

Clade GR and Clade GH Isolates in Asia Show Highest Amount of SNPs

Antara Sengupta^{a,*}, Sk. Sarif Hassan^b, Pabitra Pal Choudhury^c

^aDepartment of Computer Science and Engineering, University of Calcutta, West Bengal, India

^bDepartment of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, West Bengal, India

^cApplied Statistics Unit, Indian Statistical Institute, Kolkata, West Bengal, India

Abstract

Clades are monophyletic groups composed of a common ancestor and all its lineal descendants. As the propensity of virulence of a disease depends upon the type of clade the virus belongs to and it causes different fatality rates of disease in different countries, so the clade-wise analysis of SARS-CoV-2 isolates collected from different countries can illuminate the actual evolutionary relationships between them. In this study, 1566 SARS-CoV-2 genome sequences across ten Asian countries are collected, clustered, and characterized based on the clade they belong to. The isolates are compared to the Wuhan reference sequence (Accession no: MN996528.1) to identify the mutations that occurred at different protein regions. Structural changes in amino acids due to mutations lead to functional instability of the proteins. Detailed clade-wise functional assessments are carried out to quantify the stability and vulnerability of the mutations occurring in SARS-CoV-2 genomes which can shade light on personalized prevention and treatment of the disease and encourage towards the invention of clade-specific vaccines.

Keywords: COVID-19, clades, SARS-CoV-2, deleterious mutations, Asia

1. Introduction

Viruses have a remarkable capacity to adapt to new hosts and environments [1]. Mutations may lead to different phenotypic changes in them, which may lead to occur biodiversity. Phylogenies are frameworks for analysing biodiversity. Phylogenetic analysis based on sequence similarity is one of the very efficient way to do so [2]. However, it will be worth noting that due to the recent outbreak of pandemic COVID-19, people around the world are trying by every means to reach the origin, to get some ways of prevention and therapeutic pathways. Biodiversity is characterized by a continual replacement of branches in the tree of life, i.e. clade [3]. Evolutionary pressure on host immunodeficiency leads to different clades of viruses [4]. A clade is a group of highly related sequences that share a common ancestor. They can provide hypotheses about the actual evolutionary history of that group of sequences. Some clinical studies suggest that the proclivity of virulence of a disease depends upon the type of clade the virus belongs to [4]. Clade differences can result in varying degrees of pathology. Millions of gene regulatory elements are there which contribute heavily to the variation in gene expression of complex human traits and diseases [5]. Determining mutation types influence a lot in gene regulation and is important for studying the role of regulatory variation in evolution. Genomic evolution helps a virus to escape host immunity [6, 7]. The clade-wise analysis of SARS-CoV-2 isolates collected from different countries can shed a light on the actual evolutionary history of the region or continent. In order to confirm the hypothesis in COVID-19 pathogenesis, it is highly recommended to make a thorough study of mutations occurring in SARS-CoV-2 isolates collected from different demographic areas and characterizing them based on the clades they come from [8]. A plethora of papers already have been published, where researchers have tried to study the virus isolates of SARS-CoV-2, which is solely responsible for the disease to occur in human [9, 10, 11, 12, 13]. Huge numbers of investigations are

*Corresponding author

Email addresses: antara.sngpt@gmail.com (Antara Sengupta), sarimif@gmail.com (Sk. Sarif Hassan), pabitrapalchoudhury@gmail.com (Pabitra Pal Choudhury)

23 reported in order to find evolutionary relationships between SARS-CoV-2 and other corona-viruses and
24 to determine the origin and molecular characteristics of SARS-CoV-2 [14, 15, 16]. Several works are
25 also done on characterization and comparative analysis of structured and non-structured proteins of
26 SARS-CoV-2 [17, 18]. According to Hassan et.al. [19] among all the accessory proteins of SARS-CoV-
27 2, ORF3a plays an important role in virus pathogenesis, as it possesses various mutations which are
28 linked with that of spike proteins. It is observed that due to its structural plasticity and high diversity,
29 ORF8 plays important role in SARS-CoV-2 pathogenicity [20]. Computational biology approaches are
30 applied to investigate genomic and proteomic variations of S protein in SARS-CoV-2. In the paper
31 authors find possibilities to design potential inhibitors against S protein [21]. Kumar et.al. stated the
32 first observation on the deletion mutations in the C-terminal region of the envelope glycoprotein in
33 India [22]. Some researchers have given more stresses on codon usage bias in SARS-CoV-2 rather than
34 mutational trends [23]. Several investigations are carried out on characterizing the mutations of a
35 particular country and even across the globe [24, 25, 26]. Researchers aimed too to analyse SARS-CoV-
36 2 proteins modulating host immune response like type I interferon pathways [27]. People have tried
37 to uncover the relation between hotspot mutations and viral pathogenicity [28]. Some research papers
38 focused on characterizing B and T cell epitopes of certain proteins of SARS-CoV-2 which can help in
39 vaccine development [29]. Phylodynamic analyses of SARS-CoV-2 genomes can provide insights into the
40 roles of some relevant factors to limit the spread of the disease [30]. Priya and Shanker [31] have observed
41 that the coevolutionary forces can increase the fitness of spike glycoprotein against ACE2 and increase
42 the infectivity of SARS-CoV-2. According to Uddin et al. [32] antigenic epitopes of SARS-CoV-2 and
43 SARS-CoV have highest level of similarities among them. SARS-CoV-2 is the seventh coronavirus to
44 infect humans but the first HCoV which pandemic potential [33]. (Accession no: NC_045512) is the first
45 SARS-CoV-2 sample SARS-CoV-2 sequence from Wuhan, and it is from clade 'O' [34]. Clade 'G' is the
46 variant of the spike protein D614G which indicates significantly higher human host infectivity and better
47 transmission efficiency to the virus. GH and GR are the most common offsprings of clade G. According
48 to data from the public database of the Global Initiative on Sharing All Influenza Data (GISAID), three
49 major clades of SARS-CoV-2 are clade G (variant of the spike protein S-D614G), clade V (a variant of
50 the ORF3a coding protein NS3-G251), and clade S (variant ORF8-L84S) [34]. GR clade, carrying the
51 combination of NSP3: F106F, Spike: D614G and Nucleocapsid: RG203KR mutations, whereas clade
52 'GH' represents the mutations NSP12b: P314L, S: D614G and ORF3a: Q57H. Different fatality rates
53 observed in different countries may be the consequence of clade's differences in virulence. The spike
54 protein of SARS-CoV-2 binds the host receptor angiotensin-converting enzyme 2 (ACE2) via receptor-
55 binding domain (RBD). It is reported that immunization with SARS-CoV-2 receptor-binding domain
56 (RBD) is able to induce clade-specific neutralizing antibodies in a host like mice [35]. In some cases
57 vaccines are immunogenic and induced antibodies can neutralize homologous and heterogeneous viruses
58 with different degrees of cross-reactivity [36]. Hence, in this present study, 1566 SARS-CoV-2 isolates
59 from the Asian continent comprising 10 countries (India, Bangladesh, Pakistan, Srilanka, China, Japan,
60 Malaysia, Iran, Thailand, and Saudi Arabia) are collected, clustered, and characterized based on the
61 clade they belong to.

62 2. Methods and Materials

63 2.1. Collection of gene sequences of SARS-CoV-2

64 One of the primary features of the investigation and analysis of the COVID-19 is availability of
65 real-time data in global databases. To carry out the experiment We have collected 1566 isolates of
66 SARS-CoV-2 from ten different Asian countries from the National Center for Biotechnology Informa-
67 tion (NCBI) database (<https://www.nih.gov/coronavirus>) on October 20, 2020. The information about
68 collected dataset are presented as Supplemental Materials in Table S1 and summarized in Table 1. In
69 addition, we have collected the Reference Sequence (Accession no: MN996528.1) from the same Gene
70 bank. However, information in detail about the dataset Collected sequences are then gone through pre-
71 liminary screening for excluding noisy sequences. Here noise includes no mutations and the amino acid
72 changes due to mutations specified by 'X'. Thus finally 1384 isolates are taken for further investigations.

Table 1: Collected SARS-CoV-2 genome sequences from COVID patients from ten different Asian Countries.

Country Name	# Isolate	# Isolate in work
INDIA	570	565
THAILAND	227	104
BANGLADESH	231	231
IRAN	172	106
CHINA	189	189
JAPAN	96	96
SAUDI ARABIA	58	58
PAKISTAN	10	9
MALAYSIA	9	9
SRILANKA	4	4

Table 2: Clade-wise counting of isolates reported in 10 countries.

COUNTRY	G	GH	GR	L	S	O	V
THAILAND	12	0	0	1	39	51	1
BANGLADESH	6	13	208	1	1	2	0
SRILANKA	1	0	1	0	0	2	0
CHINA	2	0	1	64	48	71	3
JAPAN	2	5	71	13	2	3	0
INDIA	191	303	18	7	19	27	0
IRAN	32	1	0	4	0	69	0
MALAYSIA	0	1	0	0	0	8	0
PAKISTAN	0	1	5	2	0	1	0
SAUDI ARABIA	2	32	22	0	1	1	0

73 2.2. Methods

74 The present work aims to make a clade-wise classification and analysis of SARS-CoV-2 isolates
 75 of ten Asian countries. The isolates of each country are then compared with the reference sequence
 76 to find out the mutations that occurred. Clade-wise clustering of the given dataset is taken place.
 77 The observed mutations are then gone through different online software tools to investigate different
 78 biological functionalities that may change and affect the variants due to mutations. Here it is to
 79 be noted that we have used two web-based software tools (PROVEAN [37] and I-mutant [38]) for the
 80 aforesaid functional assessments. I-Mutant is a suite developed based on Support Vector Machine(SVM).
 81 ($\Delta\Delta G > -0.5$ Kcal/mol) indicates that the mutation can largely destabilize the protein, $\Delta\Delta G > 0.5$
 82 Kcal/mol indicates about the strong stability and $-0.5 > \Delta\Delta G > 0.5$ Kcal/mol tells about weak effect
 83 of mutations. Isolates with a score equal to or below -2.5 are considered deleterious and scores above
 84 -2.5 are neutral. Lastly, we tracked the trend of mutations that occurred in the sequences of different
 85 clades.

86 3. Results and Discussions

87 3.0.1. Clade-wise clustering of SARS-CoV-2 strains taken as dataset from different countries

88 After excluding the noisy sequences finally 1371 isolates are found. Each strain belongs to a par-
 89 ticular clade, so the isolates are clustered according to the clade from which they belong to. It has
 90 been observed that as a whole isolates of five clades (G, GH, GR, L, S, O, and V) are participated
 91 in those countries of the Asian continent. According to (Fig. 1) the order of the clade-wise partici-
 92 pation of isolates is GH>GR>O>G>S>L>V. It is to be noted here that among the entire dataset
 93 taken Indian isolates hold a big amount of data. According to the country-wise view shown in Table 2
 94 SARS-CoV-2 isolates of clade 'O' are present in the dataset of all countries and isolates of clade 'V'
 95 have been circulated only at China and Thailand. The country-wise analysis has a mixed result. In
 96 Srilanka, Thailand, China, Malaysia, and Iran the isolates are majorly from clade 'O'. India and Saudi
 97 Arabia have a prevalence of clade 'GH'. Pakistan, Bangladesh, and Japan have the prevalence of clade
 98 'GR'. It indicates viral diversity regarding infection as the infection is transmitting from one country
 99 to another. Remarkable viral diversities are also present even in different regions within a country too.

100 3.1. Investigating trend of mutations in various clades

101 In this subsection firstly the positions of mutations are identified in each isolate and then it is
 102 aimed to calculate clade-wise percentage of mutations occurred in each country as shown in (Fig. 2).

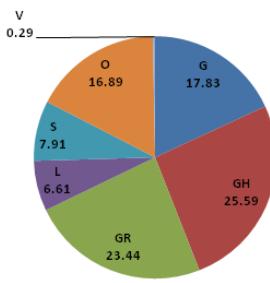


Figure 1: Calculate percentage of clades representing the isolates.

103 Secondly, a microscopic view has been given on clade-wise clustering of total mutations found in the
 104 whole dataset and calculating the protein-wise percentage of the mutations occurred according to the
 105 clades they belong to (Fig. 3).

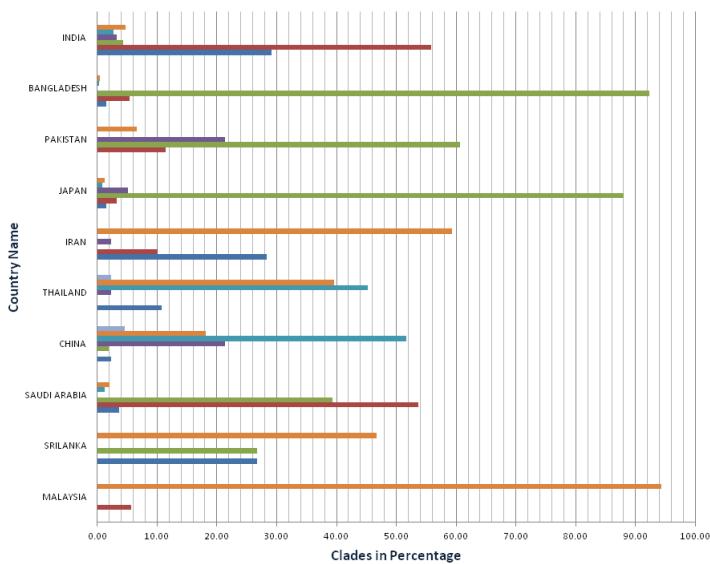


Figure 2: Calculating clade-wise percentage of mutations occurred in different countries.

106 According to (Fig. 2), India and Saudi Arabia have a prevalence of clade 'GH' (55.76%, and 53.69%
 107 respectively). Whereas, in Pakistan, Bangladesh, and Japan strains have a prevalence of clade 'GR'
 108 (60.66%, 92.33% and 88.06% respectively). Mutations have occurred in strains from Clade 'S' at
 109 China and Thailand (51.63% and 45% respectively). SARS-CoV-2 isolates of clade 'O' have significant
 110 participations in Iran, Srilanka and Malaysia (59.31%, 46.67% and 94.29% respectively). SARS-CoV-2
 111 isolates of clades G, GH, GR, S, L, and O are circulating in India and Japan. Whereas, clades V, O,
 112 S, L, GR, and G are circulating at different regions of China and clades O, S, GR, GH, and G are
 113 circulated in Saudi Arabia. In Malaysia (clades O and GH) and Srilanka (clades O, GR, and G) the
 114 SARS-CoV-2 isolates do not have the viral diversities a lot.

115 Mutations refer to the virus to undergo certain changes which can lead to develop some new isolates
 116 after replications. Non-synonymous substitutions play a very significant role as this type of mutation
 117 makes change in amino acid. Alteration in amino acid causes structural change. With the aim of
 118 understanding the trend of non-synonymous mutations in different clades in the context of disease
 119 severity, a detailed protein-wise comparative analysis has been taken place. Mutations identified at
 120 different protein regions in all the isolates are shown at Table S2 in Supplementary file. To do so we
 121 have considered the total dataset as a whole. Clade-wise percentages of non-synonymous mutations
 122 at different protein regions are calculated. The clade-wise characterization of mutations of different
 123 proteins are shown in (Fig. 3).

124 According to the dataset taken, we have got 6665 numbers of non-synonymous mutations. We can
 125 observe at Table 3 that the chronological order of clades at per number of mutations taken place in
 126 whole dataset is GR>GH>G>O>S>L>V. It can be observed in (Fig. 3) that mutations are majorly

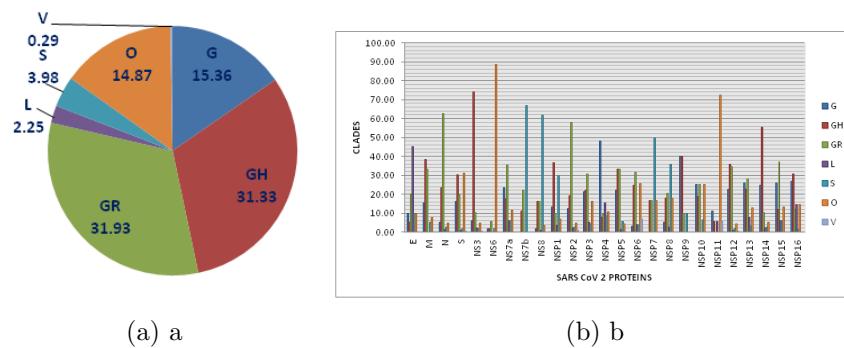


Figure 3: Quantitative analysis of clade-wise non-synonymous mutation. (a) Percentage of non-synonymous mutations found in different clades; (b) Clade-wise percentage of non-synonymous mutations occurred in different protein regions

Table 3: Clade-wise segregation of mutated data

PROTEIN	G	GH	GR	L	S	O	V
E	2	1	4	9	2	2	0
M	6	15	13	0	2	3	0
N	60	264	709	13	31	52	0
NS3	30	376	709	12	10	24	3
NS6	1	1	3	0	1	47	0
NS7a	4	3		1	1	2	0
NS7b	0	1		0	6	0	0
NS8	2	18	18	1	69	4	0
NSP1	4	11		1	9	2	0
NSP10	4	3	4	0	1	4	0
NSP11	2	1		1	0	13	1
NSP12	241	383	366	9	18	45	3
NSP13	24	21	26	7	3	12	0
NSP14	49	109	20	4	5	10	0
NSP15	22	10	31	5	5	11	0
NSP16	20	23	9	11	1	11	0
NSP2	52	82	245	9	11	20	4
NSP3	109	114	156	27	21	82	0
NSP4	50	8	10	16	9	11	0
NSP5	16	24	24	1	4	3	0
NSP6	3	25	32	4	4	26	7
NSP7	0	1	1	0	3	1	0
NSP8	2	7	8	1	14	7	0
NSP9	4	4	1	0	1	0	0
S	317	583	384	18	34	599	1
TOTAL MUTATION	1024	2088	2128	150	265	991	19

127 taken place at isolates of clades GH and GR which are 31.33% and 31.93% of respectively. Samples of
128 clade V have been affected rarely (0.29%). Clade-wise distribution of mutations in each protein does
129 not have a very similar trend(s). Although the majority of proteins mutated are either of clade GR
130 (N, NS7a, NSP2, NSP6, NSP13, and NSP15) or GH (M, NS3, NSP1, NSP12, NSP14, and NSP16) but
131 clade G also has large numbers of mutations in some proteins(S, NS6, and NSP11). Isolates of Clade L
132 and clade G here have got mutations maximum only in protein E and NSP4 respectively. In proteins
133 NS7b, NS8, and NSP7 of the isolates from clade S have maximum distributions of non-synonymous
134 mutations. In the isolates of clade G, GR, and O number of mutations at NSP10 are equal. Mutations
135 are also equally distributed in protein NSP5 of clades GH and GR.

136 3.2. Quantitative assessment of functional changes occur due to mutations

137 Structural changes in amino acids due to mutations lead to create functional instability of the isolates
138 themselves, cause vulnerable diseases and even increase the magnitude of virulence. In this subsection,
139 we have tried to find the impact of single point mutations on the biological function of proteins of
140 each isolates through the light of PROVEAN (Protein Variation Effect Analyzer) score, which may be
141 deleterious or neutral [39]. We have also calculated the change in Gibbs free energy ($\Delta\Delta G$) occur due
142 to single point mutations as the difference in folding free energy change between wild type and mutant
143 protein ($\Delta\Delta G$) is considered as an impact factor of protein stability changes [40]. The motivation here
144 is to understand the effect of those mutations on protein stability. The quantitative analysis will give
145 an insight into the probable mutations that occur in a particular clade and the magnitude of virulence

Table 4: Investigate the deleterious mutations in total dataset.

PROTEIN	DELETERIOUS MUTATION	PROVEAN SCORE	PROTEIN	DELETERIOUS MUTATION	PROVEAN SCORE
S	D936Y	-2.60	NSP2	T85I	-4.09
S	L752R	-3.84	NSP2	F368V	-2.69
S	A288P	-2.80	NSP2	G339S	-3.13
S	C851W	-10.16	NSP2	P129S	-3.17
S	D820N	-4.67	NSP2	E309A	-3.33
S	E725K	-3.75	NSP3	A1914D	-3.8
S	G648R	-4.093	NSP3	P1558L	-4.532
S	G669R	-3.58	NSP4	L111S	-1.54
S	L533K	-2.62	NSP4	G309C	-6.73
S	L916F	-3.74	NSP5	P108S	-4.53
S	P863H	-5.12	NSP5	I106S	-4.41
S	R905S	-5.62	NSP5	L75F	-3.79
S	S758I	-4.13	NSP5	N142L	-4.3
S	S875F	-3.37	NSP5	R279C	-6.46
S	T716P	-3.347	NSP6	G277S	-6
S	T874P	-5.59	NSP6	H64N	-2.97
S	V534G	-3.12	NSP12	D303G	-6.05
N	S193I	-2.76	NSP1	W161L	-7.8
N	S194L	-4.27	NSP13	R392C	-2.73
N	R191L	-3.27	NSP14	T113I	-4.25
N	S180L	-3.40	NSP15	M330T	-5.62
PROTEIN	DELETERIOUS MUTATION	PROVEAN SCORE	NSP16	R287I	-2.54
NS3	Q57H	-3.286	NSP16	P12S	-7.73
NS3	G251V	-8.58	NSP16	G77R	-7.35
NS3	D155Y	-6.83	NSP12	T803I	-3.55
NS3	G172C	-6.75	NSP12	M124I	-3.048
NS3	G172V	-6.76	NSP12	P227S	-6.00
NS3	N257D	-3.286	NSP12	S607I	-2.83
NS3	G251V	-8.58	NSP12	A97V	-3.61
NS3	W45R	-8.87			
NS7a	E95K	-2.61			
NS7a	P45L	-10			
NS7a	V104F	-2.83			
NS8	P38R	-8.5			

of them. It is to be noted that here we have excluded the mutations which are occurred only once. The deleterious mutations are shown in Table 4. It is observed at Table 4 that if we consider the dataset as a whole, then among structural proteins the mutations occurred in spike protein(s) are more deleterious than others. Among the accessory proteins, NS3 is affected the most. NSP2, NSP5, and NSP12 are the non-structural proteins that have most of the deleterious mutations that occurred. Furthermore, we have calculated clade-wise percentage of deleterious mutations that occurred in different protein regions. To do so, we have segregated each deleterious mutation occurred in ten different countries along with their clades Table 5. The (Fig. 4) shows the protein regions that are mostly affected by the deleterious mutations. Maximum deleterious mutations occurred in structural and accessory proteins belong to clade GH. Most of the deleterious mutations in non-structural protein regions are occurred in the isolates of both clades GH and GR. The isolates of clade V are rare and only found in the isolates of China and Thailand, but interestingly it is observed that few of deleterious mutations are also enlisted there. (Fig.4) depicts the fact that most of the deleterious mutations take place in amino acid sequences of clade GH. It is reported that the human genome may carry large numbers of deleterious mutations which as a whole make a significant contribution to fatal diseases. Identification and analysis of deleterious mutations can shade lights on personalized treatment and medicine [41]. Hence, the identification of these kinds of mutations in SARS-CoV-2 isolates and their impacts on the host body seek attention of virologists.

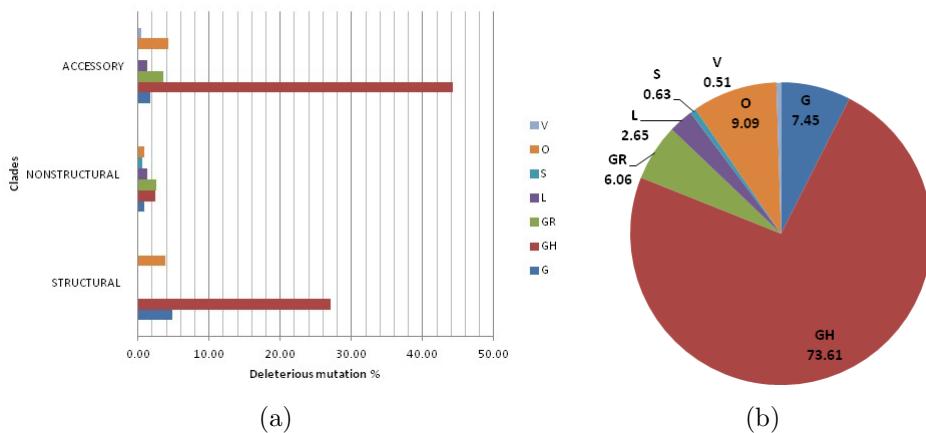


Figure 4: Quantification of clade-wise deleterious non-synonymous mutation. (a) Clade-wise percentage of deleterious non-synonymous mutations in different protein regions; (b) Clade-wise calculations of deleterious non-synonymous mutations of total data set

Table 5: Clade-wise clustering of deleterious mutations in total dataset.

MUTATION	G	GH	GR	L	S	O	V	MUTATION	G	GH	GR	L	S	O	V
S193I	1	7	0	0	0	0	0	V104F	0	2	0	0	0	0	0
S194L	21	190	0	0	0	2	0	P38R	0	0	3	0	0	0	0
R191L	2	0	0	0	0	0	0	W161L	1	1	0	0	0	0	0
S180L	1	1	0	0	0	0	0	R392C	0	0	2	0	0	0	0
D936Y	1	1	0	0	0	0	0	T113I	0	0	0	1	0	4	0
L752R	0	0	0	0	0	2	0	M330T	0	0	2	0	0	0	0
A288P	0	0	0	0	0	3	0	R287I	0	0	3	0	0	0	0
C851W	1	0	0	0	0	1	0	P12S	0	0	0	4	0	0	0
D820N	0	0	0	0	0	2	0	G77R	0	0	0	3	0	1	0
E725K	0	0	0	0	0	2	0	T85I	0	0	0	0	0	0	0
G648R	1	0	0	0	0	3	0	F368V	1	1	0	0	0	0	0
G669R	0	0	0	0	0	4	0	G339S	0	0	0	1	0	0	0
L533K	0	0	0	0	0	2	0	P129S	0	0	3	0	0	0	0
L916F	1	0	0	0	0	1	0	E309A	1	1	0	0	0	0	0
P863H	4	15	0	0	0	0	0	A1914D	2	3	0	0	0	0	0
R905S	2	0	0	0	0	0	0	P1558L	0	0	3	2	0	2	0
S758I	2	0	0	0	0	0	0	L111S	0	0	0	0	5	0	0
S875F	1	0	0	0	0	2	0	G309C	1	2	0	0	0	0	0
T716P	0	0	0	0	0	2	0	P108S	0	0	7	0	0	0	0
T874P	0	0	0	0	0	3	0	I106S	0	0	2	0	0	0	0
V534G	0	0	0	0	0	0	2	L75F	1	2	0	0	0	0	0
Q57H	12	342	7	0	0	7	0	N142L	0	5	0	0	0	0	0
G251V	0	0	0	0	0	5	4	R279C	0	2	0	0	0	0	0
D155Y	0	2	5	0	0	0	0	G277S	0	2	0	0	0	0	0
G172C	0	0	3	0	0	0	0	H64N	1	1	0	0	0	0	0
G172V	0	0	3	0	0	0	0	D303G	0	0	2	0	0	0	0
N257D	1	1	0	0	0	0	0	T803I	0	0	2	0	0	0	0
W45R	0	0	0	7	0	0	0	M124I	0	0	3	0	0	0	0
E95K	1	1	0	0	0	0	0	P227S	0	0	2	0	0	0	0
P45L	0	2	0	0	0	0	0	S607I	0	0	2	0	0	0	0
A97V	0	0	0	3	0	22	0								

Table 6 gives us a microscopic view of the severity of the mutations that occurred in the dataset taken. In 82% of deleterious mutations protein stability has been decreased due to single point mutation. It is already observed that maximum mutations have occurred in the isolates which belong to clade GH. Out of 18 deleterious mutations happened in isolates from clade GH in 15 isolates (S194L, D936Y, P863H, W161L, F368V, E309A, A1914D, G309C, L75F, H64N, Q57H, N257D, E95K, P45L, V104F) stability have been decreased due to mutations. It can be observed at Table 7 that due to mutations majorly amino acid Glutamine and Serine are affected. Glutamine(Q) has been changed to Histidine(H), and Serine(S) changed to Leucine(L). The result may indicate that in Asian countries SARS-CoV-2 isolates responsible for COVID-19 majorly belong to the clades GR and GH. Among them mutations that occurred in isolates of clade GH are deleterious in nature, so have an impact on the biological function of proteins. The mutations also change the structural stability of proteins by making changes in free energy(ΔG).

Table 6: Investigating Stability of deleterious mutations in total dataset.

Mutation type	Mutation	Stability	$\Delta\Delta G$	Mutation type	Mutation	Stability	$\Delta\Delta G$
S194L	Deleterious	Decreased	-0.47	G77R	Deleterious	Decreased	-0.65
D936Y	Deleterious	Decreased	-0.35	T85I	Deleterious	Decreased	-0.91
L752R	Deleterious	Decreased	-1.39	F368V	Deleterious	Decreased	-1.74
C851W	Deleterious	Decreased	-0.09	G339S	Deleterious	Decreased	-1.2
D820N	Deleterious	Decreased	-1.25	P129S	Deleterious	Decreased	-1.82
E725K	Deleterious	Decreased	-0.35	E309A	Deleterious	Decreased	-0.96
G648R	Deleterious	Decreased	-0.6	A1914D	Deleterious	Decreased	-0.68
G669R	Deleterious	Decreased	-0.14	P1558L	Deleterious	Decreased	-0.36
L533K	Deleterious	Decreased	-1.81	L111S	Deleterious	Decreased	-2.29
L916F	Deleterious	Decreased	-1.12	G309C	Deleterious	Decreased	-1.07
P863H	Deleterious	Decreased	-1.44	P108S	Deleterious	Decreased	-1.73
R905S	Deleterious	Decreased	-1.18	I106S	Deleterious	Decreased	-2.24
T716P	Deleterious	Decreased	-0.8	L75F	Deleterious	Decreased	-1.09
T874P	Deleterious	Decreased	-0.22	R279C	Deleterious	Decreased	-0.67
V534G	Deleterious	Decreased	-2.029	G277S	Deleterious	Decreased	-1.3
Q57H	Deleterious	Decreased	-0.9	H64N	Deleterious	Decreased	-0.03
G251V	Deleterious	Decreased	-0.54	D303G	Deleterious	Decreased	-0.9
G172C	Deleterious	Decreased	-0.83	M124I	Deleterious	Decreased	-0.53
G172V	Deleterious	Decreased	-0.41	P227S	Deleterious	Decreased	-1.49
N257D	Deleterious	Decreased	-0.21	S193I	Deleterious	Increased	-0.29
W45R	Deleterious	Decreased	-1.05	R191L	Deleterious	Increased	-0.26
E95K	Deleterious	Decreased	-0.58	S180L	Deleterious	Increased	-0.12
P45L	Deleterious	Decreased	-0.71	A288P	Deleterious	Increased	-0.29
V104F	Deleterious	Decreased	-1.47	S758I	Deleterious	Increased	0.43
P38R	Deleterious	Decreased	-0.9	S875F	Deleterious	Increased	0.66
W161L	Deleterious	Decreased	-0.51	D155Y	Deleterious	Increased	0.21
R392C	Deleterious	Decreased	-1.29	N142L	Deleterious	Increased	-0.05
T113I	Deleterious	Decreased	-0.43	T803I	Deleterious	Increased	0.18
M330T	Deleterious	Decreased	-1	S607I	Deleterious	Increased	0.37
R287I	Deleterious	Decreased	-0.66	A97V	Deleterious	Increased	-0.31
P12S	Deleterious	Decreased	-1.29				

Table 7: Amino Acid changed due to deleterious mutations taken place.

MUTATION	COUNT	MUTATION	COUNT
Q>H	368	M>I	3
S>L	215	P>R	3
A>V	25	R>I	3
P>H	19	S>F	3
P>S	16	C>W	2
G>R	12	D>G	2
G>V	12	D>N	2
S>I	12	E>A	2
P>L	9	E>L	2
T>I	9	F>V	2
D>Y	9	H>N	2
W>R	7	I>S	2
G>C	6	L>K	2
A>D	5	L>R	2
L>F	5	L>S	2
N>L	5	M>T	2
T>P	5	N>D	2
E>K	4	R>L	2
R>C	4	R>S	2
A>P	3	V>F	2
G>S	3	V>G	2

176 4. Conclusions

177 The in silico analysis performed in this study states that the isolates in ten Asian countries are from
178 clades G, GH, GR, L, S, O, and V. It indicates the diversity of the infection indeed. O, GH, and GR are
179 the most widely affected ancestors of isolates among them. But when there is a talk about mutations,
180 31.93% of total mutations have taken place in the isolates of clade GR, and 31.33% of the mutations
181 from GH. Hence, number of mutations are really high in the isolates belong to both the clades. When
182 clades G, GH, and GR traversed almost in all countries specified here, the isolates of clade V are
183 affected rarely. The most frequently mutated amino acids are Glutamine and Serine. In most of the
184 cases glutamine is changed into Histidine and serine is changed to Leucine. It is to be noted that both
185 the mutations are deleterious and the isolates of clade GH carry the major deleterious mutation load

(44.19% of the total dataset). The majority of mutations taken place in the isolates of clade GH are deleterious in nature. 82% of deleterious mutations are unstable and so their biological functions are affected. As a whole in this present work, the investigation provides us clade-wise characteristics of the SARS-CoV-2 isolates of the Asian continent. When reported research papers shed the light on development of clade-specific vaccines [35], our analysis can encourage drug designers for development of customized drugs or vaccines for Asian continent in order to combat COVID-19.

192 References

- 193 [1] R. Sanjuán, P. Domingo-Calap, Mechanisms of viral mutation, *Cellular and molecular life sciences* 73 (2016) 4433–4448.
- 194
- 195 [2] J. K. Das, A. Sengupta, P. P. Choudhury, S. Roy, Mapping sequence to feature vector using numerical representation of codons targeted to amino acids for alignment-free sequence analysis, *Gene* 766 (2020) 145096.
- 196
- 197
- 198 [3] D. Silvestro, A. Antonelli, N. Salamin, T. B. Quental, The role of clade competition in the diversification of north american canids, *Proceedings of the National Academy of Sciences* 112 (2015) 8684–8689.
- 199
- 200
- 201 [4] W. Tyor, C. Fritz-French, A. Nath, Effect of hiv clade differences on the onset and severity of hiv-associated neurocognitive disorders, *Journal of neurovirology* 19 (2013) 515–522.
- 202
- 203 [5] S. U. Kumar, D. T. Kumar, B. P. Christopher, C. Doss, The rise and impact of covid-19 in india, *Frontiers in Medicine* 7 (2020) 250.
- 204
- 205 [6] Y. Li, X. Yang, N. Wang, H. Wang, B. Yin, X. Yang, W. Jiang, The divergence between sars-cov-2 and ratg13 might be overestimated due to the extensive rna modification, *Future Virology* (2020).
- 206
- 207 [7] M. L. DeDiego, L. Pewe, E. Alvarez, M. T. Rejas, S. Perlman, L. Enjuanes, Pathogenicity of severe acute respiratory coronavirus deletion mutants in hace-2 transgenic mice, *Virology* 376 (2008) 379–389.
- 208
- 209
- 210 [8] K. G. Andersen, A. Rambaut, W. I. Lipkin, E. C. Holmes, R. F. Garry, The proximal origin of sars-cov-2, *Nature medicine* 26 (2020) 450–452.
- 211
- 212 [9] R. Zeng, R.-F. Yang, M.-D. Shi, M.-R. Jiang, Y.-H. Xie, H.-Q. Ruan, X.-S. Jiang, L. Shi, H. Zhou, L. Zhang, et al., Characterization of the 3a protein of sars-associated coronavirus in infected vero e6 cells and sars patients, *Journal of molecular biology* 341 (2004) 271–279.
- 213
- 214
- 215 [10] A. C. Walls, Y.-J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, D. Veesler, Structure, function, and antigenicity of the sars-cov-2 spike glycoprotein, *Cell* (2020).
- 216
- 217 [11] A. Maitra, M. C. Sarkar, H. Raheja, N. K. Biswas, S. Chakraborti, A. K. Singh, S. Ghosh, S. Sarkar, S. Patra, R. K. Mondal, et al., Mutations in sars-cov-2 viral rna identified in eastern india: Possible implications for the ongoing outbreak in india and impact on viral structure and host susceptibility, *Journal of Biosciences* 45 (2020).
- 218
- 219
- 220
- 221 [12] N. K. Biswas, P. P. Majumder, Analysis of rna sequences of 3636 sars-cov-2 collected from 55 countries reveals selective sweep of one virus type, *Indian J. Med. Res.* (2020).
- 222
- 223 [13] R. Kumar, H. Verma, N. Singhvi, U. Sood, V. Gupta, M. Singh, R. Kumari, P. Hira, S. Nagar, C. Talwar, et al., Comparative genomic analysis of rapidly evolving sars-cov-2 reveals mosaic pattern of phylogeographical distribution, *Msystems* 5 (2020).
- 224
- 225
- 226 [14] D. DiMaio, D. Nathans, Regulatory mutants of simian virus 40: effect of mutations at a t antigen binding site on dna replication and expression of viral genes, *Journal of molecular biology* 156 (1982) 531–548.
- 227
- 228

229 [15] A. Banerjee, R. Sarkar, S. Mitra, M. Lo, S. Dutta, M. Chawla-Sarkar, The novel coronavirus
230 enigma: Phylogeny and analyses of coevolving mutations among the sars-cov-2 viruses circulating
231 in india, JMIR Bioinformatics and Biotechnology 1 (2020) e20735.

232 [16] E. Foy, K. Li, C. Wang, R. Sumpter, M. Ikeda, S. M. Lemon, M. Gale, Regulation of interferon
233 regulatory factor-3 by the hepatitis c virus serine protease, Science 300 (2003) 1145–1148.

234 [17] I. Astuti, et al., Severe acute respiratory syndrome coronavirus 2 (sars-cov-2): An overview of
235 viral structure and host response, Diabetes & Metabolic Syndrome: Clinical Research & Reviews
236 (2020).

237 [18] M. Eaaswarkhanth, A. Al Madhoun, F. Al-Mulla, Could the d614 g substitution in the sars-cov-2
238 spike (s) protein be associated with higher covid-19 mortality?, International Journal of Infectious
239 Diseases (2020).

240 [19] S. S. Hassan, P. P. Choudhury, P. Basu, S. S. Jana, Molecular conservation and differential
241 mutation on orf3a gene in indian sars-cov2 genomes, Genomics (2020).

242 [20] F. Pereira, Evolutionary dynamics of the sars-cov-2 orf8 accessory gene, Infection, Genetics and
243 Evolution 85 (2020) 104525.

244 [21] S. M. Lokman, M. Rasheduzzaman, A. Salauddin, R. Barua, A. Y. Tanzina, M. H. Rumi, M. I.
245 Hossain, A. Z. Siddiki, A. Mannan, M. M. Hasan, Exploring the genomic and proteomic varia-
246 tions of sars-cov-2 spike glycoprotein: a computational biology approach, Infection, Genetics and
247 Evolution (2020) 104389.

248 [22] B. K. Kumar, A. Rohit, K. S. Prithvisagar, P. Rai, I. Karunasagar, I. Karunasagar, Deletion in
249 the c-terminal region of the envelope glycoprotein in some of the indian sars-cov-2 genome, Virus
250 Research (2020) 198222.

251 [23] R. Dutta, L. Buragohain, P. Borah, Analysis of codon usage of severe acute respiratory syndrome
252 corona virus 2 (sars-cov-2) and its adaptability in dog, Virus research 288 (2020) 198113.

253 [24] I. Saha, N. Ghosh, D. Maity, N. Sharma, K. Mitra, Inferring the genetic variability in indian
254 sars-cov-2 genomes using consensus of multiple sequence alignment techniques, Infection, Genetics
255 and Evolution 85 (2020) 104522.

256 [25] S. S. Hassan, P. P. Choudhury, B. Roy, S. S. Jana, Missense mutations in sars-cov2 genomes from
257 indian patients (2020).

258 [26] S. S. Hassan, P. P. Choudhury, B. Roy, Sars-cov2 envelope protein: non-synonymous mutations
259 and its consequences (2020).

260 [27] J.-Y. Li, C.-H. Liao, Q. Wang, Y.-J. Tan, R. Luo, Y. Qiu, X.-Y. Ge, The orf6, orf8 and nucleocapsid
261 proteins of sars-cov-2 inhibit type i interferon signaling pathway, Virus research 286 (2020) 198074.

262 [28] S. Weber, C. Ramirez, W. Doerfler, Signal hotspot mutations in sars-cov-2 genomes evolve as
263 the virus spreads and actively replicates in different parts of the world, Virus research 289 (2020)
264 198170.

265 [29] L. Li, T. Sun, Y. He, W. Li, Y. Fan, J. Zhang, Epitope-based peptide vaccines predicted against
266 novel coronavirus disease caused by sars-cov-2, BioRxiv (2020).

267 [30] Q. Nie, X. Li, W. Chen, D. Liu, Y. Chen, H. Li, D. Li, M. Tian, W. Tan, J. Zai, Phylogenetic and
268 phylodynamic analyses of sars-cov-2, Virus research 287 (2020) 198098.

269 [31] P. Priya, A. Shanker, Coevolutionary forces shaping the fitness of sars-cov-2 spike glycoprotein
270 against human receptor ace2, Infection, Genetics and Evolution (2020) 104646.

271 [32] M. B. Uddin, M. Hasan, A. Harun-Al-Rashid, M. I. Ahsan, M. A. S. Imran, S. S. U. Ahmed,
272 Ancestral origin, antigenic resemblance and epidemiological insights of novel coronavirus (sars-
273 cov-2): Global burden and bangladesh perspective, *Infection, Genetics and Evolution* 84 (2020)
274 104440.

275 [33] M. Seyran, D. Pizzol, P. Adadi, T. M. A. El-Aziz, S. S. Hassan, A. Soares, R. Kandimalla, K. Lund-
276 strom, M. Tambuwala, A. A. Aljabali, et al., Questions concerning the proximal origin of sars-cov-2,
277 *Journal of Medical Virology* (2020).

278 [34] D. Mercatelli, F. M. Giorgi, Geographic and genomic distribution of sars-cov-2 mutations (2020).

279 [35] C. Yi, X. Sun, J. Ye, L. Ding, M. Liu, Z. Yang, X. Lu, Y. Zhang, L. Ma, W. Gu, et al., Key
280 residues of the receptor binding motif in the spike protein of sars-cov-2 that interact with ace2 and
281 neutralizing antibodies, *Cellular & Molecular Immunology* (2020) 1–10.

282 [36] K. Boonnak, Y. Matsuoka, W. Wang, A. L. Sugitan, Z. Chen, M. Paskel, M. Baz, I. Moore,
283 H. Jin, K. Subbarao, Development of clade-specific and broadly reactive live attenuated influenza
284 virus vaccines against rapidly evolving h5 subtype viruses, *Journal of Virology* 91 (2017).

285 [37] Y. Choi, A. P. Chan, Provean web server: a tool to predict the functional effect of amino acid
286 substitutions and indels, *Bioinformatics* 31 (2015) 2745–2747.

287 [38] E. Capriotti, P. Fariselli, R. Casadio, I-mutant2. 0: predicting stability changes upon mutation
288 from the protein sequence or structure, *Nucleic acids research* 33 (2005) W306–W310.

289 [39] Y. Choi, G. E. Sims, S. Murphy, J. R. Miller, A. P. Chan, Predicting the functional effect of amino
290 acid substitutions and indels, *PloS one* 7 (2012) e46688.

291 [40] E. Capriotti, P. Fariselli, I. Rossi, R. Casadio, A three-state prediction of single point mutations
292 on protein stability changes, *BMC bioinformatics* 9 (2008) S6.

293 [41] S. Chun, J. C. Fay, Identification of deleterious mutations within three human genomes, *Genome*
294 *research* 19 (2009) 1553–1561.

295 **Competing interests**

296 The authors declare no competing interests.

297 **Supporting information**

298 *Table S1.* Country-wise specifications of isolates with the clades they belong to.

299 *Table S2.* Identifying mutations at different protein regions of the dataset taken.