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Abstract  

Loss of genetic variation negatively impacts breeding efforts and food security. Genebanks 

house over 7 million accessions representing vast allelic diversity that is a resource for 

sustainable breeding. Discovery of DNA variations is an important step in the efficient use of 

these resources. While technologies have improved and costs dropped, it remains impractical to 

consider resequencing millions of accessions. Candidate genes are known for most agronomic 

traits, providing a list of high priority targets. Heterogeneity in seed stocks means that multiple 

samples from an accession need to be evaluated to recover available alleles. To address this we 

developed a pooled amplicon sequencing approach and applied it to the out-crossing cereal rye 

(Secale cereale). Ninety-five rye accessions of different improvement status and worldwide 

origin, each represented by a pooled sample comprising DNA of 96 individual plants, were 

evaluated for sequence variation in six target genes involved in seed quality, biotic and abiotic 

stress resistance. Seventy-four predicted deleterious variants were identified using multiple 

algorithms. Rare variants were recovered including those found only in a low percentage of seed. 

A large extent of within-population heterogeneity was revealed, providing an important point for 

consideration during rye germplasm conservation and utilization efforts.  We conclude that this 

approach provides a rapid and flexible method for evaluating stock heterogeneity, probing allele 

diversity, and recovering previously hidden variation.  

 

Keywords: Secale cereale, natural variation, allele frequency, variant calling, MATE 1, FBA, 

TLP, GSP-1, Sinb, PBF  
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INTRODUCTION 

 

Plants can be made more resilient, yields stabilized, and nutritional components enhanced 

through selection and combination of gene variants that control these traits. Crop improvement is 

therefore dependent on the existence of genetic variability for the trait in question. For the past 

10,000 years humans have been selecting and combining genetic variants to improve crops. 

However, most of the history of crop development was carried out without a knowledge of 

genetics or DNA, and thus modern cultivars have a relatively narrow genetic base, resulting from 

bottleneck-like effects of domestication and breeding practices (Purugganan and Fuller, 2009; 

Mondal et al., 2016; Joukhadar et al., 2017). Therefore, the allelic variability existing within 

contemporary cultivars or breeding programs may be insufficient for successful identification of 

gene variants for satisfactory productivity and resilience of the crop.  

Useful alleles conferring important traits that have been lost in modern cultivars may still 

exist in nature. Plant genetic resources (PGR), such as landraces and wild relatives of crop 

plants, possess a much higher genetic diversity. While not high yielding and having often 

undesirable agronomic characteristics, they were shown to contain gene variants that can 

improve performance of successful modern cultivars (Hoisington et al., 2002; McCouch, 2013; 

Gur and Zamir, 2004; Gamuyao et al., 2012).  

Luckily, the value of PGR as a reservoir of gene variants was recognised over a hundred 

years ago (McCouch, 2004) and nowadays there are over 1,700 ex situ germplasm collections 

worldwide, maintaining about 7.4 million accessions. Approximately 62% of these accessions 

are landraces and wild species (FAO, 2010). Unfortunately, in most cases little is known about 

the extent and structure of genetic diversity within a given collection. The available data is often 

limited to passport information, and some phenotypic measurements or DNA marker-based 

genetic diversity assessment for a subset of accessions. Such information is not sufficient to 

make an informed choice of PGR for inclusion into a breeding program. Therefore the utilisation 

of primitive, exotic germplasm in crop improvement is limited (FAO, 2010; McCouch, 2013; 

Keilwagen et al., 2014). 

To fully profit from the allelic variation of PGR, methods for efficient and reliable 

screening of hundreds of accessions to discover useful gene variants are needed. Rapid 

development of next generation sequencing (NGS) technologies resulted in the establishment of 

various approaches, which can be used for high-throughput assessment of genic variation, such 

as whole genome resequencing (WGS) (Li et al., 2013; Mehra et al., 2015; Zhou et al., 2015) 
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and exome capture (Hodges et al., 2007; Hussain et al., 2018). Unfortunately, these approaches 

are not yet applied in many species owing to factors including genome size, polyploidy, and 

associated costs of sequencing and capture probe development. While a future can be envisioned 

where comprehensive genomic data is available for every accession of every important crop, the 

current state of technology and funding means that material is prioritized, and compromises 

made. Insofar as evaluation of WGS data provides information useful for understanding 

population genetics and evolution, it is expected that only a small fraction of base pairs of a 

genome are controlling key agronomic traits (Wendel et al., 2016) Targeting candidate genes and 

their regulatory elements provides a tremendous reduction in data collected. Indeed, many 

studies have revealed quantitative trait loci and associated candidate genes that can be used to 

identify orthologous sequences in other plants (Nguyen et al., 2019). An alternative to whole 

genome or exome capture sequencing is amplicon sequencing. In this approach, selected 

genomic regions are first amplified by PCR and then subjected to massively parallel sequencing.   

Compared to WGS or exome capture, amplicon approaches allow acquisition of a much higher 

coverage of the selected target bases pairs at a lower sequencing cost. This is because the total 

yield of the sequencing reaction, in terms of raw bases, is distributed to fewer unique bases of 

each sample in the pool  (e.g. (Sims et al., 2014)). One application of amplicon sequencing is the 

simultaneous genotyping of hundreds of unique samples independently by employing strategies 

to barcode, or index, each sample uniquely (Campbell et al., 2015). In addition to this approach, 

the high sensitivity of current sequencing technologies enables “ultra deep” methods whereby 

nucleotide variants can be identified in samples containing pools of mixed genotypes. One 

example is the detection of rare somatic mutations in human samples (Dou et al., 2018). Another 

example is the use of amplicon sequencing to measure intrahost virus diversity.  Researchers 

showed that a rare Zika virus variant could be detected if present at > 3% in a mixed sample 

when sequencing coverage was at least 400x (Grubaugh et al., 2019). In plants, experiments can 

be designed to discover rare nucleotide variants present at very low frequencies by screening 

large populations where genomic DNA has been pooled prior to PCR amplification and 

sequencing. Screening throughputs are increased and assay costs are reduced, making screening 

thousands of samples practical. This has been used for recovery of induced point mutations in 

TILLING by Sequencing assays (Tsai et al., 2011). Here, genomic DNAs from different lines 

harboring induced mutations are pooled, subjected to target-specific PCR and the PCR products 

are then pooled and sequenced. The method has been used to recover rare mutations in genomic 

DNA samples pooled from 64 to 256 fold. These studies suggest that variant calling accuracy is 

improved when using multiple variant calling algorithms(Tsai et al., 2011; Pan et al., 2015; 
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Gupta et al., 2017; Tramontano et al., 2019). The approach has been adapted for recovery of 

natural variation in Populus nigra, Manihot esculenta Crantz (cassava), and Oryza sativa L., 

whereby DNAs from different accessions were pooled together prior to PCR and variant 

discovery. In P. nigra, PCR products were prepared from pooled genomic DNA from 64 

accessions to identify variants in lignin biosynthesis genes in 768 accessions (Marroni et al., 

2011) In cassava, DNA from up to 281 accessions were pooled prior to sequencing for variants 

in starch biosynthesis pathway-related genes and herbicide tolerance genes in 1667 accessions 

(Duitama et al., 2017). In rice, pooling of DNAs prepared from 233 breeding lines was followed 

by sequencing for variants in starch synthesis genes (Kharabian-Masouleh et al., 2011). Pooling 

of multiple samples from the same species has also been used in studies where WGS has been 

applied. There are many variations to this methodology that has been termed Pool-seq 

(Schlötterer et al., 2014) This includes cases where, contrary to TILLING assays, multiple 

individuals with similar genotypes are pooled together to estimate population allele frequencies. 

In such applications, sequencing coverages can be reduced to save costs, but are insufficient to 

find rare alleles in one or few individuals in the pool. Sequencing intra-species pools has also 

been described such as in metagenomics studies (Pereira et al., 2018).  

Rye (Secale cereale L.) is an outcrossing cereal, popular in Europe and North America, 

and an important source of variation for wheat breeding due to its high tolerance to biotic and 

abiotic stresses (Crespo-Herrera LA et al., 2017). Genetically rye is a diploid (n=7), with a large 

(ca. 8 Gbp) and complex genome (Bartos et al., 2008; Rabanus-Wallace et al., 2019). There are 

over 21 thousand rye accessions in genebanks worldwide, approximately 35% of them are 

landraces and wild species (FAO, 2010). Several studies on genome-wide diversity in rye were 

published to date (Bolibok-Bragoszewska et al., 2014; Targońska et al., 2016; Maraci et al., 

2018; Sidhu et al., 2019). It was shown that accessions from genebanks are genetically distinct 

from modern varieties, which highlighted the potential of PGR in extending the variability in 

current rye breeding programs (Bolibok-Bragoszewska et al., 2014; Targońska et al., 2016). To 

date neither NGS-based targeted amplicon sequencing, nor any other method of gene variant 

discovery was applied to rye genetic resources.  

Although the number of well characterized rye genes is very limited (Gawroński et al., 

2016), there are important candidate genes to consider. MATE1 is a gene involved in aluminum 

(Al) tolerance of rye. Al-toxicity is one of the main constraints to agricultural production on 

acidic soils, which constitute ca. 50% of the arable land on Earth (Maron et al., 2013). Rye is one 

of the most Al-tolerant cereals, with the degree of tolerance depending on the allelic variant of 

MATE1 (Santos et al., 2018). TLPs are a family of pathogenesis-related (PR) proteins, involved 
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in fungal pathogen response in many plant species (Zhang et al., 2018). FBA is one of the key 

metabolic enzymes involved in CO2 fixation and sucrose metabolism. FBA genes were found to 

have an important role in regulation of growth and development, and responses to biotic and 

abiotic stresses, such as chilling, drought and heat (Lv et al., 2017; Cai et al., 2018). GSP-1 

genes, belonging to the prolamin superfamily of seed storage proteins, encode precursor proteins, 

which after post-translational processing give rise to arabinogalactan peptide AGP and the grain 

softness protein GSP-1 (Wilkinson et al., 2017) Secaloindolines, products of genes Sina (not 

analyzed in this study) and Sinb, are main components of friabilin - a starch-associated protein 

fraction of cereal grains (Simeone and Lafiandra, 2005). The wheat orthologues of Sina and 

Sinb, called Pina and Pinb, are key determinants of grain texture, an important breeding trait 

directly influencing the end-use (Liu et al., 2017). PBF is an endosperm specific transcription 

factor involved in the regulation of protein and starch synthesis (Zhang et al., 2016). It binds to 

the prolamine-box motif occurring in promoter regions of multiple cereal seed storage proteins. 

In barley, SNPs located in PBF were associated with crude protein and starch content 

(Haseneyer et al., 2010), while in wheat, mutating the homeologous PBFs using TILLING 

resulted in a markedly decreased gluten content and high content of lysine (Moehs et al., 2019).  

Exploration of genic variation in outcrossing, generatively propagated crops, such as rye, 

maize, sugar beet, broccoli, or carrot, is a particularly demanding task. Natural, random-mating 

populations of such species are heterozygous and heterogeneous, with multiple alleles of a locus 

being present (Souza Jr., 2012). Such population structure has important implications for the 

design of NGS-allele mining experiments. Firstly, due to high levels of heterozygosity, a higher 

sequencing coverage is needed even when sequencing non-pooled samples to ensure reliable 

nucleotide variant calling. Secondly, due to the heterogeneity of accessions, a large enough 

number of individuals of a given accession needs to be included in the screen to obtain a faithful 

representation of within-accession variability and to successfully recover rare variants. Many 

potentially useful and interesting alleles may go undiscovered with current experimental designs. 

To address this, a low-cost, high-throughput, and reliable amplicon sequencing approach 

suitable for assessment of genic variation in heterozygous and heterogeneous rye accessions was 

developed. Rather than pool DNA from different accessions, ultra deep amplicon sequencing 

was used to evaluate intra-accession heterogeneity while also providing information on novel 

genetic variation. DNA pools were created that contain ninety-six plants per accession. These 

were subjected to pooled amplicon sequencing in six target genes implicated in biotic and abiotic 

stress resistance and seed quality: MATE1, TLP, FBA, PBF, Sinb, and GSP-1. Three variant 

calling algorithms (GATK HaplotypeCaller (Poplin et al., 2017), SNVer (Wei et al., 2011) and 
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CRISP (Bansal, 2010)) were used to identify putative variants at frequencies as low as one 

heterozygous event per 96 plants assayed in each pool. A subset of variants was independently 

validated and the functional effect of each variant was evaluated in silico. Common and rare 

variants were recovered, including variants predicted to affect protein function that are present in 

only a small fraction of seed representing an accession. This data provides preliminary 

knowledge on the levels of variant allele frequencies in accessions representing different 

germplasm groups: wild species, landraces, historical and modern cultivars.  

 

 

RESULTS 

 

DNA sequencing, mapping and coverage 

 

Pooled amplicon sequencing using Illumina sequencing by synthesis 2×300 paired end 

reads on 95 accessions and six genes produced a mean coverage of 13948× and mean mapping 

quality of 58.65. Mean coverage per accession pool varied approximately 10 fold, between 

2924× and 30275×. Analysis of sequencing coverage at each nucleotide revealed that 94.2% of 

the experiment produced 20 or more reads to support a rare variant present at 5% in the DNA 

pool (Supplemental Table 1). 

 

Evaluation of variant calling algorithms and predicted effects of nucleotide changes 

Variant calling was first performed on each pool using HaplotypeCaller in GATK (v.4.0) 

with ploidy set to 192 in order to recover rare alleles. This resulted in 4,115 called variants, of 

which 3,682 were single nucleotide polymorphisms, 192 insertions, and 241 deletions. 

Evaluation of the Variant Call Format (VCF) file, allowed calculation of the frequency of a 

specific allele within the DNA pool created from the 96 seeds that were sampled to represent an 

accession.  This is referred to as VAF (Variant Allele Frequency), to distinguish the 

measurement from AF (Allele Frequency) - the frequency of the allele within the set of 95 

accessions analyzed in the present study. Data was plotted to evaluate the distribution of the 

mean VAF for each variant and the number of accessions harboring each discovered allele 

(Figure 1). Private variants occurring in only one accession were identified at both low and high 

VAFs  (Figure 1). The percentage was highest, however, at the lowest VAFs - seventy-five 

percent of private alleles have a VAF of 0.026 (represented at 2.6% in the accession pool) or 

lower (Supplemental Figure 1).  
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Variant calling was next carried out using SNVer and CRISP producing 1,570 and 3,261 

variant calls, respectively. Similar to data produced with GATK, the highest percentage of 

variants are represented in the lowest VAFs  (75% at 0.034 or lower for CRISP and 0.088 or 

lower for SNVer, Supplemental Figure 2). Private variants were also enriched at lower VAFs 

(Supplemental Figure 1). In total, 895 variants were common between the three methods (Figure 

2). Within these common variants, the mean VAF and the number of accessions carrying the 

variant differed between the three algorithms used.  

The effect on gene function of putative variants was evaluated with SNPeff and SIFT. 

This resulted in 695 putative deleterious variants from GATK, 171 from SNVer and 578 from 

CRISP, with 74 putative deleterious variants common to all three algorithms (Table 1, 

Supplemental Table 2, Supplemental Figure 3). Deleterious alleles with a high maximum VAF 

(the highest VAF reported in an accession) and present in only one accession were recovered 

along with alleles with a high maximum VAF that were present in 90 or more accessions 

(Supplemental Table 2). Alleles with a maximum VAF less than 0.4 were also identified, 

suggesting the presence of rare alleles segregating within an accession. In the GATK data set, for 

example, 29 of the 74 predicted deleterious common variants have a maximum VAF between 

0.047 and 0.391 and are found in 1 to 21 accessions (Supplemental Table 2, Supplemental Figure 

4).  

Within target genes, 18 to 443 polymorphic positions were detected consistently by the 

three algorithms, corresponding to one SNP or InDel every eight to ten bp of sequence for five of 

the analyzed genes. For the sixth gene, Sinb, this frequency was markedly lower, with one SNP 

per 25 bp. The number of putatively deleterious variants per gene ranged from 11 (GSP-1) to 21 

(MATE1), corresponding to one deleterious variant every 40 to 80 bp, with exception of Sinb, 

where only three deleterious variants were identified in 447 bp of coding sequence. Previous data 

on genic variation was available solely for MATE1  (a total of 112 unique variants from 26 

sequences deposited in GenBank as of 7th January 2020) and Sinb with seven unique variants 

reported (Liu et al., 2017). The present study identified 62 new variants in MATE1 coding 

sequence, including seven putatively deleterious, and 15 new variants in Sinb, including all three 

putatively deleterious variants. Most new variants identified in MATE1 and Sinb were private or 

rare (median of the number of accessions with a given variant equaled two in MATE1 and one in 

Sinb). 

The presence of predicted variants was assayed using Sanger sequencing of Sinb 

amplicons in a single individual plant from each of eight accessions. Twelve variants were 

predicted in this set. Only variants reported by all three algorithms for the tested accession, and 
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where the lowest VAF was greater than 0.295 were validated (Supplemental Table 3). Because 

allele frequencies were calculated from a pooled DNA sample, it was concluded that lower 

frequency alleles likely represent alleles that are not present in every seed of an accession. 

Subsequent validation assays were carried out whereby multiple plants from each accession were 

assayed independently. In CAPS and Sanger sequencing assays on MATE1, PBF, and Sinb 

amplicons, eleven out of 16 tested variants were recovered when sampling between six and 16 

plants (Table 2). Observed allele frequencies calculated from the number of plants harboring the 

tested sequence difference varied from the frequencies predicted from the amplicon sequencing 

data. Five variants had observed VAF closest to GATK predictions, three variants were closest 

with SNVer and three with CRISP.  The four variants not recovered by CAPS or Sanger assays 

had frequencies reported by GATK below 0.15. Failure to recover low frequency alleles may 

have resulted from testing an insufficient number of individuals. 

 

Phylogenetic relationships between populations and comparison of VAF distributions. 

The relationship between accessions was evaluated by creating a  Neighbor Joining (NJ) 

tree based on Nei’s genetic distance (Figure 3).  This resulted in accessions divided into six 

clusters (I-VI), with cluster I containing mostly cultivars, including the majority of modern 

cultivars analyzed. Nevertheless, a coincidence of the clustering with improvement status could 

not be observed.  The accessions S. sylvestre  (abbreviation B6 on Figure 3),  S. strictum subsp. 

kuprijanovii (F8) and S. strictum subsp africanum (B7), were indicated as the most divergent of 

the analyzed set, which is in agreement with results of previous genome-wide analyzes of rye 

germplasm (Bolibok-Bragoszewska et al., 2014; Al-Beyroutiova et al., 2016; Rabanus-Wallace 

et al., 2019).  Conversion of VAF values to genotyping scores was used to evaluate clustering. 

Different ranges of VAF were used to define heterozygous variants. This resulted in a changed 

clustering of the populations at each range tested (Supplemental Figure 5). 

Private variants occurred in all germplasm groups included in the study: modern 

cultivars, historic cultivars, landraces and wild accessions. In the group of commonly identified 

variants, the number of private variants per accession coincided with the domestication status: 

private variants were most frequent in wild accessions (five to seven per accession), followed by 

landraces with approximately two variants per accession, and historic and modern cultivars with 

less than one private variant per accession. Private variants in wild accessions also had the 

highest VAF values (mean 0.4 -0,45, median 0.22-0.28). In the remaining germplasm groups 

mean VAF and median VAF did not exceed 0.12 and 0.007, respectively. The number of private 

variants varied from 0 (32 accessions) to 25 in S. sylvestre (B6) (Figure 3). Among the cultivated 
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rye  (S. cereale  ssp. cereale) accessions, the highest number of private variants (7) was observed 

in a landrace from Bosnia and Herzegovina (C2) and also in a S. cereale  ssp. cereale accession 

of unknown improvement status from Israel (E4). 

VAF values were used to prepare violin plots in order to qualitatively compare 

accessions. Several distinct patterns of allele frequency distribution were observed 

(representative examples shown in Figure 4). Based on the results of two-part Wilcoxon test of 

pairwise comparisons of VAF distributions, rye accessions were grouped into 20 clusters ranging 

in size from 1 to 16 (Supplemental Figure 6). Five accessions, characterized by a high proportion 

of variants with high VAF values were consistently recognized as markedly different from the 

rest:  S. sylvestre (B6), S. strictum subsp. kuprijanovii (F8), historic cultivars Imperial (B4), and 

Otello (G12 ) and landrace R1040 (F6) (Supplemental Table 4). 

   

DISCUSSION 

 

 

To evaluate the distribution of frequencies of alleles within a landrace or cultivar, we 

chose to sample 96 plants from each accession of rye selected for our study. This allows the 

recovery of i) sequence differences compared to the reference sequence used that are fully 

homozygous (those with an allele frequency of 1), ii) heterozygous variants present in all pooled 

plants and iii) variants of lower frequencies that are not present in every seed in the seed stock 

used to represent an accession. To streamline the approach, tissue from each plant was collected 

and pooled prior to DNA extraction. The experiment was designed such that an allele found in a 

single plant could be identified. High coverage values were found in all DNA pools suggesting 

that each pool was suitable for PCR amplification and sequencing. Deviations in coverage 

values, therefore, likely resulted from differences associated with the quantification, 

normalization and pooling of PCR products. Such variations were recently reported in a study 

comparing tomato, cassava and barley amplicon sequencing data sets (Tramontano et al., 2019). 

The study revealed that minor coverage improvements could be achieved through the addition of 

extra quantification methods. Alternative approaches to increase read coverage at all nucleotide 

positions include increasing sequencing yields by adjusting the number of samples in an 

experiment and/or the number of target genes (amplicons) used in a single sequencing run. As 

sequencing costs drop, it may prove more cost effective and faster to simply produce more base 

pairs of data per experiment than to fine-tune the other experimental parameters.  
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Many applications employing next generation sequencing of genomic DNA involve the 

evaluation of sequence variations in diploid samples. Even in optimized diploid conditions, a 

balance is struck between maximizing allele calling sensitivity to reduce false negative errors 

and reducing the sensitivity in order to lower false positive errors. For example, when using 

GATK HaplotypeCaller with settings for diploid samples, Li et al reported that more than 80% 

of false positive errors in diploid rice were at an allele frequency below 40% (Li et al., 2019). 

When sequencing non-pooled samples, setting an allele frequency threshold of >40% for 

heterozygous variants therefore reduced false positive errors. Such optimizations are more 

challenging in pooled samples. Algorithms such as GATK HaplotypeCaller, SNVer and CRISP 

provide parameter settings to call low frequency variants. Yet, optimal parameters still need to 

be determined. For example, evaluation of six SNP calling algorithms in tomato TILLING 

samples pooled either 64 or 96 fold revealed that accuracy ranged between 89.33 and 25.33 % 

when comparing to Sanger validated SNP mutations (Gupta et al., 2017). That work described 

technical differences between different algorithms and concluded that accuracy is improved 

when a variant call is predicted by at least two algorithms. In cassava, up to 281 different 

accessions were pooled together prior to sequencing in an approach designed to quickly identify 

putative deleterious alleles (Duitama et al., 2017). In that study 24% (79/325) of called variants 

were predicted by four algorithms tested.   

The experimental design for rye differed from previous studies in order to allow the 

discovery and analysis of intra-accession allele variation. The assay was designed to recover two 

types of what can be considered “rare” variation. The first type of rare variants are alleles that 

are found in only one accession (known as private alleles) or very few accessions in the tested 

set, and occur with a high frequency within the respective accessions. This type of rare variation 

is easily recovered using conventional genotyping and resequencing as alleles can be recovered 

through assay of a single seed (Wang et al., 2018; Balfourier et al., 2019) The second type of 

rare variants are more difficult to discover. These variants segregate at a low frequency within an 

accession and are never found at high frequency in any tested accession. To recover this type of 

rare variant requires the sampling of multiple individual seed per accession. As such, these 

alleles are hidden from discovery when using traditional methods that sample one or few seed 

per accession. Using pooled amplicon sequencing we have recovered both types of rare alleles in 

the tested rye accessions. Importantly, the presence of variants that segregate at a low frequency 

within an accession, and are never found at high frequency in any tested accession, suggest that a 

broader genetic diversity can exist in germplasm collections than previously known. We expect 

this to be most common in outcrossing species like rye where admixtures of alleles are frequent. 
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Variants with mean VAF between 0.7 and 1 represented between 1.87 and 3.06% of all 

predicted alleles, depending on the algorithm used. In this set of variants, between 41 and 49% 

are private alleles found in only one accession (Figure 1, Supplemental Figures 1 &2). The 

highest number of variants were found in the lowest VAFs. It is expected that false positive 

errors will increase as the number and percentage of reads supporting the alternative allele 

decreases. Studies have been carried out on errors associated with MiSeq paired end sequencing, 

but a thorough investigation into errors in pooled samples has not been reported (Schirmer et al., 

2015). False positive errors are expected to be random and therefore infrequently independently 

predicted when applying multiple variant calling algorithms. Indeed, of the 895 variants common 

to GATK, SNVer and CRISP, only 20% had a predicted mean VAF of 0.038 or lower, a 

reduction of more than 50% from the data from any single algorithm. Further experiments are 

required to determine what, if any, percentage of the sub 0.038 VAF variants predicted by all 

three algorithms are false positive errors. This requires extensive genotyping, as many individual 

seed need to be tested to ensure true variants are recovered. In the present study, genotyping 

assays using approximately 10 seed per accession were sufficient to validate alleles with a VAF 

of 0.15 or higher that were predicted in the same accession by all three algorithms. We expect it 

is necessary to test more than 100 seeds per accession to validate the lowest frequency alleles in 

the data. Some very low frequency false positive errors are expected and may result from 

biological contamination, for example, from pollen contamination on the leaf tissue collected. 

This can be ruled out in the present study because seedlings were grown, and tissue collected in 

growth room conditions where there were no rye plants flowering. Sample to sample cross 

contamination of DNA or PCR product may also be a source of low VAF false positive errors. 

Sixty-five percent of sub 0.038 VAF variants commonly predicted by all algorithms were found 

in more than one accession. However, 96 % had a maximum predicted VAF of less than 10%, 

and the highest maximum VAF was 24.5%. This means that a large volume of accidental liquid 

transfer between samples would be needed to create a detectable false positive. With the caveat 

of possible very low frequency false positive errors, we conclude that selecting variants 

commonly called by multiple algorithms may reduce errors and serves as a useful method to 

prioritize alleles for further study.  

We found qualitative evaluation of VAF values using violin plots to be useful to estimate 

the influence of a taxon’s reproductive biology, preservation history and breeding on the genetic 

composition of an accession. For example, one of the outlier accessions identified is this study is 

S. sylvestre (B6). Molecular marker-based analyses of genetic diversity indicated this self-

pollinating taxon as the most divergent in genus Secale (Bolibok-Bragoszewska et al., 2014; Al-
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Beyroutiova et al., 2016; Schreiber et al., 2018). Its large proportion of high VAF variants 

(Figure 4) likely corresponds to homozygosity for alternative alleles, since reference sequences 

used during variant calling originated from cultivated rye accessions. Another outlier, S. strictum 

subsp. kuprijanovii (F8), is a perennial outbreeder, also genetically divergent from S. cereale. 

However, its violin plot differs markedly from plots obtained for the other two S. strictum 

samples included in the study, S. strictum subsp. africanum (B7) and S. strictum subsp. strictum 

(B9), which might indicate a sample tracking mistake during genebank preservation or 

laboratory handling, or a bottleneck during preservation. A sample of Imperial cultivar (B4), 

widely used in cytological studies, originating from the collection of A. J. Lukaszewski (UCLA, 

Riverside) showed an approximately equal abundancy of variants with all possible VAF values 

and differed clearly from another sample of Imperial, (C1), obtained from IPK Gatersleben 

genebank.  Less pronounced (although also statistically significant) differences were also 

observed between the two samples of cultivar Dankowskie Zlote (C6 and F3), obtained from 

different sources. Samples of hybrid cultivars from KWS, such as Ballistic (D11) and KWS 

Florano (G10), exhibited a higher percentage of VAF values in the range  0.3-0.5,  with median 

ca. 0.3, and also higher percentage of AF values close to 1.0, in comparison to population 

cultivars included in the study, such as Dankowskie Zlote (F3 and C6),  Petkus (G8), or Carstens 

Kortstra (E8), which is consistent with the use of the three line system in the development of 

hybrid rye cultivars. 

In this study we analyzed six genes linked to biotic and abiotic stress resistance and seed 

quality. Using deep sampling and pooled amplicon sequencing numerous new variants were 

identified, (including putatively deleterious ones), in each of the analyzed genes, providing 

potential targets for future functional studies and, eventually, inclusion in breeding schemes in 

rye and related species (wheat, triticale). Consistent with a high diversity of the germplasm set 

used (with respect to domestication status and origin) we obtained a several fold higher estimate 

of SNP frequency in rye (on average one SNP or InDel every 12 bp), than those reported in the 

past: 1 SNP/52bp (Li et al., 2011), 1 SNP/58bp (Varshney et al., 2007) or 1 SNP or InDel/31 bp 

(Bauer et al., 2017). In agreement with the results of previous genome-wide, DArT-marker based 

characterization of genetic diversity in rye (Bolibok-Bragoszewska et al., 2014), data obtained in 

the present study on distribution of private alleles among germplasm groups indicates that the 

genetic diversity in modern rye cultivars is relatively narrow, with less than one private allele 

identified per modern cultivar tested, and provides further evidence for the value of rye PGR in 

genetic research and crop improvement, with more than five private alleles identified per 

accession, stressing the importance of conservation and characterization efforts. On the other 
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hand, the clustering of the accessions in the NJ tree generated based on the VAF of 895 variants 

detected in common did not agree with the improvement status of the accessions, suggesting, 

that selective pressures other than breeding practices have influenced  the diversity of the genes 

analyzed.  

This study also points out that, in case of open pollinated populations  (due to the high 

within-accession variability), the sampling of a single individual or a small number of 

individuals from an accession most likely results in an inaccurate and perhaps even misleading 

representation of genetic relationships between the accessions. This can be seen in NJ trees 

produced based on conversion of VAF values into genotyping-like scores, where a different 

clustering of accessions was observed at each range of VAF used to define heterozygous variants 

(Supplementary Figure 5). 

The approach of deep sampling and pooled amplicon sequencing allows discovery of 

variants in candidate genes and also an evaluation of the effect of variants on gene function. This 

provides an additional filter to prioritize variants. The SIFT program was used to identify 73 

putative deleterious alleles commonly identified by the three variant calling algorithms. This data 

set contained different classes of alleles for example, homozygous variants found in one or few 

individual accessions (private deleterious alleles, the first category of rare variants described 

above). Homozygous variants present in more than 90 accessions were also recovered. 

Interestingly, putative deleterious variants were also identified where the maximum VAF was 

between 0.15 and 0.3 and the variant was found in only one or two individual accessions (the 

second category of rare variant). This suggests that alleles are segregating within rye accessions 

at low fractions that may affect gene function and potentially plant phenotype.  Such variants 

would go undiscovered in conventional GBS or WGS assays where only one or two seed per 

accession are sampled, and may be useful for functional genomic characterizations and breeding. 

Further studies are being designed to evaluate the different classes of putative deleterious alleles. 

For example, homozygous private alleles may represent alleles where a fitness penalty results in 

the allele having been expunged from most populations. Homozygous putative deleterious alleles 

present in most tested accessions may represent alleles with no fitness penalty, or may represent 

alleles that have no negative effect on fitness under their natural growing conditions (e.g. low 

aluminium in the soil). Possible mechanisms for the maintenance of rare low frequency alleles in 

populations, including meiotic effects, can also be investigated.  
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The rye amplicons used in this study were generated before the release of the rye genome 

(Rabanus-Wallace et al., 2019). It is expected that the recent release of the rye reference genome 

will enable improvements in gene target selection and primer design. Reference genomes have 

been produced for few of the hundreds of thousands of plant species existing on the planet. 

Because pooled amplicon sequencing does not require complete genome sequence, we expect 

that the approach described for rye can be adapted for many plant species and can facilitate 

better characterization of existing rich germplasm collections. We predict that flexible and low-

cost methods for recovery of rare genetic variation will support future efforts to promote 

sustainable food security.   

 

MATERIALS AND METHODS 

 

Plant material 

 

Ninety-five accessions of rye, each represented by a pooled sample comprising DNA of 96 

individual plants, were analyzed in the study. This set included 90 accessions of S. cereale , 

among them 8 modern cultivars, 34 historic cultivars, 35 landraces, and 5 accessions of other 

Secale taxa, representing various geographic regions. In total 10 accessions from this set were 

described as wild/weedy. Seeds were obtained from several sources including genebanks and 

breeding companies (Supplemental Table 4).  

 

Genomic DNA extraction, quantification and pooling 

 

Seeds were placed in a growth room in containers lined with moist paper towels. Ten days after 

germination a 20 mm long leaf segment was harvested from each plant. For each accession 96 

plants were sampled. Leaf segments from 16 plants of the same accession were collected into 

one 2 mL centrifuge tube, with six tubes from 16 individual plants obtained for each accession. 

Collected leaves were freeze-dried in an Alpha 2-4 LDplus lyophilizator (Christ), for 18h at -60 

°C, 0.011 mbar, followed by 1h at -64°C, 0,006 mbar and ground to fine powder using a 

laboratory mill MM 301 (Retsch) for 2.5-5 min at frequency 30.0 1/s. Genomic DNA was 

extracted using Mag-Bind Plant DNA DS Kit (OMEGA Bio-Tek) following manufacturer’s 

protocol. Quality and quantity of DNA was assessed using spectrophotometry (NanoDrop2000, 

Thermo) and electrophoresis in 1% agarose gels stained with ethidium bromide. DNA 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.02.20.958181doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.958181
http://creativecommons.org/licenses/by/4.0/


16 

 

concentration of each sample tube was adjusted to 100 ng and an equal volume of all samples 

from an accession were pooled together.  

 

 

Primer design and PCR amplification of target genes. 

 

Sequences of six target genes: aluminium activated citrate transporter (MATE1, also known as 

AACT1), taumatin-like protein (TLP), fructose-biphosphate aldolase (FBA), prolamine-box 

binding factor (PBF), secaloindoline-b (Sinb) and grain softness protein (GSP-1) were retrieved 

from GenBank (Supplemental Figure 7, Supplemental Table 5). The entire sequences of Secb 

and GSP-1 genes (456 and 506 bp, respectively) were amplified using primers described, 

respectively, by Simeone and Lafiandra (Simeone and Lafiandra, 2005) and Massa et al. (Massa 

et al., 2004). For genes FBA, MATE1, PBF and TLP primer pairs for generation of overlapping, 

ca. 600 bp long amplicons, covering the entire gene sequence were designed using Primer-

BLAST (Ye et al., 2012). Primer pairs were tested using the DNA of rye inbred line L318 and 

those producing single product of expected length were used for amplification of gene fragments 

from pooled DNAs. Primer design and all other assays described in this work were carried out 

before the public release of the rye genome. PCR set up was as follows: 200 ng of template 

DNA, 2.5 mM MgCl2, 0.2µM of each primer, 0.2 mM of each dNTP, 1x Dream Taq Green 

buffer, 0.5 U Dream Taq DNA polymerase (Thermo Scientific). The reactions were carried out 

in 25 µL in Mastercycler epgradient S (Eppendorf) thermal cyclers. For all primer pairs the 

thermal profile of initial denaturation for 60s at 95°C, 30 cycles of 30s at 95°C, 30s at 56°C and 

60s at 72°C, followed by final extension for 5 min at 72°C was used. A volume of 5 µL from 

each reaction was used to check the amplification success using electrophoretic separation in 

1.5% agarose gels stained with ethidium bromide. PCR products were shipped to Plant Breeding 

and Genetics Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency 

(Seibersdorf, Austria) for further processing.  

 

PCR product quantification and pooling 

 

PCR products were quantified using egel 96well gels (Thermo Fisher Scientific) and quantitative 

lambda DNA standards as previously described (Huynh et al., 2016). PCR product concentration 

was adjusted to 10 ng/ul in TE. All PCR products from a single gDNA pool were then pooled 

together. Pooled PCR products from each of the 95 accessions were then quantified using the 
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Advanced Analytical® Fragment AnalyzerTM with the low sensitivity 1kb separation matrix with 

30 cm capillaries (Advanced Analytical®#DNF935). All sample pools were normalized to 30 nM 

concentration in TE prior to library preparation.   

 

Library preparation and sequencing 

 

Indexed DNA library for NGS was prepared using the TruSeq® Nano DNA HT Library 

Preparation Kit (Illumina, cat. 20015965) according to manufacturer’s recommendation. Indexed 

libraries were then quantified using a Q-bit fluorometer (Thermo Fisher Scientific) and pooled 

together at an equal concentration. The pooled library was diluted to 18 pM concentration. 

Sequencing was performed on an Illumina MiSeq® using 2x300 PE chemistry according to 

manufacturer’s protocol. The reads were de-multiplexed with the MiSeq Reporter software and 

were stored as FASTQ files for downstream analysis.  

 

 

Sequence evaluation 

 

FASTQ files were aligned to target amplicons using BWA mem with commands -M -t 16 (Li 

and Durbin, 2009). Amplicon fragments were given target names that were used throughout the 

NGS analysis (Supplemental Table 5). Samtools view was used to convert from SAM to BAM 

format (Li et al., 2009). Bam files are available in NCBI BioProject PRJNA593253 

 Coverage statistics were prepared using qualimap v.2.2.1-dev (García-Alcalde et al., 2012). 

Variant calling was performed using three algorithms CRISP, GATK and SNVer. Parameters 

used for CRISP were –OPE 0, --poolsize 192 and –qvoffset 33 (Bansal, 2010). The GUI of 

SNVer was used with the following parameters: -bq20,-mq17,-s0,-f0,-pbonferroni=0.1,-a0,-u30, 

-n192,-t0 (Wei et al., 2011). HaplotypeCaller (GATK 4.0) was used following best practices 

with default settings with the exception that ploidy was set to 192 (Poplin et al., 2017). For each 

method, VCF files from individual pools were merged using bcftools. Following this, read group 

information was unified between the three files using picard tools AddOrReplaceReadGroups 

function (http://broadinstitute.github.io/picard/index.html). Data for calculation of allele 

frequency from the VCF files (called VAF in this manuscript) was extracted for each variant and 

each accession  using R libraries vcfR (Knaus and Grünwald, 2017) and VariantAnnotation 

(Obenchain et al., 2014) and used to produce AF tables.  The potential effect of nucleotide 

variation on gene function was evaluated with SNPeff (Cingolani et al., 2012). For this, a 
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genome database was prepared using the build -genbank function. The effect of reported 

nucleotide variation was also evaluated with SIFT4G using a self-prepared genomic database 

with the fasta file of amplicon sequences used for mapping with BWA mem, a self-prepared gtf 

file and the uniref90 protein database (Vaser et al., 2016). Venn diagrams were produced using 

the R package eulerr (https://github.com/jolars/eulerr). 

 

Evaluation of VAF distributions: 

 

Violin plots were drawn using the geom._violin function of ggplot2 in R (Wickham, 2016) on 

VAF  values reported by GATK for the variants detected in common by three algorithms. VAF 

value distributions were compared pairwise using  the two-part Wilcoxon test (Gleiss et al., 

2015) resulting in a pairwise matrix of 0s and 1s, with 1 indicating that for the given pair of 

populations the distributions of VAF values are different at a = 0.05. This matrix was then used 

for hierarchical clustering analysis with the haclust function of the R package stats. 

 

Evaluation of phylogenetic relationships between accessions: 

 

For the purpose of illustrating the relationships between rye populations analyzed, a Nei’s 

genetic distance (Tateno et al., 1982) matrix was calculated using POPTREEW (Takezaki et al., 

2014) using  VAF  values reported by GATK for the variants detected in common by three 

algorithms and  imported into MEGA 5. 2 (Tamura et al., 2011) to produce  a Neighbor Joining 

dendrogram. To simulate the effect of treating the accessions as individuals on the clustering, 

VAF value tables were converted to genotyping scores (with “0” meaning a reference allele 

homozygote” , “1”  meaning a variant allele homozygote,  and 2 meaning  a heterozygote). Three 

settings were applied that use different VAFs to define heterozygous variants: i)VAF < 0.3 = 0; 

VAF ≥ 0.7 = 1;  and values in between (greater than 0.3 and less than 0.7) = 2, ii) VAF < 0.4 = 0; 

VAF ≥ 0.6 = 1; and values in between = 2, and iii) VAF < 0.2 = 0; VAF ≥ 0.8 = 1; in between = 

2. The obtained genotype scores were used as input to GenAlEx 6.5 for calculation of Euclidean 

distances. Neighbor Joining trees were produced from the resulting distance matrices using 

MEGA 5.2. 

 

Validation of nucleotide variants 
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For validation of nucleotide variants CAPS assays were developed based on output of 

PARSESNP (Taylor and Greene, 2003), which provides a list of restriction endonuclease sites 

that are gained or lost due to the predicted SNV or indel. Serial Cloner 2.6.1. 

(http://serialbasics.free.fr/Serial_Cloner.html) software was used to digest in silico the gene 

fragment of interest and predict restriction patterns for reference and mutant alleles. 

New batches of seeds were sown for selected accessions. Tissue harvest, DNA isolation and 

PCR reaction were done separately for each plant, using the procedures described above. 

Restriction digestion was done for 20 minutes using 10 µL of PCR reaction as template and 1 µL 

of the restriction enzyme in the total volume of 20 µL. FastDigest restriction enzymes 

(ThermoFisher) with dedicated buffers were used. The digestion products were separated in 6% 

denaturing polyacrylamide gels (if the predicted products were shorter than 200 bp or differed in 

length by less than 50 bp) and visualized by silver staining as described by Targońska et al. 

(Targońska et al., 2016), or in 1.5% agarose gels containing ethidium bromide. For Sanger 

sequencing-based validation of variants PCR reactions were sent to an external service provider. 

The analyzed plants were classified based on electrophoretic separation patterns/chromatograms 

as homozygous reference (RefRef), heterozygous (RefAlt), or homozygous variant (AltAlt). The 

variant frequency was calculated using the formula (RefAlt x 1 + Alt/Alt x 2)/ n x 2, where n is 

the total number of individuals analyzed. 
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Supplemental Figure 1. Percentage of private alleles (found in only one of the tested 

accessions) plotted by variant allele frequency (VAF). Data from GATK is plotted in light blue, 

CRISP in green and SNVer in orange. 

 

Supplemental Figure 2. Scatter plots of variant allele frequency (VAF) data  (black dots). VAF 

is plotted on the x-axis. Dots represent every predicted variant. The number of accessions 

predicted to harbor the variant is plotted on the y-axis. Data is plotted on the z-axis to separate 

different variants that share the same VAF and number of accessions. The percentage of the total 

data from VAF 0 to a specific frequency is overlaid in red. Variants predicted by CRISP are 

plotted in panel A, and by SNVer in panel B. 

 

Supplemental Figure 3. Venn diagram of variants called by GATK, SNVer and CRISP  

predicted to be deleterious using SIFT. 

 

Supplemental Figure 4. Lollipop chart of allele frequencies of GATK variants predicted 

deleterious by SIFT and also called by SNVer and CRISP. Each variant is assigned an arbitrary 

number (x axis) with maximum allele frequency values calculated from GATK VCF data is 

plotted on the y axis. Data is sorted into 5 distinct groups based on the number of accessions 

harboring the variant. This sorting is indicated by the colored ball at the end of the bar. Allele 

frequencies below 0.039 are not plotted. 

 

Supplemental Figure 5. NJ dendrograms based on conversion of  VAF values reported by 

GATK for variants identified in common into genotype scores (“0” = reference allele 

homozygote” , “1”  = variant allele homozygote,  “2” = heterozygote) using the following  

settings: A) i)VAF < 0.3 = 0; VAF ≥ 0.7 = 1;  and values in between (greater than 0.3 and less 

than 0.7) = 2, ii) VAF < 0.4 = 0; VAF ≥ 0.6 = 1; and values in between = 2, and iii) VAF < 0.2 = 

0; VAF ≥ 0.8 = 1; in between = 2. Colors of the nodes correspond to colors  of the clusters in the 

NJ dendrogram derived from VAF data (Figure 3, main manuscript) and indicate membership of 

the respective accessions in the clusters of the NJ dendrogram derived from VAF data. 

 

Supplemental Figure 6. Dendrogram showing relationships between distributions of VAF 

values (shown as violin plots) for 95 accessions  (based on results of the two-part Wilcoxon test). 
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Supplemental Figure 7. Target regions used in this study. Introns are colored blue, non-coding 

sequence grey and exons green. Relative nucleotide positions in base pairs are listed.  

 

Supplemental Table 1. Sequencing coverage for each nucleotide position in the experiment.  

 

Supplemental Table 2. Allele frequencies and number of accessions harboring alleles of 

predicted deleterious variants common to GATK, SNVer and CRISP. 

 

Supplemental Table 3. Sanger sequencing validation of variants in single plants from an 

accession. 

 

Supplemental Table 4. Accessions used in this study. 

 

Supplemental Table 5. Primer sequences used in this study. 
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Figure Legends: 

Figure 1. Scatter plot of Variant Allele Frequency (VAF) data from GATK HaplotypeCaller 

(black dots). VAF is plotted on the x-axis. Dots represent every predicted variant. The number of 

accessions predicted to harbor the variant is plotted on the y-axis.  Data is plotted on the z-axis to 

separate different variants that share the same VAF and number of accessions. The percentage of 

the total data from VAF 0 to a specific frequency is overlaid in red.   For example, 75% of all 

predicted nucleotide variants have a VAF of 0.05 or lower.   

 

Figure 2. Common and unique variants called by GATK, SNVer and CRISP. The Venn diagram 

shows the overlap of variant calls for the three algorithms (interior image). Eight hundred and 

ninety-five variants were commonly identified. The outer image is a Circos plot of the common 

variants.  Only the PCR amplified regions of gene targets are displayed (track 1). Gene models 

are shown on track 2 with exons and introns represented by thick and thin black lines, 

respectively. Tracks 3, 4, and 5 show the position and frequency (indicated by bar height) of 

variants predicted by GATK, SNVer and CRISP, respectively.   

 

Figure 3. Neighbor Joining tree based on from Nei’s genetic distance calculated from VAF 

values reported by GATK for 895 variants detected in common by tree algorithms, showing 

genetic relationships between 95 rye accessions. To simplify the output, accessions are referred 

to by the 96 well plate coordinates,  which are also included in the accession list (Supplementary 

Table 4). Numbers in brackets indicate private alleles identified in the respective accession. 

Colors indicate improvement status: light blue – modern cultivar, dark blue – historic cultivar, 

dark green – landrace, light green – wild accession. 

 

Figure 4. Violin plots of GATK VAF values from selected accessions for variants predicted in 

common by GATK HaplotypeCaller, SNVer and CRISP.  
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Figure 1. Scatter plot of Variant Allele Frequency (VAF) data from GATK HaplotypeCaller 

(black dots). VAF is plotted on the x-axis. Dots represent every predicted variant. The number of 

accessions predicted to harbor the variant is plotted on the y-axis.  Data is plotted on the z-axis to 

separate different variants that share the same VAF and number of accessions. The percentage of 

the total data from VAF 0 to a specific frequency is overlaid in red. For example, 75% of all 

predicted nucleotide variants have a VAF of 0.05 or lower.   
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FIGURE 2 

 

 

 

 

Figure 2. Common and unique variants called by GATK, SNVer and CRISP. The Venn diagram 

shows the overlap of variant calls for the three algorithms (interior image). Eight hundred and 

ninety-five variants were commonly identified. The outer image is a circos plot of the common 

variants.  Only the PCR amplified regions of gene targets are displayed (track 1). Gene models 

are shown on track 2 with exons and introns represented by thick and thin black lines, 

respectively. Tracks 3, 4, and 5 show the position and frequency (indicated by bar height) of 

variants predicted by GATK, SNVer and CRISP, respectively.   
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FIGURE 3 

 

 

 

Figure 3. Neighbor Joining tree based on from Nei’s genetic distance calculated from VAF 

values reported by GATK for 895 variants detected in common by tree algorithms, showing 

genetic relationships between 95 rye accessions. To simplify the output, in the NJ tree  

accessions are referred to by the 96 well plate coordinates (Supplementary Table 4). Numbers in 

brackets indicate private alleles identified in the respective accession.  Colors of the dots indicate 

improvement status: light blue – modern cultivar, dark blue – historic cultivar, dark green – 

landrace, light green – wild accession. Colored rectangles with Roman numerals indicate 

clusters.  
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FIGURE 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Violin plots of VAF values for variants predicted in common by GATK 

HaplotypeCaller, SNVer and CRISP. Data from HaplotypeCaller are shown for representative 

accessions.  
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Table 1. Missense, nonsense and silent changes with different variant calling methods  

 

 GATK SNVer CRISP Common variants 

Missense 1183 336 868 164 

Nonsense 14 7 9 2 

       

Total 1770 602 1322 348 
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Table 2. CAPS and Sanger validation of variants in multiple single plants of an accession  

 

Gene Posa Refb Altc Method 

RE 

used Acc. d GATKe SNVere CRISPe VAFobsf 

No. 

plantsg 

MATE

1 170 A G CAPS NotI D2 0.880 0.587 0.819 0.90 10[2] 

MATE

1 170 A G CAPS NotI E12 0.875 0.592 0.783 0.86 11[3] 

MATE

1 210 A G CAPS TaqI H5 0.172 0.079 0.276 0.38 13[8] 

MATE

1 364 G C CAPS MboI H5 0.307 0.137 0.393 0.19 13[3] 

PBF 310 C T CAPS MnlI D2 0.292 0.206 0.165 0.27 12[2] 

PBF 310 C T CAPS MnlI E12 0.120 0.059 0.059 0.00 11[0] 

PBF 517 G A CAPS MboI D2 0.286 0.262 0.180 0.38 12[9] 

PBF 517 G A CAPS MboI E12 0.016 0.104 0.065 0.00 11[0] 

PBF 532 C T CAPS FokI D2 0.104 0.096 0.138 0.00 12[0] 

PBF 532 C T CAPS FokI E12 0.536 0.405 0.472 0.41 11[7] 

PBF 666 C T Sanger nah F8 0.401 0.371 0.359 0.38 12[5] 

PBF 810 C T Sanger na F10 0.042 0.022 0.068 0.00 6[0] 

PBF 810 C T Sanger na F11 0.214 0.074 0.216 0.16 16[5] 

PBF 846 G C Sanger na F8 0.094 0.053 0.104 0.17 12[4] 

PBF 847 G A Sanger na F8 0.094 0.064 0.100 0.17 12[4] 

SecB 211 A G CAPS FokI H5 0.026 0.183 0.111 0.00 13[0] 

 

a nucleotide position, b reference sequence, c variant sequence, d accession code, algorithm 

predicted allele frequency (VAF), f observed allele frequency, g numbers in brackets indicate the 

number of heterozygous individuals,  h not applicable 
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