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Abstract

Although genome-wide DNA methylomes have demonstrated their clinical value as reliable
biomarkers for tumor detection, subtyping, and classification, their direct biological impacts at
the individual gene level remain elusive. Here we present MethylationToActivity (M2A), a
machine learning framework that uses convolutional neural networks to infer promoter activities
(H3K4me3 and H3K27ac enrichment) from DNA methylation patterns for individual genes.
Using publicly available datasets in real-world test scenarios, we demonstrate that M2A is highly
accurate and robust in revealing promoter activity landscapes in various pediatric and adult

cancers, including both solid and hematologic malignant neoplasms.
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Transcriptional regulation is fundamental to the identity and function of cells. Deregulation of
gene expression is a defining feature of common diseases, including cancers. Promoters, the
regulatory regions surrounding the transcription starting sites (TSSs), integrate signals from
distal enhancers and local histone modifications (HMs) to initiate transcription. Almost half of
human protein-coding genes harbor multiple TSSs; consequently, promoter activities determine
both the level of transcription and the transcript isoforms that are expressed, with the latter
potentially having different translation efficiencies and encoding different protein sequences [1].
Tumors frequently use alternative promoters to increase the isoform diversity [2, 3], to activate
oncogenes that are normally repressed [1-3], and to evade host immune attacks by
immunoediting [3, 4]. Compared to cancers in adults, pediatric tumors harbor fewer mutations [5,

6] and use epigenetic deregulation to promote tumorigenesis and progression [7].

Promoter activities can be determined experimentally through transcriptomic approaches,
such as CAP analysis gene expression (CAGE), or through epigenomic approaches, including
chromatin immunoprecipitation followed by sequencing (ChlP-seq) [8]. Because of transcript
degradation by 5' RNA exonucleases, ChlP-seq approaches for specific HMs have been the
gold standard for studying promoter activities [9]. Several studies [10-12] have demonstrated
that HMs and other epigenetic features can be used to predict gene expression. Using a linear
regression model, Karli¢ et al. show that approximately 50%—-60% of the variation in gene
expression can be accounted for, and that ~50% of the variation in gene expression can be
modeled by promoter H3K27ac enrichment alone [10]. Subsequent work by Dong et al. further
explained 69% of gene expression variance using a hybrid random forest/linear regression
model with features derived from 11 HMs, one histone variant, and DNase | hypersensitivity
[11]. More recently, Singh et al. used deep-learning models on five HMs to predict gene
expression status (high/low) and achieved an average AUC of 0.80 [12]. However, the scarcity

of pediatric tumors, the limited amounts of fresh starting material available, and the
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extensive workload involved in acquiring the promoter activity landscapes constrain their

interrogation for individual patient tumors [13, 14].

DNA methylation (DNAm) is a well-studied, relatively stable, and inheritable epigenetic
regulatory mechanism that involves transferring a methyl group to cytosine (C) to form 5-
methylcytosine (5mC), mostly in the CpG context. In contrast to HMs, DNAm can be accurately
and robustly profiled in various tissues, including archival formalin-fixed, paraffin-embedded
(FFPE) tumor samples, through both array [15, 16] and sequencing [17] platforms; therefore, it
has exceptional applicability to studying epigenetic deregulation in tumors. Consequently,
genome-wide DNAm profiles represent a widely available epigenetic asset for studying

epigenetic abnormalities in primary tumors.

The DNAm pattern is mechanistically connected with transcription factor binding and HMs
[18-25]. It also plays critical roles in establishing the chromatin structure in physiologic and
pathologic conditions [26, 27]. Moreover, recent applications of machine learning to genome-
wide DNAm patterns have demonstrated that DNAmM can accurately predict the patterns of
chromatin packaging (A/B compartments, the square of the Pearson correlation coefficient R? =
0.50-0.66) [28-30] and can reveal distinct subgroups with prognostic significance among
patients with cancer [31, 32]. Recently, DNAm signature—based molecular classifiers were
shown to improve diagnostic accuracy, as compared to that of traditional schemes, further
demonstrating the critical regulatory roles of DNAm in tumor development [33, 34]. However,
unlike HMs, where established biological interpretations of various marks have resulted in a
general “histone code” hypothesis [35, 36], the relation between DNAm signatures and their
transcriptional regulatory roles is complex and nonlinear. In many cases, even promoter DNAmM
may positively and negatively correlate with gene expression depending on the genomic
structure involved in a given tumor [37]. Consequently, with few exceptions (e.g.,

hypermethylation of the promoters of RB1, CDKN2A, and MGMT) [38], the contribution of
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DNAm to the regulation of expression of individual genes remains largely elusive [39-41].
Recent attempts to use DNAm signatures to account for gene expression levels have had
limited success, with the best model (binomial distribution probit regression [BPR] model)
capturing 25%—49% of the expression variations [42]. Undoubtedly, the lack of interpretability
of the DNAm pattern at the individual gene level has severely hampered our understanding of

the biological significance of DNAm signatures.

To address these challenges, we have developed MethylationToActivity (M2A), a deep-
learning framework. The central hypothesis of M2A is that the complex relation between DNAmM
signatures and promoter activities (measured as H3K4me3 and H3K27ac enrichment in the
TSS + 1 kb region) can be captured by incorporating both summary statistics extracted from
window-based CpG methylation levels and high-order spatial information from these windows in
the promoter and flanking regions (up to 25 kb from the TSS). Using a cohort of six pediatric
neuroblastoma (NBL) orthoptic patient-derived xenograft (O-PDX) samples profiled in the
Pediatric Cancer Genome Project (PCGP) [43], we trained the model using whole-genome
bisulfite sequencing (WGBS) data to predict the enrichment of H3K4me3 and H3K27ac (two
HMs critical for promoter [10]) for genome-wide annotated promoters. We validated the
predictive accuracy of the model in the remaining NBL samples (N[1=[110, WGBS) from the
same cohort. We further confirmed its accuracy and generalizability in diverse tumor types from
four publicly available datasets representing real-world applications, including (1) pediatric
rhabdomyosarcoma (RMS) O-PDX tumors profiled in the Pediatric Cancer Genome Project
(NO=216, WGBS) [44]; (2) a set of commonly used cell lines profiled in ENCODE (NJ=09,
WGBS) [45]; (3) primary acute myeloid leukemias (AMLS) profiled by the BLUEPRINT
consortium (N7=119, WGBS) [46]; and (4) a large primary Ewing sarcoma (EWS) cohort using
reduced representation bisulfite sequencing (RRBS) (NI 1=11140) [22]. These

applications demonstrate that M2A can accurately reveal promoter activities from DNAmM
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patterns, which will be of great use not only in functionally interpreting differential DNAmM
patterns but also in profiling promoter usage in individual patient tumors. This will facilitate
precision medicine by tailoring treatments based on both genetic variants and epigenetic

deregulations.

Results

Extensive diversity of promoter activity among MYCN-amplified NBL cell lines

and O-PDX models

To date, most cancer HM profiling studies have made use of tumor models, including cell
lines, xenografts, and more recently, organoids. Technical limitations and challenges when
working with human tumor tissues prevent the generation of high-quality ChlP-seq profiles for
primary patient specimens [47]. Despite the documented epigenetic heterogeneity [48], a
common practice in deciphering major HM deregulations in various cancers is to extrapolate the
epigenetic profiles from related cancer models (surrogate models). Many studies [43, 44, 49-52]
have compared model systems to primary tumors with respect to characteristics such as
mutations, gene expression, and DNAm signatures. In this study, we began by evaluating the
level of promoter activity diversity in closely related NBL models. Specifically, we evaluated
promoter activity, as measured by the H3K27ac level, in three O-PDX models (SINBL046,
SJINBL108, and SINBL013763) and three cell line models (IMR-32, NB-5, and SKNBE?2) that
harbor MYCN amplification with no other major oncogenic mutations. All samples displayed a
bimodal distribution of promoter H3K27ac levels across the genome (Additional file 1: Figure
S1), and O-PDX models had a marginally higher fraction of active promoters (mean: 31.9%,
range: 27.6%—36.1%) than did cell line models (mean: 26.1%, range: 25.6%—26.7%)

(P7=00.14, Student’s t-test). However, there were extensive variations in the promoter
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142  activities in both the cell line models (Figures 1a and 1d) and the O-PDX models (Figures 1b

143 and 1e). Moreover, greater divergence was observed between a cell line model and an O-PDX
144  model (mean: 34.9%, range: 29.9%-39.0%) than between two cell line models (mean: 31.0%,

145  range: 29.2%—32.1%; P1=110.44, Student’s t-test) or between two O-PDX models (mean:

146  31.0%, range: 22.9%—-37.0%; PI1="10.02, Student’s t-test) (Figure 1f). Variations in promoter

147  activity may play a significant role in the transcriptional deregulation of individual tumors, as a

148  substantial fraction of established cancer consensus genes (22.4% in O-PDX models and 31.1%
149  in cell line models, including APOBEC3B, TGFBR2, PAX7, HOXA11, PDCD1LG2, PTKS6,

150 BCL11B, FAS, and MYC,; (Additional file 2: Table S1) displayed heterogeneous promoter

151  activities in the surveyed tumor models. Therefore, we sought to develop a computational

152  approach to infer the promoter activity landscape for individual tumors.
153

154 MZ2A: a deep-learning framework to reveal promoter activities from DNA

155 methylation

156  DNAm plays a critical role in determining the framework of gene expression for a given

157  cell/cellular state. However, the highly complex and non-linear relations between DNAmM

158 patterns and HMs severely hamper the interpretability of the biological impact of differential

159 DNAm patterns. Previous studies have shown the usefulness of extracting higher-order

160 methylation features [42], for predicting gene expression. Moreover, recent studies applied

161 deep-learning approaches to infer DNAm states from their local sequence composition and

162  adjacent DNAm states [53]. We hypothesize that these high-level DNAm features (that capture
163  the spatial information from DNAm patterns in the promoter and regions in its vicinity) could also
164  provide an opportunity to infer promoter activities such as H3K27ac and H3K4me3 enrichment
165 accurately. We propose to use a convolutional neural network (CNN)—based deep-learning

166 framework to extract such features.
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The M2A conceptual framework and workflow is shown in Figure 2. M2A starts with raw
DNAm feature extraction from around individual TSSs (Figure 2a). This is followed by high-level
feature extraction through the CNN layers and mapping between the generalized feature and
the final output (i.e., the H3K4me3 and H3K27ac of the promoter) in the fully connected (FC)
layers. The vanilla model described in this report was trained on six NBL PDX tumors
(SINBL0O46_X, SINBL013761_X1, SINBL012401_X1, SIJNBL013762_X1, SINBL013763_X1,
and SINBL015724_X1; Figure 2b) for which comprehensive genomic and epigenomic profiling
data are available, including the results of whole-genome sequencing, whole-exome sequencing,
RNA sequencing, WGBS, and ChiIP-seq of eight histone marks (H3K4mel, H3K4me2,
H3K4me3, H3K27me3, H3K27ac, H3K36me3, H3K9/14ac, and H3K9me3), CTCF, BRD4, and

RNA polymerase Il (Polll).

We started with an analysis of the information content in DNAm patterns by examining the input
feature distribution in different windows, among active (high H3K27ac), poised (high H3K4me3
and low H3K27ac), and inactive promoters (low H3K4me3 and low H3K27ac) in the six NBL O-
PDX training samples. These features show distinct patterns among the three promoter
categories (Additional File 1: Figure S2), indicating the feasibility of modeling promoter activities
from DNAm patterns. Although the interpretability of CNN extracted features remains an active
field of research in deep-learning [54], we examined the efficacy of CNN extracted features in
modeling the promoter activities. We first compared the square of Pearson’s correlation (R?)
between each feature (both raw input and CNN extracted features) and the response variable
(H3K27ac) in the training set, The analysis revealed that CNN-extracted features have
significantly higher R? with the response (250 bp: P = 1.5 x£10™*, 2500 bp P = 3.9 xJ107°,
Wilcoxon signed-rank test, Additional File 1: Figure S3). We further evaluated the best features

for both raw input and CNN-extracted features in the validation samples and again the CNN-
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extracted features significantly outperformed the raw input features (250 bp: P = 1.1 x 1107,

2500 bp P = 1.1 xJ107°, Wilcoxon signed-rank test, Additional File 1: Figure S3).
M2A produces a highly accurate landscape of promoter activity in pediatric NBL

To evaluate the performance of M2A, we first explored its performance in the remaining NBL
samples in the cohort (the validation set), including one O-PDX tumor, one primary autopsy
tumor, and eight cell lines. Using the validation set, we compared the performance of the M2A
framework of three CNN layers and two FC layers (Figure 2) with three frequently used
statistical and machine learning approaches (baseline models), namely multivariate adaptive
regression splines (MARS), random forest, and artificial neural network (ANN) consisting of only
two FC layers. In every instance, the M2A framework outperformed baseline models (Additional
file 2: Table S2). From a qualitative perspective, M2A correctly revealed the bimodal distribution
of the promoter activities for both H3K4me3 and H3K27ac in all samples, and from a
guantitative perspective, the inferred genome-wide promoter activity landscape was

highly accurate for individual samples for both H3K4me3 (R? = 0.933 1+1:0.019; RMSE =
0.6210+110.072) (Figures 3a and 3d) and H3K27ac (R* = 0.799(1+(10.053; RMSE =
0.644+00.074) (Figures 3b, and 3c). Moreover, the addition of CNN layers was merited, as
there was a decrease in the prediction error (measured as 10— 1R?) from the next highest
performer by 17.8% (P J=00.0020, Wilcoxon signed-rank test) and 12.4% (P J=00.0020,
Wilcoxon signed-rank test) for the model topologies for H3K4me3 and H3K27ac, respectively

(Additional file 2: Table S2).

Our analysis of MYCN-amplified NBL cell line and O-PDX models has revealed substantial
variations in their promoter activities, which is a potential caveat to the practice of surrogate
model (representing primary tumor epigenomes by a few profiled models). Conversely,

M2A produced highly accurate promoter activity landscapes, significantly outperforming the

observed consistency between training and testing samples for both H3K4me3 (R? =

9
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0.8910+0J0.023, P1=012.30x[1107°, Wilcoxon rank-sum test) and H3K27ac (R? =
0.7200+10.045, P 1=019.5[1x[J10°, Wilcoxon rank-sum test; Additional file 2: Table S3).
Remarkably, in nine (of 10) test samples, the accuracy of the M2A-inferred promoter H3K27ac
activity was better than the highest similarity attained by any individual training sample
(P71=M0.027, Wilcoxon signed-rank test). The same pattern was observed for H3K4me3 levels,
with M2A being more accurate for nine of 10 samples (P 1=110.037, Wilcoxon signed-rank test),
demonstrating the accuracy of M2A in revealing individual tumor promoter activity landscapes.
Finally, the predictive accuracy of M2A was comparable to the experimental consistency
observed between replicates from the same cell lines profiled in ENCODE for H3K4me3 (R?
=0.9337+0.018 for M2A vs. 0.922[1+710.056 for ENCODE replicates [N[1="125]; P[J=10.55,
Wilcoxon rank-sum test) (Figure 3a; Additional file 2: Table S4). The accuracy of M2A also
approached the replicate consistency for H3K27ac (R? = 0.7991+10.050 for M2A vs.

0.8491 +(10.047 for ENCODE replicates [N[1=126]; P 1=[10.0078, Wilcoxon rank-sum test)
(Figure 3b: Additional file 2: Table S4). Measurement of the root mean square error (RMSE)

revealed a similar pattern (Additional file 2: Table S4).

M2A is generalizable and scalable

Aside from the model accuracy, there are two additional requirements with practical importance
for deploying a machine learning model (such as M2A) in real-world applications: (1)
generalizability, i.e., M2A needs to achieve a similar performance with a set of unseen test
samples, including tumor/tissue types not used in the model training; and (2)

scalability, i.e., M2A must be able to be applied efficiently to external data.

We first demonstrated the accuracy, generalizability, and scalability of M2A by

using test samples from rhabdomyosarcoma (RMS) O-PDX tumors. The RMS O-PDX dataset

10
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consists of 16 pediatric RMS tumors (11 embryonal, four alveolar, and one spindle subtype,
termed ERMS, ARMS, and spindle subtypes, respectively). As with the NBL cohort, each RMS
sample was extensively profiled, including by WGBS, RNA-seq, and ChIP-seq of H3K4me3 and
H3K27ac. Using the vanilla M2A model (the 3CNN-FC model trained on the six NBL PDX
samples), M2A achieved an overall predictive accuracy with the RMS dataset that was
comparable to that of the NBL test group for both H3K4me3 (R? = 0.937(1+(10.017, P = 0.30;
RMSE = 0.63911£(10.119, P = 0.82, Wilcoxon rank-sum test) (Figures 3a and 3f; Additional file 2:
Table S5) and H3K27ac (R? = 0.7900+(10.037, P J=[10.44; RMSE = 0.589+(10.084, P = 0.058,
Wilcoxon rank-sum test) (Figures 3b and 3e; Additional file 2: Table S5), which was comparable
to or significantly outperformed the observed similarities between two different RMS tumors for
H3K4me3 (R? = 0.9171+00.028, P0O=00.0020; RMSE = 0.646 1+°0.133, P = 0.64, Wilcoxon
rank-sum test) and H3K27ac (R? 1=10.7807+10.066, P 1=10.43; RMSE = 0.5507 +10.095, P =
0.14, Wilcoxon rank-sum test). The accuracy of the inferred H3K4me3 activity was comparable

to the inter-replicate consistency of the ENCODE samples (P[=110.83, Wilcoxon rank-sum test).

By definition, generalizability can be achieved only in the absence of over-fitting (or
“memorization” of the training data). Neural networks often fall victim to this problem through a
combination of factors, including relatively small training datasets and/or over-parameterization.
The relatively consistent expression of housekeeping genes across different tissues may lead to
an inaccurate (often inflated) interpretation of the performance measurement in such a model,
as evidenced by the relatively high R? value (0.663[1+70.040) between the promoter H3K27ac
level of a random RMS test tumor and the most similar NBL training tumor (Additional file 1:
Figure S4a). Therefore, we focused on the set of genes that are differentially expressed (DE) in
RMS and NBL PDX samples [51], for which an over-fitted or memorized model would perform
poorly. Not surprisingly, the average correlative consistency between the NBL validation

samples and the most similar NBL training sample dropped from 0.755 to 0.599 when the

11
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measurement was restricted to promoters encoding the DE genes (Additional file 1. Figure S4b),
whereas a sharp decline (from 0.663 to 0.259) was also observed for RMS test tumors
(Additional file 1: Figure S4b). Conversely, the six-PDX NBL-trained M2A model maintained

high accuracy for promoters of DE genes in both the NBL validation set (R? = 0.72911+10.071
and the RMS test set (R? = 0.71571+10.044) (Additional file 1: Figure S4b), further

demonstrating the generalizability of M2A.

M2A is efficient and scalable. For a local implementation of M2A (source code, built models
and a Docker image available at https://github.com/chenlab-sj/M2A), the training of the vanilla
M2A model (with six NBL O-PDX tumors) takes approximately 16 min (using a Tesla P100-
16GB GPU). The feature extraction and promoter activity prediction from WGBS data (as a
genome-wide DNAm level file in a tab-delimited text format) can be executed on a personal
computer (in this case, we used a MacBook Air with a 2.2-GHz Intel Core i7 and 8-GB 1600-
MHz DDR3 RAM) and takes 15-19 min. Moreover, we have implemented a cloud version of
M2A (https://platform.stjude.cloud/workflows/methylation-to-activity), available to the general

research community.

Transfer learning further improves the performance of M2A with minimal

additional input in the target domain.

Although we have demonstrated the generalizability of M2A in the RMS dataset, the fact that
epigenetic genes are frequently mutated in pediatric tumors [7] raises the possibility that
individual tumor types carry a type-specific interpretation of the DNAm patterns. When ChiIP-seq
measurement is available for sufficient samples, a type-specific model is desirable. However,
although pediatric solid tumors as a group constitute a rare disease, they comprise many

different tumor types, and it is rare to have sufficiently profiled samples available for many of

12


https://doi.org/10.1101/2020.06.09.143172
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.143172; this version posted September 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

available under aCC-BY-NC-ND 4.0 International license.

them. In addressing this challenge, we hypothesize that a fixed feature-extraction strategy
(transfer learning) can achieve the goal of deriving an efficient tumor type—specific model by
using a small labeled dataset. A primary assumption here is that generalized features extracted
based on a large dataset are similarly informative for apparently different tasks. The feature
learning and selection characteristics of CNNs provide exceptional portability in various tasks

with extremely small labeled datasets.

In M2A, the CNN layers capture generalized DNAm features and the FC layers learn the
mapping function between the DNAm features and the promoter activities. Here we start with
the pretrained vanilla M2A model, fix the feature-extraction layers (CNN layers), and use a
single sample from the target tumor type to update the mapping function (the weights and
biases of the FC layers). Because the consistency of M2A for H3K4me3 approached the inter-
replicate consistency in both NBL and RMS datasets, we focused on H3K27ac inference for
transfer learning. Upon performing transfer learning with a single sample in the RMS dataset,
we observed significantly improved accuracy (R” = 0.813 J+10.038, P[=3.10x[107°,
Wilcoxon signed-rank test) (Figures 3b, 3g, and 3h; Additional file 2: Table S5). Moreover, this
model significantly outperformed a single RMS sample model with the identical model
architecture, in which both the CNN layer and the FC layers were derived from the RMS training
sample (P11=119.2[1x 1107, Wilcoxon signed-rank test) (Additional file 1: Figure S5; Additional
file 2: Table S6) and marginally outperformed the observed similarities between different RMS
tumors (P[1=110.053, Wilcoxon rank-sum test). This analysis demonstrated the value of both the
pretrained CNN layers for general feature extraction and a single profiled sample in the target
domain. Consequently, we applied transfer learning to both the EWS and AML datasets.
However, transfer was not feasible in the ENCODE dataset because those cell lines were

derived from different tissues.
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314 M2A accurately reveals promoter activity landscapes in adult tumors and in

315 hematologic malignant neoplasms

316  We next evaluated the performance of M2A in independently collected datasets, including ones
317  for adult tumors and hematologic malignant neoplasms. Upon analyzing nine ENCODE cell

318 lines, we found that differences in antibody usage and experimental protocols between the

319 ENCODE and NBL datasets resulted in different signal-to-noise profiles (Additional file 1: Figure
320 S6), with higher RMSE values between the model predictions and the actual observations

321  (H3K4me3: 0.961(1+ 10.238, P(]1= 1.0019; H3K27ac: 0.9181+(10.188, P 1= 12.6/1x[1107%,

322  Wilcoxon rank-sum test). However, the predicted activities remained highly correlated with the
323  experimental measurements (H3K4me3: R? = 0.895(1+710.027; H3K27ac: R® = 0.680+[10.149)
324  (Additional file 1: Figure S7). Although the accuracy of H3K4me3 was relatively uniform, H1-
325 ESC and SK-N-SH were outliers with a substantially lower accuracy of H3K27ac inference (by
326 the boxplot-based method [55]) (Additional file 2: Table S4; Additional file 1; Figure S8a). An
327 investigation of the promoter activity (the measured and inferred H3K27ac levels) and the

328 measured gene expression in H1-ESC revealed that a subset of actively transcribed genes

329 showed little or no H3K27ac levels in their promoters, where M2A inferred relatively strong

330 promoter activity (Additional file 1: Figure S8b). Consequently, the inference of promoter activity
331 by M2A outperformed the actual measurement in terms of both the quantitative consistency with
332 the gene expression level (R? = 0.536 for the M2A-inferred H3K27ac level vs. 0.435 for the

333 measured H3K27ac level) (Additional filel: Figures S8b and S8c) and the accuracy in predicting
334  expressed genes (AUC = 0.891 for the M2A-inferred H3K27ac level and 0.881 for observed
335 H3K27ac level) (Additional file 1: Figure S9d). We also observed a small fraction of inferred

336  active promoters without strong expression; these may represent genes subject to

337  transcriptional pausing (where transcription is initiated but there is no elongation), a distinctive
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feature of undifferentiated stem cells [56]. Similarly, better consistency with gene expression

levels was observed in SK-N-SH (Additional file 2: Table S7).

We further evaluated the performance of M2A in revealing promoter activities in 19 acute
myeloid leukemia (AML) primary patient samples collected by the BLUEPRINT consortium,
which is part of the International Human Epigenome Consortium (IHEC) [46]. Analyses of
observed promoter activity (measured by H3K27ac level) and gene expression (measured in
fragments per kilobase of transcript per million mapped reads [FPKM]) in the same sample
revealed non-uniform qualities with a wide range of consistency (mean R? = 0.539, range:
0.178-0.720) (Additional file 2: Table S8). Similarly, the M2A-inferred promoter activity
landscape displayed substantial variability with respect to the observed activities among these
samples (mean R? = 0.473, range: 0.031-0.729). Strikingly, the consistency between the
observed promoter activity and gene expression was highly predictive of the performance of
M2A with individual samples (R* = 0.975, P = 4.10x[_ 110", Pearson’s correlation test)
(Additional file 1: Figure S10). Finally, although gene expression was not used in model
generation with M2A (for the vanilla model or the transfer learning step), the promoter activity
inferred by M2A showed uniform consistency with gene expression (mean R? = 0.628, range:
0.541-0.684) (Additional file 2: Table S8).These results jointly suggest that the ChiP-seq library
quality is a potential confounding factor for both the consistency between the observed (from
ChliP-seq) and the M2A-inferred promoter activity landscapes and the consistency between the

observed promoter activity and gene expression in these samples.

Promoter activity landscape inferred by M2A faithfully recapitulates the subtype

difference between embryonal and alveolar rhabdomyosarcomas
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Identifying recurrent epigenetic deregulations (epi-drivers) is a primary research focus in cancer
epigenome studies [57]. To this end, we investigated whether subtype-specific epigenetic
deregulation was captured in M2A-revealed promoter landscapes in the RMS O-PDX tumors. A
t-SNE embedding using M2A-inferred promoter activity landscapes (from the NBL-trained model)
recapitulated the clear separation of ARMS and ERMS tumors (Figure 4a) in the DNAm profiles
(data not shown), which further demonstrates the generalizability of the CNN-extracted high-
order DNAm features. Importantly, when focusing on the promoters of DE genes in the ARMS
and ERMS subtypes, the vanilla M2A model faithfully retained the subtype-specific promoter
activity patterns (R? = 0.713 for DE genes with a single annotated promoter; 0.621 when all
annotated promoters for DE genes were included) (Additional file 1: Figures S11la and S11c).
Transfer learning using data from a single RMS further improved the consistency (R>J=00.758

and 0.673, respectively) (Additional file 1: Figures S11b and S11d).

GAS2 is a gene selectively expressed in ERMS [44]. Although promoter hypomethylation
was found in the ARMS tumors, the M2A model correctly predicted significantly stronger
promoter activities in ERMS tumors (PJ=210.01, Wilcoxon rank-sum test) (Figures 4b and 4d).
Similarly, although both ERMS and ARMS tumors had NOS1-005 promoter hypomethylation,
strong promoter activity was predicted in ARMS tumors only (PI1=110.0015, Wilcoxon rank-sum

test) (Figures 4c and 4e), consistent with the ChIP-seq measurement.

M2A reveals the contribution of differentially methylated regions to promoter

activities

Although DNA methylation patterns, including differentially methylated regions (DMRs), are well-
established biomarkers for diverse diseases and have revealed molecularly and clinically
different subtypes for many cancers, their functional importance in individual gene regulation is
less clear [39-41]. For example, many cancer-specific CpG island hypermethylation regions
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occur in genes that normally are not expressed or are expressed at only a low level [58].
Moreover, even in genes that are both differentially expressed and differentially methylated in
different subtypes, up-regulated samples can be associated with hypomethylation,
hypermethylation, or both [37, 44]. The observed nonlinear relation between DNA methylation
and gene expression complicated the functional interpretation of specific DMRSs. In this analysis,
we interpret the functional roles of DMRs based on the promoter activities of their associated

DE genes.

To summarize unambiguously the contribution of DMRs to differential promoter activities, we
focused on 371 genes in ERMS and ARMS that have a single annotated promoter and that are
both differentially expressed (197 are over-expressed in ERMS, 172 are over-expressed in
ARMS) and differentially methylated (169 are hypomethylated, 128 are hypermethylated, and 74
have both hypomethylation and hypermethylation) in the two major RMS subtypes (Additional
file 2: Tables S9 and S10) [44]. Among these genes, 140 promoters showed significantly higher
H3K27ac measurements in the over-expressed subtype (FDR < 0.1, Wilcoxon rank-sum test),
whereas 206 promoters had measurements that were significantly higher when the DNAm-
based H3K27ac activity was measured. These 206 promoters included 118 of the 140
promoters identified using the observed signals. These results suggest that M2A can reveal the
role of DMRs in modulating the promoter activities of affected genes in a context-specific

manner.

M2A identifies subtype-specific promoter usage encoding different protein

isoforms in rhabdomyosarcoma

Alternative promoter usage is an important pretranslational mechanism for tissue-specific

regulation as it affects the diversity of isoforms available. Recently, light was shed on the
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pervasiveness of alternative promoter usage in cancer; in some cases, promoter usage is a
more accurate reflection of patient survival than is gene expression [2]. Among 10,835 active
genes with multiple annotated promoters in the RMS dataset, we found 2,584 genes (24%) with
alternative primary promoter usage among 16 samples. We focused on 562 genes that 1) were
active in both the ERMS and ARMS subtypes and 2) had subtype-specific promoter usage. We
explored the accuracy of M2A in predicting alternative promoter usage in ARMS and ERMS

(Additional file 2: Table S11).

Based on measured promoter activities, 428 genes exhibited significant usage difference
between the two subtypes (FDR < 0.1, Wilcoxon rank-sum test [used as the ground truth]). The
M2A-inferred promoter activity landscape revealed 276 genes for which there was a significant
difference in promoter usage between the subtypes (FDR < 0.1, Wilcoxon rank-sum test), and
210 of them matched the ground truth (precision = 0.76, recall = 0.49, F1 score = 0.60)

(Additional file 2: Table S11).

PDZ Domain Containing Ring Finger 3 (PDZRN3) is a known target of the PAX3/7-FOXO01
fusion protein [59-61], which blocks terminal differentiation in myogenesis [62]. M2A predicted a
subtype-specific promoter usage pattern in PDZRN3. Functional studies have shown that
PDZRNS regulates myoblast differentiation into myotubes through transcriptional and
posttranslational regulation of 1d2 [62]. Its over-expression in ARMS was primarily driven by the
fusion protein binding adjacent to an alternative promoter (PDZRN3-006) located 191 kbp
downstream of the canonical promoter (PDZRN3-001) (Figure 5a). The subtype-specific isoform
usage is accompanied by DMRs of the alternative promoter and its immediate downstream
regions and is further confirmed by RNA-seq read alignment (Figure 5a). Compared to the
canonical isoform expressed in ERMS, the ARMS-preferred PDZRN3-006 isoform lacks the
RING-finger and Sina domains in the N-terminus and harbors a shorter PDZ domain. The

isoform difference, as well as the differences in expression level, between subtypes may

18


https://doi.org/10.1101/2020.06.09.143172
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.143172; this version posted September 14, 2020. The copyright holder for this preprint

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

contribute to the impairment of myogenesis at different stages in the development of ARMS and

ERMS tumors.

M2A identifies alternative promoter usages with potential prognostic values in

Ewing sarcoma

We next examined the predicted epigenetic promoter activities in 140 EWS samples with DNAm
data assayed by RRBS [22]. Three of these samples had matching ChlP-seq profiles for
H3K4me3 and H3K27ac. To interrogate this dataset, we applied the pretrained vanilla model
with transfer learning, as detailed above, to recalibrate the weights mapping the high-level
features to the promoter activities in the EWS cohort. Despite the difference in DNAm platforms
(WGBS for the NBL training model and RRBS for the EWS samples), the inferred promoter
activity landscape was accurate (R* = 0.718, 0.628, and 0.702 for the three samples with HM

profiles, using leave-one-out prediction) (Additional file 2: Table S12).

Ewing sarcomas with mutations in TP53 and STAG2 have a particularly dismal prognosis
[63]. We explored whether the promoter activity had additional prognostic value in 72 samples
for which survival data was available. Because of the limited sample size, the initial analysis
revealed a significant association between poor clinical outcomes and TP53 mutations
(PO=00.00047, log-rank test) (Additional file 1: Figure S12a) but not STAG2 mutations
(PO=00.67, log-rank test) (Additional file 1: Figure S12b). We identified 21 active genes that
showed a potential difference (absolute mean difference of log-scaled activity = 1) between
TP53 mutant tumors and wild-type tumors, and we applied Cox proportional hazards models to
evaluate their potential contributions to patient survival that are independent of TP53 or STAG2
mutation status (Additional file 2: Table S13). We performed the same analysis for 45 genes

with potential different promoter usage in tumors with and without TP53 mutations (Additional
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file 2: Table S14). Finally, we derived a multivariate Cox proportional hazards model including
both TP53 and STAG2 mutation status, one candidate gene with differential promoter activity
(CALCB), and five candidate gene isoforms (CASZ1, ENST00000496432; RET,
ENST00000479913; TEX40, ENST00000328404; TNS1, ENST00000446903; and SLC27A6,
ENST00000508645), and we followed this with backwards stepwise model selection. The final
model (Figure 5b) revealed potential protective roles for one candidate transcript TNS1
(ENST00000446903), a marginally protective role for candidate transcript RET
(ENSTO00000479913), and a candidate transcript associated with a poor prognosis, SLC27A6

(ENSTO00000508645).

TNS1 encodes the well-studied protein Tensin 1, and is involved in several key aspects of
cell function, including extracellular matrix formation, actin cytoskeleton formation, and signal
transduction [64, 65]. More recently, the up-regulation of TNS1 in colorectal cancer was found to
be associated with poor overall survival in patients [66], although previous studies have shown
suppression of TNS1 expression [67] is associated with metastatic cancers. Our results suggest
that TNSL1 is a candidate prognostic indicator for EWS. Further studies are needed to draw

more attention to the functional roles of these genes/transcripts in EWS progression.

Discussion

Although epigenetic studies in disease models (cell lines, xenografts, and organoids) and in a
limited number of primary tumor samples have demonstrated the oncogenic contributions of
epigenetic deregulations to cancer initiation, progression, and response to treatment [48, 68, 69],
genome-wide profiling of promoter activities by using standard approaches (e.g., ChiP-seq or
CAGE) has not been carried out in large patient tumor cohorts, despite the continuous efforts of

large epigenome consortia [45, 46, 70]. Our analyses of MYCN-amplified NBL tumors revealed
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both commonly active promoters and promoters that were active in some tumors but not in
others. Moreover, these sample-specific active promoters are functionally important, as they
drive the expression of several cancer consensus genes, including MYC. This observation is
consistent with recent reports of heterogeneous enhancer activities of cell line—defined super-
enhancers in primary gastric cancers [71], emphasizing the critical importance of deriving
sample-specific epigenomic signatures. To bridge the gap between the extensive epigenomic
resources in disease models and the limited ChIP-seq profiles of primary patient tumors, we
developed MethylationToActivity (M2A), a deep-learning framework, to characterize the
promoter activity landscape (both H3K4me3 and H3K27ac levels) in individual tumors by using
DNAm data, which is the most extensively documented epigenetic modification for patient
tumors and can be robustly and accurately profiled in FFPE archived retrospective samples.
M2A demonstrated excellent performance across various tumor types, with accuracy
comparable to that of ChlIP-seq measurements of replicate samples from high-quality cohorts

(Figure 3).

Although our framework was strictly trained on HM levels, the inferred promoter activity was
highly correlated with the transcript-based gene expression levels quantified by RNA-seq
(Additional file 2: Tables S5, S7 and S8). The correlation between gene expression and inferred
promoter activities (mean R?= 0.668 for ENCODE data, 0.722 for K562, 0.705 for GM12878,
and 0.536 for H1-ESC) surpassed that with the state-of-art BPR model [42], which was
developed for predicting gene expression levels from DNAm patterns (the best reported R?
values were 0.49 for K562, 0.37 for GM12878, and 0.25 for H1-ESC). Strikingly, the (indirect)
predictive accuracy of M2A for gene expression across nine ENCODE cell lines (average R*=
0.668) was comparable to the predictive accuracy of a model built on 11 HMs, one histone
variant, and DNase | hypersensitivity [11]. Similarly, the accuracy of binary prediction of

expressed genes (average AUC = 0.941 and 0.931 for the ENCODE and AML datasets,
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respectively) surpassed that of DeepChrome (average AUC = 0.80), a state-of-art deep-learning
algorithm trained to predict expressed genes by using five core HMs (H3K4me3, H3K4mel,
H3K36me3, H3K9me3, and H3K27me3) [12]. These results further validated our framework.
Finally, both the M2A and BRP models suggest that it is insufficient to represent DNAmM
information by using a simple average methylation level in the promoter region. To properly
reveal the regulatory roles of DNAm, we need to derive high-order features that capture spatial
relations among CpG probes (or window-based derived features calculated from them) in
promoters and in their vicinity. M2A uses the feature learning and selection characteristics of
CNNs to achieve its exceptional performance, thus demonstrating the rich information content of

DNAm signatures at both the genome-wide and local gene levels.

Analysis of the deep-learning framework revealed that M2A derives 1) high-level features
from DNAm patterns that are common among different tumors and 2) tumor subtype—specific
mapping functions from the mapping of high-level DNAmM features to promoter activities in
individual tumor subtypes by using transfer learning (when feasible). Although our deep-learning
model cannot establish a causal relation between DNAmM and promoter activities, these findings
nevertheless shed light on both the general and tumor subtype—specific rules for interpreting

DNAm patterns.

In evaluating our predictions, we found that several samples (the “poor performers”) showed
abnormally low predictive accuracy with both the ENCODE and BLUEPRINT datasets.
Investigations of the promoter H3K27ac levels revealed that the fraction of active promoters in
these samples was substantially lower than in other samples. Furthermore, joint analyses with
RNA-seq data from the matching samples indicated that 1) in contrast to the predictive accuracy
of H3K27ac levels, the “poor performers” achieved comparable consistency between the M2A-
inferred promoter activity and gene expression; 2) the “poor performers” showed significantly

lower correlation between the measured promoter H3K27ac level and gene expression; 3) the
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correlation between the measured promoter H3K27ac level and gene expression was highly
predictive of the accuracy of the H3K27ac prediction (Additional file 1: Figure S10),and 4) in
ENCODE samples with replicates, the replicate with better consistency between H3K27ac and
gene expression also showed significantly higher correlation between the actual and measured
H3K27ac level (P = 0.0039, Wilcoxon signed rank test, Additional file 2: Table S15, an example
of H3K27ac signal discrepancy between H1-ESC replicates shown in Additional filel: Figure
S8d). Although we cannot unequivocally rule out the possibility that these “poor performers”
share a distinct biological mechanism where promoter H3K27ac level is no longer a stronger
predictor for gene activities, these results suggested that the “poor performers” could reflect the
guality of the ChlP-seq results included in the test data. This observation emphasizes the value
of conducting a preliminary analysis to evaluate the data quality before incorporating public data.
It also suggests that M2A can provide a robust surrogate for promoter activities when the ChiP-

seq experimental data is questionable.

Alternative promoter usage increases the transcriptomic diversity during normal tissue
development and oncogenesis. Recent work demonstrated that an alternative promoter of
ERBB?2 is predictive of a poor clinical outcome but that the canonical promoter shows no
significant association with survival in patients with low-grade glioma [2]. Whereas earlier
studies focused on identifying alternative promoter usage through CAGE or RNA-seq data, our
research has shown that alternative promoter usage can be extensively studied by using DNAm
profiles from diverse samples, including retrospective FFPE tumor samples, for which traditional
approaches (CAGE, ChIP-seq, and RNA-seq) are technically challenging. Our analysis of a
large EWS cohort (without matching RNA-seq data) revealed promoter activities for several
specific isoforms that are independently associated with clinical outcomes, including a specific
isoform of the TNS1 gene (ENST00000446903). This demonstrates the importance of analyzing

alternative promoter usage in epigenomic studies.
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Finally, our analysis quantitatively emphasizes that promoter activity is one of the
mechanisms that regulate the final transcriptional output: 1) both the observed and predicted
promoter activities account for 50%—70% of the variation in gene expression, and 2)
approximately 40% of the genes differentially expressed in ERMS and ARMS tumors show
significant differences in their promoter activities. In addition to promoter activities, other
epigenetic mechanisms, including enhancer activities, contribute substantially to gene regulation
[72]. Recent work has demonstrated the roles of DNAm in regulating enhancer activities [73]
and aberrant cancer-specific DNAmM patterns in super-enhancers [74]. Consequently, we aim to

expand our M2A framework to infer enhancer activities from DNAm patterns in the future.

Conclusion

We have demonstrated that MethylationToActivity overcomes the unigue challenges of
systematically characterizing promoter activities from DNA methylation signatures. It achieved
an accurate, robust and generalizable performance in various pediatric and adult cancers,
including both solid and hematologic malignant neoplasms. MethylationToActivity will serve as a
valuable tool to provide functional interpretation of DNAm deregulation, characterize promoter
activity differences from DNAm patterns, and reveal alternate promoter usage in patient tumors,
which will facilitate precision medicine by tailoring treatments based on both genetic variants

and epigenetic deregulation.

Methods

Datasets
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Five separate publicly available datasets were used in this study, including a pediatric NBL O-
PDX dataset (NUJ=2116) [40]; an RMS O-PDX dataset (N_1=116) [42]; ENCODE datasets with
matching H3K27ac and H3K4me3 histone mark ChIP-seq, RNA-seq, and WGBS experimental
data (N[ 1= 19) [43]; a DCC BLUEPRINT AML dataset (NI /="119) [44]; and a pediatric EWS
dataset (N 1=[1140) [19] (Additional file 2: Table S16). Of the 140 samples in the EWS cohort,
only three had matching ChlP-seq and reduced-representation bisulfite sequencing (RRBS)
data available; for the remaining 137 samples, only RRBS data was available. All other cohort
datasets (i.e., the RMS, NBL, ENCODE, and AML datasets) contained matching H3K27ac and

H3K4me3 profiles, along with RNA-seq and WGBS experimental data.

Feature processing

All datasets were evaluated using GENCODE annotation definitions (www.gencodegenes.org/);

the NBL, RMS, ENCODE, and EWS datasets were evaluated using GENECODE GRCh37.p13
(release 19), and the AML dataset was evaluated using GENCODE GRCh38.p13 (release 32).
Promoter regions are defined as the TSS £ 1 kbp, where the TSS is defined as each unique
transcript start position. To avoid using identical or near-identical promoter regions in training
and baseline performance, only TSSs with promoter regions with less than 50% overlap were
considered. Gene orientation was taken into account, and any promoters with overlying regions
but opposite orientations were not considered as overlapping. Because of differences in sex
amongst samples, all chromosome X and Y promoter regions were removed from consideration.
This resulted in a total of 96,756 and 104,722 non-overlapping promoter regions from the
annotation files GRCh37.p13 and GRCh38.p13, respectively. For gene expression analysis, we
followed the definition in [11] and retained all 141,152 and 147,980 autosomal promoters for
protein-coding genes from the annotation files GRCh37.p13 and GRCh38.p13, respectively.
M2A uses only one variable feature type: DNA methylation. For WGBS/RRBS data, the M-value

was calculated as follows:
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Mval. < I ( Methylated;, + a )
vt = 1082 Unmethylated,, + a/’

where Methylated; and Unmethylated, correspond to the number of methylated and unmethylated

reads of the k™ CpG site, respectively. By default, the offset « was set to 0.5, and a global M-value
threshold was set to a maximum value of log, (65) and a minimum value of log, (é). CpG sites with

coverage of less than five reads were removed.
M2A uses a promoter region—based windowed approach, comprising 20 windows of two sizes (250
bp and 2.5 kbp) and a step size equal to the window size, centered on a given TSS. For instance,

Wi = (Wi, Wiy, Wiz ..., W5} is the vector of windows where i represents a particular TSS and j

represents a particular window corresponding with the it* TSS. This means that W;;, and W;,,

represent the windows immediately downstream and upstream of the i TSS. Therefore,
Wi, = TSS; — 102" window,

Wi, = TSS; — 9" window, ...

Wiie = TSS; + 9" window,

Wizo = TSS; + 10" window

Each feature was calculated in this manner. The DNA methylation features, including the windowed

M-value mean, variance, and the fraction of the SSD of M-values (FSSD), were calculated and
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625 represented by the feature vectors Mave;, Mvar;, and M fssd;. Therefore, the features for a particular

626  window, denoted as W;;, would be calculated as follows:

ijr
1

Maveij = TI,_Z Mvalik(j),
t

1
Mvarij = FZ(MQU@U - Mvalik(j))z,
tj

627 and
M d MSSdij
fssdj = Y (Mave; — Mval,)?
628 where

1
Mave; = n_z Mval;,
i

629 and

630 Mssd;; = Y. (Mave;; — Mvalik(j))z,

631

632 Here, i represents the promoter, j represents a specific window for a particular promoter, and

633  Mwval, represents the Mval for individual CpGs in a region where Mval,;, is the Mval for an individual

634 CpG in a specific window. Each feature was interleaved by window size to provide model input wherein
635 each window contained a number of “channels” equal to the number of features, with the feature array
636 shape being (N, 2, 20, 3), where N represents the total number of TSSs in a sample, 2 represents the
637 number of window sizes (250 bp and 2.5 kbp), 20 represents the number of windows, and 4 represents
638 the number of features per window. All features were scaled from 0.1 to 1 (using MinMaxScaler with
639  default values from sklearn version 0.22); in instances where windows overlapped regions without

640 methylation data, resulting in NaNs (such as chromosomal boundaries, telomeric regions, and

641 centromeric regions), these feature values were marked as O.

642

643  Calculating histone modification enrichment
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644  The response variable was calculated for each non-overlapping promoter region, a 2000-bp region
645 centered on each TSS. Histone modification enrichment (HM) for the it" promoter region is calculated

646 as follows:

Zk ChIPlk +a
HM,; = log, =X —— %%
i = 1002 Y Inputy, + a

647

648  where Y, ChIP;, represents the sum of either the H3K27ac or the H3K4me3 read signal mapped to the
649  promoter region at each position, Y}, Input;;, represents the sum of the control read signal mapped to
650 the promoter region, and a represents the 25" percentile of the ¥, Input;, calculated for a given

651 sample.

652

653 M2A topology

654 M2A is a machine learning framework that leverages canonical deep-learning strategies, including

655  convolutional neural network (CNN) and fully connected (FC) layers. Each layer employs a LeakyRelLU
656 (alpha’=010.1) and a kernel constraint by L2-normalization using maxnorm(3). CNN layers are two-
657 dimensional, with zero padding, a stepsize of (1,1), and a kernel size of (1, 3) to maintain feature space
658  and prevent convolutions across features from different window sizes. To test the efficacy of this

659 approach, we compared the performance of a traditional artificial neural network (ANN) consisting of
660 two FC layers versus three CNN layers in addition to two FC layers. During transfer learning, weights
661  corresponding to each of the three CNN layers of the six-NBL O-PDX M2A model trained previously
662  were frozen; only the weights corresponding to the two FC layers were optimized. A summary of all
663 model topologies and parameters can be found in Additional file 2: Table S17. To train and test each
664  model topology, we used Keras (v2.2.4) and Tensorflow (v2.1.0) in Python 3.6.5.

665

666 M2A parameter tuning
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667 Parameters such as the window size, batch size, and kernel size were optimized using the validation
668 NBL data set (n=10). Each parameter configuration was tested holding all other parameters constant,
669 and models with a numerical performance advantage were chosen. For batch size, three configurations
670 were tested (64, 128, 256). Four kernel size configurations ([1,2], [1,3], [1,4], [1,5]) were tested. and
671  window configurations ([100bp, 1000bp], [250bp, 2500bp], [500bp, 5000bp]) were considered. Due

672  to >50% uninformative features in the 100bp window resolution, only the (250bp, 2500bp) model and
673  (500bp, 5000bp) model performances were compared (Additional file 1: Figure S13; Additional file 2:
674 Table S18).

675

676  Training M2A

677  The core M2A model (without transfer) training set consisted of six O-PDX samples from the 16-

678 sample NBL cohort (Additional file 2: Table S19); we trained separate models for H3K27ac and

679 H3K4me3 HMs with the same WGBS features as the input. After the base models were trained,

680 transfer learning was employed for three separate datasets, namely the RMS, AML, and EWS

681 datasets. Each transfer learning model was trained using one sample from the cohort, for a total

682  of N models, where N equals the number of samples in the cohort. For the RMS and EWS

683  cohorts, an ensemble approach was used, whereby an averaged prediction from N-1 models

684  was generated after transfer learning with each sample. The same approach was used with the

685  AML cohort, except that only samples with R? = 0.60 between FPKM and H3K27ac were used

686  for transfer learning.

687 For each training scheme, the same parameters were used, including an 80/20 training/validation
688  split and a batch size of 64 (Additional file 2: Table S17). All sample input was randomized before

689 training. The Keras implementation of adadelta (default parameters) minimizing the mean squared error
690 (MSE) was used to optimize M2A. To prevent overtraining, the EarlyStopping method was employed by
691  monitoring validation loss for 10 epochs without at least a minimal gain in performance (min_delta =

692  0.0001) for a maximum of 80 epochs. In no case was the maximum number of epochs reached.
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693

694 Determining promoter diversity in NBL models

695  Promoter region—based H3K27ac distributions clearly show a bimodal distribution (see

696  Additional file 1: Figure S1); therefore, to determine class occupancy (active versus inactive), a
697  Gaussian mixture model (GaussianMixture from sklearn version 0.22 with n_components = 2)
698  was applied for each individual sample. To determine the percentage of differentially active

699  promoters among all active promoters, we used a pairwise comparison approach for all samples.

700 Cancer consensus genes were downloaded from COSMIC (https://cancer.sanger.ac.uk/census)
701 (accessed on February 1, 2020). To avoid artificially inflated values from genes with multiple
702  TSSs, only cancer consensus genes with a single TSS according to GENCODE GRCh37.p13
703  (release 19) definitions were considered.

704

705 Evaluating M2A performance

706  When determining prediction performance, two primary metrics were considered, namely the R? and
707  the root mean squared error (RMSE). To measure the accuracy of M2A in predicting expressed genes,
708  we calculated the AUC-ROC by using roc_curve and the precision-recall curve AUC by using

709 average_precision_score from sklearn 0.22. Paired analyses were tested for statistical significance by
710  using a Wilcoxon signed-rank test (R v3.4.1). To determine outliers, a median-based method was

711  implemented using the “outlier” function in the R package GmAMisc [55]. To ensure that low-

712  mappability regions were not a confounding factor, we used the

713  wgEncodeCrgMApabilityAlign100mer.bw file downloaded from the UCSC Genome Browser

714  (http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability). For GRCh38.p13

715 annotations, we used liftOver from UCSC (http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/) to

716  convert the mappability track to GRCh38. For all performance-related analyses, the average value of
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this track within each non-overlapping 2000-bp promoter region was calculated, and promoter regions
with mappability > 0.75 were retained for evaluation.

In analyses between H3K27ac levels (actual or predicted) and gene expression, we followed the
gene filtering steps described in [11]: all autosomal protein-coding gene promoters were considered

and for genes with multiple promoters, we use the maximum promoter activity to represent the gene.

Baseline models

Multivariate adaptive regression splines (MARS) was implemented by “earth” package in R (all default
values were used), and the random forest baseline model was implemented by the
“sklearn.ensemble.RandomForestRegressor” package in python 3.7.0 (max_features="sqrt’). For

comparison purposes, each model tested used identical feature input to M2A.

M2A captures the impact of DMRs on promoter region activity

The lists of genes that are differentially expressed in ERMS and ARMS samples and genes with DMRs

were previously reported in reference [42].

Alternative promoter usage analyses

To infer alternative promoter usage that was specific to the RMS subtypes ARMS and ERMS, we first
delineated the “active” vs. “inactive” promoters in a subtype (ERMS or ARMS) by applying a threshold
of mean(H3K27ac) > 1 for the average samples in the subtype. Next, primary promoters from multi-
promoter genes were determined by the average H3K27ac level within a specific subtype, and the
promoter with the maximum activity from a given gene was counted as the primary promoter. The
differences in promoter usage between two subtypes was defined as the difference between the activity

sum of the primary promoters and the activity sum of the secondary promoters in the two subtypes.
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742  Analysis of alternative promoter usage in EWS

743  In the same manner as the RMS subtype analysis, EWS alternative promoter usage was determined in
744  two patient sample groups: TP53 mutant and TP53 wild-type groups (for sample status, see Additional
745  file 2: Table S18). Candidate genes were identified as active genes (H3K27ac = 1 in at least one group)
746  with potential differential promoter activities (absolute difference = 1) in the TP53 wild-type and TP53
747  mutant groups. Candidate genes with alternative promoter usage were identified as genes that used
748  different active primary promoters in the wild-type and mutant groups and had an average promoter
749  usage difference of at least 0.4 between groups. Both alternative promoters and differentially active
750  promoters were considered in prognostic analyses (univariate screening incorporating both TP53 and
751  STAG2 mutation status, followed by a multivariate analysis) using Cox proportional hazard models (R
752  3.4.1). The final model was derived from backward stepwise selection from a Cox proportional hazards
753  model including TP53 and STAG2 mutation status and all potential markers (all genes or promoters
754  with an FDR < 0.05 in the univariate analysis).

755

756  Analysis of M2A feature input and extracted features

757  To determine the merit of a CNN-based approach, each feature average for a particular window

758  position and window size were plotted with a 95% confidence interval. The plotted feature distribution
759  was calculated from all M2A vanilla model training data input (NBL, N=6), and stratified by promoter
760  status. Promoter status was determined by class occupancy of both H3K27ac and H3K4me3, (active
761  versus inactive), where (H3K27ac=active), (H3K27ac=inactive, H3K4me3=active), and

762 (H3K27ac=inactive, H3K4me3=inactive), represents active, poised, and inactive promoters,

763  respectively. Class occupancy was determined by applying a Gaussian mixture model

764  (GaussianMixture from sklearn version 0.22 with n_components = 2).

765 The efficacy of the CNN-based feature extraction was tested by 1) training sample input feature

766  predictive performance as compared to CNN-extracted feature performance, calculated by Pearson’s
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767 R for all features across the entire training set (each window size considered separately; NBL, N=6)
768  and 2) The performance (Pearson’s R?) of the best performing feature identified in 1) when applied to
769  each sample in the validation set (NBL, N=10; Additional File 1: Figure S3).

770

771  M2A code availability

772  The latest M2A models, feature generation, prediction pipeline, and a Docker image of the M2A

773  environment pre-loaded are available for download at https://github.com/chenlab-sj/M2A. Additionally,
774  source code with detailed instructions for transfer learning using the M2A model with input samples
775  from other domains is available. The cloud-based implementation of M2A is available to anyone with a
776  (free) St. Jude Cloud account (https://platform.stjude.cloud/workflows/methylation-to-activity).
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Figure Legends

Figure 1 Variations of promoter H3K27ac levels among MYCN amplified NBL samples.
(a—c) Promoters were classified as active or inactive based on H3K27ac levels in individual NBL
tumors: (a) NBL cell line samples, (b) NBL O-PDX samples, and (c) NBL cell line and O-PDX
samples. Each promoter region plotted spans TSS % 5,000 bp binned by non-overlapping 250
bp windows; the color bar represents the scaled windowed H3K27ac enrichment, from 0 (lowest)
to 3 (highest). Horizontal dotted lines delineate shared promoters (active in all samples) and
sample-specific promoters (promoter activity in at least one sample was different from the
remaining samples). Promoters were sorted by average descending H3K27ac enrichment
across all samples within each group. (d, €) Venn diagram indicating the number of shared and
sample-specific H3K27ac promoter activities between NBL cell line samples (d) and O-PDX
samples (e). (f) The promoter activity variation is highlighted by the proportion of sample-
specific active promoters among all H3K27ac active promoters, as compared within cell line or

O-PDX NBL samples, and between cell line and O-PDX NBL samples.

Figure 2. M2A feature processing and training workflow.

The M2A framework hinges on the feature processing pipeline. (a) First, windowed features (20
total non-overlapping windows for each of two sizes including 250 bp and 2,500 bp) centered
around the TSS are calculated from WGBS data for each unique promoter region, extending up

to 2,500 bp (250 bp window), and 25 kbp (2,500 bp window) away from the TSS. Response
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variables (H3K27ac and H3K4me3) for separate model training were generated for matching
promoter regions (TSS + 1 kbp). The matching window features and response variables serve
as input to the model topologies, where M2A first extracts high-level features by using a series
of convolutional layers then maps these features to response variables in fully-connected (FC)
layers. Transfer learning with M2A leverages pretrained feature extraction (frozen CNN layers
indicated in blue), training only the FC layers. (b) The overall workflow for training, validation,
and testing M2A is detailed, as well as an overview of the analyses performed to validate M2A
performance in different real-world applications. M2A models for H3K4me3 and H3K27ac were

trained separately, indicated by blue (H3K4me3) and green (H3K27ac).

Figure 3. M2A performance in NBL and RMS cohorts.

(a, b) Analysis of the performance of M2A in NBL and RMS cohorts with (a) H3K4me3 inference
and (b) H3K27ac inference. ENCODE replicate consistencies were calculated as Pearson’s
correlation squared (R?) between replicates (two replicates per sample). ENCODE sample
KMS-11 was excluded as an apparent outlier R*=0.016, RMSE = 1.869. Prediction accuracy
was measured by R? between the actual measurement and M2A’s prediction. (c—g) Individual
examples of median M2A performers in (c) NBL cell line H3K27ac inference, (d) NBL cell line
H3K4me3 inference, (e) RMS H3K27ac inference (pre-transfer), (f) RMS H3K4me3 inference,
and (g) RMS H3K27ac inference (post-transfer). To indicate the density of data points where
individual data points cannot be resolved, a KDE was applied, called from 1 (highest) to 0
(lowest). (h) The boost to M2A performance (measured by RMSE) due to transfer learning is

shown, as applied and tested in RMS samples.

Figure 4. M2A recapitulates subtype differences in RMS.
(a) A t-distributed Stochastic Neighbor Embedding (tSNE) analysis of observed (left), M2A

inferred (center: pre-transfer, right: post-transfer) H3K27ac promoter levels. Embryonal and
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alveolar RMS subtypes are well separated in each analysis, demonstrating that M2A inferred
H3K27ac levels maintain the delineation of RMS subtypes, consistent with the observed
H3K27ac tSNE analysis. (b—d) The subtype-specific genes GAS2 (b) and NOS1 (c) show
subtype distinct patterns of DNAm, H3K27ac, and H3K4me3 levels. The windowed average
DNAm feature (2,500 bp windows, over the genomic region TSS + 25 kb) is shown as example
(partial) M2A input. These subtype differences were faithfully recapitulated by the M2A

H3K27ac inferences for GAS2 (d) and NOS1 (e).

Figure 5. M2A reveals alternate promoter usage in RMS and EWS.

(a) An analysis of alternate primary promoter usage between RMS subtypes ERMS and ARMS
shows that M2A appropriately predicts subtype—specific promoter usage in PDZRNS3, a known
target of the PAX3/7—FOXO1 fusion protein, which is consistent at the observed values of
H3K27ac, H3K4me3, RNA-seq, and DNA methylation. Partial M2A input (DNAm 2,500 bp
windowed average) is shown to emphasize the DNAm patterns in the genomic region
surrounding the TSS * 25 kb. (b) Alternate promoter usage in EWS patient samples with and
without TP53 mutations were incorporated in a Cox proportional hazards model, highlighting the

potential prognostic value of the isoforms identified by M2A.

Additional Files

Additional file 1 (file type .PDF, 7 MB):

Figure S1. NBL sample H3K27ac promoter distribution.

A comparison of promoter H3K27ac enrichment in MYCN amplified (MNA) NBL cell line and O-
PDX samples shows a clear bimodal distribution, delineating “active” and “non-active”

promoters.
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Figure S2. DNAmM input feature pattern analysis.

The DNAm features show promoter-status-specific patterns between active, poised, and
inactive promoters, emphasizing the utility of positional-based relationships in a windowed
DNAm feature approach. For both 250 bp and 2,500 bp window sizes, the average scaled input
feature was plotted in relationship to the TSS (ribbons represent the 95% confidence interval),
stratified by the promoter status. Promoter status was determined by class occupancy of both
H3K27ac and H3K4me3, either “active” or “inactive”, where (H3K27ac=active),
(H3K27ac=inactive, H3K4me3=active), and (H3K27ac=inactive, H3K4me3=inactive), represents

active, poised, and inactive promoters, respectively.

Figure S3. Feature performance comparison: Input features vs CNN mapped features.
Using all samples included in training the vanilla M2A model (NBL, N=6), the individual feature
performance (as determined by Pearson’s R? between the feature and the response variable,
H3K27ac) for each feature was plotted, comparing the distribution of performances between raw
input training feature and the CNN mapped features at a particular window size (250 bp or
2,500 bp). The best feature from this analysis for each window size and feature type (input or
CNN mapped) was used to determine Pearson’s R? with H3K27ac from each sample in the NBL

validation set (N=10).

Figure S4. M2A prediction generalizability analysis.

(a) A comparison between performance of the M2A model (R? of observed H3K27ac promoter
levels and predicted levels in the test sample) with the surrogate model (represented by the
highest R? of observed H3K27ac promoter levels in the test sample and the observed H3K27ac
promoter levels in any training sample). M2A extracts generalizable features capable of out-

performing the surrogate model in both the NBL validation set and the RMS test set, further
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highlighted in (b), a comparison of surrogate model and M2A model performance using

promoters from DE genes between NBL and RMS.

Figure S5. M2A with transfer learning outperforms a vanilla M2A model of the same
cancer type.

An M2A model with transfer learning (initially trained with six NBL O-PDX samples and then
transferred with a single RMS sample) consistently outperforms an M2A model trained with a

single RMS sample.

Figure S6. Signal-to-noise analysis of ENCODE and NBL datasets.
Comparison at the observed H3K27ac promoter level (a) and the H3K4me3 (b) promoter levels
revealed different signal-to-noise profiles between the ENCODE dataset and the NBL datasets,

which results in a highly correlated prediction with larger RMSE values.

Figure S7. M2A ENCODE cohort performance.
The distribution of M2A prediction performance (R?), shows that M2A accurately infers both

H3K27ac and H4K4me3 promoter levels in the publicly available ENCODE dataset.

Figure S8. Analysis of outlier H1-ESC.

(&) When inferring H3K27ac promoter levels, M2A was substantially less accurate in the
ENCODE sample H1-ESC, which is an outlier in the ENCODE cohort. (b, ¢) M2A-predicted
H3K27ac promoter levels (b) are more consistent with, and more predictive of, H1I-ESC gene
expression than are the actual observed H1-ESC H3K27ac promoter levels (c). (d) The
hypomethylated region surrounding the promoters of genes PSMA7 and SS18L1 (often
indicative of H3K27ac enrichment) showed inconsistent H3K27ac levels between H1-ESC

ChlIP-seq replicates from ENCODE.
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Figure S9. Predicting gene expression in the ENCODE dataset.
(a—i) The indirect ability of M2A to predict gene expression (i.e., expressed vs. not expressed)
on the basis of both M2A-predicted and observed H3K27ac promoter levels for each sample

was determined by comparing the AUCs of the receiver operating characteristic (ROC) curves.

Figure S10. Consistency of gene expression and H3K27ac promoter levels in the AML
cohort.

The consistency, as determined by Pearson’s R?, between the observed values for gene
expression and the H3K27ac promoter levels is remarkably predictive of the performance M2A

in predicting H3K27ac promoter levels in samples from the AML cohort.

Figure S11. M2A accurately determines subtype differences between embryonal and
alveolar RMS.

(a) The promoter activities of single-promoter, differentially expressed genes in the RMS
subtypes ERMS and ARMS are accurately inferred by an M2A base model (trained with six O-
PDX NBL samples). (b) The predictive performance of M2A is further boosted by transfer
learning with one RMS sample. (c, d) The performance of M2A declines slightly when the model
is applied to all promoters of differentially expressed genes (c), but it recovers when an M2A

model with transfer learning with only one RMS training sample is applied (d).

Figure S12. Kaplan—Meier log-rank analysis by mutation status in EWS.
The prognostic ability of (a) TP53 or (b) STAG2 mutation status in the EWS cohort was
determined by the log-rank test and visualized using the Kaplan—Meier survival curve. The

STAG2 mutation status showed no significant difference in overall survivability, thus only TP53
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mutation status was considered when forming the univariate and multivariate Cox proportional

hazards model.

Figure S13. CpG distribution by window relative to the TSS.

To achieve feature input that is informative to the model, M2A window size selection was
partially based on the number of CpGs captured by window size. Each analysis consists of 20
windows surrounding each TSS at a particular window size, representing the theoretical CpG
input to M2A for that particular resolution. Three different window configurations were
considered, comprised of two window sizes: 1) 100 bp and 1,000 bp, 2) 250 bp and 2,500 bp,
and 3) 500 bp and 5,000 bp. Due to NaNs in feature windows calculated with fewer than 2

CpGs, the [100 bp, 1000 bp] model was removed from consideration (> 50% NaNs).

Additional file 2 (file type: .XLSX, 179 KB).

Table S1: H3K27ac active cancer consensus genes in 3 NBL cell lines, and 3 NBL O-PDX
samples.

Table S2: Baseline models vs. vanilla M2A predictive performance comparison.

Table S3: M2A predictive performance in NBL cell line samples.

Table S4: Observed H3K27ac and H3K4me3 ENCODE replicate consistencies.

Table S5: M2A predictive performance in RMS O-PDX samples.

Table S6: M2A RMS transfer model predictive performance in RMS O-PDX samples.
Table S7: M2A predictive performance in ENCODE dataset.

Table S8: M2A predictive performance in AML samples.

Table S9: ERMS vs. ARMS DMRs and associated genes (overexpressed in ERMS).
Table S10: ERMS vs. ARMS DMRs and associated genes (overexpressed in ARMS).
Table S11: M2A alternate promoter usage predictive performance between ARMS and

ERMS samples.
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