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Abstr act

Chromatin spatial organization (interactome) plays a critical role in genome function. Deep understanding of chromatin interactome
can shed insights into transcriptional regulation mechanisms and human disease pathology. One essential task in the analysis of
chromatin interactomic data is to identify long-range chromatin interactions. Existing approaches, such as HiICCUPS, FitHiC/FitHiC2
and FastHiC, are all designed for analyzing individual cell types or samples. None of them accounts for unbalanced sequencing depths
and heterogeneity among multiple cell types or samples in a unified statistical framework. To fill in the gap, we have developed a
novel statistical framework MUNIn (M ultiple sample UNifying long-range chromatin | nteraction detector) for identifying long-range
chromatin interactions from multiple samples. MUNIn adopts a hierarchical hidden Markov random field (H-HMRF) model, in which
the status (peak or background) of each interacting chromatin loci pair depends not only on the status of loci pairs in its neighborhood
region, but also on the status of the same loci pair in other samples. To benchmark the performance of MUNIn, we performed
comprehensive simulation studies and real data analysis, and showed that MUNIn can achieve much lower false positive rates for
detecting sample-specific interactions (33.1 - 36.2%), and much enhanced statistical power for detecting shared peaks (up to 74.3%),
compared to uni-sample analysis. Our data demonstrated that MUNInN is a useful tool for the integrative analysis of interactomic data

from multiple samples.

Introduction
Chromatin spatial organization plays a critical role in genome function associated with many important biological processes including
transcription, DNA replication, and development.>? Recently, the ENCODE and the NIH Roadmap Epigenomics projects have
identified millions of cis-regulatory elements (CREs; e.g., enhancers, silencers and insulators) in mammalian genomes. Notably, the
majority of genes are not regulated by CREs in one-dimensional (1D) close vicinity. Instead, by forming three-dimensional (3D) long-
range chromatin interactions, CREs are able to regulate the expression of genes hundreds of kilobases (kb) away. Deep understanding
of chromatin interactome can shed light on gene regulation mechanisms, and reveal functionally causal genes underlying human
complex diseases and traits. Comprehensive characterization of chromatin interactome has become an active research area since the
development of Hi-C technology in 2009.% Later on, Hi-C and other chromatin conformation capture (3C)-derived technologies (e.g.,
capture Hi-C, ChlA-PET, PLAC-Seq and HiChlP) have been widely used and great strides have been made to link chromatin
interactome to mechanisms of transcriptional regulation and complex human diseases, including autoimmune diseases,
neuropsychiatric disorders and cancers.*”

Recent studies have shown that interactomes are highly dynamic across tissues, cell types, cell lines, experimental conditions,
environmental triggers, and/or biological samples.®® Better characterization of such interactomic dynamics will substantially advance

our understanding of transcription regulation across these conditions. To achieve this goal, one could use methods developed for
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single sample (for brevity, we use samples to denote multiple datasets across tissues, cell types, cell lines, experimental conditions,
etc). However, such uni-sample analysis would fail to borrow information across samples, thus lose information for shared features, as
well as resulting in false positives for sample-specific features. Presumably, as shown in eQTL analysis, shared (among at least two
cell types) features typically contribute to a considerable proportion and increase with the number of cell types measured.”® For
delineating shared and sample-specific features, Bayesian modeling has been shown repeatedly to boast the advantage of adaptively
borrowing information such that little power loss incurs for sample-specific features while power to detect shared features increases
substantially, as demonstrated in many genomic applications including gene expression, GWAS, ChlP-seg, population genetics, and
microbiome. "

In this paper, we focus on the identification of dtatistically significant long-range chromatin interactions (“peaks’ for short)
from Hi-C data generated from multiple samples. The primary goa is the detection of both shared (i.e., shared by more than one
samples) and sample-specific peaks. Existing Hi-C peak calling methods, such as HiCCUPS,*® FitHiC/FitHiC2'"*® and FastHiC,™ are
al designed for calling peaks from single sample. None of them is able to account for unbalanced sequencing depths and
heterogeneity among multiple samples in a unified statistical framework. To fill in the methodological gap, we propose MUNIn
(M ultiple-sample unifying long-range chromatin interaction detector) for multiple samples Hi-C peak calling analysis. MUNIn adopts
a hierarchical hidden Markov random field (H-HMRF) model, an extension of our previous HMRF peak caller.® Specifically, in
MUNInN, the status of each interacting chromatin loci pair (peak or background) depends not only on the status of loci pairs in its
neighborhood region, but also on the status of the same loci pair in other closely related samples (Figure 1). Compared to uni-sample
analysis, the H-HMRF approach adopted by MUNIn has the following three key advantages: (1) MUNIn can achieve lower false
positive rates for the detection of sample-specific peaks. (2) MUNIn can achieve high power for the detection of shared peaks. (3)
MUNIn can borrow information across al samples proportional to the corresponding sequencing depths. We have conducted

comprehensive simulation studies and real data anaysis to showcase the advantages of MUNIn over other Hi-C peak calling

approaches.

Materials and methods

Overview of Statistical M odeling of MUNIn

Let x; and e; j, represent the observed and expected chromatin contact frequency spanning between bin i and bin j in sample
(1<i<j<N,1<k<K), respectively, where N is the total number of bins, and K is the total number of samples. ¢;jy is pre-
calculated by FitHiC." Briefly, FitHiC used a non-parametric approach to estimate the empirical null distribution of contact frequency
(detailed in Supplemental Section 1). We assume that x; ;. follows a negative binomial (NB) distribution with mean y; ;, and over-

dispersion ¢,
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log(u;ji) = log(eji) + I(zijk = 1)9k. (@D}

Here z;;, € {—1,1} is the peak indicator for bin pair (i,j), where z;;, = 1 indicates (i, j) is a peak in sample k and z;, = —1
otherwise. 8, is the signal-to-noise ratio in sample k. In other word, if (i, j) is a peak in sample k, x; ;. follows the NB distribution
NB(e;jx * exp{6i}, $i). If (i, ) is abackground (i.e., non-peak) in sample k, x; ;. follows the NB distribution NB(e; ik, ¢).

Then, we use afull Bayesian approach for statistical inference, and assign priorsfor all parameters (z; ., 8y, ¢). Specificaly,
we adopt a hierarchical Ising prior to simultaneously model spatial dependency among z; ;' s within the same sample (i.e., for z; j,
borrowing information fromz;:,.: {|i" — i| + |j" — j| = 1}), and the dependency across sample for the same pair (i.e., borrowing
information from z;;,» withk' € {1, ...,k — 1,k + 1, ...,K}). First of all, to model spatial dependency of peak indicator within sample

k, we assume that:

P ({Zijk}15i<j5N lpk»Vk) = C(Vi, Wi) * exp{¥i Tasicjen I Gije = 1) + Wi Xjir—ite1j/—j1=1 Zijic * Zi’j’k}a 2

where Y, > 0 is the inverse temperature parameter modeling the level the spatial dependency in sample k, y,, models the peak
proportion in sample k, and C (v, ¥y,) is the normalization constant. In addition, we model the heterogeneity of peak statusfor agiven
bin pair (i,j) among multiple samples, where the vector z;;. £ (71, %;j2, -, Zijx) can take 2K possible configurations. We model
them using a multinomia distribution Mult(1,a) £ Mult(1, ;1 1, 1} ¥1,-1, -1 > X11,13) - HEre a_y 4 _q; is the
probability that the (i, j) pair is background in al K samples, a1, 4y is the probability that the (¢, j) pair is a peak in the first
sample, but background in all the other K — 1 samples, and similarly a(; ; 4, is the probability that the (i, /) pair is a peak in all

K samples. Let ny,; represent the frequency of a specific configuration gy Thejoint distribution is as follows:

p ({Zij.}1$i<jsN|a) = Hzi}-,E{—l,l}K az:” (3)
In this prior distribution, the peak probability of the (i, ) pair in sample k (z;,) depends on the status of same (i, /) pair in the other
K — 1 samples:

HZijrZijlonZijK} (@

P(Zijic|7ij-10 @) =
a{zijl'""Zijk""'zin}+a{zijlf"'_Zijk""'zin}

From the Bayes formulation, we have the joint posterior distribution as follows:
P(Ziij 9k'¢k'¢k,)/k|xijk'eijk) o P(xijk|eiij Zijk, O b)) * P(Zijkll/}k'ykJ ) * Prior(6y) * Prior(¢y) * Prior(i;) * Prior(y;). (5)
We used uniform prior distributions for 8, ¢, ¥, i, wWhich were initialized from estimates from uni-sample analysis in our
implementation (Supplemental Section 2 and Section 3). One key computational challenge is that in the proposed hierarchical Ising
prior, the normalization constant involves y,, v, and a is computationally prohibitive, since evaluating such normalization constant

requires evaluating all 2¥*V(V-1/2 possible configurations of the peak indicator {z; . },. To address this challenge, we adopt a pseudo-
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likelihood approach, using the product of margina likelihood to approximate the full joint likelihood. We have shown that such
approximation leads to gains in both statistical and computational efficiency.’ Let {z_i_j} denote the set {z;,;,,|i" # i,j" # j} and
{zij—«} denotethe set { z; ;| k' # k}, the posterior probability can be approximated by:
p({zijk}w)k'yk; a) x H]k{=1 H15i<jsN P(Zijk|{z—i,—j,k}'ll’k;)/k) * p(zijk|{zij,—k}' “)-(6)
We use the Gibbs sampling algorithm to iteratively update each parameter. Details of statistical inference can be found in

Supplemental Section 2.

Simulation Framework

To benchmark the performance of MUNInN, we first performed simulation studies with three samples, where each sample represents a
cell type, considering two scenarios. 1) all three samples had the same sequencing depth, and 2) the sequencing depth in sample 3 was
half of that in sample 1 and sample 2. Each simulated sample consisted of a 100 x 100 contact matrix. To ensure the three samples
were symmetric, we first simulated the peak status for one “hidden” sample using the Ising prior, where the two parametersy, was
set to 0.2 and y,, was set to {0, -0.02, -0.05, -0.2, -0.4}, respectively. 10,000 Gibbs sampling steps were carried out to update peak
status. Let: py = P(z;jx = 0]z = 0) and p, = P(z;x = 1|z, = 1) denote the level of dependence across samples. The peak
status of the three testing samples were simulated from the hidden sample following three different sample-dependence levels
Po=p; =0.5,0.8, or 0.9, where p, = p, = 0.5 indicates the peak status of three samples are independent, while p, = p, =
0.8 or 0.9 indicate the peak status of three samples are of median and high correlation. To simulate Hi-C data with equal sequencing
depth, we specified expected contact frequency for the bin pair (i, j) to be inversely proportional to the genomic distance between two

interacting anchor bins, following the same formulain each sample k (note the formula does not depend on k):
ei,.k=]f*—_°l, (1<i<j<100),
To simulate Hi-C data with different sequencing depths, we defined the expected count for bin pair (i, j) in sample 3 as:
20 . .
eijs = (1<i<j<100).
Next, we simulated the observed count from a negative binomial distribution:
O (Z;ig+1)
NB (e exp {F27=1, ).
Here, the signal-to-noise ratio parameter 8, and the over-dispersion parameter ¢, were set to be 1.5 and 10.0, respectively.
Simulations under each scenario were performed 100 times with different random seeds. We then applied both MUNIn and
uni-sample analysis using single sasmple HMRF model (detailed in Supplemental Section 3) on simulated data of each scenario. The

peak status was identified from the simulated data using both MUNIn and uni-sample method, and compared to the ground truth. ROC

curve was computed using the pROC package.” Furthermore, the performance of MUNIn was also evaluated according to the overall
5
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percentage of error in peak status z;,, and the power and type | error for four types of pesk status (i.e., shared, samplel-specific,

sample2-specific and sample3-specific peaks), respectively.

Performance evaluation
To evaluate the performance of MUNInN in real data, we first compared MUNIn to uni-sample analysis to two biological replicates of
Hi-C data from human embryonic stem cells at 10kb resolution? (Table S1), where the peak status is expected to be highly similar.
For each biological replicate, both methods were implemented for peak calling within each topologically associating domain (TAD) of
chromosome 1, where TADs were directly obtained from the original paper defined by the insulation score? To measure the
consistency between these two replicates, we computed Adjusted Rand Index (ARI)Z for the peak status within each TAD.
Additionally, we also analyzed Hi-C data from two different cell lines, GM 12878 and IMR90 at 10kb resolution™® (Table S1),
again using both MUNIn and uni-sample analysis. Analyses were performed with each TAD in all chromosomes. Since some TAD
boundaries are different between GM 12878 and IMR90, we first defined the overlapped TAD regions as the shared TADs between
two samples, and only retained the shared TADs spanning at least 200kb for the downstream analysis. Sample dependency was
inferred for each TAD based on the results of uni-sample analysis. Since there is no ground truth for peaks, we selected significant
chromatin interactions (p-value < 0.01 and raw interaction frequency > 5) identified by promoter-capture Hi-C (PC-HiC)° in
GM 12878 and IMR90 cells as the working truth (T able S1). Since significant interactions identified from PC-HiC data are enriched of
promoters, we filtered our significant peaks to only remain bin pairs where at least one of two bins overlaps with a promoter. The
detailed evaluation framework is in Supplemental Section 4. We did additional performance evaluation by running MUNIn by a
dliding window approach instead of shared TADs, and we aso performed peak calling on samples under different conditions from
mouse embryonic stem cells for both wild-type (without CTCF depletion) and after CTCF deletion resolution® (Table Si;

Supplemental Section 5).

Results

Simulation results

To evauate the performance of MUNInN, we first conducted simulation studies with three samples, considering two scenarios: (1) all
three samples have equal sequencing depth, and (2) the sequencing depth in sample 3 is half of that in sample 1 and 2. In both
scenarios, MUNIn outperforms uni-sample analysis (Figures 2-3; Figures S1-34). In the first scenario, when all three samples are
independent (p, = p, = 0.5), MUNIn achieves comparable results to uni-sample analysis, where the medians of the overall error rate
(denoted as “%error”) in peak identification of MUNInN range from 16.3 to 16.4% and those of uni-sample analysis are 17.2 - 17.3%

(Figure 2a). With increased sample dependency, MUNIn achieves lower %error than uni-sample analysis. When the sample
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dependency becomes high, MUNIn reduces %error by approximately 30.3% on top of uni-sample results (11.9 - 12.0% for MUNIn
and 17.0 - 17.2% for uni-sample analysis) (Figure 2a). We then assessed the power and type | error for detecting shared and sample-
specific peaks by MUNIN and uni-sample anaysis. When three samples are highly correlated, MUNIn achieves substantial power gain
in shared peaks across samples than uni-sample analysis (85.9% vs. 54.1%; Figure 2c), at the cost of a slight increase in error rate
(20.6% vs. 9.1%; Figure 2d). In addition, MUNIn reduces the type | error in calling sample-specific peaks by 33.1 - 34.3% on the top
of uni-sample results (45.5 - 46.3% vs. 69.3 - 69.5%; Figure Sla), at the cost of power loss (36.4 - 37.1% vs. 57.3 - 58.5%; Figure
S1b). The ROC curves showed that MUNIN better detects shared peaks than uni-sample analysis (Figure 2b), and these two methods
performed comparably in sample-specific peaks (Figure S2).

Furthermore, when three samples are with different sequencing depths, we observe consistent patterns that MUNIn
outperforms uni-sample analysis, especially for sample 3 with shallower sequencing depth (Figure 3; Figures S3-$4). Similar to
scenario 1, the ROC curves show that MUNIn exhibits better calling in shared peaks (Figure 3b). Consistently, MUNIn substantially
improves the power in calling shared peaks than uni-sample analysis (84.0% vs 48.2% by MUNIn and uni-sample analysis,
respectively) with a dightly increase of type | error (22.7% vs 11.4%) (Figure 3c; Figure 3d). More importantly, MUNIn achieves
36.2% reduction of %error for sample 3 with shallower sequencing depth on the top of uni-sample analysis results with high sample
dependence (15.7% vs 24.6%; Figure 3a). MUNIn aso attains lower type | error in calling sample3-specific peaks (51.1% vs 74.4%)
with aloss in power (26.7% vs 48.1%) (Figure S3a; Figure S3b). These results indicate that MUNIN can accurately identify peaksin
the shallowly sequenced sample by adaptively borrowing information from deeply sequenced samples. We further evaluated the
robustness and scalability of MUNIN using simulation data where we evaluated results with non-zerosy, s and increased sample size

(Supplemental Section 5; Figure S5 and S6).

Real data analysis
To assess the performance of MUNInN in rea data, we compared the consistency of peaks status between two replicates of human
embryonic stem cells between MUNIN and uni-sample analysis. Comparatively, the ARI values of MUNIn are significantly higher
than those of uni-sample analysis (Wilcoxon test, p-value < 2.2e-16; Figure 4; Figure S7). Specificaly, the median value of ARI in
MUNInN is 0.993, which shows 48.9% improvement over that of uni-sample analysis (Figure S7). Our results suggest improved
consistency between two replicates by MUNIn, compared to uni-sample analysis.

We further compared the accuracy of peak calling in GM12878 and IMR90 cell lines between MUNIn and uni-sample
analysis. In total, 439,412 and 432,394 shared peaks were detected by MUNIn and uni-sample analysis, respectively, 376,658 of
which were shared by both methods (85.7 and 87.1% of the shared peaks identified MUNINn and uni-sample analysis, respectively)

(Figure S8a). 217,400 and 82,614 GM 12878 and IMR90-specific peaks were identified by MUNIn, while 315,849 and 141,708
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GM 12878 and IMR90-specific peaks were detected by uni-sample analysis. Among them, 77.5 and 75.7% of GM 12878- and IMR90-
specfic peaks called by MUNIn were also identified by uni-sample analysis (Figure S8b and c). The ROC curves show that MUNIn
obtains more accurate results for both GM 12878 and IMR90-specific peaks (Figure 5a and d), while its performance in shared peaks
is comparable to uni-sample analysis (Figure S9). The area under the curve (AUC) for GM12878 and IMR90-specific peaks of
MUNIn increases by 3.0% and 4.5%, respectively, on top of uni-sample analysis (Figure 5a and d). One example of GM12878-
specific peak exclusively identified by MUNIn is shown in Figure 5b (Figure S10). One bin of this pair is overlapped with the
promoter of ZNF827 gene (transcription start site (TSS) +/- 500 bp), while the other is overlapped with a known typical enhancer in
GM 12878 cells (Figure S11).* In addition, ZNF827 showed higher gene expression in GM 12878 cells than in IMR90 cells (Figure
5¢), which further suggests the potential role of this GM12878-specific peak in cell-type-specific transcriptional regulation gene.
Similarly, the MUNIn-exclusively identified peak between bins chr4:95,000,000-95,010,000 and chr4:95,170,000-95,180,000 is
specific to IMR90, which is involved in the regulation of F3 gene (Figure 5e; Figure S12). F3 gene encodes the tissue factor
coagulation factor 111 and it is usually expressed in the fibroblasts surrounding blood vessels. Consistently, we observed a higher
expression level of F3 genein IMR9O0 cells than in GM 12878 cells (Figure 5f). Additional real data evaluation also showed value of
borrowing information across samples where we compared MUNInN to uni-sample analysis and FitHiC (Supplemental Section 5;

Figure S13-S17).

Discussion
In this study, we present MUNIn, a statistical framework to identify long-range chromatin interactions for Hi-C data from multiple
tissues, cell lines or cell types. MUNIn is built on our previously developed methods, HMRF peak caller and FastHiC.**% On top of
HMRF, MUNIn jointly models multiple samples and explicitly accounts for the dependency across samples. It simultaneously
accounts for both spatial dependency within each sample, and dependency across samples. By adaptively borrowing information in
both aspects, MUNIn can enhance the power of detecting shared peaks, and reducetype | error of detecting sample-specific peaks.
MUNIn exhibits substantial advantages in calling peaks shared across samples compared to uni-sample analysis (Figure 2b),
which are more pronounced with the increased level of across sample dependency. In addition, with imbalanced sequencing depth
among different samples, uni-sample analysis may mis-classify shared peaks as sample-specific due to differential power across
samples. Comparatively, MUNIn can more accurately identify shared peaks (Figure 3b). Noticeably, MUNIn resulted in reduced false
positives when calling sample-specific peaks for the sample with shallower depth (Figure S3a). This is because MUNIn can borrow
information from samples with higher sequencing depth based on the level of dependency across samples, which is also learned from
the data. In our real data evaluations, MUNIn aso outperformed uni-sample analysis. Specifically, for Hi-C data from human

embryonic stem cells, MUNIn exhibited significantly higher consistency between the two biological replicates than the uni-sample
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analysis (Figure 4; Figure S7). For Hi-C data from GM 12878 and IMR90 cell lines, MUNIn more accurately identified cell-line
specific peaks, in terms of both sensitivity and specificity (Figure 5a and d). In addition, GM12878- and IMR90-specific peaks
exclusively identified by MUNIn showed in Figure 5 may play a potential role in regulating gene ZNF827 and gene F3 respectively,
which are differentially expressed between these two cell lines in the expected direction (Figure 5c and f). In our real data analysis,
we ran MUNIn in shared TADs across samples instead of the whole chromosomes. We realized that regions outside of TADs or TADs
that are not shared across samples may contain sample specific peaks, therefore we re-ran the analysis including those regions by a
dliding window approach (Figure S13; Supplemental Section 5). Our results suggested that including those regions did not have a
significant impact of the performance of MUNIn (Figure S13). Additionally, we assessed MUNIN's performance on the Hi-C datasets
from mouse embryonic stem cells for both wild-type (without CTCF depletion) and after CTCF deletion at 10kb resolution® (Table
S1). The results showed that MUNIN better captured the wild-type-specific pattern in mESC Hi-C data than uni-sample analysis and
FitHiC (Figure S14 and S15; Supplemental Section 5), demongtrating the power of MUNInN to reveal peaks more powerfully and
accurately by borrowing information from another sample.

Taking the advantages of jointly modeling multiple samples, MUNIN can easily accommodate many more samples
simultaneously. MUNIn shows a high computational efficiency that MUNInN takes ~36 minutes to perform peak calling in a 2MB
TAD of 10kb resolution (Figure S16 and S17; Supplemental Section 5). Moreover, MUNIn is aso able to handle multiple samples
with differential levels of dependency, for example, when samples forming clusters where samples within a cluster are more correlated
than those across clusters. The MUNIn framework can be further extended to accommodate time series chromatin conformation data,
which will be explored in our future work. Although MUNIn simultaneously models multiple samples, we note that the goal is to
detect chromatin interactions of various peak status configurations across samples, rather than differential interactions. Theoretically,
while the posterior probabilities of the peak status configurations can inform differential interactions, it is not our objective here and
can be adirection for further exploration.

Taken together, our results show the advantages of MUNIn over the uni-sample approach when analyzing data from multiple
samples. By adaptively borrowing information both within and across samples, MUNIn can achieve much improved power in
detecting shared peaks, and much reduced type | error in detecting sample-specific peaks. MUNIN's ability to reduce false positive
sample-specific peak calls due to imbalanced sequencing depths across samples is aso appealing. Finally, MUNIn can more
effectively identify biologically relevant chromatin interactions with better sensitivity than the uni-sample strategy. We anticipate that

MUNIn will become a convenient and essential tool in the analysis of multi-sample chromatin spatial organization data.

Data and code availability
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Figure legends

Figure 1. Statistical Schematics of MUNIN. In MUNIN, the chromatin interaction status (illustrated with question marks) of each loci
pair (i, j) in a sample depends on not only the status of loci pairs in its neighborhood region (red blocks), but aso the status of the
same loci pair in other samples. Specifically, we model sample dependency by a, where the status of the (i, j)th pair in sample K, z; j,
depends on the status of the same (i, j)th pair in the other K-1 samples, given by the formula shown in the figure. Dependency on
neighboring loci pairs captured by the hierarchical Ising prior. See Methods and Supplemental Section 1 for details.

Figure 2. Performance comparison between MUNINn and uni-sample analysis in the simulation data where all three samples have
equal sequencing depth. (a) The overall error rate (denoted as “%error”) in peak identification in each sample using MUNIn and uni-
sample analysis. (b) ROC curves for shared peaks identified by MUNINn and uni-sample analysis. (c) Power for the shared peaks
identified using MUNIn and uni-sample analysis. (d) False positive rate for the shared peaks identified by MUNIn and uni-sample
analysis.

Figure 3. Performance comparison between MUNIn and uni-sample analysis in the simulation data where the sequencing depth in
sample 3 is half of that in sample 1 and 2. (a) The overall error rate (denoted as “%error”) in peak identification in each sample using
MUNIn and uni-sample analysis. (b) ROC curves for shared peaks identified by MUNIn and uni-sample analysis. (c) Power for the
shared peaks identified using MUNIn and uni-sample analysis. (d) False positive rate for the shared peaks identified by MUNIn and
uni-sample analysis.

Figure 4. Adjusted Rand Index (ARI) showing the consistency of peak calling by MUNIn and uni-sample analysis between the two
replicates of human embryonic stem cells. Each triangle represents a TAD. The x- and y-axis: ARI of uni-sample analysis and MUNIn,
respectively.

Figure 5. Performance comparison between MUNIn and uni-sample analysis in the Hi-C data of GM 12878 and IMR90 cell lines. (a)
ROC for GM 12878-specfic peaks identified by MUNIn and uni-sample analysis. (b) Heatmap showing one example of the GM12878-
specific peaks in GM 12878 (left) and IMR90 (right) Hi-C data. One bin of this pair (highlighted in black) is overlapped with the
promoter of ZNF827 gene (transcription start site (TSS) +/- 500 bp), while the other is overlapped with a known typical enhancer
(chr4:146,975,287-146,985,319) in GM 12878 cells. Gene mode! is obtained from WashU epigenome browser.? (c) Gene expression
profiles of ZNF827 in GM 12878 and IMR90 cells. (d) ROC for IMR90-specfic peaks identified by MUNIn and uni-sample analysis.
(e) Heatmap showing one example of the IMR90-specific peaks in GM 12878 (left) and IMR9O0 (right) Hi-C data. One bin of this pair
(highlighted in black) is overlapped with the promoter of F3 gene, while the other is overlapped with a known typical enhancer
(chrl:227,980,777-227,982,835) in IMR90 cells. Gene mode is obtained from WashU epigenome browser. (f) Gene expression
profiles of F3 genein GM 12878 and IMR90 cell lines.
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