM deregulations in various cancers is to extrapolate the 130 

epigenetic profiles from related cancer models (surrogate models). Many studies [43, 44, 49-52] 131 

have compared model systems to primary tumors with respect to characteristics such as 132 

mutations, gene expression, and DNAm signatures. In this study, we began by evaluating the 133 

level of promoter activity diversity in closely related NBL models. Specifically, we evaluated 134 

promoter activity, as measured by the H3K27ac level, in three O-PDX models (SJNBL046, 135 

SJNBL108, and SJNBL013763) and three cell line models (IMR-32, NB-5, and SKNBE2) that 136 

harbor MYCN amplification with no other major oncogenic mutations. All samples displayed a 137 

bimodal distribution of promoter H3K27ac levels across the genome (Additional file 1: Figure 138 

S1), and O-PDX models had a marginally higher fraction of active promoters (mean: 31.9%, 139 

range: 27.6%–36.1%) than did cell line models (mean: 26.1%, range: 25.6%–26.7%) 140 

(P�=�0.14, Student’s t-test). However, there were extensive variations in the promoter 141 
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activities in both the cell line models (Figures 1a and 1d) and the O-PDX models (Figures 1b 142 

and 1e). Moreover, greater divergence was observed between a cell line model and an O-PDX 143 

model (mean: 34.9%, range: 29.9%–39.0%) than between two cell line models (mean: 31.0%, 144 

range: 29.2%–32.1%; P�=�0.44, Student’s t-test) or between two O-PDX models (mean: 145 

31.0%, range: 22.9%–37.0%; P�=�0.02, Student’s t-test) (Figure 1f). Variations in promoter 146 

activity may play a significant role in the transcriptional deregulation of individual tumors, as a 147 

substantial fraction of established cancer consensus genes (22.4% in O-PDX models and 31.1% 148 

in cell line models, including APOBEC3B, TGFBR2, PAX7, HOXA11, PDCD1LG2, PTK6, 149 

BCL11B, FAS, and MYC; (Additional file 2: Table S1) displayed heterogeneous promoter 150 

activities in the surveyed tumor models. Therefore, we sought to develop a computational 151 

approach to infer the promoter activity landscape for individual tumors. 152 

 153 

M2A: a deep-learning framework to reveal promoter activities from DNA 154 

methylation 155 

DNAm plays a critical role in determining the framework of gene expression for a given 156 

cell/cellular state. However, the highly complex and non-linear relations between DNAm 157 

patterns and HMs severely hamper the interpretability of the biological impact of differential 158 

DNAm patterns. Previous studies have shown the usefulness of extracting higher-order 159 

methylation features [42], for predicting gene expression. Moreover, recent studies applied 160 

deep-learning approaches to infer DNAm states from their local sequence composition and 161 

adjacent DNAm states [53]. We hypothesize that these high-level DNAm features (that capture 162 

the spatial information from DNAm patterns in the promoter and regions in its vicinity) could also 163 

provide an opportunity to infer promoter activities such as H3K27ac and H3K4me3 enrichment 164 

accurately. We propose to use a convolutional neural network (CNN)–based deep-learning 165 

framework to extract such features.  166 
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The M2A conceptual framework and workflow is shown in Figure 2. M2A starts with raw 167 

DNAm feature extraction from around individual TSSs (Figure 2a). This is followed by high-level 168 

feature extraction through the CNN layers and mapping between the generalized feature and 169 

the final output (i.e., the H3K4me3 and H3K27ac of the promoter) in the fully connected (FC) 170 

layers. The vanilla model described in this report was trained on six NBL PDX tumors 171 

(SJNBL046_X, SJNBL013761_X1, SJNBL012401_X1, SJNBL013762_X1, SJNBL013763_X1, 172 

and SJNBL015724_X1; Figure 2b) for which comprehensive genomic and epigenomic profiling 173 

data are available, including the results of whole-genome sequencing, whole-exome sequencing, 174 

RNA sequencing,  WGBS, and ChIP-seq of eight histone marks (H3K4me1, H3K4me2, 175 

H3K4me3, H3K27me3, H3K27ac, H3K36me3, H3K9/14ac, and H3K9me3), CTCF, BRD4, and 176 

RNA polymerase II (PolII). 177 

We started with an analysis of the information content in DNAm patterns by examining the input 178 

feature distribution in different windows, among active (high H3K27ac), poised (high H3K4me3 179 

and low H3K27ac), and inactive promoters (low H3K4me3 and low H3K27ac) in the six NBL O-180 

PDX training samples. These features show distinct patterns among the three promoter 181 

categories (Additional File 1: Figure S2), indicating the feasibility of modeling promoter activities 182 

from DNAm patterns.  Although the interpretability of CNN extracted features remains an active 183 

field of research in deep-learning [54], we examined the efficacy of CNN extracted features in 184 

modeling the promoter activities. We first compared the square of Pearson’s correlation (R2) 185 

between each feature (both raw input and CNN extracted features) and the response variable 186 

(H3K27ac) in the training set, The analysis revealed that CNN-extracted features have 187 

significantly higher R2 with the response (250 bp: P = 1.5 ×�10−11, 2500 bp P = 3.9 ×�10−5, 188 

Wilcoxon signed-rank test, Additional File 1: Figure S3). We further evaluated the best features 189 

for both raw input and CNN-extracted features in the validation samples and again the CNN-190 
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extracted features significantly outperformed the raw input features (250 bp: P = 1.1 ×�10−5, 191 

2500 bp P = 1.1 ×�10−5, Wilcoxon signed-rank test, Additional File 1: Figure S3).  192 

M2A produces a highly accurate landscape of promoter activity in pediatric NBL 193 

To evaluate the performance of M2A, we first explored its performance in the remaining NBL 194 

samples in the cohort (the validation set), including one O-PDX tumor, one primary autopsy 195 

tumor, and eight cell lines. Using the validation set, we compared the performance of the M2A 196 

framework of three CNN layers and two FC layers (Figure 2) with three frequently used 197 

statistical and machine learning approaches (baseline models), namely multivariate adaptive 198 

regression splines (MARS), random forest, and artificial neural network (ANN) consisting of only 199 

two FC layers. In every instance, the M2A framework outperformed baseline models (Additional 200 

file 2: Table S2). From a qualitative perspective, M2A correctly revealed the bimodal distribution 201 

of the promoter activities for both H3K4me3 and H3K27ac in all samples, and from a 202 

quantitative perspective, the inferred genome-wide promoter activity landscape was 203 

highly accurate for individual samples for both H3K4me3 (R2 = 0.933�±�0.019; RMSE = 204 

0.621�±�0.072) (Figures 3a and 3d) and H3K27ac (R2 = 0.799�±�0.053; RMSE = 205 

0.644�±�0.074) (Figures 3b, and 3c). Moreover, the addition of CNN layers was merited, as 206 

there was a decrease in the prediction error (measured as 1�−�R2) from the next highest 207 

performer by 17.8% (P�=�0.0020, Wilcoxon signed-rank test) and 12.4% (P�=�0.0020, 208 

Wilcoxon signed-rank test) for the model topologies for H3K4me3 and H3K27ac, respectively 209 

(Additional file 2: Table S2).  210 

Our analysis of MYCN-amplified NBL cell line and O-PDX models has revealed substantial 211 

variations in their promoter activities, which is a potential caveat to the practice of surrogate 212 

model (representing primary tumor epigenomes by a few profiled models). Conversely, 213 

M2A produced highly accurate promoter activity landscapes, significantly outperforming the 214 

observed consistency between training and testing samples for both H3K4me3 (R2 = 215 
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0.891�±�0.023, P�=�2.3�×�10−5, Wilcoxon rank-sum test) and H3K27ac (R2 = 216 

0.720�±�0.045, P�=�9.5�×�10−5, Wilcoxon rank-sum test; Additional file 2: Table S3). 217 

Remarkably, in nine (of 10) test samples, the accuracy of the M2A-inferred promoter H3K27ac 218 

activity was better than the highest similarity attained by any individual training sample 219 

(P�=�0.027, Wilcoxon signed-rank test). The same pattern was observed for H3K4me3 levels, 220 

with M2A being more accurate for nine of 10 samples (P�=�0.037, Wilcoxon signed-rank test), 221 

demonstrating the accuracy of M2A in revealing individual tumor promoter activity landscapes. 222 

Finally, the predictive accuracy of M2A was comparable to the experimental consistency 223 

observed between replicates from the same cell lines profiled in ENCODE for H3K4me3 (R2 224 

= 0.933�±�0.018 for M2A vs. 0.922�±�0.056 for ENCODE replicates [N�=�25]; P�=�0.55, 225 

Wilcoxon rank-sum test) (Figure 3a; Additional file 2: Table S4). The accuracy of M2A also 226 

approached the replicate consistency for H3K27ac (R2 = 0.799�±�0.050 for M2A vs. 227 

0.849�±�0.047 for ENCODE replicates [N�=�26]; P�=�0.0078, Wilcoxon rank-sum test) 228 

(Figure 3b: Additional file 2: Table S4). Measurement of the root mean square error (RMSE) 229 

revealed a similar pattern (Additional file 2: Table S4). 230 

 231 

M2A is generalizable and scalable 232 

Aside from the model accuracy, there are two additional requirements with practical importance 233 

for deploying a machine learning model (such as M2A) in real-world applications: (1) 234 

generalizability, i.e., M2A needs to achieve a similar performance with a set of unseen test 235 

samples, including tumor/tissue types not used in the model training; and (2) 236 

scalability, i.e., M2A must be able to be applied efficiently to external data.  237 

We first demonstrated the accuracy, generalizability, and scalability of M2A by 238 

using test samples from rhabdomyosarcoma (RMS) O-PDX tumors. The RMS O-PDX dataset 239 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.06.09.143172doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.143172
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

11 

 

consists of 16 pediatric RMS tumors (11 embryonal, four alveolar, and one spindle subtype, 240 

termed ERMS, ARMS, and spindle subtypes, respectively). As with the NBL cohort, each RMS 241 

sample was extensively profiled, including by WGBS, RNA-seq, and ChIP-seq of H3K4me3 and 242 

H3K27ac. Using the vanilla M2A model (the 3CNN-FC model trained on the six NBL PDX 243 

samples), M2A achieved an overall predictive accuracy with the RMS dataset that was 244 

comparable to that of the NBL test group for both H3K4me3 (R2 = 0.937�±�0.017, P = 0.30; 245 

RMSE = 0.639�±�0.119, P = 0.82, Wilcoxon rank-sum test) (Figures 3a and 3f; Additional file 2: 246 

Table S5) and H3K27ac (R2 = 0.790�±�0.037, P�=�0.44; RMSE = 0.589�±�0.084, P = 0.058, 247 

Wilcoxon rank-sum test) (Figures 3b and 3e; Additional file 2: Table S5), which was comparable 248 

to or significantly outperformed the observed similarities between two different RMS tumors for 249 

H3K4me3 (R2 = 0.917�±�0.028, P�=�0.0020; RMSE = 0.646�±�0.133, P = 0.64, Wilcoxon 250 

rank-sum test) and H3K27ac (R2
�=�0.780�±�0.066, P�=�0.43; RMSE = 0.550�±�0.095, P = 251 

0.14, Wilcoxon rank-sum test). The accuracy of the inferred H3K4me3 activity was comparable 252 

to the inter-replicate consistency of the ENCODE samples (P�=�0.83, Wilcoxon rank-sum test). 253 

By definition, generalizability can be achieved only in the absence of over-fitting (or 254 

“memorization” of the training data). Neural networks often fall victim to this problem through a 255 

combination of factors, including relatively small training datasets and/or over-parameterization. 256 

The relatively consistent expression of housekeeping genes across different tissues may lead to 257 

an inaccurate (often inflated) interpretation of the performance measurement in such a model, 258 

as evidenced by the relatively high R2 value (0.663�±�0.040) between the promoter H3K27ac 259 

level of a random RMS test tumor and the most similar NBL training tumor (Additional file 1: 260 

Figure S4a). Therefore, we focused on the set of genes that are differentially expressed (DE) in 261 

RMS and NBL PDX samples [51], for which an over-fitted or memorized model would perform 262 

poorly. Not surprisingly, the average correlative consistency between the NBL validation 263 

samples and the most similar NBL training sample dropped from 0.755 to 0.599 when the 264 
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measurement was restricted to promoters encoding the DE genes (Additional file 1: Figure S4b), 265 

whereas a sharp decline (from 0.663 to 0.259) was also observed for RMS test tumors 266 

(Additional file 1: Figure S4b). Conversely, the six-PDX NBL-trained M2A model maintained 267 

high accuracy for promoters of DE genes in both the NBL validation set (R2 = 0.729�±�0.071 268 

and the RMS test set (R2 = 0.715�±�0.044) (Additional file 1: Figure S4b), further 269 

demonstrating the generalizability of M2A. 270 

M2A is efficient and scalable. For a local implementation of M2A (source code, built models 271 

and a Docker image available at https://github.com/chenlab-sj/M2A), the training of the vanilla 272 

M2A model (with six NBL O-PDX tumors) takes approximately 16 min (using a Tesla P100-273 

16GB GPU). The feature extraction and promoter activity prediction from WGBS data (as a 274 

genome-wide DNAm level file in a tab-delimited text format) can be executed on a personal 275 

computer (in this case, we used a MacBook Air with a 2.2-GHz Intel Core i7 and 8-GB 1600-276 

MHz DDR3 RAM) and takes 15–19 min. Moreover, we have implemented a cloud version of 277 

M2A (https://platform.stjude.cloud/workflows/methylation-to-activity), available to the general 278 

research community. 279 

 280 

Transfer learning further improves the performance of M2A with minimal 281 

additional input in the target domain. 282 

Although we have demonstrated the generalizability of M2A in the RMS dataset, the fact that 283 

epigenetic genes are frequently mutated in pediatric tumors [7] raises the possibility that 284 

individual tumor types carry a type-specific interpretation of the DNAm patterns. When ChIP-seq 285 

measurement is available for sufficient samples, a type-specific model is desirable. However, 286 

although pediatric solid tumors as a group constitute a rare disease, they comprise many 287 

different tumor types, and it is rare to have sufficiently profiled samples available for many of 288 
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them. In addressing this challenge, we hypothesize that a fixed feature-extraction strategy 289 

(transfer learning) can achieve the goal of deriving an efficient tumor type–specific model by 290 

using a small labeled dataset. A primary assumption here is that generalized features extracted 291 

based on a large dataset are similarly informative for apparently different tasks. The feature 292 

learning and selection characteristics of CNNs provide exceptional portability in various tasks 293 

with extremely small labeled datasets. 294 

In M2A, the CNN layers capture generalized DNAm features and the FC layers learn the 295 

mapping function between the DNAm features and the promoter activities. Here we start with 296 

the pretrained vanilla M2A model, fix the feature-extraction layers (CNN layers), and use a 297 

single sample from the target tumor type to update the mapping function (the weights and 298 

biases of the FC layers). Because the consistency of M2A for H3K4me3 approached the inter-299 

replicate consistency in both NBL and RMS datasets, we focused on H3K27ac inference for 300 

transfer learning. Upon performing transfer learning with a single sample in the RMS dataset, 301 

we observed significantly improved accuracy (R2 = 0.813�±�0.038, P�=�3.1�×�10−5, 302 

Wilcoxon signed-rank test) (Figures 3b, 3g, and 3h; Additional file 2: Table S5). Moreover, this 303 

model significantly outperformed a single RMS sample model with the identical model 304 

architecture, in which both the CNN layer and the FC layers were derived from the RMS training 305 

sample (P�=�9.2�×�10−5, Wilcoxon signed-rank test) (Additional file 1: Figure S5; Additional 306 

file 2: Table S6) and marginally outperformed the observed similarities between different RMS 307 

tumors (P�=�0.053, Wilcoxon rank-sum test). This analysis demonstrated the value of both the 308 

pretrained CNN layers for general feature extraction and a single profiled sample in the target 309 

domain. Consequently, we applied transfer learning to both the EWS and AML datasets. 310 

However, transfer was not feasible in the ENCODE dataset because those cell lines were 311 

derived from different tissues.  312 

 313 
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M2A accurately reveals promoter activity landscapes in adult tumors and in 314 

hematologic malignant neoplasms 315 

We next evaluated the performance of M2A in independently collected datasets, including ones 316 

for adult tumors and hematologic malignant neoplasms. Upon analyzing nine ENCODE cell 317 

lines, we found that differences in antibody usage and experimental protocols between the 318 

ENCODE and NBL datasets resulted in different signal-to-noise profiles (Additional file 1: Figure 319 

S6), with higher RMSE values between the model predictions and the actual observations 320 

(H3K4me3: 0.961�±�0.238, P�=�.0019; H3K27ac: 0.918�±�0.188, P�=�2.6�×�10−4, 321 

Wilcoxon rank-sum test). However, the predicted activities remained highly correlated with the 322 

experimental measurements (H3K4me3: R2 = 0.895�±�0.027; H3K27ac: R2 = 0.680�±�0.149) 323 

(Additional file 1: Figure S7). Although the accuracy of H3K4me3 was relatively uniform, H1-324 

ESC and SK-N-SH were outliers with a substantially lower accuracy of H3K27ac inference (by 325 

the boxplot-based method [55]) (Additional file 2: Table S4; Additional file 1; Figure S8a). An 326 

investigation of the promoter activity (the measured and inferred H3K27ac levels) and the 327 

measured gene expression in H1-ESC revealed that a subset of actively transcribed genes 328 

showed little or no H3K27ac levels in their promoters, where M2A inferred relatively strong 329 

promoter activity (Additional file 1: Figure S8b). Consequently, the inference of promoter activity 330 

by M2A outperformed the actual measurement in terms of both the quantitative consistency with 331 

the gene expression level (R2 = 0.536 for the M2A-inferred H3K27ac level vs. 0.435 for the 332 

measured H3K27ac level) (Additional file1: Figures S8b and S8c) and the accuracy in predicting 333 

expressed genes (AUC = 0.891 for the M2A-inferred H3K27ac level and 0.881 for observed 334 

H3K27ac level) (Additional file 1: Figure S9d). We also observed a small fraction of inferred 335 

active promoters without strong expression; these may represent genes subject to 336 

transcriptional pausing (where transcription is initiated but there is no elongation), a distinctive 337 
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feature of undifferentiated stem cells [56]. Similarly, better consistency with gene expression 338 

levels was observed in SK-N-SH (Additional file 2: Table S7).  339 

We further evaluated the performance of M2A in revealing promoter activities in 19 acute 340 

myeloid leukemia (AML) primary patient samples collected by the BLUEPRINT consortium, 341 

which is part of the International Human Epigenome Consortium (IHEC) [46]. Analyses of 342 

observed promoter activity (measured by H3K27ac level) and gene expression (measured in 343 

fragments per kilobase of transcript per million mapped reads [FPKM]) in the same sample 344 

revealed non-uniform qualities with a wide range of consistency (mean R2 = 0.539, range: 345 

0.178–0.720) (Additional file 2: Table S8). Similarly, the M2A-inferred promoter activity 346 

landscape displayed substantial variability with respect to the observed activities among these 347 

samples (mean R2 = 0.473, range: 0.031–0.729). Strikingly, the consistency between the 348 

observed promoter activity and gene expression was highly predictive of the performance of 349 

M2A with individual samples (R2 = 0.975, P = 4.1�×��10−15, Pearson’s correlation test) 350 

(Additional file 1: Figure S10). Finally, although gene expression was not used in model 351 

generation with M2A (for the vanilla model or the transfer learning step), the promoter activity 352 

inferred by M2A showed uniform consistency with gene expression (mean R2 = 0.628, range: 353 

0.541–0.684) (Additional file 2: Table S8).These results jointly suggest that the ChIP-seq library 354 

quality is a potential confounding factor for both the consistency between the observed (from 355 

ChIP-seq) and the M2A-inferred promoter activity landscapes and the consistency between the 356 

observed promoter activity and gene expression in these samples. 357 

 358 

Promoter activity landscape inferred by M2A faithfully recapitulates the subtype 359 

difference between embryonal and alveolar rhabdomyosarcomas 360 
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Identifying recurrent epigenetic deregulations (epi-drivers) is a primary research focus in cancer 361 

epigenome studies [57]. To this end, we investigated whether subtype-specific epigenetic 362 

deregulation was captured in M2A-revealed promoter landscapes in the RMS O-PDX tumors. A 363 

t-SNE embedding using M2A-inferred promoter activity landscapes (from the NBL-trained model) 364 

recapitulated the clear separation of ARMS and ERMS tumors (Figure 4a) in the DNAm profiles 365 

(data not shown), which further demonstrates the generalizability of the CNN-extracted high-366 

order DNAm features. Importantly, when focusing on the promoters of DE genes in the ARMS 367 

and ERMS subtypes, the vanilla M2A model faithfully retained the subtype-specific promoter 368 

activity patterns (R2 = 0.713 for DE genes with a single annotated promoter; 0.621 when all 369 

annotated promoters for DE genes were included) (Additional file 1: Figures S11a and S11c). 370 

Transfer learning using data from a single RMS further improved the consistency (R2
�=�0.758 371 

and 0.673, respectively) (Additional file 1: Figures S11b and S11d). 372 

GAS2 is a gene selectively expressed in ERMS [44]. Although promoter hypomethylation 373 

was found in the ARMS tumors, the M2A model correctly predicted significantly stronger 374 

promoter activities in ERMS tumors (P�=�0.01, Wilcoxon rank-sum test) (Figures 4b and 4d). 375 

Similarly, although both ERMS and ARMS tumors had NOS1-005 promoter hypomethylation, 376 

strong promoter activity was predicted in ARMS tumors only (P�=�0.0015, Wilcoxon rank-sum 377 

test) (Figures 4c and 4e), consistent with the ChIP-seq measurement.  378 

 379 

M2A reveals the contribution of differentially methylated regions to promoter 380 

activities 381 

Although DNA methylation patterns, including differentially methylated regions (DMRs), are well-382 

established biomarkers for diverse diseases and have revealed molecularly and clinically 383 

different subtypes for many cancers, their functional importance in individual gene regulation is 384 

less clear [39-41]. For example, many cancer-specific CpG island hypermethylation regions 385 
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occur in genes that normally are not expressed or are expressed at only a low level [58]. 386 

Moreover, even in genes that are both differentially expressed and differentially methylated in 387 

different subtypes, up-regulated samples can be associated with hypomethylation, 388 

hypermethylation, or both [37, 44]. The observed nonlinear relation between DNA methylation 389 

and gene expression complicated the functional interpretation of specific DMRs. In this analysis, 390 

we interpret the functional roles of DMRs based on the promoter activities of their associated 391 

DE genes. 392 

To summarize unambiguously the contribution of DMRs to differential promoter activities, we 393 

focused on 371 genes in ERMS and ARMS that have a single annotated promoter and that are 394 

both differentially expressed (197 are over-expressed in ERMS, 172 are over-expressed in 395 

ARMS) and differentially methylated (169 are hypomethylated, 128 are hypermethylated, and 74 396 

have both hypomethylation and hypermethylation) in the two major RMS subtypes (Additional 397 

file 2: Tables S9 and S10) [44]. Among these genes, 140 promoters showed significantly higher 398 

H3K27ac measurements in the over-expressed subtype (FDR < 0.1, Wilcoxon rank-sum test), 399 

whereas 206 promoters had measurements that were significantly higher when the DNAm-400 

based H3K27ac activity was measured. These 206 promoters included 118 of the 140 401 

promoters identified using the observed signals. These results suggest that M2A can reveal the 402 

role of DMRs in modulating the promoter activities of affected genes in a context-specific 403 

manner. 404 

 405 

M2A identifies subtype-specific promoter usage encoding different protein 406 

isoforms in rhabdomyosarcoma 407 

Alternative promoter usage is an important pretranslational mechanism for tissue-specific 408 

regulation as it affects the diversity of isoforms available. Recently, light was shed on the 409 
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pervasiveness of alternative promoter usage in cancer; in some cases, promoter usage is a 410 

more accurate reflection of patient survival than is gene expression [2]. Among 10,835 active 411 

genes with multiple annotated promoters in the RMS dataset, we found 2,584 genes (24%) with 412 

alternative primary promoter usage among 16 samples. We focused on 562 genes that 1) were 413 

active in both the ERMS and ARMS subtypes and 2) had subtype-specific promoter usage. We 414 

explored the accuracy of M2A in predicting alternative promoter usage in ARMS and ERMS 415 

(Additional file 2: Table S11). 416 

Based on measured promoter activities, 428 genes exhibited significant usage difference 417 

between the two subtypes (FDR < 0.1, Wilcoxon rank-sum test [used as the ground truth]). The 418 

M2A-inferred promoter activity landscape revealed 276 genes for which there was a significant 419 

difference in promoter usage between the subtypes (FDR < 0.1, Wilcoxon rank-sum test), and 420 

210 of them matched the ground truth (precision = 0.76, recall = 0.49, F1 score = 0.60) 421 

(Additional file 2: Table S11). 422 

PDZ Domain Containing Ring Finger 3 (PDZRN3) is a known target of the PAX3/7–FOXO1 423 

fusion protein [59-61], which blocks terminal differentiation in myogenesis [62]. M2A predicted a 424 

subtype-specific promoter usage pattern in PDZRN3. Functional studies have shown that 425 

PDZRN3 regulates myoblast differentiation into myotubes through transcriptional and 426 

posttranslational regulation of Id2 [62]. Its over-expression in ARMS was primarily driven by the 427 

fusion protein binding adjacent to an alternative promoter (PDZRN3-006) located 191 kbp 428 

downstream of the canonical promoter (PDZRN3-001) (Figure 5a). The subtype-specific isoform 429 

usage is accompanied by DMRs of the alternative promoter and its immediate downstream 430 

regions and is further confirmed by RNA-seq read alignment (Figure 5a). Compared to the 431 

canonical isoform expressed in ERMS, the ARMS-preferred PDZRN3-006 isoform lacks the 432 

RING-finger and Sina domains in the N-terminus and harbors a shorter PDZ domain. The 433 

isoform difference, as well as the differences in expression level, between subtypes may 434 
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contribute to the impairment of myogenesis at different stages in the development of ARMS and 435 

ERMS tumors. 436 

 437 

M2A identifies alternative promoter usages with potential prognostic values in 438 

Ewing sarcoma 439 

We next examined the predicted epigenetic promoter activities in 140 EWS samples with DNAm 440 

data assayed by RRBS [22]. Three of these samples had matching ChIP-seq profiles for 441 

H3K4me3 and H3K27ac. To interrogate this dataset, we applied the pretrained vanilla model 442 

with transfer learning, as detailed above, to recalibrate the weights mapping the high-level 443 

features to the promoter activities in the EWS cohort. Despite the difference in DNAm platforms 444 

(WGBS for the NBL training model and RRBS for the EWS samples), the inferred promoter 445 

activity landscape was accurate (R2 = 0.718, 0.628, and 0.702 for the three samples with HM 446 

profiles, using leave-one-out prediction) (Additional file 2: Table S12).  447 

Ewing sarcomas with mutations in TP53 and STAG2 have a particularly dismal prognosis 448 

[63]. We explored whether the promoter activity had additional prognostic value in 72 samples 449 

for which survival data was available. Because of the limited sample size, the initial analysis 450 

revealed a significant association between poor clinical outcomes and TP53 mutations 451 

(P�=�0.00047, log-rank test) (Additional file 1: Figure S12a) but not STAG2 mutations 452 

(P�=�0.67, log-rank test) (Additional file 1: Figure S12b). We identified 21 active genes that 453 

showed a potential difference (absolute mean difference of log-scaled activity ≥ 1) between 454 

TP53 mutant tumors and wild-type tumors, and we applied Cox proportional hazards models to 455 

evaluate their potential contributions to patient survival that are independent of TP53 or STAG2 456 

mutation status (Additional file 2: Table S13). We performed the same analysis for 45 genes 457 

with potential different promoter usage in tumors with and without TP53 mutations (Additional 458 
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file 2: Table S14). Finally, we derived a multivariate Cox proportional hazards model including 459 

both TP53 and STAG2 mutation status, one candidate gene with differential promoter activity 460 

(CALCB), and five candidate gene isoforms (CASZ1, ENST00000496432; RET, 461 

ENST00000479913; TEX40, ENST00000328404; TNS1, ENST00000446903; and SLC27A6, 462 

ENST00000508645), and we followed this with backwards stepwise model selection. The final 463 

model (Figure 5b) revealed potential protective roles for one candidate transcript TNS1 464 

(ENST00000446903), a marginally protective role for candidate transcript RET 465 

(ENST00000479913), and a candidate transcript associated with a poor prognosis, SLC27A6 466 

(ENST00000508645). 467 

TNS1 encodes the well-studied protein Tensin 1, and is involved in several key aspects of 468 

cell function, including extracellular matrix formation, actin cytoskeleton formation, and signal 469 

transduction [64, 65]. More recently, the up-regulation of TNS1 in colorectal cancer was found to 470 

be associated with poor overall survival in patients [66], although previous studies have shown 471 

suppression of TNS1 expression [67] is associated with metastatic cancers. Our results suggest 472 

that TNS1 is a candidate prognostic indicator for EWS. Further studies are needed to draw 473 

more attention to the functional roles of these genes/transcripts in EWS progression. 474 

 475 

Discussion 476 

Although epigenetic studies in disease models (cell lines, xenografts, and organoids) and in a 477 

limited number of primary tumor samples have demonstrated the oncogenic contributions of 478 

epigenetic deregulations to cancer initiation, progression, and response to treatment [48, 68, 69], 479 

genome-wide profiling of promoter activities by using standard approaches (e.g., ChIP-seq or 480 

CAGE) has not been carried out in large patient tumor cohorts, despite the continuous efforts of 481 

large epigenome consortia [45, 46, 70]. Our analyses of MYCN-amplified NBL tumors revealed 482 
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both commonly active promoters and promoters that were active in some tumors but not in 483 

others. Moreover, these sample-specific active promoters are functionally important, as they 484 

drive the expression of several cancer consensus genes, including MYC. This observation is 485 

consistent with recent reports of heterogeneous enhancer activities of cell line–defined super-486 

enhancers in primary gastric cancers [71], emphasizing the critical importance of deriving 487 

sample-specific epigenomic signatures. To bridge the gap between the extensive epigenomic 488 

resources in disease models and the limited ChIP-seq profiles of primary patient tumors, we 489 

developed MethylationToActivity (M2A), a deep-learning framework, to characterize the 490 

promoter activity landscape (both H3K4me3 and H3K27ac levels) in individual tumors by using 491 

DNAm data, which is the most extensively documented epigenetic modification for patient 492 

tumors and can be robustly and accurately profiled in FFPE archived retrospective samples. 493 

M2A demonstrated excellent performance across various tumor types, with accuracy 494 

comparable to that of ChIP-seq measurements of replicate samples from high-quality cohorts 495 

(Figure 3).  496 

Although our framework was strictly trained on HM levels, the inferred promoter activity was 497 

highly correlated with the transcript-based gene expression levels quantified by RNA-seq 498 

(Additional file 2: Tables S5, S7 and S8). The correlation between gene expression and inferred 499 

promoter activities (mean R2 = 0.668 for ENCODE data, 0.722 for K562, 0.705 for GM12878, 500 

and 0.536 for H1-ESC) surpassed that with the state-of-art BPR model [42], which was 501 

developed for predicting gene expression levels from DNAm patterns (the best reported R2 502 

values were 0.49 for K562, 0.37 for GM12878, and 0.25 for H1-ESC). Strikingly, the (indirect) 503 

predictive accuracy of M2A for gene expression across nine ENCODE cell lines (average R2 = 504 

0.668) was comparable to the predictive accuracy of a model built on 11 HMs, one histone 505 

variant, and DNase I hypersensitivity [11]. Similarly, the accuracy of binary prediction of 506 

expressed genes (average AUC = 0.941 and 0.931 for the ENCODE and AML datasets, 507 
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respectively) surpassed that of DeepChrome (average AUC = 0.80), a state-of-art deep-learning 508 

algorithm trained to predict expressed genes by using five core HMs (H3K4me3, H3K4me1, 509 

H3K36me3, H3K9me3, and H3K27me3) [12]. These results further validated our framework. 510 

Finally, both the M2A and BRP models suggest that it is insufficient to represent DNAm 511 

information by using a simple average methylation level in the promoter region. To properly 512 

reveal the regulatory roles of DNAm, we need to derive high-order features that capture spatial 513 

relations among CpG probes (or window-based derived features calculated from them) in 514 

promoters and in their vicinity. M2A uses the feature learning and selection characteristics of 515 

CNNs to achieve its exceptional performance, thus demonstrating the rich information content of 516 

DNAm signatures at both the genome-wide and local gene levels. 517 

Analysis of the deep-learning framework revealed that M2A derives 1) high-level features 518 

from DNAm patterns that are common among different tumors and 2) tumor subtype–specific 519 

mapping functions from the mapping of high-level DNAm features to promoter activities in 520 

individual tumor subtypes by using transfer learning (when feasible). Although our deep-learning 521 

model cannot establish a causal relation between DNAm and promoter activities, these findings 522 

nevertheless shed light on both the general and tumor subtype–specific rules for interpreting 523 

DNAm patterns. 524 

In evaluating our predictions, we found that several samples (the “poor performers”) showed 525 

abnormally low predictive accuracy with both the ENCODE and BLUEPRINT datasets. 526 

Investigations of the promoter H3K27ac levels revealed that the fraction of active promoters in 527 

these samples was substantially lower than in other samples. Furthermore, joint analyses with 528 

RNA-seq data from the matching samples indicated that 1) in contrast to the predictive accuracy 529 

of H3K27ac levels, the “poor performers” achieved comparable consistency between the M2A-530 

inferred promoter activity and gene expression; 2) the “poor performers” showed significantly 531 

lower correlation between the measured promoter H3K27ac level and gene expression; 3) the 532 
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correlation between the measured promoter H3K27ac level and gene expression was highly 533 

predictive of the accuracy of the H3K27ac prediction (Additional file 1: Figure S10),and  4) in 534 

ENCODE samples with replicates, the replicate with better consistency between H3K27ac and 535 

gene expression also showed significantly higher correlation between the actual and measured 536 

H3K27ac level (P = 0.0039, Wilcoxon signed rank test, Additional file 2: Table S15, an example 537 

of H3K27ac signal discrepancy between H1-ESC replicates shown in Additional file1: Figure 538 

S8d). Although we cannot unequivocally rule out the possibility that these “poor performers” 539 

share a distinct biological mechanism where promoter H3K27ac level is no longer a stronger 540 

predictor for gene activities, these results suggested that the “poor performers” could reflect the 541 

quality of the ChIP-seq results included in the test data. This observation emphasizes the value 542 

of conducting a preliminary analysis to evaluate the data quality before incorporating public data. 543 

It also suggests that M2A can provide a robust surrogate for promoter activities when the ChIP-544 

seq experimental data is questionable. 545 

Alternative promoter usage increases the transcriptomic diversity during normal tissue 546 

development and oncogenesis. Recent work demonstrated that an alternative promoter of 547 

ERBB2 is predictive of a poor clinical outcome but that the canonical promoter shows no 548 

significant association with survival in patients with low-grade glioma [2]. Whereas earlier 549 

studies focused on identifying alternative promoter usage through CAGE or RNA-seq data, our 550 

research has shown that alternative promoter usage can be extensively studied by using DNAm 551 

profiles from diverse samples, including retrospective FFPE tumor samples, for which traditional 552 

approaches (CAGE, ChIP-seq, and RNA-seq) are technically challenging. Our analysis of a 553 

large EWS cohort (without matching RNA-seq data) revealed promoter activities for several 554 

specific isoforms that are independently associated with clinical outcomes, including a specific 555 

isoform of the TNS1 gene (ENST00000446903). This demonstrates the importance of analyzing 556 

alternative promoter usage in epigenomic studies. 557 
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Finally, our analysis quantitatively emphasizes that promoter activity is one of the 558 

mechanisms that regulate the final transcriptional output: 1) both the observed and predicted 559 

promoter activities account for 50%–70% of the variation in gene expression, and 2) 560 

approximately 40% of the genes differentially expressed in ERMS and ARMS tumors show 561 

significant differences in their promoter activities. In addition to promoter activities, other 562 

epigenetic mechanisms, including enhancer activities, contribute substantially to gene regulation 563 

[72]. Recent work has demonstrated the roles of DNAm in regulating enhancer activities [73] 564 

and aberrant cancer-specific DNAm patterns in super-enhancers [74]. Consequently, we aim to 565 

expand our M2A framework to infer enhancer activities from DNAm patterns in the future. 566 

 567 

Conclusion 568 

We have demonstrated that MethylationToActivity overcomes the unique challenges of 569 

systematically characterizing promoter activities from DNA methylation signatures. It achieved 570 

an accurate, robust and generalizable performance in various pediatric and adult cancers, 571 

including both solid and hematologic malignant neoplasms. MethylationToActivity will serve as a 572 

valuable tool to provide functional interpretation of DNAm deregulation, characterize promoter 573 

activity differences from DNAm patterns, and reveal alternate promoter usage in patient tumors, 574 

which will facilitate precision medicine by tailoring treatments based on both genetic variants 575 

and epigenetic deregulation.  576 

 577 

Methods 578 

Datasets 579 
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Five separate publicly available datasets were used in this study, including a pediatric NBL O-580 

PDX dataset (N�=�16) [40]; an RMS O-PDX dataset (N�=�16) [42]; ENCODE datasets with 581 

matching H3K27ac and H3K4me3 histone mark ChIP-seq, RNA-seq, and WGBS experimental 582 

data (N�=�9) [43]; a DCC BLUEPRINT AML dataset (N�=�19) [44]; and a pediatric EWS 583 

dataset (N�=�140) [19] (Additional file 2: Table S16). Of the 140 samples in the EWS cohort, 584 

only three had matching ChIP-seq and reduced-representation bisulfite sequencing (RRBS) 585 

data available; for the remaining 137 samples, only RRBS data was available. All other cohort 586 

datasets (i.e., the RMS, NBL, ENCODE, and AML datasets) contained matching H3K27ac and 587 

H3K4me3 profiles, along with RNA-seq and WGBS experimental data. 588 

 589 

Feature processing 590 

All datasets were evaluated using GENCODE annotation definitions (www.gencodegenes.org/); 591 

the NBL, RMS, ENCODE, and EWS datasets were evaluated using GENECODE GRCh37.p13 592 

(release 19), and the AML dataset was evaluated using GENCODE GRCh38.p13 (release 32). 593 

Promoter regions are defined as the TSS ± 1 kbp, where the TSS is defined as each unique 594 

transcript start position. To avoid using identical or near-identical promoter regions in training 595 

and baseline performance, only TSSs with promoter regions with less than 50% overlap were 596 

considered. Gene orientation was taken into account, and any promoters with overlying regions 597 

but opposite orientations were not considered as overlapping. Because of differences in sex 598 

amongst samples, all chromosome X and Y promoter regions were removed from consideration. 599 

This resulted in a total of 96,756 and 104,722 non-overlapping promoter regions from the 600 

annotation files GRCh37.p13 and GRCh38.p13, respectively. For gene expression analysis, we 601 

followed the definition in [11] and retained all 141,152 and 147,980 autosomal promoters for 602 

protein-coding genes from the annotation files GRCh37.p13 and GRCh38.p13, respectively. 603 

M2A uses only one variable feature type: DNA methylation. For WGBS/RRBS data, the M-value 604 

was calculated as follows: 605 
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 606 

����� � ���� � �	
����
	
� �  �
���	
����
	
� � ��, 

 607 

where �	
����
	
�  and ���	
����
	
� correspond to the number of methylated and unmethylated 608 

reads of the kth CpG site, respectively. By default, the offset � was set to 0.5, and a global M-value 609 

threshold was set to a maximum value of log��65� and a minimum value of log�� �

��
�. CpG sites with 610 

coverage of less than five reads were removed.  611 

M2A uses a promoter region–based windowed approach, comprising 20 windows of two sizes (250 612 

bp and 2.5 kbp) and a step size equal to the window size, centered on a given TSS. For instance, 613 

��� �  ����, ��� , ��� … , ���	! is the vector of windows where " represents a particular TSS and # 614 

represents a particular window corresponding with the "
� TSS. This means that ���	 and ���� 615 

represent the windows immediately downstream and upstream of the "th TSS. Therefore,  616 

 617 

��� �  $%%� & 10�
  )*�
�), 
 618 

��� �  $%%� & 9�
  )*�
�), … 619 

 620 

���� �  $%%� � 9�
  )*�
�), 
 621 

���	 �  $%%� � 10�
  )*�
�) 

 622 

Each feature was calculated in this manner. The DNA methylation features, including the windowed 623 

M-value mean, variance, and the fraction of the SSD of M-values (FSSD), were calculated and 624 
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represented by the feature vectors ,-./�, ,.-0�, and ,1223�. Therefore, the features for a particular 625 

window, denoted as ���, would be calculated as follows: 626 

���	�� � 1
���

4 ��������� , 

���5�� � 1
���

4����	�� & �����������, 

and 627 

�677
�� � �77
��

∑����	� & �������
, 

where 628 

���	� � 1
��

4 ����� . 

and 629 

�77
�� � ∑����	�� & �����������, 630 

 631 

Here, " represents the promoter, # represents a specific window for a particular promoter, and 632 

,.-9� represents the Mval for individual CpGs in a region where ,.-9���� is the Mval for an individual 633 

CpG in a specific window. Each feature was interleaved by window size to provide model input wherein 634 

each window contained a number of “channels” equal to the number of features, with the feature array 635 

shape being (N, 2, 20, 3), where N represents the total number of TSSs in a sample, 2 represents the 636 

number of window sizes (250 bp and 2.5 kbp), 20 represents the number of windows, and 4 represents 637 

the number of features per window. All features were scaled from 0.1 to 1 (using MinMaxScaler with 638 

default values from sklearn version 0.22); in instances where windows overlapped regions without 639 

methylation data, resulting in NaNs (such as chromosomal boundaries, telomeric regions, and 640 

centromeric regions), these feature values were marked as 0. 641 

 642 

Calculating histone modification enrichment 643 
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The response variable was calculated for each non-overlapping promoter region, a 2000-bp region 644 

centered on each TSS. Histone modification enrichment (:�) for the "
� promoter region is calculated 645 

as follows: 646 

:�� � ����

∑ ;�<=��� � �
∑ <�>?
��� � � , 

 647 

where ∑ ;�<=���  represents the sum of either the H3K27ac or the H3K4me3 read signal mapped to the 648 

promoter region at each position, ∑ <�>?
���  represents the sum of the control read signal mapped to 649 

the promoter region, and @ represents the 25th percentile of the ∑ <�>?
���  calculated for a given 650 

sample. 651 

 652 

M2A topology 653 

M2A is a machine learning framework that leverages canonical deep-learning strategies, including 654 

convolutional neural network (CNN) and fully connected (FC) layers. Each layer employs a LeakyReLU 655 

(alpha�=�0.1) and a kernel constraint by L2-normalization using maxnorm(3). CNN layers are two-656 

dimensional, with zero padding, a stepsize of (1,1), and a kernel size of (1, 3) to maintain feature space 657 

and prevent convolutions across features from different window sizes. To test the efficacy of this 658 

approach, we compared the performance of a traditional artificial neural network (ANN) consisting of 659 

two FC layers versus three CNN layers in addition to two FC layers. During transfer learning, weights 660 

corresponding to each of the three CNN layers of the six–NBL O-PDX M2A model trained previously 661 

were frozen; only the weights corresponding to the two FC layers were optimized. A summary of all 662 

model topologies and parameters can be found in Additional file 2: Table S17. To train and test each 663 

model topology, we used Keras (v2.2.4) and Tensorflow (v2.1.0) in Python 3.6.5. 664 

 665 

M2A parameter tuning 666 
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Parameters such as the window size, batch size, and kernel size were optimized using the validation 667 

NBL data set (n=10). Each parameter configuration was tested holding all other parameters constant, 668 

and models with a numerical performance advantage were chosen. For batch size, three configurations 669 

were tested (64, 128, 256). Four kernel size configurations ([1,2], [1,3], [1,4], [1,5]) were tested. and 670 

window configurations ([100bp, 1000bp], [250bp, 2500bp], [500bp, 5000bp]) were considered. Due 671 

to >50% uninformative features in the 100bp window resolution, only the (250bp, 2500bp) model and 672 

(500bp, 5000bp) model performances were compared (Additional file 1: Figure S13; Additional file 2: 673 

Table S18). 674 

 675 

Training M2A 676 

The core M2A model (without transfer) training set consisted of six O-PDX samples from the 16-677 

sample NBL cohort (Additional file 2: Table S19); we trained separate models for H3K27ac and 678 

H3K4me3 HMs with the same WGBS features as the input. After the base models were trained, 679 

transfer learning was employed for three separate datasets, namely the RMS, AML, and EWS 680 

datasets. Each transfer learning model was trained using one sample from the cohort, for a total 681 

of N models, where N equals the number of samples in the cohort. For the RMS and EWS 682 

cohorts, an ensemble approach was used, whereby an averaged prediction from N−1 models 683 

was generated after transfer learning with each sample. The same approach was used with the 684 

AML cohort, except that only samples with R2 ≥ 0.60 between FPKM and H3K27ac were used 685 

for transfer learning. 686 

For each training scheme, the same parameters were used, including an 80/20 training/validation 687 

split and a batch size of 64 (Additional file 2: Table S17). All sample input was randomized before 688 

training. The Keras implementation of adadelta (default parameters) minimizing the mean squared error 689 

(MSE) was used to optimize M2A. To prevent overtraining, the EarlyStopping method was employed by 690 

monitoring validation loss for 10 epochs without at least a minimal gain in performance (min_delta = 691 

0.0001) for a maximum of 80 epochs. In no case was the maximum number of epochs reached. 692 
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 693 

Determining promoter diversity in NBL models 694 

Promoter region–based H3K27ac distributions clearly show a bimodal distribution (see 695 

Additional file 1: Figure S1); therefore, to determine class occupancy (active versus inactive), a 696 

Gaussian mixture model (GaussianMixture from sklearn version 0.22 with n_components = 2) 697 

was applied for each individual sample. To determine the percentage of differentially active 698 

promoters among all active promoters, we used a pairwise comparison approach for all samples. 699 

Cancer consensus genes were downloaded from COSMIC (https://cancer.sanger.ac.uk/census) 700 

(accessed on February 1, 2020). To avoid artificially inflated values from genes with multiple 701 

TSSs, only cancer consensus genes with a single TSS according to GENCODE GRCh37.p13 702 

(release 19) definitions were considered. 703 

 704 

Evaluating M2A performance 705 

When determining prediction performance, two primary metrics were considered, namely the R2 and 706 

the root mean squared error (RMSE). To measure the accuracy of M2A in predicting expressed genes, 707 

we calculated the AUC-ROC by using roc_curve and the precision-recall curve AUC by using 708 

average_precision_score from sklearn 0.22. Paired analyses were tested for statistical significance by 709 

using a Wilcoxon signed-rank test (R v3.4.1). To determine outliers, a median-based method was 710 

implemented using the “outlier” function in the R package GmAMisc [55]. To ensure that low-711 

mappability regions were not a confounding factor, we used the 712 

wgEncodeCrgMApabilityAlign100mer.bw file downloaded from the UCSC Genome Browser 713 

(http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability). For GRCh38.p13 714 

annotations, we used liftOver from UCSC (http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/) to 715 

convert the mappability track to GRCh38. For all performance-related analyses, the average value of 716 
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this track within each non-overlapping 2000-bp promoter region was calculated, and promoter regions 717 

with mappability > 0.75 were retained for evaluation. 718 

In analyses between H3K27ac levels (actual or predicted) and gene expression, we followed the 719 

gene filtering steps described in [11]: all autosomal protein-coding gene promoters were considered 720 

and for genes with multiple promoters, we use the maximum promoter activity to represent the gene. 721 

 722 

Baseline models  723 

Multivariate adaptive regression splines (MARS) was implemented by “earth” package in R (all default 724 

values were used), and the random forest baseline model was implemented by the 725 

“sklearn.ensemble.RandomForestRegressor” package in python 3.7.0 (max_features=’sqrt’). For 726 

comparison purposes, each model tested used identical feature input to M2A. 727 

 728 

M2A captures the impact of DMRs on promoter region activity 729 

The lists of genes that are differentially expressed in ERMS and ARMS samples and genes with DMRs 730 

were previously reported in reference [42]. 731 

 732 

Alternative promoter usage analyses 733 

To infer alternative promoter usage that was specific to the RMS subtypes ARMS and ERMS, we first 734 

delineated the “active” vs. “inactive” promoters in a subtype (ERMS or ARMS) by applying a threshold 735 

of �	���:3B27�E� F 1 for the average samples in the subtype. Next, primary promoters from multi-736 

promoter genes were determined by the average H3K27ac level within a specific subtype, and the 737 

promoter with the maximum activity from a given gene was counted as the primary promoter. The 738 

differences in promoter usage between two subtypes was defined as the difference between the activity 739 

sum of the primary promoters and the activity sum of the secondary promoters in the two subtypes. 740 

 741 
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Analysis of alternative promoter usage in EWS 742 

In the same manner as the RMS subtype analysis, EWS alternative promoter usage was determined in 743 

two patient sample groups: TP53 mutant and TP53 wild-type groups (for sample status, see Additional 744 

file 2: Table S18). Candidate genes were identified as active genes (H3K27ac ≥ 1 in at least one group) 745 

with potential differential promoter activities (absolute difference ≥ 1) in the TP53 wild-type and TP53 746 

mutant groups. Candidate genes with alternative promoter usage were identified as genes that used 747 

different active primary promoters in the wild-type and mutant groups and had an average promoter 748 

usage difference of at least 0.4 between groups. Both alternative promoters and differentially active 749 

promoters were considered in prognostic analyses (univariate screening incorporating both TP53 and 750 

STAG2 mutation status, followed by a multivariate analysis) using Cox proportional hazard models (R 751 

3.4.1). The final model was derived from backward stepwise selection from a Cox proportional hazards 752 

model including TP53 and STAG2 mutation status and all potential markers (all genes or promoters 753 

with an FDR < 0.05 in the univariate analysis). 754 

 755 

Analysis of M2A feature input and extracted features 756 

To determine the merit of a CNN-based approach, each feature average for a particular window 757 

position and window size were plotted with a 95% confidence interval. The plotted feature distribution 758 

was calculated from all M2A vanilla model training data input (NBL, N=6), and stratified by promoter 759 

status. Promoter status was determined by class occupancy of both H3K27ac and H3K4me3, (active 760 

versus inactive), where (H3K27ac=active), (H3K27ac=inactive, H3K4me3=active), and 761 

(H3K27ac=inactive, H3K4me3=inactive), represents active, poised, and inactive promoters, 762 

respectively. Class occupancy was determined by applying a Gaussian mixture model 763 

(GaussianMixture from sklearn version 0.22 with n_components = 2). 764 

The efficacy of the CNN-based feature extraction was tested by 1) training sample input feature 765 

predictive performance as compared to CNN-extracted feature performance, calculated by Pearson’s 766 
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R2 for all features across the entire training set (each window size considered separately; NBL, N=6) 767 

and 2) The performance (Pearson’s R2) of the best performing feature identified in 1) when applied to 768 

each sample in the validation set (NBL, N=10; Additional File 1: Figure S3). 769 

 770 

M2A code availability 771 

The latest M2A models, feature generation, prediction pipeline, and a Docker image of the M2A 772 

environment pre-loaded are available for download at https://github.com/chenlab-sj/M2A. Additionally, 773 

source code with detailed instructions for transfer learning using the M2A model with input samples 774 

from other domains is available. The cloud-based implementation of M2A is available to anyone with a 775 

(free) St. Jude Cloud account (https://platform.stjude.cloud/workflows/methylation-to-activity). 776 
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 1013 

Figure Legends 1014 

Figure 1 Variations of promoter H3K27ac levels among MYCN amplified NBL samples. 1015 

(a−c) Promoters were classified as active or inactive based on H3K27ac levels in individual NBL 1016 

tumors: (a) NBL cell line samples, (b) NBL O-PDX samples, and (c) NBL cell line and O-PDX 1017 

samples. Each promoter region plotted spans TSS ± 5,000 bp binned by non-overlapping 250 1018 

bp windows; the color bar represents the scaled windowed H3K27ac enrichment, from 0 (lowest) 1019 

to 3 (highest). Horizontal dotted lines delineate shared promoters (active in all samples) and 1020 

sample-specific promoters (promoter activity in at least one sample was different from the 1021 

remaining samples). Promoters were sorted by average descending H3K27ac enrichment 1022 

across all samples within each group. (d, e) Venn diagram indicating the number of shared and 1023 

sample-specific H3K27ac promoter activities between NBL cell line samples (d) and O-PDX 1024 

samples (e). (f) The promoter activity variation is highlighted by the proportion of sample-1025 

specific active promoters among all H3K27ac active promoters, as compared within cell line or 1026 

O-PDX NBL samples, and between cell line and O-PDX NBL samples. 1027 

 1028 

Figure 2. M2A feature processing and training workflow. 1029 

The M2A framework hinges on the feature processing pipeline. (a) First, windowed features (20 1030 

total non-overlapping windows for each of two sizes including 250 bp and 2,500 bp) centered 1031 

around the TSS are calculated from WGBS data for each unique promoter region, extending up 1032 

to 2,500 bp (250 bp window), and 25 kbp (2,500 bp window) away from the TSS. Response 1033 
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variables (H3K27ac and H3K4me3) for separate model training were generated for matching 1034 

promoter regions (TSS ± 1 kbp). The matching window features and response variables serve 1035 

as input to the model topologies, where M2A first extracts high-level features by using a series 1036 

of convolutional layers then maps these features to response variables in fully-connected (FC) 1037 

layers. Transfer learning with M2A leverages pretrained feature extraction (frozen CNN layers 1038 

indicated in blue), training only the FC layers. (b) The overall workflow for training, validation, 1039 

and testing M2A is detailed, as well as an overview of the analyses performed to validate M2A 1040 

performance in different real-world applications. M2A models for H3K4me3 and H3K27ac were 1041 

trained separately, indicated by blue (H3K4me3) and green (H3K27ac). 1042 

 1043 

Figure 3. M2A performance in NBL and RMS cohorts. 1044 

(a, b) Analysis of the performance of M2A in NBL and RMS cohorts with (a) H3K4me3 inference 1045 

and (b) H3K27ac inference. ENCODE replicate consistencies were calculated as Pearson’s 1046 

correlation squared (R2) between replicates (two replicates per sample). ENCODE sample 1047 

KMS-11 was excluded as an apparent outlier R2=0.016, RMSE = 1.869. Prediction accuracy 1048 

was measured by R2 between the actual measurement and M2A’s prediction. (c−g) Individual 1049 

examples of median M2A performers in (c) NBL cell line H3K27ac inference, (d) NBL cell line 1050 

H3K4me3 inference, (e) RMS H3K27ac inference (pre-transfer), (f) RMS H3K4me3 inference, 1051 

and (g) RMS H3K27ac inference (post-transfer). To indicate the density of data points where 1052 

individual data points cannot be resolved, a KDE was applied, called from 1 (highest) to 0 1053 

(lowest). (h) The boost to M2A performance (measured by RMSE) due to transfer learning is 1054 

shown, as applied and tested in RMS samples. 1055 

 1056 

Figure 4. M2A recapitulates subtype differences in RMS. 1057 

(a) A t-distributed Stochastic Neighbor Embedding (tSNE) analysis of observed (left), M2A 1058 

inferred (center: pre-transfer, right: post-transfer) H3K27ac promoter levels. Embryonal and 1059 
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alveolar RMS subtypes are well separated in each analysis, demonstrating that M2A inferred 1060 

H3K27ac levels maintain the delineation of RMS subtypes, consistent with the observed 1061 

H3K27ac tSNE analysis. (b–d) The subtype-specific genes GAS2 (b) and NOS1 (c) show 1062 

subtype distinct patterns of DNAm, H3K27ac, and H3K4me3 levels. The windowed average 1063 

DNAm feature (2,500 bp windows, over the genomic region TSS ± 25 kb) is shown as example 1064 

(partial) M2A input. These subtype differences were faithfully recapitulated by the M2A 1065 

H3K27ac inferences for GAS2 (d) and NOS1 (e). 1066 

 1067 

Figure 5. M2A reveals alternate promoter usage in RMS and EWS. 1068 

(a) An analysis of alternate primary promoter usage between RMS subtypes ERMS and ARMS 1069 

shows that M2A appropriately predicts subtype–specific promoter usage in PDZRN3, a known 1070 

target of the PAX3/7–FOXO1 fusion protein, which is consistent at the observed values of 1071 

H3K27ac, H3K4me3, RNA-seq, and DNA methylation. Partial M2A input (DNAm 2,500 bp 1072 

windowed average) is shown to emphasize the DNAm patterns in the genomic region 1073 

surrounding the TSS ± 25 kb. (b) Alternate promoter usage in EWS patient samples with and 1074 

without TP53 mutations were incorporated in a Cox proportional hazards model, highlighting the 1075 

potential prognostic value of the isoforms identified by M2A. 1076 

 1077 

Additional Files 1078 

Additional file 1 (file type .PDF, 7 MB): 1079 

Figure S1. NBL sample H3K27ac promoter distribution. 1080 

A comparison of promoter H3K27ac enrichment in MYCN amplified (MNA) NBL cell line and O-1081 

PDX samples shows a clear bimodal distribution, delineating “active” and “non-active” 1082 

promoters. 1083 

 1084 
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Figure S2. DNAm input feature pattern analysis. 1085 

The DNAm features show promoter-status-specific patterns between active, poised, and 1086 

inactive promoters, emphasizing the utility of positional-based relationships in a windowed 1087 

DNAm feature approach. For both 250 bp and 2,500 bp window sizes, the average scaled input 1088 

feature was plotted in relationship to the TSS (ribbons represent the 95% confidence interval), 1089 

stratified by the promoter status. Promoter status was determined by class occupancy of both 1090 

H3K27ac and H3K4me3, either “active” or “inactive”, where (H3K27ac=active), 1091 

(H3K27ac=inactive, H3K4me3=active), and (H3K27ac=inactive, H3K4me3=inactive), represents 1092 

active, poised, and inactive promoters, respectively. 1093 

 1094 

Figure S3. Feature performance comparison: Input features vs CNN mapped features. 1095 

Using all samples included in training the vanilla M2A model (NBL, N=6), the individual feature 1096 

performance (as determined by Pearson’s R2 between the feature and the response variable, 1097 

H3K27ac) for each feature was plotted, comparing the distribution of performances between raw 1098 

input training feature and the CNN mapped features at a particular window size (250 bp or 1099 

2,500 bp). The best feature from this analysis for each window size and feature type (input or 1100 

CNN mapped) was used to determine Pearson’s R2 with H3K27ac from each sample in the NBL 1101 

validation set (N=10). 1102 

 1103 

Figure S4. M2A prediction generalizability analysis. 1104 

(a) A comparison between performance of the M2A model (R2 of observed H3K27ac promoter 1105 

levels and predicted levels in the test sample) with the surrogate model (represented by the 1106 

highest R2 of observed H3K27ac promoter levels in the test sample and the observed H3K27ac 1107 

promoter levels in any training sample). M2A extracts generalizable features capable of out-1108 

performing the surrogate model in both the NBL validation set and the RMS test set, further 1109 
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highlighted in (b),  a comparison of surrogate model and M2A model performance using 1110 

promoters from DE genes between NBL and RMS. 1111 

 1112 

Figure S5. M2A with transfer learning outperforms a vanilla M2A model of the same 1113 

cancer type. 1114 

An M2A model with transfer learning (initially trained with six NBL O-PDX samples and then 1115 

transferred with a single RMS sample) consistently outperforms an M2A model trained with a 1116 

single RMS sample. 1117 

 1118 

Figure S6. Signal-to-noise analysis of ENCODE and NBL datasets. 1119 

Comparison at the observed H3K27ac promoter level (a) and the H3K4me3 (b) promoter levels 1120 

revealed different signal-to-noise profiles between the ENCODE dataset and the NBL datasets, 1121 

which results in a highly correlated prediction with larger RMSE values.  1122 

 1123 

Figure S7. M2A ENCODE cohort performance. 1124 

The distribution of M2A prediction performance (R2), shows that M2A accurately infers both 1125 

H3K27ac and H4K4me3 promoter levels in the publicly available ENCODE dataset.  1126 

 1127 

Figure S8. Analysis of outlier H1-ESC. 1128 

(a) When inferring H3K27ac promoter levels, M2A was substantially less accurate in the 1129 

ENCODE sample H1-ESC, which is an outlier in the ENCODE cohort. (b, c) M2A-predicted 1130 

H3K27ac promoter levels (b) are more consistent with, and more predictive of, H1-ESC gene 1131 

expression than are the actual observed H1-ESC H3K27ac promoter levels (c). (d) The 1132 

hypomethylated region surrounding the promoters of genes PSMA7 and SS18L1 (often 1133 

indicative of H3K27ac enrichment) showed inconsistent H3K27ac levels between H1-ESC 1134 

ChIP-seq replicates from ENCODE. 1135 
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 1136 

 1137 

Figure S9. Predicting gene expression in the ENCODE dataset. 1138 

(a–i) The indirect ability of M2A to predict gene expression (i.e., expressed vs. not expressed) 1139 

on the basis of both M2A-predicted and observed H3K27ac promoter levels for each sample 1140 

was determined by comparing the AUCs of the receiver operating characteristic (ROC) curves. 1141 

 1142 

Figure S10. Consistency of gene expression and H3K27ac promoter levels in the AML 1143 

cohort. 1144 

The consistency, as determined by Pearson’s R2, between the observed values for gene 1145 

expression and the H3K27ac promoter levels is remarkably predictive of the performance M2A 1146 

in predicting H3K27ac promoter levels in samples from the AML cohort. 1147 

 1148 

Figure S11. M2A accurately determines subtype differences between embryonal and 1149 

alveolar RMS. 1150 

(a) The promoter activities of single-promoter, differentially expressed genes in the RMS 1151 

subtypes ERMS and ARMS are accurately inferred by an M2A base model (trained with six O-1152 

PDX NBL samples). (b) The predictive performance of M2A is further boosted by transfer 1153 

learning with one RMS sample. (c, d) The performance of M2A declines slightly when the model 1154 

is applied to all promoters of differentially expressed genes (c), but it recovers when an M2A 1155 

model with transfer learning with only one RMS training sample is applied (d). 1156 

 1157 

Figure S12. Kaplan–Meier log-rank analysis by mutation status in EWS. 1158 

The prognostic ability of (a) TP53 or (b) STAG2 mutation status in the EWS cohort was 1159 

determined by the log-rank test and visualized using the Kaplan–Meier survival curve. The 1160 

STAG2 mutation status showed no significant difference in overall survivability, thus only TP53 1161 
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mutation status was considered when forming the univariate and multivariate Cox proportional 1162 

hazards model. 1163 

 1164 

Figure S13. CpG distribution by window relative to the TSS. 1165 

To achieve feature input that is informative to the model, M2A window size selection was 1166 

partially based on the number of CpGs captured by window size. Each analysis consists of 20 1167 

windows surrounding each TSS at a particular window size, representing the theoretical CpG 1168 

input to M2A for that particular resolution. Three different window configurations were 1169 

considered, comprised of two window sizes: 1) 100 bp and 1,000 bp, 2) 250 bp and 2,500 bp, 1170 

and 3) 500 bp and 5,000 bp. Due to NaNs in feature windows calculated with fewer than 2 1171 

CpGs, the [100 bp, 1000 bp] model was removed from consideration (> 50% NaNs). 1172 

 1173 

Additional file 2 (file type: .XLSX, 179 KB). 1174 

Table S1: H3K27ac active cancer consensus genes in 3 NBL cell lines, and 3 NBL O–PDX 1175 

samples. 1176 

Table S2: Baseline models vs. vanilla M2A predictive performance comparison. 1177 

Table S3: M2A predictive performance in NBL cell line samples. 1178 

Table S4: Observed H3K27ac and H3K4me3 ENCODE replicate consistencies. 1179 

Table S5: M2A predictive performance in RMS O–PDX samples. 1180 

Table S6: M2A RMS transfer model predictive performance in RMS O–PDX samples. 1181 

Table S7: M2A predictive performance in ENCODE dataset. 1182 

Table S8: M2A predictive performance in AML samples. 1183 

Table S9: ERMS vs. ARMS DMRs and associated genes (overexpressed in ERMS). 1184 

Table S10: ERMS vs. ARMS DMRs and associated genes (overexpressed in ARMS). 1185 

Table S11: M2A alternate promoter usage predictive performance between ARMS and 1186 

ERMS samples. 1187 
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Table S12: M2A predictive performance in EWS samples, before and after transfer. 1188 

Table S13: A univariate survival analysis of differential H3K27ac promoter activity 1189 

between TP53 mutant and TP53 wild–type EWS tumors. 1190 

Table S14: A univariate survival analysis of alternate promoter usage between TP53 1191 

mutant and TP53 wild–type EWS tumors. 1192 

Table S15: ENCODE H3K27ac replicate consistency with gene expression. 1193 

Table S16: Dataset availability. 1194 

Table S17: M2A model topologies. 1195 

Table S18: Parameter tuning: mean performance in the NBL validation set (R2) 1196 

Table S19: Sample summary information. 1197 
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