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Abstract

Loss of genetic variation negatively impacts breeding efforts and food security. Genebanks
house over 7 million accessions representing vast allelic diversity that is a resource for
sustainable breeding. Discovery of DNA variations is an important step in the efficient use of
these resources. While technologies have improved and costs dropped, it remains impractical to
consider resequencing millions of accessions. Candidate genes are known for most agronomic
traits, providing a list of high priority targets. Heterogeneity in seed stocks means that multiple
samples from an accession need to be evaluated to recover available alleles. To address this we
developed a pooled amplicon sequencing approach and applied it to the out-crossing cereal rye
(Secale cereale). Ninety-five rye accessions of different improvement status and worldwide
origin, each represented by a pooled sample comprising DNA of 96 individual plants, were
evaluated for sequence variation in six target genes involved in seed quality, biotic and abiotic
stress resistance. Seventy-four predicted deleterious variants were identified using multiple
algorithms. Rare variants were recovered including those found only in a low percentage of seed.
A large extent of within-population heterogeneity was revealed, providing an important point for
consideration during rye germplasm conservation and utilization efforts. We conclude that this
approach provides a rapid and flexible method for evaluating stock heterogeneity, probing allele

diversity, and recovering previously hidden variation.

Keywords: Secale cereale, natural variation, allele frequency, variant calling, MATE 1, FBA,
TLP, GSP-1, Sinb, PBF
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INTRODUCTION

Plants can be made more resilient, yields stabilized, and nutritional components enhanced
through selection and combination of gene variants that control these traits. Crop improvement is
therefore dependent on the existence of genetic variability for the trait in question. For the past
10,000 years humans have been selecting and combining genetic variants to improve crops.
However, most of the history of crop development was carried out without a knowledge of
genetics or DNA, and thus modern cultivars have a relatively narrow genetic base, resulting from
bottleneck-like effects of domestication and breeding practices (Purugganan and Fuller, 2009;
Mondal et al., 2016; Joukhadar et al., 2017). Therefore, the allelic variability existing within
contemporary cultivars or breeding programs may be insufficient for successful identification of
gene variants for satisfactory productivity and resilience of the crop.

Useful alleles conferring important traits that have been lost in modern cultivars may still
exist in nature. Plant genetic resources (PGR), such as landraces and wild relatives of crop
plants, possess a much higher genetic diversity. While not high yielding and having often
undesirable agronomic characteristics, they were shown to contain gene variants that can
improve performance of successful modern cultivars (Hoisington et al., 2002; McCouch, 2013;
Gur and Zamir, 2004; Gamuyao et al., 2012).

Luckily, the value of PGR as a reservoir of gene variants was recognised over a hundred
years ago (McCouch, 2004) and nowadays there are over 1,700 ex situ germplasm collections
worldwide, maintaining about 7.4 million accessions. Approximately 62% of these accessions
are landraces and wild species (FAO, 2010). Unfortunately, in most cases little is known about
the extent and structure of genetic diversity within a given collection. The available data is often
limited to passport information, and some phenotypic measurements or DNA marker-based
genetic diversity assessment for a subset of accessions. Such information is not sufficient to
make an informed choice of PGR for inclusion into a breeding program. Therefore the utilisation
of primitive, exotic germplasm in crop improvement is limited (FAO, 2010; McCouch, 2013;
Keilwagen et al., 2014).

To fully profit from the allelic variation of PGR, methods for efficient and reliable
screening of hundreds of accessions to discover useful gene variants are needed. Rapid
development of next generation sequencing (NGS) technologies resulted in the establishment of
various approaches, which can be used for high-throughput assessment of genic variation, such
as whole genome resequencing (WGS) (Li et al., 2013; Mehra et al., 2015; Zhou et al., 2015)
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and exome capture (Hodges et al., 2007; Hussain et al., 2018). Unfortunately, these approaches
are not yet applied in many species owing to factors including genome size, polyploidy, and
associated costs of sequencing and capture probe development. While a future can be envisioned
where comprehensive genomic data is available for every accession of every important crop, the
current state of technology and funding means that material is prioritized, and compromises
made. Insofar as evaluation of WGS data provides information useful for understanding
population genetics and evolution, it is expected that only a small fraction of base pairs of a
genome are controlling key agronomic traits (Wendel et al., 2016) Targeting candidate genes and
their regulatory elements provides a tremendous reduction in data collected. Indeed, many
studies have revealed quantitative trait loci and associated candidate genes that can be used to
identify orthologous sequences in other plants (Nguyen et al., 2019). An alternative to whole
genome or exome capture sequencing is amplicon sequencing. In this approach, selected
genomic regions are first amplified by PCR and then subjected to massively parallel sequencing.
Compared to WGS or exome capture, amplicon approaches allow acquisition of a much higher
coverage of the selected target bases pairs at a lower sequencing cost. This is because the total
yield of the sequencing reaction, in terms of raw bases, is distributed to fewer unique bases of
each sample in the pool (e.g. (Sims et al., 2014)). One application of amplicon sequencing is the
simultaneous genotyping of hundreds of unique samples independently by employing strategies
to barcode, or index, each sample uniquely (Campbell et al., 2015). In addition to this approach,
the high sensitivity of current sequencing technologies enables “ultra deep” methods whereby
nucleotide variants can be identified in samples containing pools of mixed genotypes. One
example is the detection of rare somatic mutations in human samples (Dou et al., 2018). Another
example is the use of amplicon sequencing to measure intrahost virus diversity. Researchers
showed that a rare Zika virus variant could be detected if present at > 3% in a mixed sample
when sequencing coverage was at least 400x (Grubaugh et al., 2019). In plants, experiments can
be designed to discover rare nucleotide variants present at very low frequencies by screening
large populations where genomic DNA has been pooled prior to PCR amplification and
sequencing. Screening throughputs are increased and assay costs are reduced, making screening
thousands of samples practical. This has been used for recovery of induced point mutations in
TILLING by Sequencing assays (Tsai et al., 2011). Here, genomic DNAs from different lines
harboring induced mutations are pooled, subjected to target-specific PCR and the PCR products
are then pooled and sequenced. The method has been used to recover rare mutations in genomic
DNA samples pooled from 64 to 256 fold. These studies suggest that variant calling accuracy is

improved when using multiple variant calling algorithms(Tsai et al., 2011; Pan et al., 2015;
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Gupta et al., 2017; Tramontano et al., 2019). The approach has been adapted for recovery of
natural variation in Populus nigra, Manihot esculenta Crantz (cassava), and Oryza sativa L.,
whereby DNAs from different accessions were pooled together prior to PCR and variant
discovery. In P. nigra, PCR products were prepared from pooled genomic DNA from 64
accessions to identify variants in lignin biosynthesis genes in 768 accessions (Marroni et al.,
2011) In cassava, DNA from up to 281 accessions were pooled prior to sequencing for variants
in starch biosynthesis pathway-related genes and herbicide tolerance genes in 1667 accessions
(Duitama et al., 2017). In rice, pooling of DNAs prepared from 233 breeding lines was followed
by sequencing for variants in starch synthesis genes (Kharabian-Masouleh et al., 2011). Pooling
of multiple samples from the same species has also been used in studies where WGS has been
applied. There are many variations to this methodology that has been termed Pool-seq
(Schlétterer et al., 2014) This includes cases where, contrary to TILLING assays, multiple
individuals with similar genotypes are pooled together to estimate population allele frequencies.
In such applications, sequencing coverages can be reduced to save costs, but are insufficient to
find rare alleles in one or few individuals in the pool. Sequencing intra-species pools has also
been described such as in metagenomics studies (Pereira et al., 2018).

Rye (Secale cereale L.) is an outcrossing cereal, popular in Europe and North America,
and an important source of variation for wheat breeding due to its high tolerance to biotic and
abiotic stresses (Crespo-Herrera LA et al., 2017). Genetically rye is a diploid (n=7), with a large
(ca. 8 Gbp) and complex genome (Bartos et al., 2008; Rabanus-Wallace et al., 2019). There are
over 21 thousand rye accessions in genebanks worldwide, approximately 35% of them are
landraces and wild species (FAO, 2010). Several studies on genome-wide diversity in rye were
published to date (Bolibok-Bragoszewska et al., 2014; Targonska et al., 2016; Maraci et al.,
2018; Sidhu et al., 2019). It was shown that accessions from genebanks are genetically distinct
from modern varieties, which highlighted the potential of PGR in extending the variability in
current rye breeding programs (Bolibok-Bragoszewska et al., 2014; Targonska et al., 2016). To
date neither NGS-based targeted amplicon sequencing, nor any other method of gene variant
discovery was applied to rye genetic resources.

Although the number of well characterized rye genes is very limited (Gawronski et al.,
2016), there are important candidate genes to consider. MATEL is a gene involved in aluminum
(Al) tolerance of rye. Al-toxicity is one of the main constraints to agricultural production on
acidic soils, which constitute ca. 50% of the arable land on Earth (Maron et al., 2013). Rye is one
of the most Al-tolerant cereals, with the degree of tolerance depending on the allelic variant of

MATEL (Santos et al., 2018). TLPs are a family of pathogenesis-related (PR) proteins, involved
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in fungal pathogen response in many plant species (Zhang et al., 2018). FBA is one of the key
metabolic enzymes involved in CO> fixation and sucrose metabolism. FBA genes were found to
have an important role in regulation of growth and development, and responses to biotic and
abiotic stresses, such as chilling, drought and heat (Lv et al., 2017; Cai et al., 2018). GSP-1
genes, belonging to the prolamin superfamily of seed storage proteins, encode precursor proteins,
which after post-translational processing give rise to arabinogalactan peptide AGP and the grain
softness protein GSP-1 (Wilkinson et al., 2017) Secaloindolines, products of genes Sina (not
analyzed in this study) and Sinb, are main components of friabilin - a starch-associated protein
fraction of cereal grains (Simeone and Lafiandra, 2005). The wheat orthologues of Sina and
Sinb, called Pina and Pinb, are key determinants of grain texture, an important breeding trait
directly influencing the end-use (Liu et al., 2017). PBF is an endosperm specific transcription
factor involved in the regulation of protein and starch synthesis (Zhang et al., 2016). It binds to
the prolamine-box motif occurring in promoter regions of multiple cereal seed storage proteins.
In barley, SNPs located in PBF were associated with crude protein and starch content
(Haseneyer et al., 2010), while in wheat, mutating the homeologous PBFs using TILLING
resulted in a markedly decreased gluten content and high content of lysine (Moehs et al., 2019).
Exploration of genic variation in outcrossing, generatively propagated crops, such as rye,
maize, sugar beet, broccoli, or carrot, is a particularly demanding task. Natural, random-mating
populations of such species are heterozygous and heterogeneous, with multiple alleles of a locus
being present (Souza Jr., 2012). Such population structure has important implications for the
design of NGS-allele mining experiments. Firstly, due to high levels of heterozygosity, a higher
sequencing coverage is needed even when sequencing non-pooled samples to ensure reliable
nucleotide variant calling. Secondly, due to the heterogeneity of accessions, a large enough
number of individuals of a given accession needs to be included in the screen to obtain a faithful
representation of within-accession variability and to successfully recover rare variants. Many
potentially useful and interesting alleles may go undiscovered with current experimental designs.
To address this, a low-cost, high-throughput, and reliable amplicon sequencing approach
suitable for assessment of genic variation in heterozygous and heterogeneous rye accessions was
developed. Rather than pool DNA from different accessions, ultra deep amplicon sequencing
was used to evaluate intra-accession heterogeneity while also providing information on novel
genetic variation. DNA pools were created that contain ninety-six plants per accession. These
were subjected to pooled amplicon sequencing in six target genes implicated in biotic and abiotic
stress resistance and seed quality: MATEL, TLP, FBA, PBF, Sinb, and GSP-1. Three variant
calling algorithms (GATK HaplotypeCaller (Poplin et al., 2017), SNVer (Wei et al., 2011) and


https://doi.org/10.1101/2020.02.20.958181
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.20.958181; this version posted July 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

CRISP (Bansal, 2010)) were used to identify putative variants at frequencies as low as one
heterozygous event per 96 plants assayed in each pool. A subset of variants was independently
validated and the functional effect of each variant was evaluated in silico. Common and rare
variants were recovered, including variants predicted to affect protein function that are present in
only a small fraction of seed representing an accession. This data provides preliminary
knowledge on the levels of variant allele frequencies in accessions representing different

germplasm groups: wild species, landraces, historical and modern cultivars.

RESULTS

DNA sequencing, mapping and coverage

Pooled amplicon sequencing using Illumina sequencing by synthesis 2x300 paired end
reads on 95 accessions and six genes produced a mean coverage of 13948x and mean mapping
quality of 58.65. Mean coverage per accession pool varied approximately 10 fold, between
2924x and 30275x%. Analysis of sequencing coverage at each nucleotide revealed that 94.2% of
the experiment produced 20 or more reads to support a rare variant present at 5% in the DNA
pool (Supplemental Table 1).

Evaluation of variant calling algorithms and predicted effects of nucleotide changes
Variant calling was first performed on each pool using HaplotypeCaller in GATK (v.4.0)
with ploidy set to 192 in order to recover rare alleles. This resulted in 4,115 called variants, of
which 3,682 were single nucleotide polymorphisms, 192 insertions, and 241 deletions.
Evaluation of the Variant Call Format (VCF) file, allowed calculation of the frequency of a
specific allele within the DNA pool created from the 96 seeds that were sampled to represent an
accession. This is referred to as VAF (Variant Allele Frequency), to distinguish the
measurement from AF (Allele Frequency) - the frequency of the allele within the set of 95
accessions analyzed in the present study. Data was plotted to evaluate the distribution of the
mean VAF for each variant and the number of accessions harboring each discovered allele
(Figure 1). Private variants occurring in only one accession were identified at both low and high
VAFs (Figure 1). The percentage was highest, however, at the lowest VAFs - seventy-five
percent of private alleles have a VAF of 0.026 (represented at 2.6% in the accession pool) or

lower (Supplemental Figure 1).
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Variant calling was next carried out using SNVer and CRISP producing 1,570 and 3,261
variant calls, respectively. Similar to data produced with GATK, the highest percentage of
variants are represented in the lowest VAFs (75% at 0.034 or lower for CRISP and 0.088 or
lower for SN\Ver, Supplemental Figure 2). Private variants were also enriched at lower VAFs
(Supplemental Figure 1). In total, 895 variants were common between the three methods (Figure
2). Within these common variants, the mean VAF and the number of accessions carrying the
variant differed between the three algorithms used.

The effect on gene function of putative variants was evaluated with SNPeff and SIFT.
This resulted in 695 putative deleterious variants from GATK, 171 from SNVer and 578 from
CRISP, with 74 putative deleterious variants common to all three algorithms (Table 1,
Supplemental Table 2, Supplemental Figure 3). Deleterious alleles with a high maximum VAF
(the highest VAF reported in an accession) and present in only one accession were recovered
along with alleles with a high maximum VAF that were present in 90 or more accessions
(Supplemental Table 2). Alleles with a maximum VAF less than 0.4 were also identified,
suggesting the presence of rare alleles segregating within an accession. In the GATK data set, for
example, 29 of the 74 predicted deleterious common variants have a maximum VAF between
0.047 and 0.391 and are found in 1 to 21 accessions (Supplemental Table 2, Supplemental Figure
4),

Within target genes, 18 to 443 polymorphic positions were detected consistently by the
three algorithms, corresponding to one SNP or InDel every eight to ten bp of sequence for five of
the analyzed genes. For the sixth gene, Sinb, this frequency was markedly lower, with one SNP
per 25 bp. The number of putatively deleterious variants per gene ranged from 11 (GSP-1) to 21
(MATEZ1), corresponding to one deleterious variant every 40 to 80 bp, with exception of Sinb,
where only three deleterious variants were identified in 447 bp of coding sequence. Previous data
on genic variation was available solely for MATEL (a total of 112 unique variants from 26
sequences deposited in GenBank as of 7! January 2020) and Sinb with seven unique variants
reported (Liu et al., 2017). The present study identified 62 new variants in MATE1 coding
sequence, including seven putatively deleterious, and 15 new variants in Sinb, including all three
putatively deleterious variants. Most new variants identified in MATEL and Sinb were private or
rare (median of the number of accessions with a given variant equaled two in MATE1 and one in
Sinb).

The presence of predicted variants was assayed using Sanger sequencing of Sinb
amplicons in a single individual plant from each of eight accessions. Twelve variants were

predicted in this set. Only variants reported by all three algorithms for the tested accession, and
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where the lowest VAF was greater than 0.295 were validated (Supplemental Table 3). Because
allele frequencies were calculated from a pooled DNA sample, it was concluded that lower
frequency alleles likely represent alleles that are not present in every seed of an accession.
Subsequent validation assays were carried out whereby multiple plants from each accession were
assayed independently. In CAPS and Sanger sequencing assays on MATEL, PBF, and Sinb
amplicons, eleven out of 16 tested variants were recovered when sampling between six and 16
plants (Table 2). Observed allele frequencies calculated from the number of plants harboring the
tested sequence difference varied from the frequencies predicted from the amplicon sequencing
data. Five variants had observed VAF closest to GATK predictions, three variants were closest
with SNVer and three with CRISP. The four variants not recovered by CAPS or Sanger assays
had frequencies reported by GATK below 0.15. Failure to recover low frequency alleles may

have resulted from testing an insufficient number of individuals.

Phylogenetic relationships between populations and comparison of VAF distributions.

The relationship between accessions was evaluated by creating a Neighbor Joining (NJ)
tree based on Nei’s genetic distance (Figure 3). This resulted in accessions divided into six
clusters (I-V1), with cluster | containing mostly cultivars, including the majority of modern
cultivars analyzed. Nevertheless, a coincidence of the clustering with improvement status could
not be observed. The accessions S. sylvestre (abbreviation B6 on Figure 3), S. strictum subsp.
kuprijanovii (F8) and S. strictum subsp africanum (B7), were indicated as the most divergent of
the analyzed set, which is in agreement with results of previous genome-wide analyzes of rye
germplasm (Bolibok-Bragoszewska et al., 2014; Al-Beyroutiova et al., 2016; Rabanus-Wallace
et al., 2019). Conversion of VAF values to genotyping scores was used to evaluate clustering.
Different ranges of VAF were used to define heterozygous variants. This resulted in a changed
clustering of the populations at each range tested (Supplemental Figure 5).

Private variants occurred in all germplasm groups included in the study: modern
cultivars, historic cultivars, landraces and wild accessions. In the group of commonly identified
variants, the number of private variants per accession coincided with the domestication status:
private variants were most frequent in wild accessions (five to seven per accession), followed by
landraces with approximately two variants per accession, and historic and modern cultivars with
less than one private variant per accession. Private variants in wild accessions also had the
highest VAF values (mean 0.4 -0,45, median 0.22-0.28). In the remaining germplasm groups
mean VAF and median VAF did not exceed 0.12 and 0.007, respectively. The number of private

variants varied from 0 (32 accessions) to 25 in S. sylvestre (B6) (Figure 3). Among the cultivated
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rye (S. cereale ssp. cereale) accessions, the highest number of private variants (7) was observed
in a landrace from Bosnia and Herzegovina (C2) and also in a S. cereale ssp. cereale accession
of unknown improvement status from Israel (E4).

VAF values were used to prepare violin plots in order to qualitatively compare
accessions. Several distinct patterns of allele frequency distribution were observed
(representative examples shown in Figure 4). Based on the results of two-part Wilcoxon test of
pairwise comparisons of VAF distributions, rye accessions were grouped into 20 clusters ranging
in size from 1 to 16 (Supplemental Figure 6). Five accessions, characterized by a high proportion
of variants with high VAF values were consistently recognized as markedly different from the
rest: S. sylvestre (B6), S. strictum subsp. kuprijanovii (F8), historic cultivars Imperial (B4), and
Otello (G12 ) and landrace R1040 (F6) (Supplemental Table 4).

DISCUSSION

To evaluate the distribution of frequencies of alleles within a landrace or cultivar, we
chose to sample 96 plants from each accession of rye selected for our study. This allows the
recovery of i) sequence differences compared to the reference sequence used that are fully
homozygous (those with an allele frequency of 1), ii) heterozygous variants present in all pooled
plants and iii) variants of lower frequencies that are not present in every seed in the seed stock
used to represent an accession. To streamline the approach, tissue from each plant was collected
and pooled prior to DNA extraction. The experiment was designed such that an allele found in a
single plant could be identified. High coverage values were found in all DNA pools suggesting
that each pool was suitable for PCR amplification and sequencing. Deviations in coverage
values, therefore, likely resulted from differences associated with the quantification,
normalization and pooling of PCR products. Such variations were recently reported in a study
comparing tomato, cassava and barley amplicon sequencing data sets (Tramontano et al., 2019).
The study revealed that minor coverage improvements could be achieved through the addition of
extra quantification methods. Alternative approaches to increase read coverage at all nucleotide
positions include increasing sequencing yields by adjusting the number of samples in an
experiment and/or the number of target genes (amplicons) used in a single sequencing run. As
sequencing costs drop, it may prove more cost effective and faster to simply produce more base

pairs of data per experiment than to fine-tune the other experimental parameters.
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Many applications employing next generation sequencing of genomic DNA involve the
evaluation of sequence variations in diploid samples. Even in optimized diploid conditions, a
balance is struck between maximizing allele calling sensitivity to reduce false negative errors
and reducing the sensitivity in order to lower false positive errors. For example, when using
GATK HaplotypeCaller with settings for diploid samples, Li et al reported that more than 80%
of false positive errors in diploid rice were at an allele frequency below 40% (Li et al., 2019).
When sequencing non-pooled samples, setting an allele frequency threshold of >40% for
heterozygous variants therefore reduced false positive errors. Such optimizations are more
challenging in pooled samples. Algorithms such as GATK HaplotypeCaller, SNVer and CRISP
provide parameter settings to call low frequency variants. Yet, optimal parameters still need to
be determined. For example, evaluation of six SNP calling algorithms in tomato TILLING
samples pooled either 64 or 96 fold revealed that accuracy ranged between 89.33 and 25.33 %
when comparing to Sanger validated SNP mutations (Gupta et al., 2017). That work described
technical differences between different algorithms and concluded that accuracy is improved
when a variant call is predicted by at least two algorithms. In cassava, up to 281 different
accessions were pooled together prior to sequencing in an approach designed to quickly identify
putative deleterious alleles (Duitama et al., 2017). In that study 24% (79/325) of called variants
were predicted by four algorithms tested.

The experimental design for rye differed from previous studies in order to allow the
discovery and analysis of intra-accession allele variation. The assay was designed to recover two
types of what can be considered “rare” variation. The first type of rare variants are alleles that
are found in only one accession (known as private alleles) or very few accessions in the tested
set, and occur with a high frequency within the respective accessions. This type of rare variation
is easily recovered using conventional genotyping and resequencing as alleles can be recovered
through assay of a single seed (Wang et al., 2018; Balfourier et al., 2019) The second type of
rare variants are more difficult to discover. These variants segregate at a low frequency within an
accession and are never found at high frequency in any tested accession. To recover this type of
rare variant requires the sampling of multiple individual seed per accession. As such, these
alleles are hidden from discovery when using traditional methods that sample one or few seed
per accession. Using pooled amplicon sequencing we have recovered both types of rare alleles in
the tested rye accessions. Importantly, the presence of variants that segregate at a low frequency
within an accession, and are never found at high frequency in any tested accession, suggest that a
broader genetic diversity can exist in germplasm collections than previously known. We expect

this to be most common in outcrossing species like rye where admixtures of alleles are frequent.
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Variants with mean VAF between 0.7 and 1 represented between 1.87 and 3.06% of all
predicted alleles, depending on the algorithm used. In this set of variants, between 41 and 49%
are private alleles found in only one accession (Figure 1, Supplemental Figures 1 &2). The
highest number of variants were found in the lowest VAFs. It is expected that false positive
errors will increase as the number and percentage of reads supporting the alternative allele
decreases. Studies have been carried out on errors associated with MiSeq paired end sequencing,
but a thorough investigation into errors in pooled samples has not been reported (Schirmer et al.,
2015). False positive errors are expected to be random and therefore infrequently independently
predicted when applying multiple variant calling algorithms. Indeed, of the 895 variants common
to GATK, SNVer and CRISP, only 20% had a predicted mean VAF of 0.038 or lower, a
reduction of more than 50% from the data from any single algorithm. Further experiments are
required to determine what, if any, percentage of the sub 0.038 VAF variants predicted by all
three algorithms are false positive errors. This requires extensive genotyping, as many individual
seed need to be tested to ensure true variants are recovered. In the present study, genotyping
assays using approximately 10 seed per accession were sufficient to validate alleles with a VAF
of 0.15 or higher that were predicted in the same accession by all three algorithms. We expect it
is necessary to test more than 100 seeds per accession to validate the lowest frequency alleles in
the data. Some very low frequency false positive errors are expected and may result from
biological contamination, for example, from pollen contamination on the leaf tissue collected.
This can be ruled out in the present study because seedlings were grown, and tissue collected in
growth room conditions where there were no rye plants flowering. Sample to sample cross
contamination of DNA or PCR product may also be a source of low VAF false positive errors.
Sixty-five percent of sub 0.038 VAF variants commonly predicted by all algorithms were found
in more than one accession. However, 96 % had a maximum predicted VAF of less than 10%,
and the highest maximum VAF was 24.5%. This means that a large volume of accidental liquid
transfer between samples would be needed to create a detectable false positive. With the caveat
of possible very low frequency false positive errors, we conclude that selecting variants
commonly called by multiple algorithms may reduce errors and serves as a useful method to
prioritize alleles for further study.

We found qualitative evaluation of VAF values using violin plots to be useful to estimate
the influence of a taxon’s reproductive biology, preservation history and breeding on the genetic
composition of an accession. For example, one of the outlier accessions identified is this study is
S. sylvestre (B6). Molecular marker-based analyses of genetic diversity indicated this self-

pollinating taxon as the most divergent in genus Secale (Bolibok-Bragoszewska et al., 2014; Al-
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Beyroutiova et al., 2016; Schreiber et al., 2018). Its large proportion of high VAF variants
(Figure 4) likely corresponds to homozygosity for alternative alleles, since reference sequences
used during variant calling originated from cultivated rye accessions. Another outlier, S. strictum
subsp. kuprijanovii (F8), is a perennial outbreeder, also genetically divergent from S. cereale.
However, its violin plot differs markedly from plots obtained for the other two S. strictum
samples included in the study, S. strictum subsp. africanum (B7) and S. strictum subsp. strictum
(B9), which might indicate a sample tracking mistake during genebank preservation or
laboratory handling, or a bottleneck during preservation. A sample of Imperial cultivar (B4),
widely used in cytological studies, originating from the collection of A. J. Lukaszewski (UCLA,
Riverside) showed an approximately equal abundancy of variants with all possible VAF values
and differed clearly from another sample of Imperial, (C1), obtained from IPK Gatersleben
genebank. Less pronounced (although also statistically significant) differences were also
observed between the two samples of cultivar Dankowskie Zlote (C6 and F3), obtained from
different sources. Samples of hybrid cultivars from KWS, such as Ballistic (D11) and KWS
Florano (G10), exhibited a higher percentage of VAF values in the range 0.3-0.5, with median
ca. 0.3, and also higher percentage of AF values close to 1.0, in comparison to population
cultivars included in the study, such as Dankowskie Zlote (F3 and C6), Petkus (G8), or Carstens
Kortstra (E8), which is consistent with the use of the three line system in the development of
hybrid rye cultivars.

In this study we analyzed six genes linked to biotic and abiotic stress resistance and seed
quality. Using deep sampling and pooled amplicon sequencing numerous new variants were
identified, (including putatively deleterious ones), in each of the analyzed genes, providing
potential targets for future functional studies and, eventually, inclusion in breeding schemes in
rye and related species (wheat, triticale). Consistent with a high diversity of the germplasm set
used (with respect to domestication status and origin) we obtained a several fold higher estimate
of SNP frequency in rye (on average one SNP or InDel every 12 bp), than those reported in the
past: 1 SNP/52bp (Li et al., 2011), 1 SNP/58bp (Varshney et al., 2007) or 1 SNP or InDel/31 bp
(Bauer et al., 2017). In agreement with the results of previous genome-wide, DArT-marker based
characterization of genetic diversity in rye (Bolibok-Bragoszewska et al., 2014), data obtained in
the present study on distribution of private alleles among germplasm groups indicates that the
genetic diversity in modern rye cultivars is relatively narrow, with less than one private allele
identified per modern cultivar tested, and provides further evidence for the value of rye PGR in
genetic research and crop improvement, with more than five private alleles identified per

accession, stressing the importance of conservation and characterization efforts. On the other
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hand, the clustering of the accessions in the NJ tree generated based on the VAF of 895 variants
detected in common did not agree with the improvement status of the accessions, suggesting,
that selective pressures other than breeding practices have influenced the diversity of the genes
analyzed.

This study also points out that, in case of open pollinated populations (due to the high
within-accession variability), the sampling of a single individual or a small number of
individuals from an accession most likely results in an inaccurate and perhaps even misleading
representation of genetic relationships between the accessions. This can be seen in NJ trees
produced based on conversion of VAF values into genotyping-like scores, where a different
clustering of accessions was observed at each range of VAF used to define heterozygous variants
(Supplementary Figure 5).

The approach of deep sampling and pooled amplicon sequencing allows discovery of
variants in candidate genes and also an evaluation of the effect of variants on gene function. This
provides an additional filter to prioritize variants. The SIFT program was used to identify 73
putative deleterious alleles commonly identified by the three variant calling algorithms. This data
set contained different classes of alleles for example, homozygous variants found in one or few
individual accessions (private deleterious alleles, the first category of rare variants described
above). Homozygous variants present in more than 90 accessions were also recovered.
Interestingly, putative deleterious variants were also identified where the maximum VAF was
between 0.15 and 0.3 and the variant was found in only one or two individual accessions (the
second category of rare variant). This suggests that alleles are segregating within rye accessions
at low fractions that may affect gene function and potentially plant phenotype. Such variants
would go undiscovered in conventional GBS or WGS assays where only one or two seed per
accession are sampled, and may be useful for functional genomic characterizations and breeding.
Further studies are being designed to evaluate the different classes of putative deleterious alleles.
For example, homozygous private alleles may represent alleles where a fitness penalty results in
the allele having been expunged from most populations. Homozygous putative deleterious alleles
present in most tested accessions may represent alleles with no fitness penalty, or may represent
alleles that have no negative effect on fitness under their natural growing conditions (e.g. low
aluminium in the soil). Possible mechanisms for the maintenance of rare low frequency alleles in

populations, including meiotic effects, can also be investigated.
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The rye amplicons used in this study were generated before the release of the rye genome
(Rabanus-Wallace et al., 2019). It is expected that the recent release of the rye reference genome
will enable improvements in gene target selection and primer design. Reference genomes have
been produced for few of the hundreds of thousands of plant species existing on the planet.
Because pooled amplicon sequencing does not require complete genome sequence, we expect
that the approach described for rye can be adapted for many plant species and can facilitate
better characterization of existing rich germplasm collections. We predict that flexible and low-
cost methods for recovery of rare genetic variation will support future efforts to promote

sustainable food security.

MATERIALS AND METHODS

Plant material

Ninety-five accessions of rye, each represented by a pooled sample comprising DNA of 96
individual plants, were analyzed in the study. This set included 90 accessions of S. cereale ,
among them 8 modern cultivars, 34 historic cultivars, 35 landraces, and 5 accessions of other
Secale taxa, representing various geographic regions. In total 10 accessions from this set were
described as wild/weedy. Seeds were obtained from several sources including genebanks and

breeding companies (Supplemental Table 4).

Genomic DNA extraction, quantification and pooling

Seeds were placed in a growth room in containers lined with moist paper towels. Ten days after
germination a 20 mm long leaf segment was harvested from each plant. For each accession 96
plants were sampled. Leaf segments from 16 plants of the same accession were collected into
one 2 mL centrifuge tube, with six tubes from 16 individual plants obtained for each accession.
Collected leaves were freeze-dried in an Alpha 2-4 LDplus lyophilizator (Christ), for 18h at -60
°C, 0.011 mbar, followed by 1h at -64°C, 0,006 mbar and ground to fine powder using a
laboratory mill MM 301 (Retsch) for 2.5-5 min at frequency 30.0 1/s. Genomic DNA was
extracted using Mag-Bind Plant DNA DS Kit (OMEGA Bio-Tek) following manufacturer’s
protocol. Quality and quantity of DNA was assessed using spectrophotometry (NanoDrop2000,

Thermo) and electrophoresis in 1% agarose gels stained with ethidium bromide. DNA
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concentration of each sample tube was adjusted to 100 ng and an equal volume of all samples

from an accession were pooled together.

Primer design and PCR amplification of target genes.

Sequences of six target genes: aluminium activated citrate transporter (MATE1, also known as
AACT1), taumatin-like protein (TLP), fructose-biphosphate aldolase (FBA), prolamine-box
binding factor (PBF), secaloindoline-b (Sinb) and grain softness protein (GSP-1) were retrieved
from GenBank (Supplemental Figure 7, Supplemental Table 5). The entire sequences of Secb
and GSP-1 genes (456 and 506 bp, respectively) were amplified using primers described,
respectively, by Simeone and Lafiandra (Simeone and Lafiandra, 2005) and Massa et al. (Massa
et al., 2004). For genes FBA, MATEL, PBF and TLP primer pairs for generation of overlapping,
ca. 600 bp long amplicons, covering the entire gene sequence were designed using Primer-
BLAST (Yeetal., 2012). Primer pairs were tested using the DNA of rye inbred line L318 and
those producing single product of expected length were used for amplification of gene fragments
from pooled DNASs. Primer design and all other assays described in this work were carried out
before the public release of the rye genome. PCR set up was as follows: 200 ng of template
DNA, 2.5 mM MgCly, 0.2uM of each primer, 0.2 mM of each dNTP, 1x Dream Taq Green
buffer, 0.5 U Dream Taq DNA polymerase (Thermo Scientific). The reactions were carried out
in 25 uL in Mastercycler epgradient S (Eppendorf) thermal cyclers. For all primer pairs the
thermal profile of initial denaturation for 60s at 95°C, 30 cycles of 30s at 95°C, 30s at 56°C and
60s at 72°C, followed by final extension for 5 min at 72°C was used. A volume of 5 puL from
each reaction was used to check the amplification success using electrophoretic separation in
1.5% agarose gels stained with ethidium bromide. PCR products were shipped to Plant Breeding
and Genetics Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency
(Seibersdorf, Austria) for further processing.

PCR product quantification and pooling

PCR products were quantified using egel 96well gels (Thermo Fisher Scientific) and quantitative
lambda DNA standards as previously described (Huynh et al., 2016). PCR product concentration
was adjusted to 10 ng/ul in TE. All PCR products from a single gDNA pool were then pooled
together. Pooled PCR products from each of the 95 accessions were then quantified using the
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Advanced Analytical® Fragment Analyzer™ with the low sensitivity 1kb separation matrix with
30 cm capillaries (Advanced Analytical ®#DNF935). All sample pools were normalized to 30 nM
concentration in TE prior to library preparation.

Library preparation and sequencing

Indexed DNA library for NGS was prepared using the TruSeq® Nano DNA HT Library
Preparation Kit (Illumina, cat. 20015965) according to manufacturer’s recommendation. Indexed
libraries were then quantified using a Q-bit fluorometer (Thermo Fisher Scientific) and pooled
together at an equal concentration. The pooled library was diluted to 18 pM concentration.
Sequencing was performed on an Illumina MiSeq® using 2x300 PE chemistry according to
manufacturer’s protocol. The reads were de-multiplexed with the MiSeq Reporter software and

were stored as FASTQ files for downstream analysis.

Sequence evaluation

FASTQ files were aligned to target amplicons using BWA mem with commands -M -t 16 (Li
and Durbin, 2009). Amplicon fragments were given target names that were used throughout the
NGS analysis (Supplemental Table 5). Samtools view was used to convert from SAM to BAM
format (Li et al., 2009). Bam files are available in NCBI BioProject PRINA593253

Coverage statistics were prepared using qualimap v.2.2.1-dev (Garcia-Alcalde et al., 2012).
Variant calling was performed using three algorithms CRISP, GATK and SNVer. Parameters
used for CRISP were —OPE 0, --poolsize 192 and —qvoffset 33 (Bansal, 2010). The GUI of
SNVer was used with the following parameters: -bq20,-mq17,-s0,-f0,-pbonferroni=0.1,-a0,-u30,
-n192,-t0 (Wei et al., 2011). HaplotypeCaller (GATK 4.0) was used following best practices
with default settings with the exception that ploidy was set to 192 (Poplin et al., 2017). For each
method, VCF files from individual pools were merged using bcftools. Following this, read group
information was unified between the three files using picard tools AddOrReplaceReadGroups
function (http://broadinstitute.github.io/picard/index.html). Data for calculation of allele
frequency from the VCF files (called VAF in this manuscript) was extracted for each variant and
each accession using R libraries vcfR (Knaus and Griinwald, 2017) and VariantAnnotation
(Obenchain et al., 2014) and used to produce AF tables. The potential effect of nucleotide

variation on gene function was evaluated with SNPeff (Cingolani et al., 2012). For this, a
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genome database was prepared using the build -genbank function. The effect of reported
nucleotide variation was also evaluated with SIFT4G using a self-prepared genomic database
with the fasta file of amplicon sequences used for mapping with BWA mem, a self-prepared gtf
file and the uniref90 protein database (Vaser et al., 2016). Venn diagrams were produced using

the R package eulerr (https://github.com/jolars/eulerr).

Evaluation of VAF distributions:

Violin plots were drawn using the geom._violin function of ggplot2 in R (Wickham, 2016) on
VAF values reported by GATK for the variants detected in common by three algorithms. VAF
value distributions were compared pairwise using the two-part Wilcoxon test (Gleiss et al.,
2015) resulting in a pairwise matrix of 0s and 1s, with 1 indicating that for the given pair of
populations the distributions of VAF values are different at a = 0.05. This matrix was then used

for hierarchical clustering analysis with the haclust function of the R package stats.

Evaluation of phylogenetic relationships between accessions:

For the purpose of illustrating the relationships between rye populations analyzed, a Nei’s
genetic distance (Tateno et al., 1982) matrix was calculated using POPTREEW (Takezaki et al.,
2014) using VAF values reported by GATK for the variants detected in common by three
algorithms and imported into MEGA 5. 2 (Tamura et al., 2011) to produce a Neighbor Joining
dendrogram. To simulate the effect of treating the accessions as individuals on the clustering,
VAF value tables were converted to genotyping scores (with “0” meaning a reference allele
homozygote” , “1” meaning a variant allele homozygote, and 2 meaning a heterozygote). Three
settings were applied that use different VAFs to define heterozygous variants: i)VAF < 0.3 = 0;
VAF > 0.7 = 1; and values in between (greater than 0.3 and less than 0.7) = 2, ii) VAF < 0.4 = 0;
VAF > 0.6 = 1; and values in between = 2, and iii) VAF < 0.2 = 0; VAF > 0.8 = 1; in between =
2. The obtained genotype scores were used as input to GenAlEx 6.5 for calculation of Euclidean
distances. Neighbor Joining trees were produced from the resulting distance matrices using

MEGA 5.2.

Validation of nucleotide variants
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For validation of nucleotide variants CAPS assays were developed based on output of
PARSESNP (Taylor and Greene, 2003), which provides a list of restriction endonuclease sites
that are gained or lost due to the predicted SNV or indel. Serial Cloner 2.6.1.
(http://serialbasics.free.fr/Serial_Cloner.html) software was used to digest in silico the gene
fragment of interest and predict restriction patterns for reference and mutant alleles.

New batches of seeds were sown for selected accessions. Tissue harvest, DNA isolation and
PCR reaction were done separately for each plant, using the procedures described above.
Restriction digestion was done for 20 minutes using 10 uL of PCR reaction as template and 1 pL
of the restriction enzyme in the total volume of 20 uL. FastDigest restriction enzymes
(ThermoFisher) with dedicated buffers were used. The digestion products were separated in 6%
denaturing polyacrylamide gels (if the predicted products were shorter than 200 bp or differed in
length by less than 50 bp) and visualized by silver staining as described by Targonska et al.
(Targonska et al., 2016), or in 1.5% agarose gels containing ethidium bromide. For Sanger
sequencing-based validation of variants PCR reactions were sent to an external service provider.
The analyzed plants were classified based on electrophoretic separation patterns/chromatograms
as homozygous reference (RefRef), heterozygous (RefAlt), or homozygous variant (AltAlt). The
variant frequency was calculated using the formula (RefAlt x 1 + Alt/Alt x 2)/ n x 2, where n is

the total number of individuals analyzed.
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Supplemental Figure 1. Percentage of private alleles (found in only one of the tested
accessions) plotted by variant allele frequency (VAF). Data from GATK is plotted in light blue,
CRISP in green and SNVer in orange.

Supplemental Figure 2. Scatter plots of variant allele frequency (VAF) data (black dots). VAF
is plotted on the x-axis. Dots represent every predicted variant. The number of accessions
predicted to harbor the variant is plotted on the y-axis. Data is plotted on the z-axis to separate
different variants that share the same VAF and number of accessions. The percentage of the total
data from VAF 0 to a specific frequency is overlaid in red. Variants predicted by CRISP are
plotted in panel A, and by SNVer in panel B.

Supplemental Figure 3. Venn diagram of variants called by GATK, SNVer and CRISP
predicted to be deleterious using SIFT.

Supplemental Figure 4. Lollipop chart of allele frequencies of GATK variants predicted
deleterious by SIFT and also called by SNVer and CRISP. Each variant is assigned an arbitrary
number (x axis) with maximum allele frequency values calculated from GATK VCF data is
plotted on the y axis. Data is sorted into 5 distinct groups based on the number of accessions
harboring the variant. This sorting is indicated by the colored ball at the end of the bar. Allele

frequencies below 0.039 are not plotted.

Supplemental Figure 5. NJ dendrograms based on conversion of VAF values reported by
GATK for variants identified in common into genotype scores (“0” = reference allele
homozygote” , “1”
settings: A) i)VAF < 0.3 =0; VAF > 0.7 = 1; and values in between (greater than 0.3 and less
than 0.7) = 2, ii) VAF < 0.4 = 0; VAF > 0.6 = 1; and values in between = 2, and iii) VAF < 0.2 =

0; VAF > 0.8 = 1; in between = 2. Colors of the nodes correspond to colors of the clusters in the

= variant allele homozygote, “2” = heterozygote) using the following

NJ dendrogram derived from VAF data (Figure 3, main manuscript) and indicate membership of

the respective accessions in the clusters of the NJ dendrogram derived from VAF data.

Supplemental Figure 6. Dendrogram showing relationships between distributions of VAF

values (shown as violin plots) for 95 accessions (based on results of the two-part Wilcoxon test).
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Supplemental Figure 7. Target regions used in this study. Introns are colored blue, non-coding

sequence grey and exons green. Relative nucleotide positions in base pairs are listed.

Supplemental Table 1. Sequencing coverage for each nucleotide position in the experiment.

Supplemental Table 2. Allele frequencies and number of accessions harboring alleles of
predicted deleterious variants common to GATK, SNVer and CRISP.

Supplemental Table 3. Sanger sequencing validation of variants in single plants from an

accession.

Supplemental Table 4. Accessions used in this study.

Supplemental Table 5. Primer sequences used in this study.
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Figure Legends:

Figure 1. Scatter plot of Variant Allele Frequency (VAF) data from GATK HaplotypeCaller
(black dots). VAF is plotted on the x-axis. Dots represent every predicted variant. The number of
accessions predicted to harbor the variant is plotted on the y-axis. Data is plotted on the z-axis to
separate different variants that share the same VAF and number of accessions. The percentage of
the total data from VAF 0 to a specific frequency is overlaid in red. For example, 75% of all
predicted nucleotide variants have a VAF of 0.05 or lower.

Figure 2. Common and unique variants called by GATK, SNVer and CRISP. The Venn diagram
shows the overlap of variant calls for the three algorithms (interior image). Eight hundred and
ninety-five variants were commonly identified. The outer image is a Circos plot of the common
variants. Only the PCR amplified regions of gene targets are displayed (track 1). Gene models
are shown on track 2 with exons and introns represented by thick and thin black lines,
respectively. Tracks 3, 4, and 5 show the position and frequency (indicated by bar height) of
variants predicted by GATK, SNVer and CRISP, respectively.

Figure 3. Neighbor Joining tree based on from Nei’s genetic distance calculated from VAF
values reported by GATK for 895 variants detected in common by tree algorithms, showing
genetic relationships between 95 rye accessions. To simplify the output, accessions are referred
to by the 96 well plate coordinates, which are also included in the accession list (Supplementary
Table 4). Numbers in brackets indicate private alleles identified in the respective accession.
Colors indicate improvement status: light blue — modern cultivar, dark blue — historic cultivar,

dark green — landrace, light green — wild accession.

Figure 4. Violin plots of GATK VAF values from selected accessions for variants predicted in
common by GATK HaplotypeCaller, SNVer and CRISP.
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Figure 1. Scatter plot of Variant Allele Frequency (VAF) data from GATK HaplotypeCaller
(black dots). VAF is plotted on the x-axis. Dots represent every predicted variant. The number of
accessions predicted to harbor the variant is plotted on the y-axis. Data is plotted on the z-axis to
separate different variants that share the same VAF and number of accessions. The percentage of
the total data from VAF 0 to a specific frequency is overlaid in red. For example, 75% of all

predicted nucleotide variants have a VAF of 0.05 or lower.
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Figure 2. Common and unique variants called by GATK, SNVer and CRISP. The Venn diagram
shows the overlap of variant calls for the three algorithms (interior image). Eight hundred and
ninety-five variants were commonly identified. The outer image is a circos plot of the common
variants. Only the PCR amplified regions of gene targets are displayed (track 1). Gene models
are shown on track 2 with exons and introns represented by thick and thin black lines,
respectively. Tracks 3, 4, and 5 show the position and frequency (indicated by bar height) of
variants predicted by GATK, SNVer and CRISP, respectively.
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Figure 3. Neighbor Joining tree based on from Nei’s genetic distance calculated from VAF
values reported by GATK for 895 variants detected in common by tree algorithms, showing
genetic relationships between 95 rye accessions. To simplify the output, in the NJ tree
accessions are referred to by the 96 well plate coordinates (Supplementary Table 4). Numbers in
brackets indicate private alleles identified in the respective accession. Colors of the dots indicate
improvement status: light blue — modern cultivar, dark blue — historic cultivar, dark green —
landrace, light green — wild accession. Colored rectangles with Roman numerals indicate

clusters.
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Figure 4. Violin plots of VAF values for variants predicted in common by GATK
HaplotypeCaller, SNVer and CRISP. Data from HaplotypeCaller are shown for representative

accessions.
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Table 1. Missense, nonsense and silent changes with different variant calling methods

GATK SNVer CRISP Common variants

Missense 1183 336 868 164
Nonsense 14 7 9 2
Total 1770 602 1322 348
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Table 2. CAPS and Sanger validation of variants in multiple single plants of an accession

RE No.
Gene Pos® Ref’ Alt® Method used Acc.? GATK® SNVer® CRISP® VAFobs™ plants?
MATE

1 170 A G CAPS Notl D2 0.880 0.587 0.819 0.90 10[2]
MATE

1 170 A G CAPS Notl E12 0.875 0592 0.783 0.86 11[3]
MATE

1 210 A G CAPS Tagl H5 0.172 0.079 0.276 0.38 13[8]
MATE

1 364 G C CAPS Mbol H5 0307 0.137 0.393 0.19 13[3]
PBF 310 C T CAPS Mnll D2 0292 0.206 0.165 0.27 12[2]
PBF 310 C T CAPS Mnll E12 0.120 0.059 0.059 0.00 11]0]
PBF 517 G A CAPS Mbol D2 0286 0.262 0.180 0.38 12[9]
PBF 517 G A CAPS Mbol E12 0.016 0.104 0.065 0.00 11[0]
PBF 532 C T CAPS Fokl D2 0.104 0.096 0.138 0.00 12[0]
PBF 532 C T CAPS Fokl E12 0536 0.405 0.472 0.41 11[7]
PBF 666 C T Sanger na" F8 0401 0371 0.359 0.38 12[5]
PBF 810 C T Sanger na F10 0.042 0.022 0.068 0.00 6[0]
PBF 810 C T Sanger na F11 0214 0.074 0216 0.16 16[5]
PBF 846 G C Sanger na F8 0.094 0.053 0.104 0.17 12[4]
PBF 847 G A Sanger na F8 0.094 0.064 0.100 0.17 12[4]
SecB 211 A G CAPS Fokl H5 0.026 0.183 0.111 0.00 13[0]

3nucleotide position, ° reference sequence, ¢ variant sequence, ¢ accession code, algorithm
predicted allele frequency (VAF), " observed allele frequency, ¢ numbers in brackets indicate the

number of heterozygous individuals, "not applicable
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