

Global and local tension measurements in biomimetic skeletal muscle tissues reveals early mechanical homeostasis

Arne D. Hofemeier¹, Tamara Limon¹, Till M. Muenker¹, Bernhard Wallmeyer¹, Alejandro Jurado¹, Mohammad E. Afshar^{2,3}, Majid Ebrahimi^{2,3}, Penney M. Gilbert²⁻⁴, Timo Betz^{1,*}

1 Institute for Cell Biology, University of Münster, Münster, Germany

2 Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada

3 Donnelly Centre, University of Toronto, Toronto, Canada

4 Department of Cell and Systems Biology, University of Toronto, Toronto, Canada

* timo.betz@uni-muenster.de

Abstract

The mechanical properties and tension of muscle tissue are tightly related to proper skeletal muscle function, which makes experimental access to the biomechanics of muscle tissue development a key requirement to advance our understanding of muscle function and development. Recently developed elastic *in vitro* culture chambers allow for raising 3D muscle tissue under controlled conditions and measurements of tissue force generation. However, these chambers are inherently incompatible with high resolution microscopy limiting their usability to global force measurements, and preventing the exploitation of modern fluorescence based investigation methods for live and dynamic measurements. Here we present a new chamber design pairing global force measurements, quantified from post deflection, with local tension measurements obtained from elastic hydrogel beads embedded in the muscle tissue. High resolution 3D video microscopy of engineered muscle development, enabled by the new chamber, shows an early mechanical tissue homeostasis that remains stable in spite of continued myotube maturation.

Introduction

Skeletal muscle is one of the most abundant tissues in the human body and is crucial for essential functions such as limb movement, thermogenesis and maintaining posture [9, 26, 38]. Skeletal muscle atrophy is debilitating and is a typical outcome of diseases like muscular dystrophies but also aging. Characterizing the biomechanics of muscle tissue is a key element to understand both, muscle development and muscle degeneration. While this characterization has been largely achieved on the global tissue level, the local mechanical properties during muscle development and maturation remain inaccessible. This is largely due to the limited optical access of muscle tissue which prevents the use of modern fluorescence microscopy based methods. Indeed, molecular biology has contributed a plethora of fluorescence microscopy based tools to label molecules [6, 56], modify signaling cascades [16] and measure molecular interactions [4] as well as mechanical tension [21, 28, 43], the field of muscle tissue research is partially

1
2
3
4
5
6
7
8
9
10
11
12
13

hampered in exploiting these tools due in part to the limited access to high end fluorescence microscopy. In recent years, the study of skeletal muscle development and disease is shifting from animal models to new *in vitro* muscle tissue approaches, that promise more controlled experimental approaches with improved optical access. Furthermore, these engineered muscle tissues not only avoid ethical considerations, but also overcome several problems of animal models such as a high price, time consuming procedures, and in some cases, failure to accurately predict human treatment response due to species specific differences [12, 18, 34]. Although 2D skeletal muscle cell cultures can provide ease of predictions during drug testing and disease modelling [50], these systems are of limited use in contraction studies due to randomly oriented myotubes and the inability to maintain long-term cultures [14, 22, 39, 49]. In contrast, modern reconstituted 3D *in vitro* skeletal muscle systems are demonstrated to be an efficient tool for rapid and reliable drug screening [2, 54] and allow for testing of personalized treatments on cells harvested from individual patients. Besides these medical advantages, such functional muscle tissues were reported to successfully mimic native muscle tissue with long-term structural integrity [23, 27] and allow new insights and fundamental knowledge of muscle tissue development, force generation during contraction as well as the phases of disease onset and progression [2, 11, 19, 24, 25, 31, 32, 41, 48, 51]. In culture platforms allowing for *in situ* force measurements, 3D skeletal muscle tissues self organize between mm sized posts around which muscle precursor cells are seeded together with an extracellular matrix. These chambers are commonly based on polydimethylsiloxane (PDMS) molds that can be tuned in their elastic properties and are soft enough to allow measurement of muscle contraction forces by recording the post deflection. Such non-invasive measurements of force generation in reconstituted muscles are indeed based on the elastic properties of PDMS [1, 29]. A downside of PDMS is that the poor optical properties paired with routinely used material thickness prohibits high numerical aperture objectives that are necessary for high resolution microscopy, and hence make modern 3D microscopy methods like confocal and spinning disk microscopy on living tissue impossible. Instead, to study 3D tissues with high resolution requires fixation and removal from the culture device, thus preventing research on questions related to dynamic processes. Hence, they are of only limited use for the investigation of spatiotemporal research questions such as dynamics of cell-cell interaction or myoblast fusion. Moreover, PDMS has an immense capacity to absorb chemicals and proteins and is therefore unsuitable for serum-free medium applications or precise drug evaluation [52].

Recently, a method to determine contraction forces of myotubes grown within collagen or other ECM-like matrices using 3D traction force microscopy was described [42]. This approach resolves force generation not only at the endpoints of the myotubes, as in the post systems, but can also determine traction forces along the length of the myotube. Although this new method dramatically enhances the resolution of force generation and is compatible with high resolution microscopy, it is limited to forces acting on the interface between the muscle cells and the provided environment. The force and tension distribution within the tissue, and namely between individual cells, remains only accessible by locally cutting myotubes, and thus damaging the system.

While the local distribution of tension in reconstituted muscle tissues cannot be measured at the moment, mechanical tension and its distribution in other tissues was previously shown to guide many fundamental biological processes such as collective cell migration, tissue morphogenesis and cell fate decisions [15, 45, 57]. Despite this, non-destructive experimental approaches to investigate spatial and temporal forces on a cellular level are limited and thus, characterization of local cell niches within a tissue remains a challenge. To overcome this problem, Campas et al. introduced

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1440
1441
14

(75 cm², Greiner, Kremsmünster, Austria) in 20 ml Dulbecco's Modified Eagle Medium (DMEM, Capricorn, Ebsdorfergrund, Germany) containing 10 % fetal calf serum (FCS, Sigma, St. Louis, USA) and 1 % penicillin-streptomycin (Gibco, Waltham, USA) at 37 °C, 5 % CO₂ in a humidified incubator. For cultivation of AB1190 and AB1167 cells, cultivation conditions were similar to those for C2C12, with the exception that Skeletal Muscle Cell Growth medium (PROMOCCELL, Heidelberg, Germany) was used as the base medium instead of DMEM.

3D skeletal muscle tissues were raised in culture as previously reported [2, 31]. Briefly, 1.5 x 10⁷ cells per ml were resuspended in an ECM mixture containing DMEM (40 % v/v), 4 mg/ml bovine fibrinogen (Sigma, St. Louis, USA) in 0.9 % (w/v) NaCl solution in water and GeltrexTM (20 % v/v, Gibco, Waltham, USA). Custom-made fluorescent PAA beads were directly added to the mixture (1000 beads per ml of ECM mixture). 25 µl of the cell mixture was utilized for each tissue in the PMMA molds and 15 µl for the MyoTACTIC PDMS molds [1]. Fibrin polymerisation was induced with thrombin (Sigma, St. Louis, USA) at 0.5 units per mg of fibrinogen for 5 min at 37°C. Subsequently, 300 µl growth medium consisting of DMEM supplemented with 20 % FCS, 1 % penicillin-streptomycin and 1.5 mg/ml 6-aminocaproic acid (ACA, Sigma, St. Louis, USA) was added. After 2 days, the growth medium was exchanged to differentiation medium consisting of DMEM supplemented with 2 % horse serum (HS, Sigma, St. Louis, USA), 1 % penicillin-streptomycin (Gibco, Waltham, USA) and 2 mg/ml ACA. For human microtissues the differentiation medium was additionally supplemented with 10 µg/ml insulin. The differentiation medium was changed every other day.

PAA bead fabrication

To produce PAA beads a water-in-oil emulsion approach was used. Since in this study predominantly 2.1 kPa (Young's modulus) beads were utilized, the fabrication and characterization for this elasticity is described, representatively. To generate beads with other elasticity, adapted concentrations of monomers and crosslinkers are required.

The water phase was prepared by mixing two parts of acrylamide solution (40 % v/v, Sigma, St. Louis, USA) with one part of N,N'-methylenebisacrylamide solution (2 % v/v, Sigma, St. Louis, USA). This PAA solution was then diluted to 13.5 % (v/v) using a 65 % (v/v) phosphate buffered saline (PBS, Sigma, St. Louis, USA) to obtain a pre-bead-mix. The mechanical properties of the PAA beads can be tuned by changing the dilution of the pre-bead-mix. The oil phase was composed of 3 % Span®80 (Sigma, St. Louis, USA) in n-hexane (Merck, Darmstadt, Germany). Shortly before polymerization the pre-bead-mix as well as the oil phase were degassed for 10 min at 50 mbar. The free-radical cross-linking polymerization of the PAA solution was initiated by adding 1.5 % (w/v) ammonium persulphate (APS, AppliChem, Darmstadt, Germany) and the pH-value of the solution was neutralized using NaOH solution. The emulsion was then generated by injecting the pre-bead-mix into the n-hexane with a 100 µl Hamilton syringe (Hamilton, Reno, USA). Hereafter, the polymerization was catalysed by adding 3 % (v/v) N,N,N',N'-tetramethylethylenediamine (TEMED, Sigma, St. Louis, USA) and the emulsion was degassed again for 6 min. The supernatant was discarded and the polymerization was kept at 85°C for 10 min. To reach end of gelation the beads were incubated at room temperature over night. Next day, the beads were washed five times with n-hexane and transferred to 65 % PBS. Finally, the beads were labeled fluorescently with ATTO-565-NHS-ester solution (Atto-Tech, New York, USA). For that purpose, the labeling solution was incubated with the beads for at least 30 min at room temperature and washed three times with 65 % PBS afterwards. The fluorescent intensity of the beads was increased by repeating the labeling process three to five times.

Mechanical characterization of PAA beads

To characterize the mechanical properties of the elastic PAA beads the shear modulus G and bulk modulus K were determined. The shear modulus was measured via active microrheology using a custom optical tweezers setup. For this purpose, smaller beads with a diameter of 1 μm (Latex beads, Sigma, St. Louis, USA) were embedded into the PAA beads. The complex shear modulus, $G^* = G' + iG''$, was measured for varying oscillation-frequency of the 1 μm beads [3]. The shear modulus G used for further analysis was estimated by averaging shear storage moduli G' for low frequencies from 1 Hz to 10 Hz. The bulk modulus K was measured via an osmotic pressure approach using 2 MDa dextran molecules (Dextran T2000, Pharmacosmos, Wiesbaden, Germany) which were dissolved in the PAA beads solution. Since the pore size of the PAA gel is much smaller than the hydrodynamic radius of the dextran, an osmotic pressure $p = K \frac{\Delta V}{V}$ acts on the PAA beads and gives rise to a compression $\Delta V/V$ proportional to the bulk modulus K . The exerted osmotic pressure depends on the concentration of dextran and has been calibrated previously [35]. Here, three different concentrations (60 g/l, 85 g/l and 100 g/l) were used, corresponding to osmotic pressures of 6 kPa, 12 kPa and 18 kPa, respectively. The distribution of PAA bead diameters in the three solutions was measured and compared to the uncompressed situation by segmenting images of PAA beads with the find-edges-function of Fiji and fitting ellipses to the edges. The bulk modulus K was determined by a linear fit of the volume change $\Delta V/V$ to osmotic pressure p .

Bead deformation analysis (BDA)

In order to reconstruct forces acting in the tissue, the deformation of embedded PAA beads were quantified using a two step process implemented in a graphical user interface developed in Matlab (Mathworks, US). First, the beads were segmented and fitted using spherical harmonics. Then an analytical solution to the elastic problem was applied to gain the forces on the beads. For bead segmentation, a small volume around each PAA bead was cut out of the 3D image stack and if desired the effective pixel density was interpolated by a factor of 2 for display purposes. In the cutout a threshold intensity was determined according to segmentation parameters that were typically set to *clipping level* (50 %) and *peak intensity voxels* (3 %) and the image was then transformed into a binary image. Subsequently, the surface was determined by extracting voxels at the edge of the binary volume and the algorithm returns the coordinates (x_i, y_i, z_i) of these voxels that do form the surface of the PAA bead. In order to quantitatively capture the deformation, spherical harmonics were fitted to the segmented bead surface using a Nelder-Mead simplex algorithm. As we were only interested in the dominant forces acting on the bead, we took advantage of the mode decomposition in spherical harmonics and restricted the fit to spherical harmonics $Y_{nm}(\theta, \phi)$ of degree $n = 0, 2$ and order $m = 0$. While the Y_{00} mode gives the radius of the sphere, the Y_{20} mode is the mode of dominant compression, where the z-direction was determined by rotating the sphere until the absolute value of the Y_{20} mode became maximal. This ansatz focuses on the direction of major deformation of the PAA bead, and it furthermore uses the angular symmetry around the z-axis that is implied in the order $m = 0$.

In detail, following this approach, the coordinates of the segmented surface (x_i, y_i, z_i) were transformed into spherical coordinates $r(\theta, \phi)$. The surface defined by the spherical harmonics

$$r_{\text{sh}}(\theta) = \sum_{n=0,2} c_{n0} Y_{n0}(\theta, \phi) = \frac{c_{00}}{\sqrt{4\pi}} + c_{20} \sqrt{\frac{5}{16\pi}} \cdot (3 \cos^2 \theta - 1) \quad (1)$$

208
209
210
211
212
213
214
was then fitted to the segmented surface by rotating $r_{\text{sh}}(\theta, \phi)$ to align with the major direction of deformation of $r(\theta, \phi)$ and minimizing the residual $(r_{\text{sh}} - r)^2$ by varying c_{00} and c_{20} . Thus, a sphere of radius $c_{00}/\sqrt{4\pi}$ with uniaxial deformation proportional to c_{20} was fitted to the deformed PAA bead. This fitting procedure was repeated five times with randomly picked starting values in each case. The parameter combination with the lowest residual was taken as the result. The sought force dipole \vec{F} acting on the PAA bead was finally calculated by

$$\vec{F} = \frac{G}{2} c_{00} c_{20} \sqrt{5} \left(\frac{N_r(\nu)}{4} + \frac{3N_\theta(\nu)}{2} \right) \vec{e}_z \quad (2)$$

$$N_r(\nu) = \frac{2\nu}{1-2\nu} + \frac{1}{2(2-3\nu)(1-2\nu)} + \frac{1}{2(2-3\nu)} \quad (3)$$

$$N_\theta(\nu) = \frac{1}{2} - \frac{1}{2(2-3\nu)} \quad (4)$$

215
216
217
218
219
220
221
with the scaling factors N_r and N_θ as well as \vec{e}_z being the unit vector on the main deformation axis. Equation 2 was derived following classical elasticity theory [30], resulting in expression for the stress on the sphere that was then integrated over the half sphere to get the force dipole acting on the PAA bead. The axis of the force dipole relates to the axis of rotation when fitting the spherical harmonics.

222 Immunostaining and confocal fluorescence microscopy

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
3D skeletal muscle tissues were washed once with PBS and fixed in 4 % paraformaldehyde (PFA) for 15 min at room temperature in the culture device and afterwards washed three times with PBS, again. Frozen tissues were sectioned, mounted as 12 μm sections and rehydrated. Next, the tissues were blocked for 1 h at room temperature using PBS supplemented with 20 % goat serum (GS, Sigma, St. Louis, USA) and 0.2 % Triton-X-100 (Carl Roth, Kalsruhe, Germany). Subsequently, the samples were incubated with the primary antibody (monoclonal mouse anti-sarcomeric alpha actinin, 1:100, Abcam, Cambridge, UK) diluted in blocking solution over night at 4 °C. After three washes with blocking solution, the samples were incubated with the appropriate secondary antibody (polyclonal goat anti-mouse IgG H&L, 1:1000, Abcam, Cambridge, UK) diluted in blocking solution for 45 min at room temperature. The cell nuclei were counterstained using Hoechst 33342 (1:1000, ThermoFisher, Waltham, USA). Confocal images were acquired using Slidebook 6 software (3i, Denver, USA) using an inverted microscope (Nikon Eclipse Ti-E, Minato, Japan) equipped with a CSU-W1 spinning disk head (Yokogawa, Musashino, Japan) and a scientific CMOS camera (Prime BSI, Photometrics, Tucson, USA). Images were analysed and prepared for publication using the open source software Fiji [47].

240 Multiview imaging

241
242
243
244
245
246
247
248
249
250
Fixed muscle tissues were mounted in fluorethylenpropylene (FEP) capillaries (Proliquid, Überlingen, Germany) together with 1 % low-melting-agarose solution (LMA, Invitrogen, Carlsbad, USA) for multiview imaging using a Z1 Light-Sheet microscope (Zeiss, Oberkochen, Germany). The LMA solution contained fluorescent sub-resolution beads (100 nm diameter, Invitrogen, Carlsbad, USA) that were used for registration of the images acquired from different views. The samples were imaged from at least four different views with angles in the range 60 to 90 between the views. Afterwards, the images from different views were registered and fused using the Multiview Deconvolution software [40]. The program detects the positions of the registration beads and overlays the images accordingly. The registration beads were also

used to estimate the point spread function (PSF) of the microscope. Knowing the PSF,
251
the images were deconvolved and fused.
252

Post deflection analysis

For post deflection analysis, we focused the top part of the post with the imaging
254 system and recorded a time series. Thanks to the high resolution microscopy
255 compatibility of the new chamber design, the outline of the post showed a strong
256 contrast to the surrounding tissue. Utilizing a custom written program in Matlab
257 (Mathworks, Natick, USA), a line of pixels located at the center of the post of each
258 image was chosen for every time point. By calculating the gradient of pixel intensities
259 along this line, the outline of the post appeared as a strong peak in the signal. Subpixel
260 resolution was achieved by the fit of a Gaussian function to these peaks and
261 determining the central position. Subsequently, the pixel values were converted into
262 units of length using the pre-calibrated pixel sizes. Analysis of the entire time stack in
263 that manner gave rise to a time dependent displacement signal for the post edges.
264 Finally, the pulling forces were determined by multiplication of the post displacement by
265 an apparent spring constant of the post. This apparent spring constant was estimated
266 by finite element analysis (Inventor, Autodesk, San Rafael, USA) considering the post's
267 exact geometry and material properties. The assumption of a linear force to
268 displacement relation is valid for the observed displacements of less than 45 μm .
269

Relation between directionality of tension

As crosscheck between the global (post based) and local (bead based) tension we can
270 estimate the expected local tension using the post deflection measurements. First, we
271 determine the tensional stress in the tissue along the post-post axis by dividing the
272 global force $f_t = 0.3 \pm 0.1 \text{ mN}$ by the tissue diameter $A = 0.17 \pm 0.03 \text{ mm}^2$, yielding a
273 tensional stress of $t = 1.8 \pm 0.67 \text{ kPa}$. To compare this tension, which acts along the
274 length of the tissue (x-axis) with the deformation which is typically along y and z, a
275 simple calculation shows that in isotropic materials of Poisson ratio $\nu = 0.5$ the absolute
276 stress values are the same in all directions. This can be simply demonstrated by
277 recalling Hooke's law in 3D and considering a constraint deformation, where only a
278 deformation in x is considered and y,z are assumed to be fixed. Hooke's law gives
279

$$\begin{aligned}\sigma_{xx} &= \frac{E}{(1+\nu)(1-2\nu)}((1-\nu)u_{xx} + \nu(u_{yy} + u_{zz})) \\ \sigma_{yy} &= \frac{E}{(1+\nu)(1-2\nu)}((1-\nu)u_{yy} + \nu(u_{xx} + u_{zz})) \\ \sigma_{zz} &= \frac{E}{(1+\nu)(1-2\nu)}((1-\nu)u_{zz} + \nu(u_{xx} + u_{yy})).\end{aligned}$$

The constraint deformation enforces that only the component u_{xx} is different from zero,
280 hence
281

$$\begin{aligned}\sigma_{xx} &= \frac{E(1-\nu)}{(1+\nu)(1-2\nu)}u_{xx} \\ \sigma_{yy} &= \sigma_{zz} = \frac{\nu E}{(1+\nu)(1-2\nu)}u_{xx}\end{aligned}$$

which means that the stresses are not independent, but that
282

$$\sigma_{yy} = \sigma_{xx} \frac{\nu}{1-\nu}.$$

In first order, the tissue around the bead remains mostly undeformed for the small
283 deformations measured, hence the absolute stress σ_{yy} acts on the beads. For a Poisson
284 ratio $\nu = 0.5$ the tensional stress in x direction is equal in magnitude to the measured
285 stress in y and z direction.
286

Therefore we can directly compare the measured local tension derived by the bead
287 deformation of $2.4 \pm 0.9 \text{ kPa}$ to the global tension of $1.8 \pm 0.67 \text{ kPa}$, and confirm that
288 these match within the error.
289

Statistical analysis

All results are presented as mean \pm SD and statistical differences of experimental groups were analysed by unpaired t-test using GraphPad Prism 6.0 software, where $p < 0.05$ was considered as significant. Significances were subdivided into three levels: ($p = 0.05 - 0.01$), ($p = 0.01 - 0.001$), ($p < 0.001$) The number of biomimetic muscle tissues (N) and analysed PAA beads (n) is indicated in every figure legend. In Figure 4E 'n' refers to the number of measured myotubes.

Code availability

The bead deformation analysis as well as the post deflection open source software is available on GitHub: [36, 58].

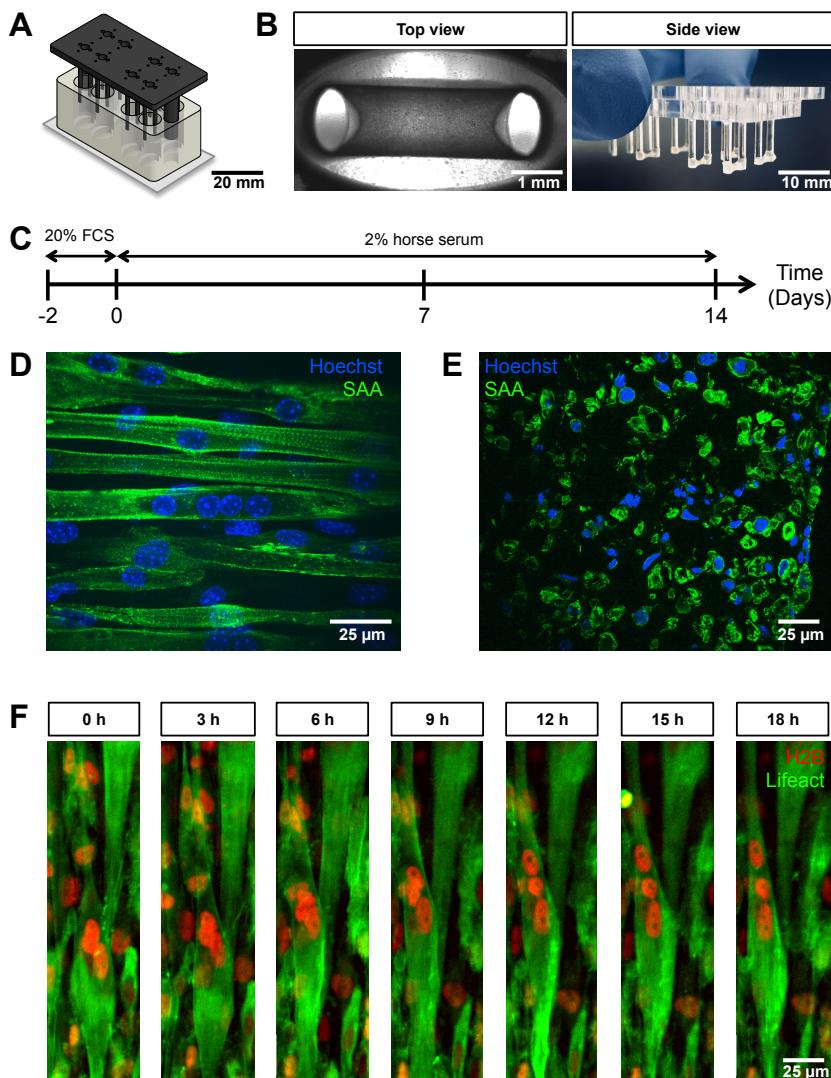
Results

In vitro development of functional 3D skeletal muscle tissues compatible with high resolution video microscopy

The combination of high resolution microscopy and reconstituted three-dimensional (3D) skeletal muscle microtissues holds the potential to lend new insights into the formation and maturation of skeletal muscle cells. To enable such studies, we re-envisioned the design of currently used 3D muscle microtissue culture platforms, which led to the establishment of a two part chamber system. The bottom component is milled from a PMMA block to contain eight individual oval-shaped cell culture chambers (Figure 1A, bottom; Supplementary Figure 1). This bottom part is glued to a standard microscopy coverslip, which then enables high resolution inverted fluorescence microscopy compatible with oil or water immersion objectives. The upper part is also machined from PMMA and fits tightly into the bottom part. It consists of long vertical posts (Figure 1A, top; Supplementary Figure 1) around which the 3D muscle tissue anchors during formation. When the two halves of the culture device are placed together, the vertical posts nearly touch the bottom, thus confining the muscle tissue to a region close to the bottom of the coverslip. A hole in the top part positioned equidistant between each pair of posts allows for gas and medium exchange during growth and measurement (Supplementary Figure 1).

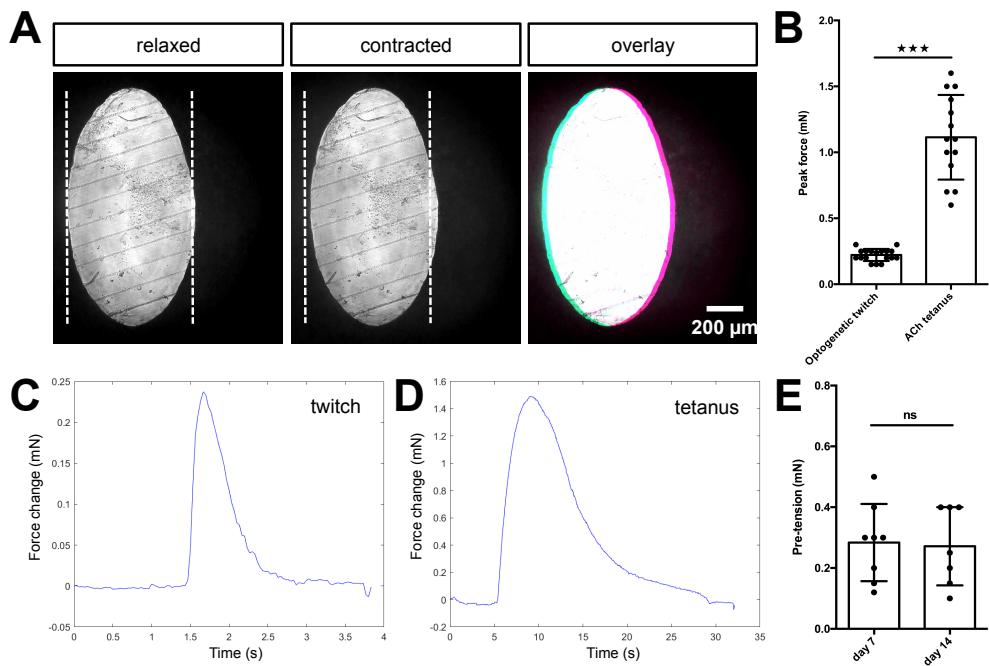
Biomimetic 3D muscle tissues arise from a self-organization process when an initial mixture of mononucleated skeletal muscle progenitors (aka 'myoblasts') in a Geltrex®-Fibrin matrix is seeded into the bottom of each device well (Figure 1B), similar to the tissue formation in previously described PDMS-based culture systems [1, 2, 31]. To demonstrate the imaging quality and observation capacity of this chamber design, C2C12 mouse myoblasts were seeded within a Geltrex®-Fibrin matrix at defined ratios and cultured in growth medium for two days allowing for equilibration to the 3D environment. The medium was then exchanged to a low serum formulation to support differentiation (i.e. fusion to form multinucleated 'myotubes') for a period of up to 2 weeks (Figure 1C). During remodeling, the tissues anchored to each end of the posts, which act as artificial tendons (Figure 1B). Resulting tissues fixed and immunostained for sarcomeric alpha actinin (SAA), and counterstained using Hoechst 33342 to visualize nuclei, revealed multinucleated myotubes aligned in parallel between the posts, as well as striations indicative of sarcomere structures characteristic of myotubes progressing through the process of maturation (Figure 1D). These in-plate observations of sarcomere structures required high resolution fluorescence microscopy, which is not possible in the context of a PDMS-based cultivation system, when imaging through the PDMS. To further characterize biomimetic muscle tissue development,

341 images of transverse 3D muscle tissue cryosections were prepared that displayed
342 myotubes which are consistently aligned close to each other and are evenly distributed
343 throughout the entirety of the tissue (Figure 1E).


344 To demonstrate the capacity of time-lapse high resolution microscopy on living 3D
345 skeletal muscle tissues, we generated a Lifeact-GFP and H2B-mCherry labeled human
346 myoblast cell line (AB1167-Lifeact-GFP-H2B-mCherry) and recorded a timeseries of 10
347 day old 3D skeletal muscle tissue dynamics using a spinning disk microscope. The
348 results show that although the tissue appears immobile at the macroscopic level, or in
349 snapshots, a continuous rearrangement at the cell level takes place (Supplementary
350 Video 1). On a subcellular level we observe highly dynamic nuclear motion during
351 myotube progressing maturation (Figure 1F, Supplementary Video 2). Hence, our
352 approach enables the formation of 3D biomimetic muscle tissues with characteristic
353 skeletal muscle features that are in close proximity to a glass window, thus enabling
354 high resolution and time resolved 3D microscopy, which represents a highly advanced
355 alternative to previously described culture systems.

356 Global contraction forces of *in vitro* skeletal muscle tissues

357 The most common approach to determine the contractile forces of a reconstituted
358 muscle tissue is to monitor the deflection of elastic PDMS posts and to then calculate
359 contractile forces using the spring constant of the posts [1]. Indeed, an advantage of
360 PDMS is that the elasticity, and hence the spring constant can be tuned by the degree
361 of crosslinking during curing. Although the elasticity of the PMMA material used to
362 construct our device cannot be easily changed, variations in the posts' geometry provide
363 the possibility of controlling the spring constant. Namely, the diameter and the length
364 of the posts are sensitive parameters responsible for their compliance. The spring
365 constant of 16 mm long PMMA posts used in our system is 39 $\mu\text{N}/\mu\text{m}$, which is
366 considerably higher than commonly used PDMS posts. However, this disadvantage is
367 compensated by the highly improved imaging capacity, that allows for determining
368 deflection amplitudes down to 0.2 μm , which corresponds to a force resolution of ± 7.8
369 μN . To test if the global tissue contractile force detection is comparable to that reported
370 for human skeletal muscle tissue formed in PDMS-based systems, 2 week old skeletal
371 muscle tissues generated from an immortalized human myoblast line [20] genetically
372 modified to stably express the light-sensitive channelrhodopsin-2 ion channel [7]
373 (AB1190-Fubi-ChR2-GFP) were investigated in our chamber system.


374 Consistent with prior work, we find a clear deflection of the posts upon comparing
375 the position of the posts when the muscle tissue is relaxed versus in a contracted
376 situation [46]. For both optogenetically and acetylcholine (ACh) triggered contractions,
377 we measured deflections that were several micrometers (Figure 2A, Supplementary
378 Video 3 + 4). Owing to high contrast imaging of the PMMA posts made feasible by the
379 culture device, it is possible to precisely trace the post deflection and determine the
380 contractile forces. While optogenetically induced twitch contractions exhibited
381 contractile forces of 0.2 ± 0.04 mN on average, the tetanus contractions induced by
382 treatment with 2 mM of acetylcholine elicited contractile forces of about 1.1 ± 0.3 mN
383 (Figure 2B). These measurements are consistent with force measurements obtained in
384 PDMS based chambers [1]. Our post deflection analysis software is able to trace exerted
385 forces on the post over time from acquired videos with minimal background signal of \pm
386 8.5 μN (Figure 2C). For optogenetic twitches we observe a roughly one second
387 contraction phase before the *in vitro* muscle tissue returned to the relaxed state. By
388 comparison, a tetanus contraction induced by 2 mM ACh reached its peak of contractile
389 force more slowly and the time elapsed before return to the relaxed state was almost 25
390 seconds (Figure 2D).

391 We further established a method to evaluate pre-tension during skeletal muscle

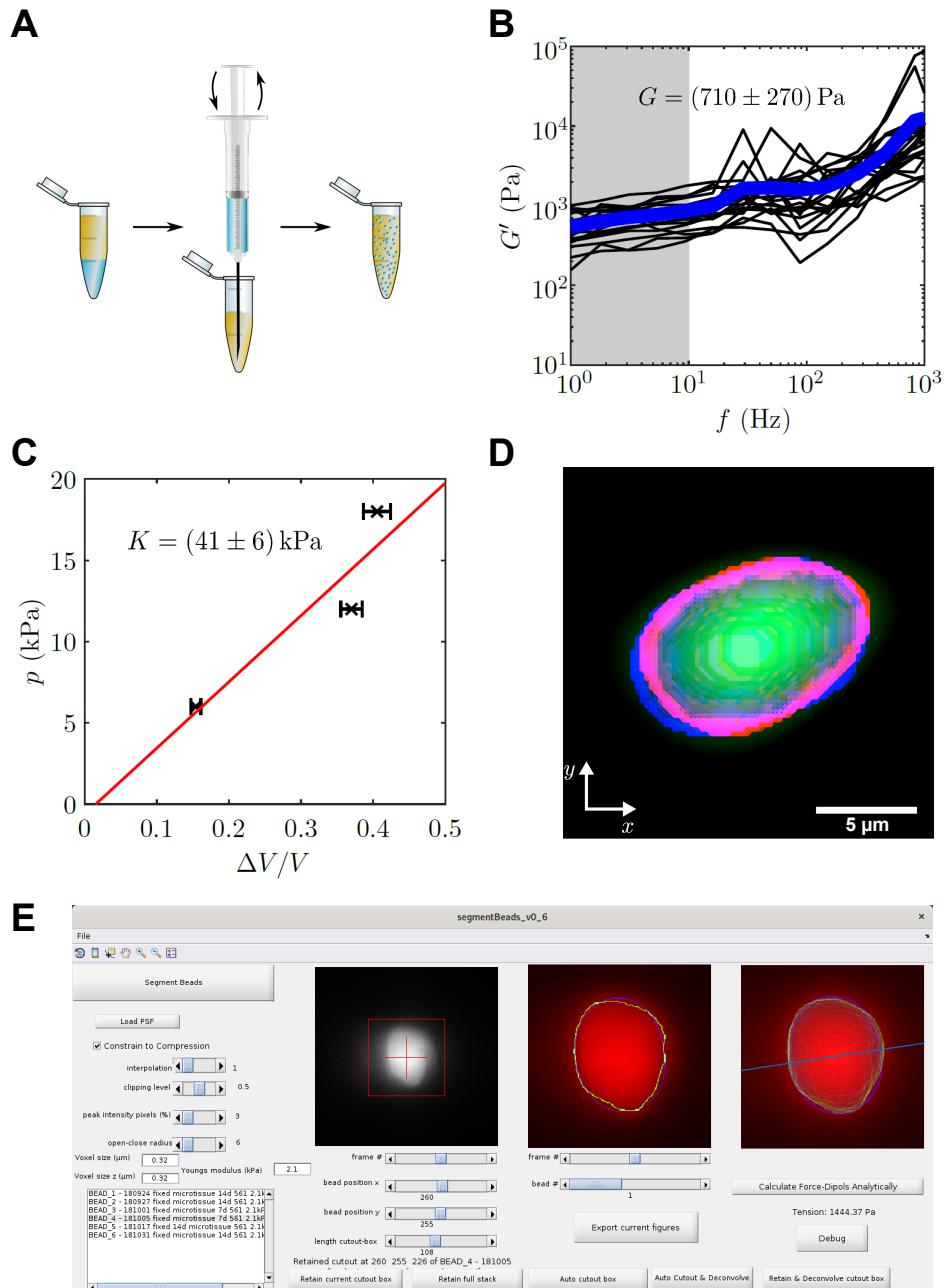
Figure 1. PMMA culture device supports the generation of 3D biomimetic skeletal muscle tissues. **A**, Computer generated depiction of the PMMA mold design. The top part containing eight pairs of vertical posts is shown in black. Eight holes positioned equidistant between each pair of posts allows for gas and media exchange. Two larger sized vertical posts at either end of the top part serve to fix the top and bottom portion (translucent white) together and ensure vertical posts are properly positioned. The bottom portion is affixed to a microscopy grade glass. **B**, Images of remodeled C2C12 muscle tissues at 7 days of differentiation anchored to the end of the posts captured to provide a view looking up into a well in which the top and bottom parts are fashioned together (left; 4X objective) or from the side looking at the top part to visualize 6 pairs of posts with tissues at the bottom (right; 10X objective). **C**, Schematic workflow used to raise 3D skeletal muscle tissues *in vitro*. **D-E**, Representative confocal microscopy longitudinal (**D**, whole mount, flattened stack, 40X water immersion objective) and transverse (**E**, cryosection, single snap, 40X water immersion objective) images of multinucleated myotubes within a 14 day old muscle tissue immunostained for sacromeric alpha-actinin (SAA, green) and counterstained with Hoechst 33342 to visualize nuclei (blue). The cross section of the tissue was measured to be $0.17 \pm 0.03 \text{ mm}^2$. **F**, Timeseries of nuclear motion within developing 3D skeletal muscle tissue 10 days after differentiation, demonstrating the possibility of high resolution imaging during living tissue formation. Lifeact-GFP (green) and H2B-mCherry (red) was stably introduced into AB1167 cells.

tissue development *in vitro*. Specifically, we treated C2C12 skeletal muscle tissues with 10 % SDS to dissolve the myotube membranes, thereby releasing the pre-tension established by the myotubes, which is visualized by the PMMA posts returning to their original position upon dissolution of the muscle tissue (Supplementary Video 5). Utilizing our post deflection analysis software (accessible on GitHub, [36]) we quantified the pre-tension to be 0.3 ± 0.1 mN for skeletal muscle tissues cultured for a period of one week (Figure 2E), and this did not change significantly in the subsequent week of culture. Taken together, we demonstrate that the culture device allows for determination of both contractile forces as well as tissue pre-tension simply via post deflection analysis.

Figure 2. Quantification of biomimetic skeletal muscle tissues contractile forces over time in culture. **A**, Representative bright field images of the bottom of a post under 10x magnification before (left) and during (middle) a tetanus contraction. Pink and blue pseudo color highlights the deflection regions when pre- and post- contraction images are overlaid (right). **B**, Bar graph with force measurements of optogenetically induced twitches (N=18) and ACh tetanus contractions (N=14) of two week old muscle tissues. Representative time course traces of forces exerted on the posts is displayed in **C** for an optogenetically induced twitch and in **D** for a tetanus contraction induced by the addition of 2 mM ACh. **E**, Bar graph with pre-tension measurements of skeletal muscle tissues at one (N=8) and two weeks of differentiation (N=7).

Characterization and computational analysis of elastic PAA beads

To determine the local tension in the muscle tissue, we implemented elastic hydrogel beads as tension sensors, an approach first used by others in different systems [13, 28, 53, 55]. We custom-made elastic PAA beads by a water in oil emulsion approach (Figure 3A). The use of PAA beads as tension sensors requires precise mechanical characterization. Using optical tweezer based active microrheology on 1 μ m


polystyrene particles embedded within the PAA beads, we determined a shear modulus of $G = 710 \pm 270$ Pa by averaging shear storage moduli G' for low frequencies from 1 Hz to 10 Hz (Figure 3B). Additionally, the bulk modulus was determined to be $K = 41 \pm 6$ kPa by an osmotic pressure approach (Figure 3C). Here three different concentrations of 2 MDa dextran (60 g/l, 85 g/l and 100 g/l) were applied to the elastic beads, which corresponds to osmotic pressures of 6 kPa, 12 kPa and 18 kPa, respectively. PAA bead diameter in the three solutions was measured and compared to the corresponding uncompressed situation. Consequently, the Poisson ratio $\nu = (3K - 2G)/(6K + 2G)$ was determined as $\nu = 0.491 \pm 0.005$, which is consistent with previous reports of Poisson's ratio in PAA [5]. For the force calculation, the Young's modulus $E = 2G(1 + \nu)$ of the PAA beads used in this study was hence determined to be $E = 2.1 \pm 0.8$ kPa.

We next used the mechanical properties of the PAA beads to determine the forces exerted on the beads, from images where bead deformation was measured. Previous studies by others used finite element methods for the analysis [53], which have the disadvantage of being computationally time consuming. Here, we focused on an analytical solution that yields the dominant tension dipole, and the spatial orientation of this dipole force. The advantage of this approach is the high speed of analysis, and the reduction of the relevant forces into a simple scalar force number, while reporting also the direction of force tension propagation in the tissue. We performed the analysis using a custom written program that implements an automated computational bead deformation analysis (BDA), which is capable of deconvolving microscope images using a given point spread function (PSF), extracting the edges of beads, and finally fitting spherical harmonics to the segmented beads to register the bead deformation (Figure 3D). Finally, BDA uses the identified coefficients of the spherical harmonic fit to analytically calculate the dominant force acting on the PAA bead. The BDA software has an user friendly interface (Figure 3E) and is available on GitHub [58].

Local tension within *in vitro* skeletal muscle tissues during development

We then conducted a quantitative study of local tension within 3D skeletal muscle microtissues, which was made possible by integrating PAA beads within tissues and conducting high-resolution microscopy in our custom culture platform. Specifically, 3D skeletal muscle tissues were raised from C2C12 cells in the PMMA based chambers in which PAA beads were included in the starting cell-matrix suspension to produce microtissues with PAA beads stably embedded throughout. The tissues containing the PAA beads were then monitored and the tension was determined within the developing tissues over 2 weeks. Immunostaining of 14 days old tissues revealed normal *in vitro* muscle tissue development featuring multinucleated myotubes aligned parallel to each other with typical sarcomere structures (Figure 4A). Images of muscle tissue cross sections revealed dense biomimetic muscle tissues with PAA beads stably incorporated and spread evenly throughout the whole tissue between the myotubes (Figure 4B). These observations suggest that the presence of elastic beads does not disturb the development of the muscle tissues.

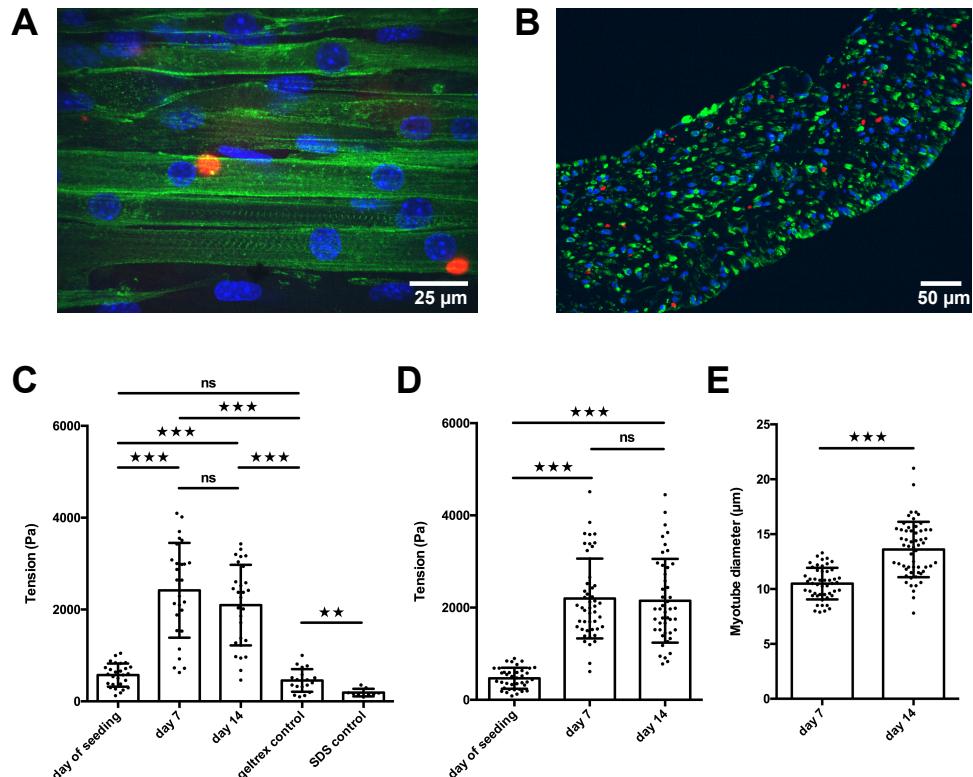
We first imaged the PAA beads contained within the living muscle microtissues via spinning disc microscopy on the same day we seeded the C2C12 cells mixed within the ECM matrix into the culture device. The culture chamber is crucial to obtain fluorescence images of the beads that have sufficient quality for subsequent BDA. We repeated this tension investigation in living tissues at 7 and 14 days of differentiation, respectively. Whereas the beads were fairly spherical directly after seeding, we observed significantly higher deformation, and therefore tension, within the tissues after one week of differentiation (Figure 4C). The average internal tissue tension at this time-point was

Figure 3. PAA bead characterization and analysis software. **A**, Schematic workflow of bead fabrication. Using a syringe a water in oil emulsion is created and the acryl amide solution is polymerized to produce elastic PAA beads. **B**, Graph showing the determination of the shear modulus of elastic PAA beads, which was measured for varying oscillation-frequency of $1 \mu\text{m}$ beads. **C**, Graph depicting the determination of the bulk modulus of elastic PAA beads, which was measured by an osmotic pressure approach using dextran. **D**, Segmentation of a deformed PAA bead. The surface (red) was segmented and a linear combination of spherical harmonics of degree $n = 0, 2$ and order $m = 0$ (blue) were fitted to the surface. **E**, Screenshot of PAA bead deformation analysis software front-end. Providing a point spread function enables the automatized program to deconvolve the image and determine the edge position of an elastic bead (green) in a given cutout box. The bead's shape is then fitted by spherical harmonics, which are used to calculate the main axis of the force dipole (blue line) and the corresponding tension analytically.

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

slightly more than 2.4 ± 0.9 kPa, and maintained a similar level of tension following 2 weeks of differentiation. As a control experiment, we measured the tension of beads embedded in ECM matrix only made of geltrex and fibrin, and without cells. We found no significant difference between beads in ECM matrix without cells after seven days when compared to beads measured directly after seeding. This demonstrates that the observed bead deformation is indeed due to remodeling and differentiation of the cells in the ECM matrix. To further control these measurements, we cultivated 3D muscle tissues with very stiff 150 kPa beads integrated throughout. At this high stiffness, we expect that the measured forces cannot deform the beads sufficiently for detection with microscopy. Indeed, in this case we did not observe deformation of the PAA beads after one week of differentiation as compared to the day of tissue seeding (Supplementary Figure 2). Consistently, when 7 days old tissues with PAA beads embedded are dissolved using 5% SDS, the beads return to their initial spherical shape (Figure 4C).

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489


To further validate our results acquired via spinning disk microscopy in PMMA/glass molds, we produced C2C12-derived muscle microtissues in the previously described MyoTACTIC PDMS mold [1] and imaged fixed tissues that were removed from the mold and imaged in a FEP capillary using Multiview Light-Sheet microscopy to provide a comparison. Multiview Light-Sheet microscopy has the advantage of isotropic resolution, and hence checks potential problems due to spinning disk microscopy and deconvolution. We first conducted studies and confirmed that fixation of *in vitro* skeletal muscle tissues per se did not impair embedded PAA bead shape significantly by comparing images of the same bead before and after fixation in our PMMA/glass molds (Supplementary Figure 3). Consistent with bead data obtained using spinning disk confocal microscopy in our PMMA/glass device, we observed a significant increase of local tension exerted on the elastic beads after 7 days of skeletal muscle microtissue differentiation of slightly more than 2.3 ± 0.9 kPa (Figure 4D), but again, no significant difference was detected after a second week of differentiation. Importantly, myotube diameter increased significantly from 10.5 ± 1.4 μ m at one week of differentiation to 13.6 ± 2.5 μ m in the second week (Figure 4E). This shows that while the initial phase of tissue compaction myotube differentiation influences beads tension, a further increase in myotube diameter does not result in more tension on embedded PAA beads.

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

Discussion

The emergent importance of mechanobiology has demonstrated that mechanical interaction between cells as well as stiffness and tensile forces provide important signalling elements for cell biology and cell fate. Muscle tissue is intrinsically exposed to large forces and rapid changes in tension and stiffness. Hence, it is to be expected that the mechanical properties of the environment are of particular relevance for the homeostasis of muscle tissue. To study these interactions, not only the precise observation of self organized 3D tissue is required, but also a non-invasive readout of global and local forces is important.

Furthermore, *in vitro* skeletal muscle tissue model systems provide an enormous potential to give new insights into muscle development, degradation, repair and dynamics. However, the usability of these novel systems has been limited by several key weaknesses of the currently used culturing methods. While the PDMS based elastomers used in such post based chambers is well studied and under control, its optical properties prevent the usage of high numerical aperture objectives and hence high resolution fluorescence microscopy. Furthermore, PDMS acts like a protein sponge that absorbs large amounts of proteins from the medium, thus preventing the use of special serum free media that are required in modern stem cell approaches. Here we solve both problems by using an inverted geometry chamber that is made of PMMA. The material

Figure 4. PAA beads serve as local tension sensors within *in vitro* muscle tissues. **A**, Representative flattened confocal microscopy stack of a 14 day old C2C12 tissue with PAA beads embedded (red) and immunostained for sacromeric alpha-actinin (green) and counterstained with Hoechst 33342 to visualize nuclei (blue). **B**, Representative confocal snap of a transverse section of a 14 day old C2C12 tissue. Color coding is identically equal to **A**. **C**, Bar graph of local tension within C2C12 muscle tissues at the day of seeding ($N=7$, $n=28$), and after one ($N=4$, $n=28$) and two weeks of differentiation ($N=4$, $n=29$). Beads were imaged in the context of living tissues raised in PMMA molds for BDA utilizing spinning disk microscopy. Also shown is negative controls in which tension was measured in the cell-free geltrex/fibrin matrix alone ($N=3$, $n=20$) as well as following the dissolution of tissues using 5 % SDS ($N=3$, $n=10$). **D**, Bar graph of local tension within C2C12 muscle tissues raised in the MyoTACTIC PDMS microtissue platform that were fixed and removed for imaging using Multiview Light-Sheet microscopy on the day of seeding ($N=13$, $n=39$), and after one ($N=17$, $n=48$) and two weeks of differentiation ($N=19$, $n=46$). **E**, Bar graph of myotube diameter analysis conducted on C2C12 muscle tissues at one ($N=3$, $n=49$) and two ($N=3$, $n=57$) weeks of differentiation. Each myotube diameter data point reflects the average of three measurements per myotube.

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

prevents the protein sponge effect, while the geometry allows positioning a glass coverslip in close proximity to the self-organized muscle tissue, thus enabling high resolution microscopy.

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

Changing the material and adapting the geometry to still enable global force measurements while gaining high quality optical access is a key advancement. It now allows time resolved high resolution measurements of *in vitro* muscle tissue development, myotube formation and fusion, without the need of fixation and tissue removal as necessary in the previous designs. Using fluorescent protein tagging it was directly possible to gain high resolution 3D images of actin networks with a high time resolution. Such fluorescent protein based life stains in combination with this approach will help understanding the dynamic interactions between muscle cells during differentiation, fusion, myotube formation and maturation. Therefore, we enable real-time high resolution imaging during cultivation of *in vitro* muscle tissues for the first time which is of great benefit for various future research issues such as myoblast fusion or myotube maturation. A previous 2.5D myotube culture approach was indeed able to monitor first myotube maturation and nuclear movement to the periphery of skeletal myotubes by dynamic high resolution imaging [44]. However, this approach cannot draw conclusions within a 3D system, is not capable to conduct functional or contraction studies and is furthermore unable to quantify force generation of the tissue, which all can be combined using our novel approach.

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

The here presented 3D *in vitro* muscle tissues raised close to a glass coverslip displayed myotube structures characteristic for progressing maturation e.g. sacomere striations and multinucleation (Figure 1) and indeed showed functional responses to contractile stimuli (Figure 2, Supplementary Video 3). While the force measurement via post deflection is a commonly used method [29], we now offer an advanced and reliable readout for global force generation which is even more precise due to sharply milled post edges and higher quality of imaging through glass. We therefore pave the way for future contraction studies of diseased or individual patient related tissues. As for instance, by shortening the height of the PMMA posts we can vary the spring constant of the posts dramatically and therefore enable first isometric contraction investigations of skeletal muscle tissues *in vitro* which is impossible using highly flexible PDMS.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

To enable the study of potential correlations of contractile forces and tension between cells, we exploit the post deformations to determine the overall tissue contractility while the deformable beads are used to measure the local tension between individual cells and tubes. PAA beads were just previously reported to function as tension sensors within cancer spheroids *in vitro*, during phagocytosis as well as within zebrafish embryos *in vivo* [13, 28, 53, 55]. Combining local and global analysis is only possible with the new chamber design, as the bead deformation analysis relies on high resolution images. Furthermore, in contrast to the previous published tension analysis programs, the here introduced approach focuses on the principal components of tissue tension and directionality, which largely simplifies the analysis and the comparison between different treatments, cell types and contraction trigger approaches. The access to the global and the local tension also allows to independently crosscheck the values. Assuming a Poisson ratio of 0.5 and using the measured global tensional force as determined by the post deflection of $f_t = 0.3 \pm 0.1 \text{ mN}$ (Figure 2) as well as the cross section area of $A = 0.17 \pm 0.03 \text{ mm}^2$ (Figure 1) of the *in vitro* skeletal muscle tissue, we use $t = f_t/A$ to predict a local average tension of $t = 1.8 \pm 0.67 \text{ kPa}$, which is in excellent agreement to the average value of $2.4 \pm 0.9 \text{ kPa}$ obtained by the elastic bead analysis (Figure 4, see Methods and Material for details). This crosscheck suggests that the post deflection measurements are already sufficient to determine average tension in the tissue, but the local measurement can be used to then test the tension as function of position in the tissue.

Establishing the combined approach for the first time in developing 3D skeletal muscle tissues *in vitro*, we observe a significant increase in local tension between myotubes in C2C12 cells after one week of differentiation which does not further increase in the following week (Figure 4). Interestingly, we do not observe an increase of global tissue pre-tension in the second week of differentiation, either (Figure 2). However, we indeed monitor a significant increase in myotube diameter from week one to week two of differentiation as others reported before [1, 2, 31]. In addition, Afshar et al. showed slight *in vitro* muscle tissue remodelling from week one to week two of differentiation. Hence, neither myotube diameter nor progressing tissue remodelling has a significant impact on local cellular tension within the 3D muscle tissues. Therefore, a mechanical homeostasis may be reached on a cellular level among myoblast fusion, myotube death and myotube progressing maturation after one week of *in vitro* muscle tissue differentiation. Furthermore, we can speculate that myotubes may be protected by a mechanical buffer layer composed of e.g. large glycocalyx biopolymers that are known to have crucial mechanical functions for cells and cell aggregates [17]. Our results suggest that cellular tension within *in vitro* muscle tissues is more connected to tissue pre-tension.

The novel culture mold is milled using PMMA and hence, easy and reliable to fabricate. The chamber design also allows scaling to a large number of experiments in parallel, which is a key element for screening approaches. It was designed for sufficient gas exchange, easy medium exchange as well as drug delivery via holes in the lid of the mold. Utilizing PMMA and microscopy glass for our molds, we overcome the issues of immense chemical absorption by the material and poor optical properties that previous approaches possessed [1, 2, 31]. Thus, we can additionally offer serum-free culturing of *in vitro* skeletal muscle tissues and accurate drug dose response studies.

In conclusion, we provide a novel technique for functional 3D *in vitro* skeletal muscle tissue cultivation that enables real-time high resolution microscopy of living 3D biomimetic muscle tissue for the first time. We use the new approach for first global as well as local cellular force investigations of developing *in vitro* muscle tissues. We observe that cellular tension in C2C12 *in vitro* muscle tissues is closely related to global tissue pre-tension and reaches a mechanical homeostatic phase after one week of differentiation. However, *in vitro* skeletal muscle tissue maturation is still progressing in the second week of differentiation, interestingly. Further, cultivation of muscle tissues directly on glass enables whole new opportunities to study highly complex and dynamic issues of myogenesis in 3D *in vitro*. In addition, an easy and reliable readout of contractile forces makes the novel culture mold applicable for individualised drug screening as well as diagnosis.

Supporting Information

Author contribution

Author 1, Author 8 and Author 9 designed the research. Author 1 carried out most experiments and Author 2 performed Light-Sheet and control experiments. Author 3 programmed the post deformation software and analysed respective data. Author 4 and 5 programmed the Bead deformation analysis software, which was used by Author 1 for respective data analysis. Author 4 also contributed to bead fabrication and characterisation. Author 6 and Author 7 provided training to Author 1 in muscle progenitor 2D and 3D culture and analysis. Author 7 created the stable cell lines. Author 6 fabricated MyoTACTIC PDMS plates. Author 1, Author 8, and Author 9 wrote the article.

Supplementary Figure 1

Engineering drawing with respective dimensions of the novel culture device used in this study for raising 3D skeletal muscle tissues *in vitro*.

Supplementary Figure 2

Stiff 150 kPa PAA beads do not get significantly deformed during biomimetic muscle tissue development. C2C12 microtissues with 2.1 kPa embedded were cultivated for 2 weeks and the PAA bead deformations were captured at the day of seeding (N=13, n=39) and after 7 days (N=17, n=48) as well as 14 days of differentiation (N=19, n=46), respectively. In parallel C2C12 microtissues were cultivated with 150 kPa beads embedded. 150 kPa beads were not significantly more deformed after 7 days of differentiation (N=4, n=21) in comparison to 2.1 kPa beads at the day of seeding.

Supplementary Figure 3

Stiff 150 kPa PAA beads do not get significantly deformed during biomimetic muscle tissue development. 2.1 kPa PAA beads were embedded in C2C12 microtissues and cultivated for one week. The exact same PAA beads were imaged and its deformation was analysed before and after fixation, respectively.

Supplementary Video 1

3D rendering of a 19 h timeseries of a developing human microtissue 10 days after differentiation shows continuous cellular rearrangement. Lifeact-GFP (white) and H2B-mCherry (red) was stably introduced into AB1167 cells.

Supplementary Video 2

Flattened 18 h timeseries stack of a developing human microtissue 10 days after differentiation shows highly dynamic nuclear motion during myotube progressing maturation. Lifeact-GFP (green) and H2B-mCherry (red) was stably introduced into AB1167 cells.

Supplementary Video 3

2 week old human microtissue contracts upon optogenetically induced stimulus. Channelrhodopsin-2 was stably introduced into AB1190 cells.

Supplementary Video 4

Post deflection upon contraction of a 2 week old human AB1190 microtissue induced by 2 mM ACh.

Supplementary Video 5

Post deflection during dissolution of a 1 week old human AB1167 microtissue with 10 % SDS.

Acknowledgments

This work was funded by the Human Frontiers Science Program (to PMG and TB). MEA received funding from the Natural Sciences and Engineering Research Council Training Program in Organ-on-a-Chip Engineering and Entrepreneurship Scholarship. PMG is the Canada Research Chair in Endogenous Repair. Funding to PMG is from the Natural Sciences and Engineering Research Council and Medicine by Design, a Canada First Research Excellence Program. TB was supported by the European Research Council (consolidator grant number 771201). We thank Yannik Vaas for his excellent technical expertise during mold fabrication.

References

1. M. E. Afshar, H. Y. Abraha, M. A. Bakooshli, S. Davoudi, N. Thavandiran, K. Tung, H. Ahn, H. J. Ginsberg, P. W. Zandstra, and P. M. Gilbert. A 96-well culture platform enables longitudinal analyses of engineered human skeletal muscle microtissue strength. *Sci Rep*, 10(1):6918, Apr. 2020.
2. M. Afshar Bakooshli, E. S. Lippmann, B. Mulcahy, N. Iyer, C. T. Nguyen, K. Tung, B. A. Stewart, H. van den Dorpel, T. Fuehrmann, M. Shoichet, A. Bigot, E. Pegoraro, H. Ahn, H. Ginsberg, M. Zhen, R. S. Ashton, and P. M. Gilbert. A 3D culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. *Elife*, 8, May 2019.
3. W. W. Ahmed, Fodor, M. Almonacid, M. Bussonnier, M.-H. Verlhac, N. Gov, P. Visco, F. van Wijland, and T. Betz. Active Mechanics Reveal Molecular-Scale Force Kinetics in Living Oocytes. *Biophys. J.*, 114(7):1667–1679, 2018.
4. W. R. Algar, N. Hildebrandt, S. S. Vogel, and I. L. Medintz. FRET as a biomolecular research tool - understanding its potential while avoiding pitfalls. *Nat. Methods*, 16(9):815–829, 2019.
5. T. Boudou, J. Ohayon, C. Picart, and P. Tracqui. An extended relationship for the characterization of Young's modulus and Poisson's ratio of tunable polyacrylamide gels. *Biorheology*, 43(6):721–728, 2006.
6. D. Bourgeois, A. Regis-Faro, and V. Adam. Photoactivated structural dynamics of fluorescent proteins. *Biochem. Soc. Trans.*, 40(3):531–538, June 2012.
7. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth. Millisecond-timescale, genetically targeted optical control of neural activity. *Nat. Neurosci.*, 8(9):1263–1268, Sept. 2005.
8. Broad-Institute. Lentiviral transduction protocols, Jan. 2020.
9. M. Buckingham. Skeletal muscle formation in vertebrates. *Current Opinion in Genetics & Development*, 11(4):440–448, Aug. 2001.
10. O. Campàs, T. Mammoto, S. Hasso, R. A. Sperling, D. O'Connell, A. G. Bischof, R. Maas, D. A. Weitz, L. Mahadevan, and D. E. Ingber. Quantifying cell-generated mechanical forces within living embryonic tissues. *Nat. Methods*, 11(2):183–189, Feb. 2014.
11. A. J. Capel, R. P. Rimington, J. W. Fleming, D. J. Player, L. A. Baker, M. C. Turner, J. M. Jones, N. R. W. Martin, R. A. Ferguson, V. C. Mudera, and M. P. Lewis. Scalable 3D Printed Molds for Human Tissue Engineered Skeletal Muscle. *Front Bioeng Biotechnol*, 7:20, 2019.

644
645
646
647
648
649
650
651
652

12. J. A. DiMasi, R. W. Hansen, and H. G. Grabowski. The price of innovation: new estimates of drug development costs. *J Health Econ*, 22(2):151–185, Mar. 2003.
13. M. E. Dolega, M. Delarue, F. Ingremoine, J. Prost, A. Delon, and G. Cappello. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression. *Nat Commun*, 8:14056, 2017.
14. D. Eberli, S. Soker, A. Atala, and J. J. Yoo. Optimization of human skeletal muscle precursor cell culture and myofiber formation in vitro. *Methods*, 47(2):98–103, Feb. 2009.
15. A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. *Cell*, 126(4):677–689, Aug. 2006.
16. L. Fynno, O. Yizhar, and K. Deisseroth. The development and application of optogenetics. *Annu. Rev. Neurosci.*, 34:389–412, 2011.
17. J. G. Gandhi, D. L. Koch, and M. J. Paszek. Equilibrium Modeling of the Mechanics and Structure of the Cancer Glycocalyx. *Biophys. J.*, 116(4):694–708, 2019.
18. F. P. Gaschen, E. P. Hoffman, J. R. Gorospe, E. W. Uhl, D. F. Senior, G. H. Cardinet, and L. K. Pearce. Dystrophin deficiency causes lethal muscle hypertrophy in cats. *J. Neurol. Sci.*, 110(1-2):149–159, July 1992.
19. D. Gholobova, M. Gerard, L. Decroix, L. Desender, N. Callewaert, P. Annaert, and L. Thorrez. Human tissue-engineered skeletal muscle: a novel 3D in vitro model for drug disposition and toxicity after intramuscular injection. *Sci Rep*, 8(1):12206, 2018.
20. F. Girardi, A. Taleb, L. Giordani, B. Cadot, A. Datye, M. Ebrahimi, D. G. Gamage, D. P. Millay, P. M. Gilbert, and F. L. Grand. TGF signaling curbs cell fusion and muscle regeneration. preprint, Cell Biology, Feb. 2019.
21. C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. *Nature*, 466(7303):263–266, July 2010.
22. X. Guo, K. Greene, N. Akanda, A. Smith, M. Stancescu, S. Lambert, H. Vandeburgh, and J. Hickman. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System. *Biomater Sci*, 2(1):131–138, Jan. 2014.
23. M. Juhas, G. C. Engelmayr, A. N. Fontanella, G. M. Palmer, and N. Bursac. Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. *Proc. Natl. Acad. Sci. U.S.A.*, 111(15):5508–5513, Apr. 2014.
24. J. H. Kim, I. Kim, Y.-J. Seol, I. K. Ko, J. J. Yoo, A. Atala, and S. J. Lee. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. *Nat Commun*, 11(1):1025, Feb. 2020.
25. J. H. Kim, Y.-J. Seol, I. K. Ko, H.-W. Kang, Y. K. Lee, J. J. Yoo, A. Atala, and S. J. Lee. 3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function Restoration. *Sci Rep*, 8(1):12307, 2018.

26. F. Lauretani, C. R. Russo, S. Bandinelli, B. Bartali, C. Cavazzini, A. Di Iorio, A. M. Corsi, T. Rantanen, J. M. Guralnik, and L. Ferrucci. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. *J. Appl. Physiol.*, 95(5):1851–1860, Nov. 2003.
27. P. H. U. Lee and H. H. Vandenbergh. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system. *Tissue Eng Part A*, 19(19-20):2147–2155, Oct. 2013.
28. W. Lee, N. Kalashnikov, S. Mok, R. Halaoui, E. Kuzmin, A. J. Putnam, S. Takayama, M. Park, L. McCaffrey, R. Zhao, R. L. Leask, and C. Moraes. Dispersible hydrogel force sensors reveal patterns of solid mechanical stress in multicellular spheroid cultures. *Nat Commun*, 10(1):144, 2019.
29. W. R. Legant, A. Pathak, M. T. Yang, V. S. Deshpande, R. M. McMeeking, and C. S. Chen. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. *Proceedings of the National Academy of Sciences*, 106(25):10097–10102, June 2009.
30. A. I. Lurie and A. Belyaev. *Theory of Elasticity*. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2005. OCLC: 699849378.
31. L. Madden, M. Juhas, W. E. Kraus, G. A. Truskey, and N. Bursac. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. *Elife*, 4:e04885, Jan. 2015.
32. S. M. Maffioletti, S. Sarcar, A. B. H. Henderson, I. Mannhardt, L. Pinton, L. A. Moyle, H. Steele-Stallard, O. Cappellari, K. E. Wells, G. Ferrari, J. S. Mitchell, G. E. Tyzack, V. N. Kotiadis, M. Khedr, M. Ragazzi, W. Wang, M. R. Duchen, R. Patani, P. S. Zammit, D. J. Wells, T. Eschenhagen, and F. S. Tedesco. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering. *Cell Rep*, 23(3):899–908, Apr. 2018.
33. K. Mamchaoui, C. Trollet, A. Bigot, E. Negroni, S. Chaouch, A. Wolff, P. K. Kandalla, S. Marie, J. Di Santo, J. L. St Guily, F. Muntoni, J. Kim, S. Philippi, S. Spuler, N. Levy, S. C. Blumen, T. Voit, W. E. Wright, A. Aamiri, G. Butler-Browne, and V. Mouly. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. *Skelet Muscle*, 1:34, Nov. 2011.
34. J. W. McGreevy, C. H. Hakim, M. A. McIntosh, and D. Duan. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. *Dis Model Mech*, 8(3):195–213, Mar. 2015.
35. S. Monnier, M. Delarue, B. Brunel, M. E. Dolega, A. Delon, and G. Cappello. Effect of an osmotic stress on multicellular aggregates. *Methods*, 94:114–119, Feb. 2016.
36. T. Muenker. Post Deflection Analysis. <https://github.com/Tillmuen09/PostDeflectionAnalysis>, May 2020.
37. H. Pemble, P. Kumar, J. van Haren, and T. Wittmann. GSK3-mediated CLASP2 phosphorylation modulates kinetochore dynamics. *J. Cell. Sci.*, 130(8):1404–1412, 2017.

38. M. Periasamy, S. K. Maurya, S. K. Sahoo, S. Singh, S. K. Sahoo, F. C. G. Reis, and N. C. Bal. Role of SERCA Pump in Muscle Thermogenesis and Metabolism. *Compr Physiol*, 7(3):879–890, 2017.
39. M. R. Pimentel, S. Falcone, B. Cadot, and E. R. Gomes. In Vitro Differentiation of Mature Myofibers for Live Imaging. *J Vis Exp*, (119), 2017.
40. S. Preibisch, F. Amat, E. Stamataki, M. Sarov, R. H. Singer, E. Myers, and P. Tomancak. Efficient Bayesian-based multiview deconvolution. *Nat. Methods*, 11(6):645–648, June 2014.
41. L. Rao, Y. Qian, A. Khodabukus, T. Ribar, and N. Bursac. Engineering human pluripotent stem cells into a functional skeletal muscle tissue. *Nat Commun*, 9(1):126, 2018.
42. M. Rausch, D. Böhringer, M. Steinmann, D. W. Schubert, S. Schrüfer, C. Mark, and B. Fabry. Measurement of Skeletal Muscle Fiber Contractility with High-Speed Traction Microscopy. *Biophys. J.*, Dec. 2019.
43. P. Ringer, A. Weißl, A.-L. Cost, A. Freikamp, B. Sabass, A. Mehlich, M. Tramier, M. Rief, and C. Grashoff. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. *Nat. Methods*, 14(11):1090–1096, Nov. 2017.
44. W. Roman, J. P. Martins, F. A. Carvalho, R. Voituriez, J. V. G. Abella, N. C. Santos, B. Cadot, M. Way, and E. R. Gomes. Myofibril contraction and crosslinking drive nuclear movement to the periphery of skeletal muscle. *Nat. Cell Biol.*, 19(10):1189–1201, Oct. 2017.
45. K. Saha, A. J. Keung, E. F. Irwin, Y. Li, L. Little, D. V. Schaffer, and K. E. Healy. Substrate modulus directs neural stem cell behavior. *Biophys. J.*, 95(9):4426–4438, Nov. 2008.
46. M. S. Sakar, D. Neal, T. Boudou, M. A. Borochin, Y. Li, R. Weiss, R. D. Kamm, C. S. Chen, and H. H. Asada. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. *Lab Chip*, 12(23):4976–4985, Dec. 2012.
47. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for biological-image analysis. *Nat. Methods*, 9(7):676–682, June 2012.
48. A. Shima, Y. Morimoto, H. L. Sweeney, and S. Takeuchi. Three-dimensional contractile muscle tissue consisting of human skeletal myocyte cell line. *Exp. Cell Res.*, 370(1):168–173, 2018.
49. A. S. T. Smith, C. J. Long, K. Pirozzi, S. Najjar, C. McAleer, H. H. Vandenburgh, and J. J. Hickman. A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro. *J. Biotechnol.*, 185:15–18, Sept. 2014.
50. E. J. Stevenson, A. Koncarevic, P. G. Giresi, R. W. Jackman, and S. C. Kandarian. Transcriptional profile of a myotube starvation model of atrophy. *J. Appl. Physiol.*, 98(4):1396–1406, Apr. 2005.
51. H. Takahashi, T. Shimizu, and T. Okano. Engineered Human Contractile Myofiber Sheets as a Platform for Studies of Skeletal Muscle Physiology. *Sci Rep*, 8(1):13932, 2018.

52. M. W. Toepke and D. J. Beebe. PDMS absorption of small molecules and consequences in microfluidic applications. *Lab Chip*, 6(12):1484–1486, Dec. 2006.
53. N. Träber, K. Uhlmann, S. Girardo, G. Kesavan, K. Wagner, J. Friedrichs, R. Goswami, K. Bai, M. Brand, C. Werner, D. Balzani, and J. Guck. Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development. *Sci Rep*, 9(1):17031, Nov. 2019.
54. H. Vandernburgh, J. Shansky, F. Benesch-Lee, V. Barbata, J. Reid, L. Thorrez, R. Valentini, and G. Crawford. Drug-screening platform based on the contractility of tissue-engineered muscle. *Muscle Nerve*, 37(4):438–447, Apr. 2008.
55. D. Vorselen, Y. Wang, M. M. de Jesus, P. K. Shah, M. J. Footer, M. Huse, W. Cai, and J. A. Theriot. Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell-target interactions. *Nat Commun*, 11(1):20, Jan. 2020.
56. C. L. Walker, K. A. Lukyanov, I. V. Yampolsky, A. S. Mishin, A. S. Bommarius, A. M. Duraj-Thatte, B. Azizi, L. M. Tolbert, and K. M. Solntsev. Fluorescence imaging using synthetic GFP chromophores. *Curr Opin Chem Biol*, 27:64–74, Aug. 2015.
57. B. Wallmeyer, S. Trinschek, S. Yigit, U. Thiele, and T. Betz. Collective Cell Migration in Embryogenesis Follows the Laws of Wetting. *Biophys. J.*, 114(1):213–222, 2018.
58. B. Wallmeyer, Bernhard. Bead Segmentation.
<https://github.com/tobetz/ElasticBeadAnalysis>, Jan. 2020.