

1 **Nuclear lamin A/C promotes cancer cell survival and lung metastasis without
2 restricting transendothelial migration**

3

4 Francesco Roncato¹, Ofer Regev¹, Sara W. Feigelson¹, Sandeep Kumar Yadav¹, Lukasz
5 Kaczmarczyk², Nehora Levi², Diana Drago-Garcia³, Samuel Ovadia¹, Marina Kizner¹, Yoseph
6 Addadi⁴, João C. Sabino⁵, Yossi Ovadya⁶, Sérgio F. de Almeida⁵, Ester Feldmesser⁴, Gabi
7 Gerlitz² and Ronen Alon^{1*}

8

9 1 Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel

10 2 Department of Molecular Biology, Ariel University, Kiryat Hamada, Ariel, 40700, Israel

11 3 Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel

12 4 Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 76100, Israel

13 5 Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da
14 Universidade de Lisboa, Lisboa, 1649-028, Portugal.

15 6 Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel

16

17 *For correspondence: ronen.alon@weizmann.ac.il

18 **Abstract**

19 The mechanisms by which the nuclear lamina of tumor cells controls their migration and
20 survival are poorly understood. Lamin A and its variant lamin C are key nuclear lamina proteins
21 that control nucleus stiffness and chromatin conformation. Downregulation of lamin A/C levels
22 in two metastatic lines, B16F10 melanoma and E0771 breast carcinoma, facilitated cell
23 squeezing through rigid pores, elevated nuclear deformability and reduced heterochromatin.

24 Unexpectedly, the transendothelial migration of both cancer cells in vitro and in vivo, through
25 lung capillaries, was not elevated by lamin A/C knockdown. Both cancer cells with lamin A/C
26 knockdown grew normally in primary tumors and in vitro on rigid surfaces. Strikingly, however,
27 both lamin A/C deficient melanoma and breast cancer cells grew poorly in 3D spheroids

28 expanded in soft agar cultures. Experimental lung metastasis of both lamin A/C knockdown
29 cells was also markedly reduced. Taken together, our results suggest that high content of
30 lamin A/C in multiple cancer cells promotes cancer cell survival and ability to generate lung
31 metastasis without compromising cancer cell emigration from lung vessels.

32

33 **Introduction**

34 The nucleus is the largest and stiffest organelle in all cells and therefore imposes the main
35 barrier for cell crossing of cellular and mechanically resistant extracellular barriers (Burke &
36 Stewart, 2013; Friedl, Wolf, & Lammerding, 2011; Fruleux & Hawkins, 2016). The nucleus
37 must undergo various shape changes during cell migration through cellular and extracellular
38 barriers (Friedl et al., 2011). Lamin A and its splice variant lamin C are key nuclear lamina
39 intermediate filament proteins that control nucleus stiffness (Burke & Stewart, 2013;
40 Lammerding et al., 2006; Roman et al., 2017; Shin et al., 2013), and regulate chromatin
41 conformation and accessibility (Bronshtein et al., 2015; Towbin, Meister, & Gasser, 2009). A-
42 type lamins also control nuclear crosstalk with all types of the cell cytoskeleton, including
43 microtubules and actin filaments (Chambliss et al., 2013; Chang, Folker, Worman, &
44 Gundersen, 2013; Etienne-Manneville & Lammerding, 2017; Khatau et al., 2009; Lombardi &
45 Lammerding, 2011), and thereby regulate nuclear location and response to mechanical
46 signals from the extracellular environment (Borrego-Pinto et al., 2012; Gonzalez-Granado et
47 al., 2014; Graham et al., 2018; Kim & Wirtz, 2015; Kirby & Lammerding, 2018; Swift et al.,
48 2013).

49 Alterations in nuclear lamina stiffness can take place by various DNA damaging
50 processes including the recently described nuclear autophagy, nucleophagy (Dou et al., 2015)
51 or by genetic changes (J. L. V. Broers & Ramaekers, 2014). The latter changes can be
52 experimentally introduced by controlled suppression or overexpression of lamin A/C and such
53 changes have been studied in different types of cells migrating through variably rigid
54 confinements in vitro and in vivo (C. M. Denais et al., 2016). The soft nuclei of most leukocytes

55 contain low levels of lamin A/C and high levels of other lamins, primarily of the B type (Shin et
56 al., 2013). The low ratio of A and B lamins allows leukocytes to undergo massive and rapid
57 deformation during fast squeezing through vascular endothelial junctions and collagenous
58 interstitial spaces (Yadav et al., 2018). How nuclear squeezing is regulated in solid cancer
59 cells migrating through variable interstitial ECM barriers and constricted vascular spaces is
60 only partially understood (C. M. Denais et al., 2016; Raab et al., 2016; Wolf et al., 2013). In
61 contrast to leukocyte nuclei which express very low levels of lamins A/C, the nuclei of variably
62 invasive metastatic tumor cells of mesenchymal origin is predicted to contain higher levels of
63 these lamins and are therefore generally more stiff, potentially imposing higher restrictions on
64 the ability of these cells to cross endothelial junctions and interstitial barriers (Cao et al., 2016).
65 The cytoskeleton of endothelial cells which comprise the major barriers for nuclear squeezing
66 is, however, fairly elastic and contractile (Barzilai et al., 2017; Heemskerk et al., 2016). In
67 contrast, although collagenous barriers can undergo extensive remodeling by cell-generated
68 forces and proteolysis (Infante et al., 2018) solid tumor cells with high lamin A/C content might
69 less efficiently cope with these barriers than with endothelial barriers (Yadav et al., 2018).
70 Support for this idea was recently provided by experiments with leukocytes overexpressing
71 lamin A: a 10-fold increase in the ratio of lamin A to lamin B dramatically restricted leukocyte
72 nuclear squeezing through rigid pores and dense collagenous barriers but was largely
73 permissive for leukocyte transendothelial migration (Yadav et al., 2018).

74 Lamins A/C are also involved in chromatin conformation and epigenetics via their
75 interactions with heterochromatin, transcriptionally repressed tightly folded chromatin tethered
76 to the nuclear lamina (Becker, Nicetto, & Zaret, 2016; Dechat, Adam, Taimen, Shimi, &
77 Goldman, 2010; Harr et al., 2015). Nevertheless, the direct contributions of lamins to cancer
78 cell migration, growth, and malignancy have been in debate (J. L. V. Broers & Ramaekers,
79 2014). On one hand, lamin A/C expression is reduced in several solid cancers and cancer
80 progression was suggested to correlate with lower lamin A/C expression (Bell & Lammerding,
81 2016; C. Denais & Lammerding, 2014; Kaufmann, Mabry, Jasti, & Shaper, 1991), it is absent
82 in around 40% of human breast cancer tissues (Capo-chichi et al., 2011), and decreased lamin

83 A/C expression is a sign of poor prognosis in skin, breast, lung and colon cancers (J. L. Broers
84 et al., 1993; Capo-chichi et al., 2011; Venables et al., 2001). Since lamin A/C knockdown
85 nuclei can be more easily deformed and squeeze through rigid confinements, it has been
86 postulated that tumor cells with low expression levels of these lamins can more readily invade
87 tissues (Davidson, Denais, Bakshi, & Lammerding, 2014). Nevertheless, the direct *in vivo*
88 evidence for this assumption has never been provided. Furthermore, overexpression of A-
89 type lamins in some cancer cells was shown to correlate with enhanced growth and faster
90 migration via the activation of the PI3K/AKT/PTEN pathway (Kong et al., 2012). Part of these
91 discrepancies are attributed to the complex roles of A-type lamins in protecting the nuclei from
92 mechanical nuclear rupture, DNA damage, and cell growth arrest (Cho et al., 2019). These
93 discrepancies have motivated us to address these standing questions by controlled
94 downregulation of lamin A/C expression introduced into multiple bona fide metastatic cells.
95 We specifically wished to address whether extravasation of circulating cancer cells from
96 different blood vessels, and in particular from the relatively impermeable lung capillaries, are
97 favored by the softening of tumor cell nuclei via downregulation of lamin A/C. We hence
98 systematically addressed both *in vitro* and *in vivo* in syngeneic mice models if the forced
99 downregulation of lamins A/C expression with retained levels of B lamins alters both invasive
100 and proliferative properties of two prototypic metastatic cell lines, namely, B16 melanoma and
101 E0771 breast carcinoma. *In vitro*, as expected, downregulated lamin A/C levels introduced by
102 ectopic expression of lamin A/C specific shRNA dramatically facilitated the squeezing of both
103 cells through rigid pores, reduced their heterochromatin content, and altered their
104 transcriptional signature. Surprisingly, however, circulating lamin A/C knockdown cells
105 normally emigrated from the pulmonary circulation and normally accumulated inside the lung
106 parenchyma. Nevertheless, the ability of lamin A/C low melanoma and breast cancer cells to
107 generate metastatic lesions in the lungs was markedly compromised. *In vitro*, both B16
108 melanoma and E0771 breast carcinoma cells with lamin A/C knockdown exhibited specialized
109 proliferation defects when grown in spheroids within 3D environment whereas their intrinsic
110 growth on solid 2D surfaces remained intact. Our results collectively suggest that high nuclear

111 lamin A/C content does not compromise the squeezing ability of melanoma and breast cancer
112 cells through physiological endothelial barriers. High content of lamin A/C is necessary,
113 however, for optimal growth of these multiple cancer cells in multi-cellular assemblies in vitro
114 and for their ability to generate lung metastasis in vivo.

115 **Results**

116 **Lamin A downregulation in B16F10 melanoma increases nucleus deformability and**
117 **squeezing through rigid pores but does not affect transendothelial migration.**

118 To gain insight into the contribution of type A lamins to the ability of solid tumor cells to
119 translocate their nuclei across endothelial barriers, we downregulated lamin A and lamin C
120 expression in the nuclei of the B16F10 melanoma cells by stably introducing a lamin A/C
121 shRNA construct targeting exon 8 of the *Lmna* gene ([Figure 1A, B](#)). Since the nuclear lamina
122 stiffness is sensitive to the ratio between type A and type B lamins in both mesenchymal and
123 hematopoietic cells (Shin et al., 2013), we expected that lamin A/C downregulation would also
124 increase nuclear deformability and squeezing capacities in our melanoma cell model.
125 Downregulating lamin A and lamin C expression in the B16 melanoma line by 90%, but leaving
126 lamin B1 levels intact, altered the ratio of type A to type B lamins by approximately 10-fold
127 ([Figure 1A](#)). As expected, lamin A/C downregulation resulted in a dramatic enhancement of
128 B16 squeezing through small rigid pores but much less so through large pores ([Figure 1C, D](#)).
129 A similar gain of squeezing of lamin A/C downregulated B16F10 cells was observed with
130 another lamin A/C shRNA construct ([Figure 1–figure supplement 1A](#)) and in cells subjected to
131 transient *Lmna* gene exon-4 targeted siRNA mediated downregulation of lamin A/C
132 transcription ([Figure 1–figure supplement 1B](#)).

133 To assess if and how these changes in the composition and deformability of the tumor
134 nucleus promotes tumor cell squeezing through physiological endothelial barriers, we
135 established a new in vitro video-microscopy based assay in which nuclear squeezing of tumor
136 cell crossing confluent monolayers of bEnd.3 murine endothelial cells can be compared.
137 Nucleus location, deformation and squeezing in individual transmigrating tumor cells could be

138 readily tracked in real time by fluorescence and phase contrast microscopy of tumor cells
139 whose nuclei were prelabeled with the nuclear dye Hoechst ([Video 1-2](#)). This assay allowed
140 us to follow how individual tumor cells complete an entire sequence of TEM steps immediately
141 after settling on confluent endothelial monolayers, including protrusion, generation of large
142 sub-endothelial pseudopodia (lamellipodia), squeezing their nuclei, tail detachment, and
143 locomotion underneath the endothelial monolayer ([Figure 1E](#), [Video 2](#)). Interestingly, out of
144 three murine cancer cell lines compared in this new assay, namely B16F10, E0771, and LL/2,
145 B16 melanoma exhibited the highest extent of TEM ([Figure 1F](#)). Notably, the TEM of B16F10
146 as well as of other cancer cells compared in this system was over 30-fold slower than that of
147 leukocytes (Barzilai et al., 2017; Yadav et al., 2018) due to a very slow formation of the sub-
148 endothelial leading edge ($t = 26 \pm 22$ min for B16F10 as compared to 30 ± 15 s for T cells), and
149 the inability of the tumor nucleus to translocate into this leading edge as during leukocyte TEM
150 (Barzilai et al., 2017; Yadav et al., 2018).

151 Strikingly, and in contrast to the squeezing results across rigid pores ([Figure 1C, D](#)),
152 the extent of B16F10 TEM was not increased by lamin A/C knockdown ([Figure 2A, B](#), [Video](#)
153 [3](#)). However, the extent of nuclear deformation for lamin A/C downregulated nuclei was
154 significantly greater than that of the control tumor cells ([Figure 2C](#)). The nuclei of the lamin
155 A/C knockdown B16F10 deformed more readily also when these cells spread on a non-
156 confined 2D substrate coated with the basement membrane deposited by the endothelial
157 monolayer, whereas the motility of lamin A/C knockdown cells remained normal ([Figure 2D](#),
158 [Video 4](#)). These results collectively suggest that the reduced nuclear stiffness and the
159 increased nuclear deformability of lamin A/C knockdown B16F10 cells ([Figure 2C, D](#)) do not
160 provide a migratory advantage for the transmigration of these cells through endothelial
161 barriers. These observations also suggest that differences in tumor cell squeezing through
162 infinitely rigid barriers do not correlate with squeezing through physiological cellular barriers.
163 This finding could be due to the high mechanical flexibility of the endothelial cytoskeletal
164 barriers maintained by their rapid actin turnover (Ofer, Mogilner, & Keren, 2011) and dynamic
165 contractility (Heemskerk et al., 2016).

166 **Lamin A downregulation does not increase B16F10 extravasation across lung vessels**
167 **in vivo and does not accelerate melanoma apoptosis in the lung parenchyma**
168 Our in vitro results thus indicated that lamin A/C downregulation in B16F10 cells enhance their
169 squeezing through rigid confinement without affecting ability to transmigrate across
170 endothelial barriers. To assess the distinct migratory outcomes of lamin A/C downregulation
171 in B16 melanoma cells in vivo, we introduced an experimental lung metastasis model based
172 on i.v. injection of minute numbers of fluorescently labeled cells ([Figure 2–figure supplement](#)
173 [1](#)), in order to minimize non-physiological inflammatory responses associated with a bolus of
174 cancer cells that simultaneously enter the lung vasculature. Tumor metastasis in lung spreads
175 nearly exclusively through the pulmonary capillaries (Miles, Pruitt, van Golen, & Cooper,
176 2008), an extensive network of relatively impermeable capillaries (Chambers, Groom, &
177 MacDonald, 2002) considered to be poorly permeable compared with vessels targeted by
178 metastatic cells at other organs like the bone marrow and liver (Valastyan & Weinberg, 2011).
179 I.V. injections of tumor cells are extensively used for studying hematogenous dissemination
180 and expansion in the lung (Gorelik & Flavell, 2001). Since the tumor cells are introduced i.v.
181 in a single event, their arrival at the lung vasculature is synchronized which allows accurate
182 temporal dissection of the earliest extravasation steps taken by individual circulating
183 metastatic cells entering the lung vasculature several hours post injection. To determine the
184 effects of lamin A/C downregulation on earliest tumor cell extravasation across the lung
185 capillaries, we compared the cancer cell partition inside and outside lung vessels with newly
186 developed 3D imaging of the injected fluorescently labeled cancer cells in relation to CD31
187 stained lung vessels ([Figure 3A, B, Video 5](#)). Strikingly, lamin A/C downregulated B16F10
188 cells extravasated at similar efficiencies to normal B16F10 cells ([Figure 3C, Videos 6-8](#)).
189 Lamin A/C downregulation also did not affect the total number of B16F10 cells accumulated
190 inside the recipient lung at this early time points ([Figure 3D](#)). These results suggest that unlike
191 its dramatic effects on tumor squeezing in vitro, but consistent with our TEM results in vitro
192 ([Figure 2A](#)), lamin A/C suppression does not facilitate melanoma extravasation across lung
193 vessels in vivo.

194 **Lamin A/C downregulation reduces the content of H3K9Me3 heterochromatin but does
195 not alter DNA stability**

196 Lmna knockout (KO) was shown to reduce the major marker of constitutive heterochromatin
197 H3K9me3 and the methyltransferases that generate it in primary cells (Liu et al., 2013). As
198 predicted, lamin A/C downregulation led to lower levels of H3K9Me3 and significantly reduced
199 levels of SUV39H2 and SETDB1, two main histone methyltransferases that maintain this
200 suppressive epigenetic marker (Figure 4A, B). In contrast, facultative heterochromatin levels
201 probed by the H3K27me3 marker remained unchanged (Figure 4B). This global H3K9me3
202 reduction was not associated with global repression of transcription as determined by a
203 transcription run-on experiment (Figure 4C). Notably, transcription of specific genes may be
204 altered by reduced H3K9me3 levels and lamin A/C deficiency was reported to increase
205 chromatin dynamics, which could also affect transcription (Bronshtein et al., 2015; Solovei et
206 al., 2013; Sullivan et al., 1999). To evaluate these possibilities, we performed RNA-seq
207 analysis on control and lamin A/C shRNA transduced B16F10 cells. We found that the
208 transcript levels of LINC complex components such as nesprins 1-4, emerin, as well as of
209 other lamin A/C interactors involved in heterochromatin content and stability (e.g. ,Trim28, Tpr
210 or Nup153 (Krull et al., 2010; Kubben et al., 2010)) were all normally transcribed in lamin A/C
211 knockdown B16 cells (Supplementary file 1). Lamin A/C downregulated B16F10 cells
212 exhibited, however, alterations in several hundred genes, including nuclear matrix genes,
213 nuclear body genes, as well as in lamin B receptor (Figure 4D, E and Figure 4-figure
214 supplement 1A-C; Supplementary file 1). Consistent with their similar transmigration
215 properties in vitro and similar capacity to extravasate lung capillaries in vivo, our transcript
216 analysis did not indicate any differences in vascular permeability factors such as VEGF family
217 member levels, MMP levels, or canonical and abundantly expressed cytoskeletal machineries
218 (e.g., Rho GTPases and myosin) (Fig. 4D and Supplementary file 1).

219 **Lamin A/C downregulation does not alter cell proliferation on rigid 2D surfaces but
220 impairs 3D cell growth in spheroids**

221 Our transcriptional analysis did not detect changes in genes involved in melanoma growth
222 ([Supplementary file 1](#)). Indeed, melanoma cells knockdown in lamin A/C expression exhibited
223 similar growth rates when seeded at low densities on tissue culture plates ([Figure 5A](#)).
224 Interestingly, deficiency in lamin A/C content also did not increase the susceptibility of the
225 nuclei of these melanoma cells to DNA damage: lamin A/C knockdown B16 cells remained as
226 resistant as control melanoma cells to apoptosis and growth arrest induced by the DNA
227 damage and cell cycle arrest inducer etoposide (Dai et al., 2017) ([Figure 5B](#)). An additional
228 incubation period without etoposide ([Figure 5-figure supplement 1](#)), drove the growth arrested
229 B16 cells into senescence with a slightly higher senescence acquisition exhibited by the lamin
230 A/C knockdown melanoma cells ([Figure 5C](#)). Nevertheless, the quantity of R-loops, transient
231 RNA-DNA hybrids which correlate with DNA damage (Crossley, Bocek, & Cimprich, 2019)
232 were comparable for control and lamin A/C knockdown B16 cells ([Figure 5-figure supplement](#)
233 [2](#)). These results collectively suggest that lamin A/C knockdown B16F10 cells expand
234 normally in conventional 2D culture conditions, do not exhibit any spontaneous DNA damage,
235 and undergo normal growth arrest induced by a chemical DNA damaging signal.

236 The soft agar colony formation assay has been a hallmark of cancer survival analysis,
237 as it measures the ability of cells to proliferate in semi-solid matrices (Horibata, Vo,
238 Subramanian, Thompson, & Coonrod, 2015). This readout also allows a direct comparison of
239 cancer cell growth in spheroids vs. in colonies expanded in the same soft agar, while
240 remaining in direct contact with the culture dish 2D surface ([Figure. 5D](#)). Interestingly, whereas
241 in the first 3 days both lamin A/C knockdown and control B16F10 cells gave rise to similar
242 sized spheroids ([Figure 5E](#)), the ability of lamin A/C high B16 spheroids to further expand
243 during the next 3 days significantly surpassed that of lamin A/C knockdown cells ([Figure 5E](#)).
244 In contrast, the growth rate of both B16F10 cell groups settled on the culture plate in the
245 presence of identical soft agar remained similar ([Figure 5E, inset](#)). These results were

246 reproduced with a second lamin A/C knockdown B16F10 line expressing a distinct lamin A/C
247 shRNA ([Figure 5–figure supplement 3](#)). Remarkably, even in the presence of nutrient rich agar
248 (i.e., a 5-fold higher serum concentration) that accelerated the growth of both lamin A/C high
249 and lamin knockdown B16 cells, the mean size of lamin A/C high B16 cells spheroids was
250 significantly higher than that of lamin A/C low B16 cells ([Figure 5F](#)). Interestingly, a negligible
251 fraction of cells isolated from spheroids (9 vs 12 %) underwent apoptosis as depicted by
252 annexin V and propidium iodide staining ([Figure 5–figure supplement 4](#)), ruling out the
253 possibility that cells growing at the core of these spheroids have poor accessibility to nutrients.
254 Collectively, our results suggest that whereas initially, lamin A/C knockdown B16F10 normally
255 proliferate under both 2D and 3D conditions, the ability of lamin A/C knockdown cells to
256 expand within 3D spheroids is significantly impaired, possibly due to slower growth of these
257 cells inside large spheroids embedded in 3D environments.

258

259 **Lamin A/C deficiency does not affect melanoma growth in distinct primary transplants**
260 **but results in poorer survival in the lungs and reduced metastasis**

261 In order to validate our in vitro observations, lamin A/C knockdown B16F10 cells or their
262 control counterparts were subcutaneously implanted at 10-20 fold lower numbers than in
263 commonly used orthotopic melanoma models in order to avoid the masking of any potential
264 growth differences. Interestingly, both lamin A/C knockdown and control B16F10 cells grew at
265 similar rates in vivo ([Figure 6A](#)). Histological analysis of the orthotopic tumors also failed to
266 show any noticeable differences in the vascular microenvironment (data not shown).
267 Furthermore, both lamin A/C high and low melanoma cells shared similar growth properties
268 when implanted in the mammary fat pad ([Figure 6B](#)). Notably, although lamin A/C knockdown
269 B16F10 accumulated at comparable levels to control B16F10 inside recipient lungs within the
270 first 3 days after injection the number of viable lamin A/C knockdown B16F10 recovered from
271 recipient lungs 7 days after injection was significantly reduced relative to control B16F10 cells
272 ([Figure 6C](#)). Furthermore, the ability of lamin A/C B16F10 cells to generate metastatic lesions

273 14 days after injection into recipient mice was dramatically reduced by lamin A/C
274 downregulation (Figure 6D). These results collectively suggest that lamin A/C knockdown
275 B16F10 cells poorly survive in the lungs, in spite of their normal apparent extravasation
276 potential when circulating and entering the blood vasculature.

277 **Reduced lamin A/C levels in E0771 breast cancer cells recapitulate the in vitro and in
278 vivo migratory properties and survival deficiencies of lamin A/C knockdown B16 cells**

279 We next reasoned that reduced lamin A/C levels could differentially impact distinct types of
280 cancer cells. We therefore addressed how reduced lamin A/C expression in the bona fide
281 breast cancer cells, the E0771 line, affects their squeezing, migration, epigenetics and growth
282 properties both in vitro and in vivo. Downregulation of lamin A/C levels with conserved lamin
283 B content (Figure 7A), introduced either by shRNA-expressing lentiviral vectors or by siRNA,
284 dramatically facilitated cancer cell squeezing through rigid pores in vitro (Figure 7B and Figure
285 7-figure supplement 1A, B), in agreement with our findings with B16F10 cells. While the
286 nuclear circularity index of control E0771 cells was higher than that of control B16F10 cells
287 (Figure 7-figure supplement 1C and Figure 2D), the nuclei of these cells underwent significant
288 increases in deformability (i.e. reduced circularity) upon lamin A/C downregulation (Figure
289 7-figure supplement 1D), reminiscent of the effect of lamin A/C downregulation on B16 nuclei.
290 Nevertheless, the transendothelial migration capacity of these cells in vitro and in vivo was
291 insensitive to reduced lamin A/C expression (Figure 7C and Figure 7-figure supplement 2A-
292 B). Although downregulated lamin A/C expression resulted in reduced H3K9Me3
293 heterochromatin content and in altered gene expression (Figure 7D and Figure 7-figure
294 supplement 3A-C), it did not increase global RNA transcription rates (Figure 7-figure
295 supplement 4). Furthermore, primary breast cancer growth in vitro or in vivo in the mammary
296 fat pad or in non-orthotopic skin implants was unaffected by lamin A/C downregulation (Figure
297 7E, F and Figure 7-figure supplement 5). DNA damage-induced growth arrest was also
298 insensitive to downregulated lamin A/C expression (Figure 7G). Nevertheless, and
299 reminiscent of the proliferation results of lamin A/C knockdown B16F10 cells lamin A/C low,

300 E0771 poorly proliferated in spheroids grown in 3D conditions compared to control (Figure
301 7H). Notably, although Lamin A/C knockdown E0771 cells normally accumulated in recipient
302 lungs when intravenously introduced into syngeneic recipient mice (Figure 7–figure
303 supplement 6). Breast cancer cells with low lamin A/C content failed to generate any
304 metastatic lesions in the lungs (Figure 7I, J). Thus, although reduced nuclear content of lamin
305 A/C does not impair breast cancer growth in the primary tissue and does not alter breast
306 cancer cell extravasation from lung vessels into the lung parenchyma, it dramatically
307 compromises the metastatic potential of these breast cancer cells in this organ, reminiscent
308 of our observations with lamin A/C knockdown melanoma cells.

309 **Discussion**

310 The nucleus is the most bulky organelle in all cells and is protected by a mechanically stable
311 network underlying the inner nuclear membrane termed the nuclear lamina (Swift et al., 2013;
312 Katherine L Wilson & Foisner, 2010; Wolf et al., 2013). The main mechanical obstacle for the
313 extravasation of solid cancer cells across blood vessels *in vivo* is their stiff nuclei (Shin et al.,
314 2013). The nuclear lamina is thought to affect the shape and the mechanical properties of the
315 nucleus, hence to control cell squeezing through different barriers (Lomakin et al., 2020;
316 Rowat et al., 2013; Wolf et al., 2013; Yadav et al., 2018). The lamina also plays an important
317 role in the maintenance of the nuclear envelope integrity as well as in the organization of the
318 nucleus as a whole (Friedl et al., 2011; Kirby & Lammerding, 2018). The nuclear lamina is
319 also connected to highly condensed chromatin regions (heterochromatin) (Stephens et al.,
320 2012; K. L. Wilson & Berk, 2010) and can affect chromatin conformation, and epigenetics
321 (Fernández-Morera, Calvanese, Rodríguez-Rodero, Menéndez-Torre, & Fraga, 2010;
322 Sullivan et al., 1999). The lamina also controls the entry of key growth control transcriptional
323 factors including the mechanosensitive transcriptional activator YAP (Elosegui-Artola et al.,
324 2017). Lamin A/C expression is reduced in several solid cancers but not others, and so the
325 molecular basis of these changes and their direct link to cancer cell migration, survival and

326 expansion have been under debate due to the complexity and diversity of tumor growth,
327 migration and metastasis (Harada et al., 2014; Kong et al., 2012; Wazir et al., 2013).

328 We chose to address these key standing questions using two prototypic BL/6
329 metastatic cell lines, B16F10 melanoma and E0771 breast carcinoma. Taking both in vitro
330 and in vivo reductionist approaches in syngeneic immunocompetent mice, we have
331 systematically assessed how controlled suppression of the two type A lamins affects the
332 specific growth and migratory properties of these cells under distinct physiologically relevant
333 conditions and in different environmental conditions both in vitro and in vivo. Our in vitro
334 findings of enhanced squeezing capabilities of the lamin A knockdown cells in the transwell
335 assay are in full agreement with previous results on the critical role of lamin A/C in the ability
336 of cells of different origins to squeeze through rigid confinements in vitro (Aureille, Belaadi, &
337 Guilluy, 2017; Rowat et al., 2013). However, we found that nuclear deformability has no impact
338 on the overall nuclear squeezing kinetics through endothelial junctions and under endothelial
339 monolayers, indicating that endothelial barriers are highly permissive for nuclear passage and
340 well adapted to accommodate the squeezing of cells with bulky and stiff nuclei. The
341 exceptionally slow rates of tumor transendothelial migration, may also provide the endothelial
342 cytoskeleton with sufficient time to undergo remodeling including activation of contractility
343 machineries to facilitate the squeezing of the relatively stiff nuclei of most tumor cells through
344 junctions or transcellular pores (Khuon et al., 2010; Yadav et al., 2018). In order to validate
345 our in vitro TEM results, we developed a new experimental lung metastasis model to assess
346 in vivo the intrinsic ability of our lamin A/C suppressed tumor cells to squeeze through the lung
347 vasculature. Tumor metastasis into lungs occurs nearly exclusively through the pulmonary
348 capillaries (Miles et al., 2008), an extensive network of relatively impermeable capillaries
349 (Chambers et al., 2002) considered to be poorly permeable compared with vessels targeted
350 by metastatic cells at other organs like the bone marrow and liver (Valastyan & Weinberg,
351 2011). By introducing a new method to accurately measure the relative efficiency of cancer
352 cell emigration through these vessels, we found that highly invasive cells like melanoma B16
353 crossed these barriers in vivo independently of their lamin A/C content and irrespectively of

354 their intrinsic nuclear deformability properties. Although poorly invasive, the ability of E0771
355 cells to cross identical pulmonary vascular barriers was also irrespective of their intrinsic
356 nucleus deformability and lamin A/C content. Our in vivo results were therefore fully consistent
357 with the transmigratory properties of these cells determined in our in vitro setups.

358 Metastasis involves not only cancer cell extravasation but also intravasation into tumor
359 engulfed blood vessels (Joyce & Pollard, 2009). Although the extravasation capacity of a given
360 cancer cell does not predict its intravasation potential across the tumor associated blood
361 vessels at its original site of dissemination, both our in vitro and in vivo analysis of tumor cell
362 squeezing through different endothelial barriers predict that tumor cell squeezing through
363 endothelial junctions is not affected by lamin A/C downregulation. Furthermore, since the lung
364 capillaries, where the majority of our cancer cell diapedesis took place, are less permeable
365 than tumor associated vessels and were permissive for the squeezing of lamin A/C rich nuclei,
366 it is likely that the leaky vessels surrounding the primary tumors also do not pose a barrier for
367 melanoma or breast cancer intravasation. Likewise, melanoma and breast cancer crossing of
368 lymphatic vessels nearby tumors, considered highly permeable cell barriers (Dyer &
369 Patterson, 2010), is probably insensitive to the lamin A/C content of the tumor nuclei.

370 Our results argue that the squeezing ability of a given tumor cell through non
371 degradable rigid pores towards a chemotactic or a haptotactic signal does not directly predict
372 the physiological crossing potential of that cell. Although not addressed in our study, it is
373 possible that upon entering the interstitial space, the ability of lamin A/C rich tumor cells to
374 enzymatically degrade glycoprotein and proteoglycan components of collagenous barriers
375 (Bishop, Schuksz, & Esko, 2007) is much more critical for their interstitial motility than the
376 mechanical restrictions imposed by the stiffness of their lamin A/C rich nuclei. Indeed, a lamin
377 A/C regulated crosstalk between the nucleus and MT1-MMP has been recently shown to
378 promote a digest-on-demand program in cells squeezing through constricted spaces (Infante
379 et al., 2018). This study strongly suggests that high levels of lamin A/C and optimal
380 connections of these lamins with the cell cytoskeleton (e.g., via the linker of nucleoskeleton

381 and cytoskeleton (LINC) complex) can be in fact essential for directional proteolysis at the cell
382 front.

383 Our epigenetic analysis revealed lower levels of the constitutive heterochromatin
384 marker H3K9me3 and the methyltransferases that generate it in lamin A/C knockdown
385 B16F10 and E0771 cells, consistent with previous reports on lamin A/C KO MEFs (Liu et al.,
386 2013) and human fibroblasts expressing mutated type A lamins (Scaffidi & Misteli, 2006).
387 Reduced heterochromatin content has been argued to reduce chromatin compaction in B16
388 melanoma and thereby restrict cell motility (Maizels et al., 2017). The increased squeezing
389 rate of the lamin A/C knockdown B16 cells and E0771 cells that we find in spite of their lower
390 H3K9me3 content sheds new light on these earlier findings. Our data therefore suggest that
391 the altered mechanical properties of our melanoma and breast cancer cell models introduced
392 by lamin A/C downregulation override any inhibitory effects of reduced heterochromatin
393 content on chromatin compaction and cell motility (Maizels et al., 2017). Previous observations
394 showed that depletion of lamin A/C in lung and breast cancer cells, as well as fibrosarcoma
395 cells, significantly increased the likelihood of transient nuclear envelope rupture events and
396 cell death especially when cells were forced to migrate through very tight and rigid barriers (C.
397 M. Denais et al., 2016; Harada et al., 2014). Imaging of HT1080 fibrosarcoma cells invading
398 the collagen-rich mouse dermis in live tumors after orthotopic implantation confirmed that
399 migration-induced nuclear envelope rupture occurs in vivo, particularly during cell division
400 (Vargas, Hatch, Anderson, & Hetzer, 2012) and in individually disseminating cells (C. M.
401 Denais et al., 2016). Nuclear envelope rupture is less prevalent, however, in cells moving as
402 multicellular collective strands (C. M. Denais et al., 2016) or on 2D surfaces (Harada et al.,
403 2014). Notably, both the melanoma and breast cancer cells studied by us grew and survived
404 normally when orthotopically or non orthotopically implanted in distinct organs. Our results
405 therefore argue against faster nuclear rupture of these cells in their primary tissues. On the
406 other hand, lamin A/C knockdown melanoma and breast cancer cells exhibited poor long term
407 survival in the lungs as well as reduced growth inside spheroid assemblies grown in 3D
408 environments, two environments that are far less rigid than tissue culture dishes (Barney et

409 al., 2016; Jaiswal et al., 2017). Therefore, the contribution of lamin A/C to cancer cell growth
410 within spheroids is unlikely to involve classical lamin A/C regulated mechanotransduction
411 which predominates cell-extracellular matrix contacts (Donnaloja, Carnevali, Jacchetti, &
412 Raimondi, 2020).

413 The contribution of high lamin A/C content to chromatin flexibility and DNA stability is
414 still disputed. On one hand, high lamin A/C content protects the nuclei from rupture and cell
415 apoptosis occurring under extreme mechanical stress such as squeezing through rigid
416 confinements (C. M. Denais et al., 2016; Raab et al., 2016) and also reduces the frequency
417 of spontaneous aneuploidy (Capo-chichi et al., 2011) and DNA damage (Gonzalo, 2014). A-
418 type lamins also participate in the maintenance of telomere homeostasis (Gonzalez-Suarez
419 et al., 2009). Our results extend these findings proposing an additional role of lamin A/C, a
420 protective function of these lamina proteins in multi-cellular assemblies, in the absence of
421 apparent squeezing through rigid confinements. Our findings are the first to implicate lamin
422 A/C as essential protective factors in lung metastasis of multiple types of cancer cells. Our
423 results predict that lamin A/C deficiency impairs cancer cell survival in the lungs to a greater
424 extent than the migratory advantages this deficiency may provide to cancer cells. The
425 relevance of our findings to other types of cancers and metastatic spread in other organs
426 awaits for future studies.

427

428 **Materials and methods**

429 **Key resources table**

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Strain, strain background (<i>Mus musculus</i>)	C57BL/6	The Jackson Laboratory		
Cell line (<i>Homo sapiens</i>)	HEK293T	ATCC	ATCC CRL-3216	
Cell line (<i>Mus musculus</i>)	bEnd.3	Gift from Britta Engelhardt, Theodor Kocher Institute, University of Bern	ATCC CRL-2299	
Cell line (<i>Mus musculus</i>)	B16F10	Gift from Prof. Lea Eisenbach, Weizmann Institute of Science	ATCC CRL-6475	
Cell line (<i>Mus musculus</i>)	E0771	Gift from Dr. Ravid Straussman, Weizmann Institute of Science	CH3 BioSystems Cat# 94A001	
Cell line (<i>Mus musculus</i>)	LL/2 (LLC1)	Gift from Dr. Ravid Straussman, Weizmann Institute of Science	ATCC CRL-1642	
Antibody	anti-Lamin A/C (4C11)	Cell Signaling Technology	Cat# 4777, RRID:AB_10545756	
Antibody	anti-Lamin B1 [EPR8985(B)]	Abcam	Cat# ab133741, RRID:AB_2616597	
Antibody	anti-GAPDH (6C5)	Millipore	Cat# MAB374, RRID:AB_2107445	
Antibody	Alexa Fluor® 647 anti-CD31 (390)	BioLegend	Cat# 102416, RRID:AB_493410	
Antibody	anti-trimethyl-Histone H3 (Lys9) (D4W1U)	Cell Signaling Technology	Cat# 13969, RRID:AB_2798355	
Antibody	anti-KMT1B/SUV39H2 [EPR18495]	Abcam	Cat# ab190870, RRID:AB_2827544	
Antibody	anti-trimethyl Histone H3 (Lys27) (18E9.1)	Millipore	Cat# 05-1951, RRID:AB_11211815	
Antibody	anti-Histone H3 (A3S)	Millipore	Cat# 05-928, RRID:AB_492621	
Antibody	anti- ESET/SETDB1 (D4M8R)	Cell Signaling Technology	Cat# 93212, RRID:AB_2800200	
Antibody	anti-alpha Tubulin (DM1A)	Thermo Fisher Scientific	Cat# 62204, RRID:AB_1965960	
Antibody	anti-DNA-RNA Hybrid (S9.6)	Millipore	Cat# MABE1095, RRID:AB_2861387	
Antibody	anti mouse IgG+IgM+IgA cross-adsorbed (H+L)	Bethyl	Cat# A90-244D2, RRID:AB_10683272	

Antibody	Alexa Fluor® 488 anti-mouse IgG (H+L)	Thermo Fisher Scientific	Cat# A-21202, RRID:AB_141607	
Antibody	Peroxidase-AffiniPure anti-mouse IgG (H+L)	Jackson ImmunoResearch Labs	Cat# 115-035-003, RRID:AB_10015289	
Antibody	Peroxidase-AffiniPure anti-rabbit IgG (H+L)	Jackson ImmunoResearch Labs	Cat# 111-035-003, RRID:AB_2313567	
Recombinant DNA reagent	MISSION® TRC2 pLKO.5-puro Empty Vector (shControl)	Sigma-Aldrich	Cat# SHC201	
Recombinant DNA reagent	MISSION® shRNA plasmid DNA Lamin A/C (shLmna)	Sigma-Aldrich	TRCN0000317672	
Recombinant DNA reagent	MISSION® shRNA plasmid DNA Lamin A/C (shLmna-2)	Sigma-Aldrich	TRCN0000089849	
Sequence-based reagent	Control siRNA (siControl)	Bioneer	Sense: UUCUCCGAACGUG UCACGUtt; anti-sense: ACGUGACACGUUC GGAGAAtt	(Roman et al., 2017)
Sequence-based reagent	Lamin A/C siRNA (siLmna)	Bioneer	Sense: GGCUGUGGGAGAU CGUAAtt; anti-sense: UUAUCGAUCUCCA CAAGCCgc	(Roman et al., 2017)
Peptide, recombinant protein	Fibronectin	Sigma-Aldrich	Cat# F1141	
Peptide, recombinant protein	Gelatin from bovine skin	Sigma-Aldrich	Cat# G9391	
Peptide, recombinant protein	Collagenase, Type 4	Worthington Biochemical	Cat# LS004188	
Peptide, recombinant protein	DNase I, grade II	Roche	Cat# 10104159001	
Peptide, recombinant protein	Recombinant murine HGF	PeproTech	Cat# 315-23	
Peptide, recombinant protein	Recombinant murine EGF	PeproTech	Cat# 315-09	
Peptide, recombinant protein	Recombinant murine VEGF ₁₆₅ (VEGF-A)_	PeproTech	Cat# 450-32	
Peptide, recombinant protein	Recombinant murine SDF-1 α (CXCL12)	PeproTech	Cat# 250-20A	
Peptide, recombinant protein	Fibronectin	Sigma-Aldrich	Cat# F1141	
Chemical compound, drug	Etoposide	Sigma-Aldrich	Cat# E1383	
Chemical compound, drug	Puromycin	Sigma-Aldrich	Cat# P8833	
Chemical compound, drug	CellTracker™ Orange CMTMR Dye	Thermo Fisher Scientific	Cat# C2927	
Chemical compound, drug	Hoechst 33342	Thermo Fisher Scientific	Cat# 62249	
Chemical compound, drug	Hoechst 33258	Sigma-Aldrich	Cat# 861405	

Chemical compound, drug	DAPI	Sigma-Aldrich	Cat# D9542	
Chemical compound, drug	X-Gal	Sigma-Aldrich	Cat# 11680293001	
Chemical compound, drug	Ethyl Cinnamate (ECi)	Acros Organics	Cat# 103-36-6	
Chemical compound, drug	cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail	Roche	Cat# 4693159001	
Chemical compound, drug	Poly(ethylene glycol) (PEG8000)	Sigma-Aldrich	Cat# 81268	
Chemical compound, drug	Triton X-100	Sigma-Aldrich	Cat# X100	
Commercial assay or kit	Click-iT™ RNA Alexa Fluor™ 594 Imaging Kit	Thermo Fisher Scientific	Cat# C10330Cat# 4693159001	
Commercial assay or kit	APC Annexin V Apoptosis Detection Kit with PI	BioLegend	Cat# 640932	
Commercial assay or kit	Dynabeads™ mRNA DIRECT™ Purification	Thermo Fisher Scientific	Cat# 61011	
Commercial assay or kit	SuperSignal™ West Pico PLUS Chemiluminescent Substrate	Thermo Fisher Scientific	Cat# 34577	
Software, algorithm	cellSens (v1.16)	Olympus	https://www.olympus-lifescience.com	
Software, algorithm	Imaris (v9.5.1)	Oxford Instruments	https://imaris.oxinst.com/packages	
Software, algorithm	CaseViewer 2.3	3DHISTECH	https://www.3dhistech.com/caseviewer	
Software, algorithm	Fiji	SciJava	https://fiji.sc	
Software, algorithm	CytExpert	Beckman Coulter	www.beckman.com	
Software, algorithm	Flowjo (v10.6.1)	FlowJo	https://flowjo.com	
Software, algorithm	Image Lab (v6.0.1)	Bio-Rad Laboratories	https://www.bio-rad.com	
Software, algorithm	GraphPad Prism 6	GraphPad Software	https://www.graphpad.com	
Software, algorithm	R	R Development Core Team	https://www.r-project.org	
Software, algorithm	UTAP pipeline	(Kohen et al., 2019)	https://utap.readthedocs.io	
Other	Lipofectamine™ 2000	Thermo Fisher Scientific	Cat# 11668	
Other	Lipofectamine™ RNAiMAX	Thermo Fisher Scientific	Cat# 3778075	
Other	Matrigel® Matrix	Corning	Cat# 356234	
Other	Agarose, low gelling temperature	Sigma-Aldrich	Cat# 9045	
Other	Cell Dissociation Solution	Biological Industries	Cat# 03-071-1B	
Other	Red Blood Cell Lysing Buffer Hybri-Max™	Sigma-Aldrich	Cat# R7757	
Other	DMEM, high glucose	Thermo Fisher Scientific	Cat# 41965	

430 **Cells**

431 Murine melanoma (B16F10) and Lewis Lung Carcinoma (LL/2) cells were grown in
432 DMEM supplemented with 10% FBS. Murine breast adenocarcinoma cells (E0771)
433 were grown in DMEM supplemented with 10% FBS, 1 mM sodium pyruvate and 10
434 mM HEPES. Human embryonic kidney (HEK293T) and murine brain endothelial
435 (bEnd.3) cells were cultured in DMEM medium supplemented with 10% FBS and 2
436 mM L-glutamine.

437

438 **Mice**

439 Wild-type mice (WT) on C57BL/6 background were maintained in a pathogen-free
440 facility and all animal procedures were approved by the Animal Care and Use
441 Committee of the Weizmann Institute of Science. Male and female 7- to 8-week-old
442 mice were used in all experiments.

443

444 **Imaging and Analysis of Tumor Cell Transendothelial Migration**

445 The transmigration assay of tumor cells was performed under shear-free conditions.
446 Murine endothelial bEnd.3 cells (8×10^4) were seeded in a μ -Slide VI0.4 ibiTreat (ibidi),
447 pre-coated with gelatin (1% in DDW) for 30 min at 37°C. A day later, B16F10 or E0771
448 cells were labeled with 20 μ M Hoechst 33342 for 5 min at 37°C and resuspended in
449 binding medium (Hank's balanced-salt solution 1X containing 2 mg/ml BSA and 10
450 mM HEPES, pH 7.4, supplemented with 1 mM CaCl₂ and 1 mM MgCl₂) and introduced
451 in the ibidi chamber over a confluent bEnd.3 monolayer. Images were acquired at a
452 rate of one frame every 4-5 min for 4 h using an IX83 inverted microscope (Olympus)
453 equipped with UPlanFLN 20x/0.50 Ph1 $\infty/0.17$ /FN 26.5 objective (Olympus), 49000-
454 ET-DAPI filter set (Chroma). ORCA-Flash4.0LT camera, model: C11440-42U
455 (Hamamatsu). Temperature was maintained at 37°C throughout the assay. For
456 analysis of migratory phenotypes, tumor cells in different fields of view (10-15 cells per
457 field) were individually tracked and categorized using cellSense software 1.16
458 (Olympus). Close monitoring of individual frames allowed the discrimination of
459 transmigrating tumor cells (TEM) from tumor cells that failed to complete TEM either
460 because of inability to protrude through endothelial junctions (SA) or squeeze their
461 nuclei through these junctions and underneath the endothelial monolayer (SEP). See
462 also Video 2. Notably, we did not observe intercalation of individual tumor cells in
463 between ECs (Reymond et al., 2012). Fiji software was used to determine nuclear

464 circularity of transmigrating tumor cells at different frames of the time-lapse movies.
465 This software was also used to incorporate time codes, labels and scale bars into
466 video segments.

467

468 **Tumor Cells Transwell Migration Assay**

469 Fibronectin (1.5 µg/ml in PBS) was coated for 30 min at 37°C onto both sides (for
470 tumor chemotaxis assays) or only on the bottom side (for tumor haptotaxis assays) of
471 8 or 3 µm hanging cell culture inserts (Millipore, MCEP24H48 and MCSP24H48). After
472 washing the filters with PBS, B16F10 or E0771 cells (4x10⁴) resuspended in DMEM
473 containing 0.1% BSA were introduced into the top chamber. DMEM with 0.1% BSA
474 was inserted in the lower chamber in the presence or absence of the chemoattractant.
475 After 4 or 24 h at 37°C with CO₂, the cells were fixed with paraformaldehyde (4% in
476 PBS) for 15 min and stained with crystal violet (3% in DDW) for additional 15 min, both
477 at RT. Cells on the upper side of the filter were scraped using a cotton swab whereas
478 cells located on the bottom side were imaged using a SZX16 stereo microscope
479 (Olympus) equipped with SDF PLAPO 1XPF objective (Olympus) set at 10X
480 magnification. DP73 camera (Olympus).

481

482 **Generation of Stable shRNA-Expressing Clones**

483 Lentiviruses were produced by co-transfected HEK293T cells with the shControl or
484 shLmna vectors and three helper plasmids (Gag-Pol, Rev and VSV-G,) using
485 Lipofectamine® 2000. The virus-containing medium was harvested 48 or 72 h after
486 transfection and subsequently precleaned by a brief centrifugation at 600 x g and a
487 0.45 µm filtration. Viruses were collected and concentrated with a precipitation solution
488 (40% PEG8000 and 2.5N NaCl) as described (Guo et al., 2012) and stored at -20°C
489 overnight. A day later, the medium was thawed and centrifuged at 2,400 x g for 30 min
490 at RT. The viral pseudoparticles were resuspended in 200 µl culture medium and
491 mixed with 2.5x10⁴ of tumor cells for 12 h. 36 h after viral infection, puromycin was
492 added to the culture medium at a concentration of 2.5 µg/ml (B16F10) or 3 µg/ml
493 (E0771) and tumor cells were selected and expanded, replacing growth medium every
494 48 h. The mean knockdown levels were assessed by Western blotting.

495

496 **Transient siRNA transfection**

497 B16F10 cells (1×10^5) were transfected with siRNA (20 nM) using LipofectamineTM
498 RNAiMAX (Thermo Fisher Scientific) following the manufacturer's instructions. 72 h
499 after transfection tumor cells were either lysed to quantify the mean knockdown protein
500 levels or utilized in experimental assays. Lamin A/C siRNA (siLmna) sequence used
501 in this study was described in (Roman et al., 2017).

502

503 **Western Blotting**

504 Cells were grown as described above, washed twice with ice-cold PBS, scraped into
505 lysis buffer (25 mM Tris pH 7.5, 1 mM EDTA, 0.5 mM EGTA, 150 mM NaCl, 1% NP-
506 40, 0.2% SDS, 2 mM Na₃VO₄, 1 mM NaF, 10 mM Nappi, 80 mM b-glycerol phosphate
507 and a protease inhibitor tablet), and kept on ice for 30 min with occasional vortexing.
508 Thereafter, lysates were centrifuged at 14,000 x g for 15 min at 4°C. The supernatant
509 was collected and protein concentration was determined by BCA protein assay
510 (Thermo Fisher Scientific). The protein suspension was separated by gel
511 electrophoresis followed by transfer to nitrocellulose membranes, and blocking with
512 non-fat milk (5% in PBS-T) for 1 h at RT. Immunoblotting was performed overnight at
513 4°C according to the manufacturers' guidelines. Antibody binding to membrane blots
514 was detected using horseradish peroxidase conjugated secondary antibodies for 1 h
515 at RT, followed by development with a chemiluminescence substrate (Thermo Fisher
516 Scientific). Chemiluminescence was detected using the ChemiDoc MP (Bio-Rad
517 Laboratories) imaging system.

518

519 **Immunofluorescence Staining**

520 B16F10 or E0771 cells (1.5×10^4) were seeded into a μ -Slide VI0.4 ibiTreat (ibidi) pre-
521 coated with fibronectin (10 μ g/ml in PBS) for 30 min at 37°C. The next day cells were
522 rinsed with ice-cold PBS and fixed with paraformaldehyde (4% in PBS) for 15 min at
523 RT followed by permeabilization with Triton X-100 (0.25% in PBS) for 15 min at RT
524 and blocking with goat serum (10% in PBS) for 20 min at 37°C. The cells were then
525 incubated with anti-lamin A/C antibody (1:100) for 1 hour at RT, washed with ice-cold
526 PBS three times and incubated with an Alexa Fluor 488 conjugated secondary
527 antibody (1:200) for 1 h at RT. Cells were imaged using an IX83 inverted microscope
528 (described above) equipped with an UPlanFLN 40X 0.75 Ph2 ∞ /0.17/FN 26.5 objective
529 (Olympus), 49002-ET-EGFP (FITC/Cy2) filter set (Chroma). Alternatively, cells were
530 fixed with paraformaldehyde (3% in PBS) at RT for 5 min followed by fixation in

531 methanol at -20°C for another 5 min. H3K9me3 was detected with rabbit monoclonal
532 anti H3K9me3 and DNA was stained with Hoechst 33258. Immunostaining images
533 were collected using an Olympus IX81 fluorescent microscope equipped with a
534 coolSNAP HQ2 CCD camera (Photometrics).

535

536 **Imaging of Tumor Cell Nuclear Dynamics**

537 B16F10 or E0771 cells (2×10^4) were trypsinized, labeled in suspension with 20 μ M
538 Hoechst 33342, resuspended in binding medium (composition described above), and
539 introduced in a μ -Slide VI0.4 ibiTreat (ibidi) over a bEnd.3-deposited basement
540 membrane extracellular matrix. Images were acquired at a rate of one frame every 4-
541 5 min for 2 h using an IX83 Inverted Microscope (described above). Temperature was
542 kept at 37°C throughout the duration of the assay. Background was subtracted for the
543 fluorescent channel using cellSense 1.16 (Olympus) software. Fiji (SciJava) software
544 was used for title and time code labeling and determination of the nuclear circularity.

545

546 **Light Sheet Fluorescent Microscopy of Tumor Cells and Lung Vasculature**

547 B16F10 (2×10^4) or E0771 (10^4) cells labeled with CMTMR dye (Thermo Fisher
548 Scientific), 10 μ M for 30 min according to the manufacturer's instructions, were
549 injected in the retro-orbital sinus of recipient mice. Euthanasia by administration of
550 sodium pentobarbital (200 mg/Kg) was practiced 3 hours later. Blood capillaries were
551 labeled 15 min before the animal sacrifice by intravenous injection of 6 μ g of an Alexa
552 647-conjugated anti-CD31 mAb. Immediately after the sacrifice, mice were
553 transcardially perfused with PBS and the lungs inflated via the trachea with low gelling
554 agarose (Sigma-Aldrich), subsequently fixed with paraformaldehyde (4% in PBS) for
555 2 h, dehydrated and cleared using ethyl cinnamate as described in (Klingberg et al.,
556 2017). Cleared intact lung lobes, were imaged using an Ultramicroscope II (LaVision
557 BioTec) operated by the ImspectorPro software (LaVision BioTec). For excitation light
558 sheet was generated by a Superk Super-continuum white light laser (emission 460 nm
559 – 800 nm, 1 mW/nm – 3 (NKT photonics), followed by specific excitation filters per
560 channel. For detection optics microscope was equipped with a single lens
561 configuration - 4X objective - LVBT 4X UM2-BG, with an adjustable refractive index
562 collar set to the RI of 1.56. Images were acquired by an Andor Neo sCMOS camera
563 (2,560 \times 2,160, pixel size 6.5 μ m \times 6.5 μ m, Andor). Z stacks were acquired in 3 μ m
564 steps. Channel configuration for GFP and EGFP excitation 470\40 emission 525\50,

565 for CMTMR, excitation 560\40 emission 630\75, and for CD31-AF647 excitation
566 640\30 emission 690\50.

567

568 **Image Reconstruction and Analysis**

569 Three-dimensional rendering of LSFM was performed via Imaris software (Oxford
570 Instruments). Surfaces of CMTMR-labeled tumor cells were created using volume
571 (comprised between 1000 and 25000 μm^3) and intensity (max of red fluorescent
572 channel) as defining features to unequivocally separate them from background
573 signals. Each cell was individually segmented and its distance was measured with
574 respect to the CD31-labeled blood vessels: intravascular, extravascular or protruding.
575 See also Videos 6-8.

576

577 **Determination of Tumor cell Accumulation in Washed Lungs**

578 B16F10 (2×10^4) or E0771 (10^4) cells labeled with 10 μM CMTMR for 30 min according
579 to the manufacturer's instructions, were resuspended in PBS and injected into the
580 retro-orbital sinus of recipient mice. Euthanasia by administration of sodium
581 pentobarbital (200 mg/Kg) was practiced 3 or 72 h later. Immediately thereafter, mice
582 were transcardially perfused with PBS and the lungs were extracted, minced and
583 incubated in RPMI-1640 containing collagenase type 4 (1.5 mg/ml) and DNase I (20
584 $\mu\text{g/ml}$) at 37°C for 45 min. Lung cell suspensions were pushed through a 100 μm cell
585 strainer and centrifuged at 0.2 x g or 5 min at 4°C. RBCs were subsequently lysed
586 with an RBC lysis buffer (Sigma Aldrich). The cells were resuspended in ice-cold
587 FACS buffer (PBS with 1% BSA, 0.1% sodium azide and 5 mM EDTA), filtered through
588 a 70 μm strainer and analyzed using a CytoFLEX flow cytometer (Beckman Coulter).

589

590 **5-Ethynyl Uridine (EU) Labeling of Cultured Cells**

591 B16F10 or E0771 (either shControl or shLmna expressing) cells were grown on serum
592 coated glass coverslips. 1 mM EU was added to the culture medium and cells were
593 kept for 1 h at 37°C in 5% CO₂. Cells were then washed with PBS and fixed with 3.7%
594 formaldehyde for 15 min at RT. The fixative was removed and cells were washed twice
595 with PBS, followed by permeabilization with 0.5% Triton X-100 for 15 min at RT. Cells
596 were washed twice with PBS and incorporated EU was detected by click chemistry
597 using a fluorescent azide following the manufacturer's guidelines of Click-iT RNA
598 Imaging Kit (Thermo Fisher Scientific). Following the Click-iT reaction (30 min at RT

599 in the dark), cells were rinsed twice with a rinse buffer. Nuclear staining was performed
600 with Hoechst 33342. Cells were imaged using a Zeiss LSM 710 point scanning
601 confocal microscope with stacking acquisition and generation of maximum intensity
602 projection images. Nucleoplasmic fluorescence intensity measurements were
603 performed in Fiji, and statistical significance was assessed through Mann-Whitney U,
604 two-tailed, test.

605

606 **Bulk MARS-seq protocol and sequencing**

607 RNA was isolated from 10,000 cells from each cell line using Dynabeads® mRNA
608 Direct Kit (Thermo Fisher Scientific). Libraries for RNA-seq were prepared using a
609 modified version of TranSeq, as described (Jaitin et al., 2014). Briefly, RNA was
610 reversed transcribed with MARS-seq barcoded RT primers in a 10 μ l volume with the
611 Affinity Script kit (Agilent). Reverse transcription was analyzed by qRT-PCR and
612 samples with a similar CT were pooled (up to eight samples per pool). Each pool was
613 treated with Exonuclease I (NEB) for 30 min at 37°C and cleaned by 1.2 \times volumes of
614 SPRI beads (Beckman Coulter). Next, the cDNA was converted to double-stranded
615 DNA with a second strand synthesis kit (NEB) in a 20 ml reaction, incubating for 2 h at
616 16 °C. The product was purified with 1.4 \times volumes of SPRI beads, eluted in 8 μ l and
617 in vitro transcribed (with the beads) at 37 °C overnight for linear amplification using the
618 T7 High Yield RNA polymerase IVT kit (NEB). Following IVT, the DNA template was
619 removed with Turbo DNase I (Ambion) 15 min at 37 °C and the amplified RNA (aRNA)
620 purified with 1.2 volumes of SPRI beads. The aRNA was fragmented by incubating
621 3 min at 70 °C in Zn²⁺ RNA fragmentation reagents (Ambion) and purified with 2 \times
622 volumes of SPRI beads. The aRNA was ligated to the MARS-seq ligation adapter with
623 T4 RNA Ligase I (NEB). The reaction was incubated at 22 °C for 2 h. After 1.5 \times SPRI
624 cleanup, the ligated product was reverse transcribed using Affinity Script RT enzyme
625 (Agilent) and a primer complementary to the ligated adapter. The reaction was
626 incubated for 2 min at 42°C, 45 min at 50°C, and 5 min at 85°C. The cDNA was purified
627 with 1.5 \times volumes of SPRI beads. The library was completed and amplified through a
628 nested PCR reaction with 0.5 mM of P5_Rd1 and P7_Rd2 primers and PCR ready mix
629 (Kappa Biosystems). The amplified pooled library was purified with 0.7 \times volumes of
630 SPRI beads to remove primer leftovers. Library concentration was measured with a
631 Qubit fluorometer (Life Technologies) and mean molecule size was determined with a

632 2200 TapeStation instrument. RNA-seq libraries were sequenced using the Illumina
633 NextSeq® 500 High Output v2 Kit (75 cycles).

634

635 **Bioinformatics analysis**

636 Samples were demultiplexed using the barcode present in the R2 read. The analysis
637 was performed using the UTAP pipeline (Kohen et al., 2019). In brief, UMI sequences
638 present in the R2 read were inserted in the read name of R1 sequence file using a
639 python script. Cutadapt was used to trim low quality, poly A and adapter sequences
640 (Martin, 2011), (parameters: -a AGATCGGAAGAGCACACGTCTGAAGTCAGTCAC
641 -a "A{10}" –times 2 -u 3 -u -3 -q 20 -m 25). Sequences were mapped to the UCSC
642 mm10 mouse genome using STAR (Dobin et al., 2013) v2.4.2a (parameters: –
643 alignEndsType EndToEnd, –outFilterMismatchNoverLmax 0.05, –twopassMode
644 Basic, –alignSoftClipAtReferenceEnds No). The pipeline quantified the 3' of RefSeq
645 annotated genes (1,000 bases upstream of the 3' end and 100 bases downstream)
646 using HTSeq count (Anders, Pyl, & Huber, 2015) and a modified Refseq gtf file
647 (downloaded from igenomes UCSC). UMI information was integrated into the BAM
648 files as tags, using a python script. UMI counting was performed after marking
649 duplicates (in-house script) using a modified HTSeq-count. DESeq2 (Love, Huber, &
650 Anders, 2014) was used for normalization and detection of differentially expressed
651 genes. Raw p-values were adjusted for multiple testing using the procedure of
652 Benjamini and Hochberg. Genes were considered to be differentially expressed if their
653 mean normalized expression was greater than 5, the absolute value of the
654 log2FoldChange was greater than 1, and the adjusted p-value was less than 0.05.
655 Batch effects were removed from the read counts using the ComBat function from the
656 sva R package (Johnson, Li, & Rabinovic, 2007). The normalized, batch corrected and
657 log2 transformed read counts outputted by ComBat were used to draw plots. K-means
658 clustering of differentially expressed genes was performed using the Partek®
659 Genomics Suite® software, version 6.6 (Partek Inc., St. Louis, MO, USA). Functional
660 analysis of the differentially expressed genes was performed using
661 <https://metascape.org/gp/index.html#/main/step1>, Metascape (Zhou et al., 2019).
662 Significantly enriched GO terms for up and downregulated genes were extracted from
663 this analysis. Sequencing data have been deposited in NCBI's Gene Expression
664 Omnibus and are accessible through GEO Series accession number GSE146730.

665

666 **Cell Growth on 2D Culture Plates**

667 B16F10 or E0771 cells were seeded at a low density of 5×10^3 /well in a 6-well plate.
668 Puromycin-containing growth medium was replaced every 24 h throughout the
669 duration of the assay (72 h). To determine the number of viable cells proliferating on
670 the plates, cells were trypsinized and counted by flow cytometer every 24 h.

671

672 **Cell Growth in 3D Soft Agar**

673 B16F10 or E0771 cells were suspended at a density of 4×10^3 /ml of 0.3% low gelling
674 agarose in DMEM +10% FBS and equilibrated at 4°C for 15 min in 12 well plate as
675 described (Horibata et al., 2015). The cell agar suspension was warmed to 37°C and
676 cultured in a humidified incubator containing 5% CO₂. Spheroid formation was
677 monitored on the first, third and 6th day using a IX83 inverted microscope (Olympus)
678 equipped with UPlanFLN 4x/0.13 Ph1 ∞ -/FN 26.5 objective (Olympus). In parallel,
679 cancer cell colonies grown directly on the bottom of each well were also imaged. To
680 isolate individual cells from the spheroids grown in 3D conditions, the layer of agarose
681 containing the spheroids was mechanically removed and solubilized in PBS pre-
682 warmed at 45°C. Spheroids were spun down at 0,8 x g for 5 min at RT, trypsinized
683 with warm trypsin B to recover single cells and stained with annexin V and propidium
684 iodide following the manufacturer instructions.

685

686 **Primary Tumor Growth in vivo**

687 A suspension of 1.5×10^4 B16F10 or 10^4 E0771 (either shControl or shLmna
688 expressing) cells in 50 μ l of Matrigel® Matrix mixed with PBS (at 1:1 v/v), was
689 inoculated subcutaneously in the flank (B16F10) or in the mammary fat pad (E0771)
690 of recipient mice. Tumor size (volume) was assessed throughout the duration of the
691 experiment, by vernier caliper measurements of length (L) and width (W) and the
692 tumor volume (V) was calculated using the formula: $V = (L \times W \times W)/2$. After 14 days,
693 the animals were euthanized by CO₂ inhalation and the tumor was extracted, weighted
694 and fixed in paraformaldehyde (4% in PBS).

695

696 **Experimental Lung Metastases**

697 B16F10 (4×10^4) or E0771 (10^4 or 2×10^4) either shControl or shLmna expressing cells
698 were suspended in 200 μ l PBS + 0.25 mM EDTA and injected into the tail vein of
699 recipient mice. Animals were euthanized by administration of sodium pentobarbital

700 (200 mg/Kg) 14 or 28 days later. Immediately after the sacrifice, mice were
701 transcardially perfused with PBS and the lungs were extracted and visually analyzed
702 for the presence of surface metastatic foci, subsequently stored in 4% PFA for 24 h
703 and 1% PFA at 4°C for long term storage. Paraffin embedding and H&E staining of 5
704 µm-thick sections were performed by the histology core unit of the Weizmann Institute
705 of Science. Sections were digitalized using a Pannoramic SCAN II (3DHISTECH) and
706 analyzed using CaseViewer software (3DHISTECH).

707

708 **Senescence-Associated- β -Galactosidase (SA- β -Gal) Activity**

709 For SA- β -gal activity assay, B16F10 cells (shControl or shLmna) were treated with 5
710 µM etoposide for 72 h, washed and left in regular culture medium (containing 2.5 µg/ml
711 of puromycin) for an additional 120 h. Cells were then fixed with 0.5% glutaraldehyde
712 in PBS for 15 min, washed twice with PBS supplemented with 1 mM MgCl₂ (pH 5.5)
713 and stained with PBS containing 1 mM MgCl₂ (pH 5.5) and supplemented with 1 mg/ml
714 X-gal, 5 mM K₃Fe[CN]₆ and 5 mM K₄Fe[CN]₆ for 5 h at 37°C in the dark, as described
715 (Krizhanovsky et al., 2008). Cells were washed with warm PBS, fixed with 4%
716 paraformaldehyde and imaged using a SZX16 stereo microscope (Olympus) equipped
717 with SDF PLAPO 1XPF objective (Olympus) set at 10X magnification. DP73 camera
718 (Olympus).

719

720 **R-loops quantification**

721 B16F10 cells were grown on sterile coverslips and R-loops were detected with the
722 S9.6 antibody following cell fixation and permeabilization with 100% ice-cold methanol
723 and acetone for 10 min and 1 min on ice, respectively. Incubation with primary
724 antibodies was followed by incubation with Dy488-secondary antibody (Bethyl). Nuclei
725 were stained using DAPI and coverslips were assembled in Vectashield Mounting
726 Medium (H-1000, Vector Laboratories). All the washing steps were done with PBS
727 containing 0.05% (v/v) Tween 20. Images were acquired using Confocal Laser Point-
728 Scanning Microscope Zeiss LSM 710. Fluorescence intensity of the nucleoplasmic
729 staining of 90 cells from three independent experiments was assessed for each
730 condition, and statistical significance was assessed through Mann-Whitney U, two-
731 tailed, test.

732

733

734 **Statistical analysis**

735 Data in graphs are represented as means \pm SEM. All tests of statistical significance
736 were performed using a two-tailed Student's t-test with GraphPad Prism software, with
737 the exception of analysis of Figure 6C and Figure 5—figure supplement 1 for which
738 Mann-Whitney U, two-tailed, test was used. Significance was set to $p < 0.05$. Statistical
739 details of experiments can be found in the figure legends. For figures 6D and 7D, raw
740 p-values were adjusted for multiple testing using the procedure of Benjamini and
741 Hochberg while genes were considered to be differentially expressed if their mean
742 normalized expression was greater than 5, the absolute value of the log2FoldChange
743 was greater than 1, and the adjusted p-value was less than 0.05.

744 **Acknowledgements**

745 We thank Edgar Gomes (Instituto de Medicina Molecular, Lisbon, Portugal), Valery
746 Krizhanovsky and Avri Ben-Ze'Ev (Weizmann Institute) for providing reagents and for
747 helpful discussions. The RNA-Seq work was performed under the guidance of Drs.
748 Merav Kedmi and Hadas Keren-Shaul from the Sandbox unit of the Life Science Core
749 Facility of Weizmann Institute of Science. R.A. is the Incumbent of the Linda Jacobs
750 Chair in Immune and Stem Cell Research. His research is supported by the Israel
751 Science Foundation (grant no. 791/17), the Minerva Foundation, Germany, GIF (grant
752 number I-1470-412.13/2018), as well as grants from the Moross Integrated Cancer
753 Center, Yeda-Sela Center for Basic Research, Helen and Martin Kimmel Institute for
754 Stem Cell Research, the Meyer Henri Cancer Endowment, and from William and
755 Marika Glied and Carol A. Milett. S.N and S.M. are funded by the Wellcome Trust
756 (grant 098291/Z/12/Z to S.N.). G.G's research is supported by an Israel Cancer
757 Association grant no. 20201181.

758 **Competing interests**

759 The authors declare no competing interests.

760 **Author Contributions**

761 Francesco Roncato, Methodology, Validation, Formal analysis, Investigation, Data
762 curation, Writing - original draft, Writing - review and editing, Visualization; Ofer Regev,
763 Methodology, Investigation; Sara W. Feigelson, Validation, Investigation; Writing -
764 original draft, Writing - review and editing, Supervision; Sandeep Kumar Yadav,

765 Investigation; Lukasz Kaczmarczyk, Validation, Investigation, Formal Analysis,
766 Visualization; Nehora Levi, Validation, Investigation, Formal Analysis, Visualization;
767 Diana Drago-Garcia, Software, Formal Analysis, Visualization; Samuel Ovadia,
768 Investigation; Marina Kizner, Investigation; Yoseph Addadi, Supervision, Writing-
769 original draft; João C. Sabino, Validation, Investigation, Formal Analysis, Visualization;
770 Yossi Ovadya, Resources, Investigation; Sérgio F. de Almeida, Resources,
771 Supervision, Writing-original draft; Ester Feldmesser, Software, Formal analysis,
772 Visualization; Gabi Gerlitz, Resources, Supervision, Writing-original draft; Ronen Alon,
773 Conceptualization, Writing - original draft, Writing - review & editing, Supervision,
774 Project administration, Funding acquisition.
775

776 **References**

777 Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq-A Python framework to work with high-
778 throughput sequencing data. *Bioinformatics*, 31(2), 166–169.
779 <https://doi.org/10.1093/bioinformatics/btu638>

780 Aureille, J., Belaadi, N., & Guilluy, C. (2017). Mechanotransduction via the nuclear envelope:
781 a distant reflection of the cell surface. *Current Opinion in Cell Biology*, 44, 59–67.
782 <https://doi.org/10.1016/j.ceb.2016.10.003>

783 Barney, L. E., Jansen, L. E., Polio, S. R., Galarza, S., Lynch, M. E., & Peyton, S. R. (2016,
784 February 1). The predictive link between matrix and metastasis. *Current Opinion in
785 Chemical Engineering*, Vol. 11, pp. 85–93. <https://doi.org/10.1016/j.coche.2016.01.001>

786 Barzilai, S., Yadav, S. K., Morrell, S., Roncato, F., Klein, E., Stoler-Barak, L., ... Alon, R.
787 (2017). Leukocytes Breach Endothelial Barriers by Insertion of Nuclear Lobes and
788 Disassembly of Endothelial Actin Filaments. *Cell Reports*, 18(3), 685–699.
789 <https://doi.org/10.1016/j.celrep.2016.12.076>

790 Becker, J. S., Nicetto, D., & Zaret, K. S. (2016). H3K9me3-Dependent Heterochromatin:
791 Barrier to Cell Fate Changes. *Trends in Genetics*, 32(1), 29–41.
792 <https://doi.org/10.1016/j.tig.2015.11.001>

793 Bell, E. S., & Lammerding, J. (2016). Causes and consequences of nuclear envelope
794 alterations in tumour progression. *European Journal of Cell Biology*, 95(11), 449–464.
795 <https://doi.org/10.1016/j.ejcb.2016.06.007>

796 Bishop, J. R., Schuksz, M., & Esko, J. D. (2007). Heparan sulphate proteoglycans fine-tune
797 mammalian physiology. *Nature*, 446(7139), 1030–1037. <https://doi.org/10.1038/nature05817>
798 [pii]10.1038/nature05817

799 Borrego-Pinto, J., Jegou, T., Osorio, D. S., Auradé, F., Gorjánácz, M., Koch, B., ... Gomes, E.
800 R. (2012). Samp1 is a component of TAN lines and is required for nuclear movement.
801 *Journal of Cell Science*, 125(5), 1099–1105. <https://doi.org/10.1242/jcs.087049>

802 Broers, J. L., Raymond, Y., Rot, M. K., Kuijpers, H., Wagenaar, S. S., & Ramaekers, F. C.
803 (1993). Nuclear A-type lamins are differentially expressed in human lung cancer
804 subtypes. *The American Journal of Pathology*, 143(1), 211–220. Retrieved from
805 <http://www.ncbi.nlm.nih.gov/pubmed/8391215>

806 Broers, J. L. V., & Ramaekers, F. C. S. (2014). The role of the nuclear lamina in cancer and
807 apoptosis. In *Advances in Experimental Medicine and Biology* (Vol. 773, pp. 27–48).
808 https://doi.org/10.1007/978-1-4899-8032-8_2

809 Bronshtein, I., Kepten, E., Kanter, I., Berezin, S., Lindner, M., Redwood, A. B., ... Garini, Y.
810 (2015). Loss of lamin A function increases chromatin dynamics in the nuclear interior.
811 *Nature Communications*, 6(1), 8044. <https://doi.org/10.1038/ncomms9044>

812 Burke, B., & Stewart, C. L. (2013). The nuclear lamins: flexibility in function. *Nature Reviews
813 Molecular Cell Biology*, 14(1), 13–24. <https://doi.org/10.1038/nrm3488>

814 Cao, X., Moeendarbary, E., Isermann, P., Davidson, P. M., Wang, X., Chen, M. B., ... Shenoy,
815 V. B. (2016). A Chemomechanical Model for Nuclear Morphology and Stresses during
816 Cell Transendothelial Migration. *Biophysical Journal*, 111(7), 1541–1552.
817 <https://doi.org/10.1016/J.BPJ.2016.08.011>

818 Capo-chichi, C. D., Cai, K. Q., Smedberg, J., Ganjei-Azar, P., Godwin, A. K., & Xu, X. X.
819 (2011). Loss of A-type lamin expression compromises nuclear envelope integrity in
820 breast cancer. *Chin J Cancer*, 30(6), 415–425.

821 Chambers, A. F. A. F., Groom, A. C. A. C., & MacDonald, I. C. I. C. (2002). Dissemination and
822 growth of cancer cells in metastatic sites. *Nat Rev Cancer*, 2(8), 563–572.
823 <https://doi.org/10.1038/nrc865>

824 Chambliss, A. B., Khatau, S. B., Erdenberger, N., Robinson, D. K., Hodzic, D., Longmore, G.
825 D., & Wirtz, D. (2013). The LINC-anchored actin cap connects the extracellular milieu to
826 the nucleus for ultrafast mechanotransduction. *Sci Rep*, 3, 1087.
827 <https://doi.org/10.1038/srep01087>

828 Chang, W., Folker, E. S., Worman, H. J., & Gundersen, G. G. (2013). Emerin organizes actin
829 flow for nuclear movement and centrosome orientation in migrating fibroblasts. *Molecular
830 Biology of the Cell*, 24(24), 3869–3880. <https://doi.org/10.1091/mbc.e13-06-0307>

831 Cho, S., Vashisth, M., Abbas, A., Majkut, S., Vogel, K., Xia, Y., ... Discher, D. E. (2019).
832 Mechanosensing by the Lamina Protects against Nuclear Rupture, DNA Damage, and
833 Cell-Cycle Arrest. *Developmental Cell*, 49(6), 920-935.e5.
834 <https://doi.org/10.1016/j.devcel.2019.04.020>

835 Crossley, M. P., Bocek, M., & Cimprich, K. A. (2019, February 7). R-Loops as Cellular

836 Regulators and Genomic Threats. *Molecular Cell*, Vol. 73, pp. 398–411.
837 <https://doi.org/10.1016/j.molcel.2019.01.024>

838 Dai, W., Jiang, Y., Chen, K., Qiu, J., Sun, J., Zhang, W., ... Li, W. (2017). Effect of etoposide-
839 induced alteration of the Mdm2-Rb signaling pathway on cellular senescence in A549
840 lung adenocarcinoma cells. *Oncology Letters*, 14(4), 3935–3940.
841 <https://doi.org/10.3892/ol.2017.6684>

842 Davidson, P. M., Denais, C., Bakshi, M. C., & Lammerding, J. (2014). Nuclear deformability
843 constitutes a rate-limiting step during cell migration in 3-D environments. *Cell Mol Bioeng*,
844 7(3), 293–306. <https://doi.org/10.1007/s12195-014-0342-y>

845 Dechat, T., Adam, S. A., Taimen, P., Shimi, T., & Goldman, R. D. (2010). Nuclear Lamins.
846 *Cold Spring Harbor Perspectives in Biology*, 2(11), a000547–a000547.
847 <https://doi.org/10.1101/cshperspect.a000547>

848 Denais, C., & Lammerding, J. (2014). Nuclear mechanics in cancer. *Adv Exp Med Biol*, 773,
849 435–470. https://doi.org/10.1007/978-1-4899-8032-8_20

850 Denais, C. M., Gilbert, R. M., Isermann, P., McGregor, A. L., Te Lindert, M., Weigelin, B., ...
851 Lammerding, J. (2016). Nuclear envelope rupture and repair during cancer cell migration.
852 *Science*, 352(6283), 353–358. <https://doi.org/10.1126/science.aad7297>

853 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., ... Gingeras, T. R.
854 (2013). STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics*, 29(1), 15–21.
855 <https://doi.org/10.1093/bioinformatics/bts635>

856 Donnaloja, F., Carnevali, F., Jacchetti, E., & Raimondi, M. T. (2020). Lamin A/C
857 Mechanotransduction in Laminopathies. *Cells*, 9(5), 1306.
858 <https://doi.org/10.3390/cells9051306>

859 Dou, Z., Xu, C., Donahue, G., Shimi, T., Pan, J.-A., Zhu, J., ... Berger, S. L. (2015). Autophagy
860 mediates degradation of nuclear lamina. *Nature*, 527(7576), 105–109.
861 <https://doi.org/10.1038/nature15548>

862 Dyer, L., & Patterson, C. (2010). Development of the Endothelium: An Emphasis on
863 Heterogeneity. *Seminars in Thrombosis and Hemostasis*, 36(03), 227–235.
864 <https://doi.org/10.1055/s-0030-1253446>

865 Elosegui-Artola, A., Andreu, I., Beedle, A. E. M., Lezamiz, A., Uroz, M., Kosmalska, A. J., ...
866 Roca-Cusachs, P. (2017). Force Triggers YAP Nuclear Entry by Regulating Transport
867 across Nuclear Pores. *Cell*, 171(6), 1397-1410.e14.
868 <https://doi.org/10.1016/j.cell.2017.10.008>

869 Etienne-Manneville, S., & Lammerding, J. (2017). Connecting the plasma membrane to the
870 nucleus by intermediate filaments. *Molecular Biology of the Cell*, 28(6), 695–696.
871 <https://doi.org/10.1091/mbc.E16-11-0794>

872 Fernández-Morera, J. L., Calvanese, V., Rodríguez-Rodero, S., Menéndez-Torre, E., & Fraga,

873 M. F. (2010). Epigenetic regulation of the immune system in health and disease. *Tissue*
874 *Antigens*, 76(6), 431–439. <https://doi.org/10.1111/j.1399-0039.2010.01587.x>

875 Friedl, P., Wolf, K., & Lammerding, J. (2011). Nuclear mechanics during cell migration. *Current*
876 *Opinion in Cell Biology*, 23(1), 55–64. <https://doi.org/10.1016/j.ceb.2010.10.015>

877 Fruleux, A., & Hawkins, R. J. (2016). Physical role for the nucleus in cell migration. *J Phys*
878 *Condens Matter*, 28(36), 363002. <https://doi.org/10.1088/0953-8984/28/36/363002>

879 Gonzalez-Granado, J. M., Silvestre-Roig, C., Rocha-Perugini, V., Trigueros-Motos, L.,
880 Cibrian, D., Morlino, G., ... Andres, V. (2014). Nuclear envelope lamin-A couples actin
881 dynamics with immunological synapse architecture and T cell activation. *Sci Signal*,
882 7(322), ra37. [https://doi.org/10.1126/scisignal.20048727/322/ra37 \[pii\]](https://doi.org/10.1126/scisignal.20048727/322/ra37)

883 Gonzalez-Suarez, I., Redwood, A. B., Perkins, S. M., Vermolen, B., Lichtensztejn, D.,
884 Grotsky, D. A., ... Gonzalo, S. (2009). Novel roles for A-type lamins in telomere biology
885 and the DNA damage response pathway. *The EMBO Journal*, 28(16), 2414–2427.
886 <https://doi.org/10.1038/emboj.2009.196>

887 Gonzalo, S. (2014). DNA damage and lamins. *Advances in Experimental Medicine and*
888 *Biology*, 773, 377–399. https://doi.org/10.1007/978-1-4899-8032-8_17

889 Gorelik, L., & Flavell, R. A. (2001). Immune-mediated eradication of tumors through the
890 blockade of transforming growth factor- β signaling in T cells. *Nature Medicine*, 7(10),
891 1118–1122. <https://doi.org/10.1038/nm1001-1118>

892 Graham, D. M., Andersen, T., Sharek, L., Uzer, G., Rothenberg, K., Hoffman, B. D., ...
893 Burridge, K. (2018). Enucleated cells reveal differential roles of the nucleus in cell
894 migration, polarity, and mechanotransduction. *The Journal of Cell Biology*, 217(3), 895–
895 914. <https://doi.org/10.1083/jcb.201706097>

896 Guo, P., El-Gohary, Y., Prasad, K., Shiota, C., Xiao, X., Wiersch, J., ... Gittes, G. K. (2012).
897 Rapid and simplified purification of recombinant adeno-associated virus. *Journal of*
898 *Virological Methods*, 183(2), 139–146. <https://doi.org/10.1016/j.jviromet.2012.04.004>

899 Harada, T., Swift, J., Irianto, J., Shin, J. W., Spinler, K. R., Athirasala, A., ... Discher, D. E.
900 (2014). Nuclear lamin stiffness is a barrier to 3D-migration, but softness can limit survival.
901 *Proceedings of the IEEE Annual Northeast Bioengineering Conference, NEBEC, 2014-*
902 *Decem*(5), 669–682. <https://doi.org/10.1109/NEBEC.2014.6972810>

903 Harr, J. C., Luperchio, T. R., Wong, X., Cohen, E., Wheelan, S. J., & Reddy, K. L. (2015).
904 Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and
905 A-type lamins. *The Journal of Cell Biology*, 208(1), 33–52.
906 <https://doi.org/10.1083/jcb.201405110>

907 Heemskerk, N., Schimmel, L., Oort, C., van Rijssel, J., Yin, T., Ma, B., ... van Buul, J. D.
908 (2016). F-actin-rich contractile endothelial pores prevent vascular leakage during
909 leukocyte diapedesis through local RhoA signalling. *Nature Communications*, 7.

910 <https://doi.org/Artn 1049310.1038/Ncomms10493>

911 Horibata, S., Vo, T. V., Subramanian, V., Thompson, P. R., & Coonrod, S. A. (2015). Utilization
912 of the soft agar colony formation assay to identify inhibitors of tumorigenicity in breast
913 cancer cells. *Journal of Visualized Experiments*, 2015(99), 52727.
914 <https://doi.org/10.3791/52727>

915 Infante, E., Castagnino, A., Ferrari, R., Monteiro, P., Agüera-González, S., Paul-Gilloteaux,
916 P., ... Chavrier, P. (2018). LINC complex-Lis1 interplay controls MT1-MMP matrix digest-
917 on-demand response for confined tumor cell migration. *Nature Communications*, 9(1), 1–
918 13. <https://doi.org/10.1038/s41467-018-04865-7>

919 Jaiswal, D., Cowley, N., Bian, Z., Zheng, G., Claffey, K. P., & Hoshino, K. (2017). Stiffness
920 analysis of 3D spheroids using microtweezers. *PLoS ONE*, 12(11), e0188346.
921 <https://doi.org/10.1371/journal.pone.0188346>

922 Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., ... Amit, I.
923 (2014). Massively parallel single-cell RNA-seq for marker-free decomposition of tissues
924 into cell types. *Science*, 343(6172), 776–779. <https://doi.org/10.1126/science.1247651>

925 Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray
926 expression data using empirical Bayes methods. *Biostatistics*, 8(1), 118–127.
927 <https://doi.org/10.1093/biostatistics/kxj037>

928 Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. *Nature
929 Reviews Cancer*, 9(4), 239–252. <https://doi.org/10.1038/nrc2618>

930 Kaufmann, S. H., Mabry, M., Jasti, R., & Shaper, J. H. (1991). Differential expression of
931 nuclear envelope lamins A and C in human lung cancer cell lines. *Cancer Research*,
932 51(2), 581–586. Retrieved from <http://www.ncbi.nlm.nih.gov/pubmed/1985776>

933 Khatau, S. B., Hale, C. M., Stewart-Hutchinson, P. J., Patel, M. S., Stewart, C. L., Searson, P.
934 C., ... Wirtz, D. (2009). A perinuclear actin cap regulates nuclear shape. *Proc Natl Acad
935 Sci U S A*, 106(45), 19017–19022. <https://doi.org/0908686106>
936 [pii]10.1073/pnas.0908686106

937 Khuon, S., Liang, L., Dettman, R. W., Sporn, P. H. S., Wysolmerski, R. B., & Chew, T.-L.
938 (2010). Myosin light chain kinase mediates transcellular intravasation of breast cancer
939 cells through the underlying endothelial cells: a three-dimensional FRET study. *Journal
940 of Cell Science*, 123(3), 431–440. <https://doi.org/10.1242/jcs.053793>

941 Kim, D. H., & Wirtz, D. (2015). Cytoskeletal tension induces the polarized architecture of the
942 nucleus. *Biomaterials*, 48, 161–172. <https://doi.org/10.1016/j.biomaterials.2015.01.023>

943 Kirby, T. J., & Lammerding, J. (2018). Emerging views of the nucleus as a cellular
944 mechanosensor. *Nature Cell Biology*, 20(4), 373–381. <https://doi.org/10.1038/s41556-018-0038-y>

945 Klingberg, A., Hasenberg, A., Ludwig-Portugall, I., Medyukhina, A., Männ, L., Brenzel, A., ...

947 Gunzer, M. (2017). Fully Automated Evaluation of Total Glomerular Number and
948 Capillary Tuft Size in Nephritic Kidneys Using Lightsheet Microscopy. *Journal of the*
949 *American Society of Nephrology: JASN*, 28(2), 452–459.
950 <https://doi.org/10.1681/ASN.2016020232>

951 Kohen, R., Barlev, J., Hornung, G., Stelzer, G., Feldmesser, E., Kogan, K., ... Leshkowitz, D.
952 (2019). UTAP: User-friendly Transcriptome Analysis Pipeline. *BMC Bioinformatics*, 20(1).
953 <https://doi.org/10.1186/s12859-019-2728-2>

954 Kong, L., Schafer, G., Bu, H., Zhang, Y., Zhang, Y., & Klocker, H. (2012). Lamin A/C protein
955 is overexpressed in tissue-invading prostate cancer and promotes prostate cancer cell
956 growth, migration and invasion through the PI3K/AKT/PTEN pathway. *Carcinogenesis*,
957 33(4), 751–759. <https://doi.org/10.1093/carcin/bgs022>

958 Krizhanovsky, V., Yon, M., Dickins, R. A., Hearn, S., Simon, J., Miething, C., ... Lowe, S. W.
959 (2008). Senescence of activated stellate cells limits liver fibrosis. *Cell*, 134(4), 657–667.
960 <https://doi.org/10.1016/j.cell.2008.06.049>

961 Krull, S., Dörries, J., Boysen, B., Reidenbach, S., Magnus, L., Norder, H., ... Cordes, V. C.
962 (2010). Protein Tpr is required for establishing nuclear pore-associated zones of
963 heterochromatin exclusion. *The EMBO Journal*, 29(10), 1659–1673.
964 <https://doi.org/10.1038/emboj.2010.54>

965 Kubben, N., Voncken, J. W., Demmers, J., Calis, C., van Almen, G., Pinto, Y., & Misteli, T.
966 (2010). Identification of differential protein interactors of lamin a and progerin. *Nucleus*,
967 1(6), 1–13. <https://doi.org/10.4161/nucl.1.6.13512>

968 Lammerding, J., Fong, L. G., Ji, J. Y., Reue, K., Stewart, C. L., Young, S. G., & Lee, R. T.
969 (2006). Lamins a and C but not lamin B1 regulate nuclear mechanics. *Journal of*
970 *Biological Chemistry*, 281(35), 25768–25780. <https://doi.org/10.1074/jbc.M513511200>

971 Liu, B., Wang, Z., Zhang, L., Ghosh, S., Zheng, H., & Zhou, Z. (2013). Depleting the
972 methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria
973 mouse model. *Nature Communications*, 4(1), 1–12. <https://doi.org/10.1038/ncomms2885>

974 Lomakin, A. J., Cattin, C. J., Cuvelier, D., Alraies, Z., Molina, M., Nader, G. P. F., ... Piel, M.
975 (2020). The nucleus acts as a ruler tailoring cell responses to spatial constraints. *Science*,
976 370(6514). <https://doi.org/10.1126/SCIENCE.ABA2894>

977 Lombardi, M. L., & Lammerding, J. (2011). Keeping the LINC: the importance of
978 nucleocytoskeletal coupling in intracellular force transmission and cellular function.
979 *Biochemical Society Transactions*, 39(6), 1729–1734.
980 <https://doi.org/10.1042/BST20110686>

981 Love, M. I. M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and
982 dispersion for RNA-seq data with DESeq2. *Genome Biol*, 15(12), 550.
983 <https://doi.org/10.1186/s13059-014-0550-8>

984 Maizels, Y., Elbaz, A., Hernandez-Vicens, R., Sandrusy, O., Rosenberg, A., & Gerlitz, G.
985 (2017). Increased chromatin plasticity supports enhanced metastatic potential of mouse
986 melanoma cells. *Experimental Cell Research*, 357(2), 282–290.
987 <https://doi.org/10.1016/J.YEXCR.2017.05.025>

988 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing
989 reads. *EMBnet.Journal*, 17(1), 10. <https://doi.org/10.14806/ej.17.1.200>

990 Miles, F. L., Pruitt, F. L., van Golen, K. L., & Cooper, C. R. (2008). Stepping out of the flow:
991 capillary extravasation in cancer metastasis. *Clinical & Experimental Metastasis*, 25(4),
992 305–324. <https://doi.org/10.1007/s10585-007-9098-2>

993 Ofer, N., Mogilner, A., & Keren, K. (2011). Actin disassembly clock determines shape and
994 speed of lamellipodial fragments. *Proc Natl Acad Sci U S A*, 108(51), 20394–20399.
995 <https://doi.org/1105333108> [pii]10.1073/pnas.1105333108

996 Raab, M., Gentili, M., de Belly, H., Thiam, H. R., Vargas, P., Jimenez, A. J., ... Piel, M. (2016).
997 ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage
998 and cell death. *Science*, 352(6283), 359–362. <https://doi.org/science.aad7611> [pii]
999 10.1126/science.aad7611

1000 Reymond, N., Im, J. H., Garg, R., Vega, F. M., Borda d'Agua, B., Riou, P., ... Ridley, A. J.
1001 (2012). Cdc42 promotes transendothelial migration of cancer cells through β 1 integrin.
1002 *The Journal of Cell Biology*, 199(4), 653–668. <https://doi.org/10.1083/jcb.201205169>

1003 Roman, W., Martins, J. P., Carvalho, F. A., Voituriez, R., Abella, J. V. G., Santos, N. C., ...
1004 Gomes, E. R. (2017). Myofibril contraction and crosslinking drive nuclear movement to
1005 the periphery of skeletal muscle. *Nature Cell Biology*, 19(10), 1189–1201.
1006 <https://doi.org/10.1038/ncb3605>

1007 Rowat, A. C., Jaalouk, D. E., Zwerger, M., Ung, W. L., Eydelnant, I. A., Olins, D. E., ...
1008 Lammerding, J. (2013). Nuclear envelope composition determines the ability of
1009 neutrophil-type cells to pass through micron-scale constrictions. *J Biol Chem*,
1010 288(12), 8610–8618. <https://doi.org/10.1074/jbc.M112.441535>

1011 Scaffidi, P., & Misteli, T. (2006). Lamin A-dependent nuclear defects in human aging. *Science*,
1012 312(5776), 1059–1063. <https://doi.org/10.1126/science.1127168>

1013 Shin, J. W., Spinler, K. R., Swift, J., Chasis, J. A., Mohandas, N., & Discher, D. E. (2013).
1014 Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic
1015 cells. *Proc Natl Acad Sci U S A*, 110(47), 18892–18897.
1016 <https://doi.org/10.1073/pnas.1304996110> [pii]

1017 Solovei, I., Wang, A. S., Thanisch, K., Schmidt, C. S., Krebs, S., Zwerger, M., ... Joffe, B.
1018 (2013). LBR and Lamin A/C Sequentially Tether Peripheral Heterochromatin and
1019 Inversely Regulate Differentiation. *Cell*, 152(3), 584–598.
1020 <https://doi.org/10.1016/j.cell.2013.01.009>

1021 Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., ...
1022 Stratton, M. R. (2012). The landscape of cancer genes and mutational processes in
1023 breast cancer. *Nature*, 486(7403), 400–404. <https://doi.org/10.1038/nature11017>
1024 Sullivan, T., Escalante-Alcalde, D., Bhatt, H., Anver, M., Bhat, N., Nagashima, K., ... Burke,
1025 B. (1999). Loss of A-type lamin expression compromises nuclear envelope integrity
1026 leading to muscular dystrophy. *Journal of Cell Biology*, 147(5), 913–919.
1027 <https://doi.org/10.1083/jcb.147.5.913>
1028 Swift, J., Ivanovska, I. L., Buxboim, A., Harada, T., Dingal, P. C., Pinter, J., ... Discher, D. E.
1029 (2013). Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed
1030 differentiation. *Science*, 341(6149), 1240104.
1031 <https://doi.org/10.1126/science.1240104341/6149/1240104> [pii]
1032 Towbin, B. D., Meister, P., & Gasser, S. M. (2009). The nuclear envelope--a scaffold for
1033 silencing? *Current Opinion in Genetics & Development*, 19(2), 180–186.
1034 <https://doi.org/10.1016/j.gde.2009.01.006>
1035 Valastyan, S., & Weinberg, R. A. (2011). Tumor Metastasis: Molecular Insights and Evolving
1036 Paradigms. *Cell*, 147(2), 275–292. <https://doi.org/10.1016/j.cell.2011.09.024>
1037 Vargas, J. D., Hatch, E. M., Anderson, D. J., & Hetzer, M. W. (2012). Transient nuclear
1038 envelope rupturing during interphase in human cancer cells. *Nucleus*, 3(1), 88–100.
1039 <https://doi.org/10.4161/nucl.18954>
1040 Venables, R. S., McLean, S., Luny, D., Moteleb, E., Morley, S., Quinlan, R. A., ... Hutchison,
1041 C. J. (2001). Expression of individual lamins in basal cell carcinomas of the skin. *British
1042 Journal of Cancer*, 84(4), 512–519. <https://doi.org/10.1054/bjoc.2000.1632>
1043 Wazir, U., Ahmed, M. H., Bridger, J. M., Harvey, A., Jiang, W. G., Sharma, A. K., & Mokbel,
1044 K. (2013). The clinicopathological significance of lamin A/C, lamin B1 and lamin B
1045 receptor mRNA expression in human breast cancer. *Cellular and Molecular Biology
1046 Letters*, 18(4), 595–611. <https://doi.org/10.2478/s11658-013-0109-9>
1047 Wilson, K. L., & Berk, J. M. (2010). The nuclear envelope at a glance. *Journal of Cell Science*,
1048 123(12), 1973–1978. <https://doi.org/10.1242/jcs.019042>
1049 Wilson, Katherine L., & Foisner, R. (2010). Lamin-binding Proteins. *Cold Spring Harbor
1050 Perspectives in Biology*, 2(4), a000554. <https://doi.org/10.1101/cshperspect.a000554>
1051 Wolf, K., Te Lindert, M., Krause, M., Alexander, S., Te Riet, J., Willis, A. L., ... Friedl, P. (2013).
1052 Physical limits of cell migration: control by ECM space and nuclear deformation and
1053 tuning by proteolysis and traction force. *J Cell Biol*, 201(7), 1069–1084.
1054 <https://doi.org/jcb.201210152> [pii]10.1083/jcb.201210152
1055 Yadav, S. K., Feigelson, S. W., Roncato, F., Antman-Passig, M., Shefi, O., Lammerding, J., &
1056 Alon, R. (2018). Frontline Science: Elevated nuclear lamin A is permissive for granulocyte
1057 transendothelial migration but not for motility through collagen I barriers. *Journal of*

1058 *Leukocyte Biology*, 104(2), 239–251. <https://doi.org/10.1002/JLB.3HI1217-488R>
1059 Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., ... Chanda,
1060 S. K. (2019). Metascape provides a biologist-oriented resource for the analysis of
1061 systems-level datasets. *Nature Communications*, 10(1), 1523.
1062 <https://doi.org/10.1038/s41467-019-09234-6>
1063

1064 **Figure legends**

1065 **Figure 1. Downregulation of lamin A/C increases melanoma squeezing through small**
1066 **rigid pores but does not facilitate tumor transendothelial migration in vitro**
1067 (A) Expression levels of lamin A/C and lamin B1 in B16F10 cells transduced with control or
1068 lamin A/C shRNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as
1069 loading control. (B) Immunostaining of lamin A/C (green) in B16F10 shControl and shLmna
1070 cells. Scale bar, 20 μ m. (C) Chemotactic migration of B16F10 shControl and shLmna cells
1071 through 8 or 3 μ m pores transwell filters in presence (+) or absence (-) of HGF (50 ng/ml) for
1072 4 hours. Values represent the mean \pm SEM of five fields in each experimental group. Results
1073 shown are from a representative experiment of three. ***p = 0.0002 (D) Haptotactic migration
1074 of B16F10 shControl and shLmna cells through 8 or 3 μ m pores transwell filters in the
1075 presence or absence of fibronectin for 4 hours. Values represent the mean \pm SEM of five fields
1076 in each experimental group. Results shown are from a representative experiment of three. *p
1077 = 0.0107, **p = 0.0024. (E) Representative images of distinct tumor cell categories (referred
1078 to as migratory phenotypes) taken from time-lapse videomicroscopy segments of individual
1079 B16 cells: round, spread above (SA), forming sub endothelial pseudopodia (SEP), and
1080 completing transendothelial migration (TEM). Scale bar represents 20 μ m. See also Video 2.
1081 (F) Migratory phenotypes of B16F10 melanoma, E0771 breast carcinoma and LL/2 Lewis
1082 Lung Carcinoma interacting with bEnd.3 monolayers. Values represent the mean \pm SEM of
1083 three fields in each experimental group (n= 40 cells). The experiment shown is representative
1084 of three.

1085

1086 **Figure 2. Downregulation of lamin A/C does not facilitate melanoma TEM but increases**
1087 **tumor nucleus deformability**

1088 (A) Migratory phenotypes of control and lamin A/C knockdown B16F10 melanoma (shControl
1089 and shLmna, respectively) interacting with unstimulated bEnd.3 cells. Values represent the
1090 mean \pm SEM of four fields in each experimental group (n = 50). The experiments shown are
1091 representative of three. (B) Serial images of representative control and lamin A/C knockdown
1092 B16F10 melanoma cells, labeled with Hoechst. Time intervals are depicted in each image.
1093 The contours of the melanoma cell's leading edge and nucleus are outlined in each image in

1094 yellow and red respectively. See also Video 3. (C) Nuclear circularity variation during the
1095 distinct indicated phases (1-3) of transendothelial migration of B16F10 shControl and shLmna
1096 cells. Values represent the mean \pm SEM of six fields in each experimental group (n = 15). The
1097 experiment shown is representative of three. *p = 0.0105 (shControl); ****p < 0.0001, *p =
1098 0.0288 (shLmna). The right panel depicts the mean nuclear circularity values for each group
1099 of B16F10 cells. The percent changes in mean circularity values are shown on top of the line
1100 plots. *p = 0.0152. (D) Nuclear circularity of B16F10 shControl and shLmna cells spread on a
1101 bEnd.3-derived basement membrane. n = 50 cells per group. Values are mean \pm SEM. ****p
1102 < 0.0001. See also Video 4.

1103

1104 **Figure 3. In vivo melanoma crossing of lung capillaries is not enhanced by lamin A/C**
1105 **downregulation**

1106 (A) Schematic representation of the LSFM analysis. (B) Visualization of 3D bronchial
1107 structures (green, autofluorescence) together with B16 melanoma cells (red, CMTMR) and
1108 alveolar capillaries (cyan, CD31). Scale bars, 100 μ m. See also Video 5. (C) Representative
1109 3D images of intravascular, extravascular, and protrusive tumor cells across the CD31-labeled
1110 lung vasculature together with the percentage of B16F10 shControl and shLmna cells present
1111 in a volume of $5 \times 10^9 \mu\text{m}^3$ of the left lung lobe (3 h after injection) counted using Imaris software.
1112 The results shown are representative of 3 experiments. Scale bar, 100 μ m. See also Videos
1113 6-8. (D) Number of CMTMR-labeled B16F10 shControl and shLmna present in the lungs of
1114 recipient mice, 3 h after i.v. injection. Data are mean \pm SEM. The experiment shown is
1115 representative of two.

1116

1117 **Figure 4. Lamin A/C downregulation reduces heterochromatin content and alters gene**
1118 **transcription**

1119 (A) Immunostaining of H3K9me3 (red) in B16F10 shControl and shLmna cells. Hoechst 33258
1120 (cyan) is shown in the left panel. Scale bar, 25 μ m. The experiment shown is representative
1121 of three. (B) Equal amounts of proteins from B16F10 shControl or shLmna cells, separated by
1122 SDS-PAGE and analyzed for the indicated proteins by Western blot analysis. The bar graph
1123 represents the mean levels of H3K9me3, H3K27me3 and SUV39H2 normalized to Histone
1124 H3 and of SETDB1 normalized to α -Tubulin \pm SEM of at least four independent experiments.
1125 *p < 0.05. (C) Fluorescence microscopy imaging of 5-ethynyl uridine (EU) incorporation (red)
1126 and Hoechst 33342 (blue) in B16F10 shControl and shLmna cells. Cells were grown with 1
1127 mM EU for 1 h. Cells were fixed, permeabilized and treated with Alexa Fluor 594 azide.
1128 Nucleoplasmic fluorescence intensity of the EU staining was measured using ImageJ. Data
1129 from 3 independent experiments are shown in the boxplot. (D) Differentially downregulated
1130 (blue), upregulated (red) and non-differentially expressed genes (grey) are shown (LFC > 1

1131 and adjusted p value < 0.05). The names of the top 20 most significantly expressed genes are
1132 indicated in the plot. (E) Gene ontology (GO) enrichment analysis of the top differentially
1133 downregulated (blue) and upregulated (red) genes in B16F10 shLmna cells. Biological
1134 Process (BP), Molecular Function (MF) and Cellular Component (CC).

1135

1136 **Figure 5. Melanoma proliferation, response to DNA damage, and senescence are**
1137 **insensitive to lamin A/C downregulation**

1138 (A) In vitro cell growth of B16F10 shControl and shLmna cells cultured with growth medium
1139 changed every 24 h. Values represent the mean \pm SEM. The experiment shown is
1140 representative of three. (B) Growth arrest induced by etoposide at different concentrations on
1141 B16F10 shControl and shLmna cells after treatment for 72 h. Values represent the mean \pm
1142 SEM. The experiment shown is representative of three. (C) Senescence associated β -
1143 galactosidase staining of B16F10 shControl and shLmna cells treated with 5 μ M etoposide for
1144 72 h, washed and cultured in regular growth medium for an additional 120 h. The experiment
1145 shown is representative of two. Scale bar, 20 μ m. *p = 0.0470. (D) Schematic representation
1146 of the 3D agarose spheroid assay. Spheroids (dark grey) grown inside agarose while few cells
1147 migrate and start dividing at the bottom of the culture dish. At day 6, spheroids were recovered.
1148 Representative images of the spheroids derived from B16F10 shControl cells grown in 3D
1149 agar (supplemented with 10% FBS) imaged on days 3 and 6. Scale bar, 20 μ m. An image of
1150 a colony of cells proliferating on the bottom of the soft agar well is depicted at the right. Scale
1151 bar, 200 μ m. (E) Spheroid diameter, measured on days 1, 3 and 6 after seeding. n = 50
1152 spheroids per group. Values represent the mean \pm SEM. The experiment shown is
1153 representative of three. ****p < 0.0001. Inset depicts the area of individual cell colonies
1154 proliferating on the bottom of the soft agar well, measured on day 6. (F) The diameter of
1155 individual spheroids grown for 1 and 3 days in soft agar supplemented with rich growth
1156 medium (50% FBS). Values represent the mean \pm SEM. The experiment shown is
1157 representative of two. ****p < 0.0001.

1158

1159 **Figure 6. Effects of lamin A/C downregulation on E0771 migration, growth and**
1160 **metastatic potential**

1161 (A) 15,000 B16F10 shControl and shLmna cells were implanted subcutaneously in flank or in
1162 the mammary fat pad (B) of C57BL/6 mice. Tumor growth was assessed every other day for
1163 14 days post implantation. The experiment shown is representative of three. (C) Number of
1164 CMTMR-labeled B16F10 shControl and shLmna present in the lungs of recipient mice, 3 or 7
1165 days after i.v. injection. Data are mean \pm SEM. The experiment shown is representative of
1166 three. (D) 40,000 B16F10 shControl and shLmna cells were injected in the tail of recipient
1167 C57BL/6 mice. After 14 days, animals were euthanized and lungs harvested. Surface

1168 metastatic foci were macroscopically counted, results are mean \pm SEM, n = 5 for each
1169 experimental group. *p = 0.0374. A representative lung image from each group is presented.
1170 The experiment shown is representative of three.

1171

1172 **Figure 7. Effects of lamin A/C downregulation on E0771 migration, growth and**
1173 **metastatic potential**

1174 (A) Expression levels of lamin A/C and lamin B1 in E0771 cells transduced with control or
1175 lamin A/C shRNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as
1176 loading control. (B) Haptotactic migration of E0771 shControl and shLmna cells through 8 or
1177 3 μ m pores transwell filters in the presence (+) or absence (-) of fibronectin for 4 h. Values
1178 represent the mean \pm SEM of five fields of view in each experimental group. Results shown
1179 are from a representative experiment of three. *p = 0.0240 (8 μ m) *p = 0.0361 (3 μ m). (C)
1180 Representative 3D images of intravascular or protrusive tumor cells across the CD31-labeled
1181 lung vasculature together with the percentage of E0771 shControl and shLmna cells present
1182 in a volume of $5 \times 10^9 \mu\text{m}^3$ of the left lung lobe (3 h after injection) counted using Imaris software.
1183 The results shown are representative of 3 experiments. Scale bar, 100 μ m. (D) Differentially
1184 downregulated (blue), upregulated (red) and non-differentially expressed genes (grey) are
1185 shown (LFC > 1 and adjusted p value < 0.05). The names of the top 20 most significantly
1186 expressed genes are indicated in the plot. (E) In vitro cell growth of E0771 shControl and
1187 shLmna cells cultured with growth medium changed every 24 hours. Values represent the
1188 mean \pm SEM. The experiment shown is representative of two. (F) 10,000 E0771 shControl
1189 and shLmna cells were implanted in the mammary fat pad of female C57BL/6 mice. Tumor
1190 growth was assessed every other day for 14 days post implantation. The experiment shown
1191 is representative of three. (G) Growth arrest induced by etoposide at different concentrations
1192 on E0771 shControl and shLmna cells after treatment for 72 hours. Values represent the mean
1193 \pm SEM. The experiment shown is representative of three. (H) Spheroid diameter, measured
1194 on days 1, 3 and 6 after seeding. n = 50 cells per group. Values represent the mean \pm SEM.
1195 The experiment shown is representative of three. ****p < 0.0001. (I) Experimental lung
1196 metastasis of E0771 breast cancer cells. 20,000 E0771 shControl and shLmna cells were
1197 intravenously injected in recipient C57BL/6 mice. After 14 days, animals were euthanized and
1198 lungs harvested. The number of micrometastases present in the left lung lobe of each lung
1199 was determined. The experiment shown is representative of two. **p = 0.0030. (J) 10,000
1200 E0771 shControl and shLmna cells were intravenously injected in recipient C57BL/6 mice.
1201 After 30 days, animals were euthanized and lungs harvested. The number of micrometastases
1202 present in the left lung lobe of each mouse was determined. The experiment shown is
1203 representative of two. *p = 0.0246.

1204 **Video Legends**

1205 **Video 1**

1206 **Transendothelial migration of B16F10 murine melanoma**

1207 Time-lapse movie of an Hoechst-labeled B16F10 crossing a bEnd.3 endothelial monolayer. The
1208 contours of the tumor cell leading edges and nucleus are outlined in each image in yellow and red
1209 respectively. Elapsed time is designated as h:mm:ss. Scale bar, 20 μ m

1210 **Video 2**

1211 **Migratory phenotypes of B16F10 cells over a bEnd.3 endothelium**

1212 Time-lapse movie divided in four quadrants in which different B16F10 cells display a unique phenotype
1213 when interacting with a bEnd.3 endothelial monolayer. Represented clockwise there are Round, Spread
1214 Above (SA), subendothelial pseudopodium (SEP) and transendothelial migration (TEM) phenotypes.
1215 Elapsed time is designated as h:mm:ss. Scale bar, 20 μ m

1216 **Video 3**

1217 **Transendothelial migration of B16F10 shControl vs shLmna cells**

1218 Time-lapse movie depicting a Hoechst labeled B16F10 cell shControl (left) and shLmna (right) crossing
1219 a bEnd.3 endothelium. The contours of the tumor cell leading edges and nucleus are outlined in yellow
1220 and red respectively. Elapsed time is designated as h:mm:ss. Scale bar, 20 μ m.

1221 **Video 4**

1222 **Nuclear deformability of B16F10 shControl vs shLmna cells**

1223 Time-lapse movie depicting the Hoechst-labeled nuclei (green) of B16F10 shControl (left) and shLmna
1224 (right) cells interacting with a bEnd.3-deposited basement membrane. Elapsed time is designated as
1225 h:mm:ss. Scale bar, 20 μ m.

1226 **Video 5**

1227 **Light sheet microscopy of tumor cells, bronchial structures and lung vasculature**

1228 Three-dimensional animated visualization of a section of murine lung lobe. CMTMR-labeled tumor cells
1229 (red) and autofluorescent bronchial structures (green) can be observed from seconds 0 to 21 (movie
1230 length). CD31-labeled lung vasculature (cyan) can be observed from seconds 22-40 (movie length).

1231 **Video 6**

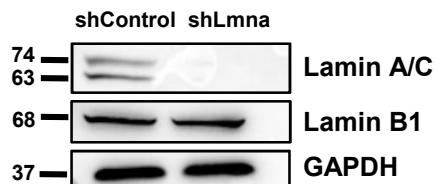
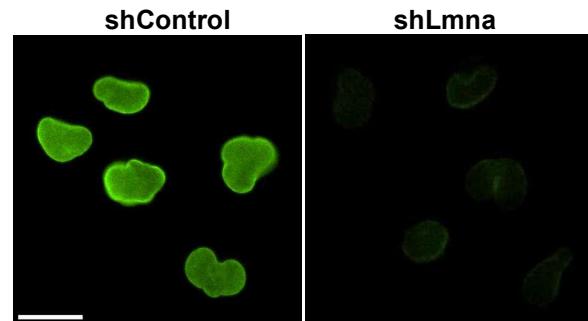
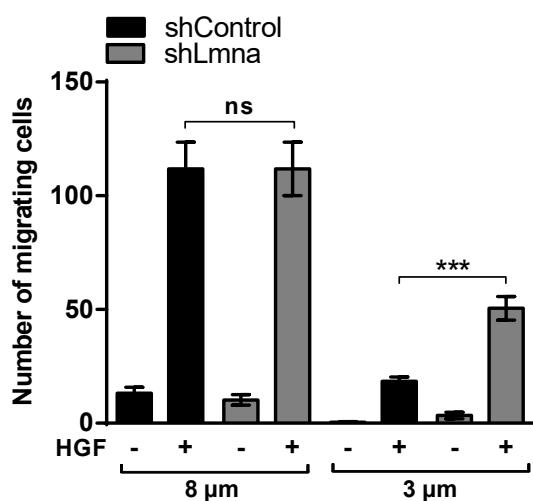
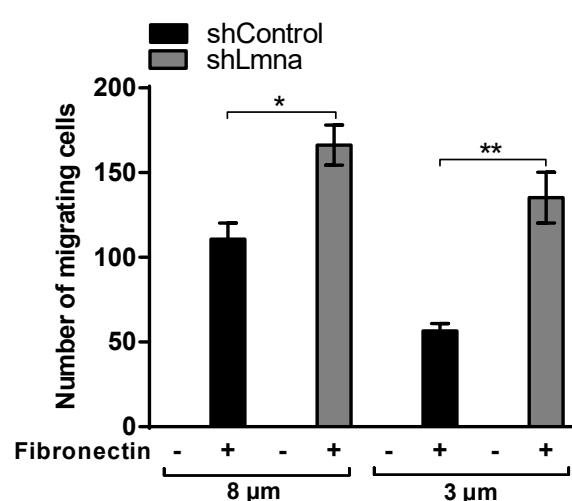
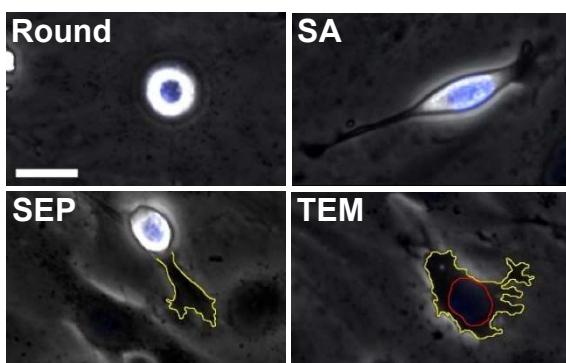
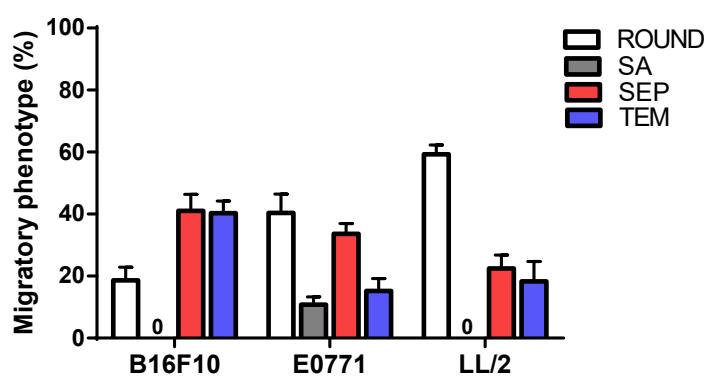
1232 **Example of an intravascular B16F10 cell**

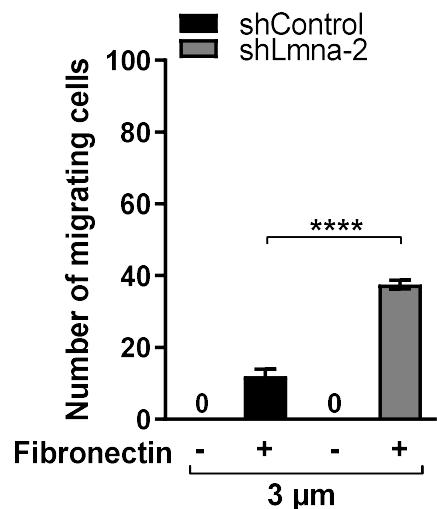
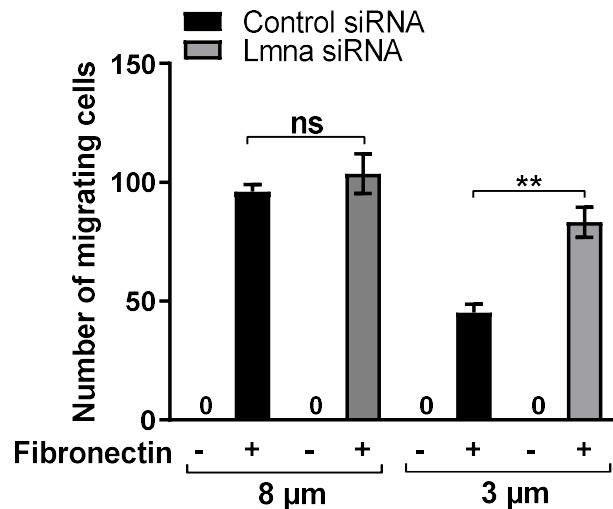
1233 Three-dimensional animated visualization of a CMTMR-labeled B16F10 cell (red) located inside a
1234 CD31-labeled lung vasculature (cyan). Scale bar, 100 μ m.

1235 **Video 7**

1236 **Example of a protruding B16F10 cell**

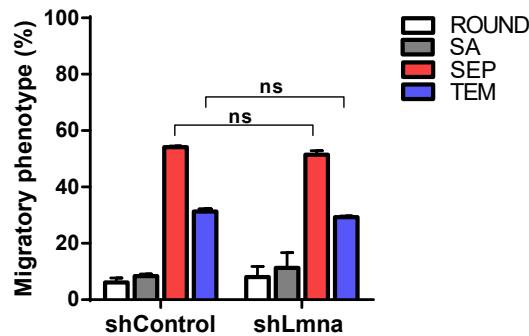
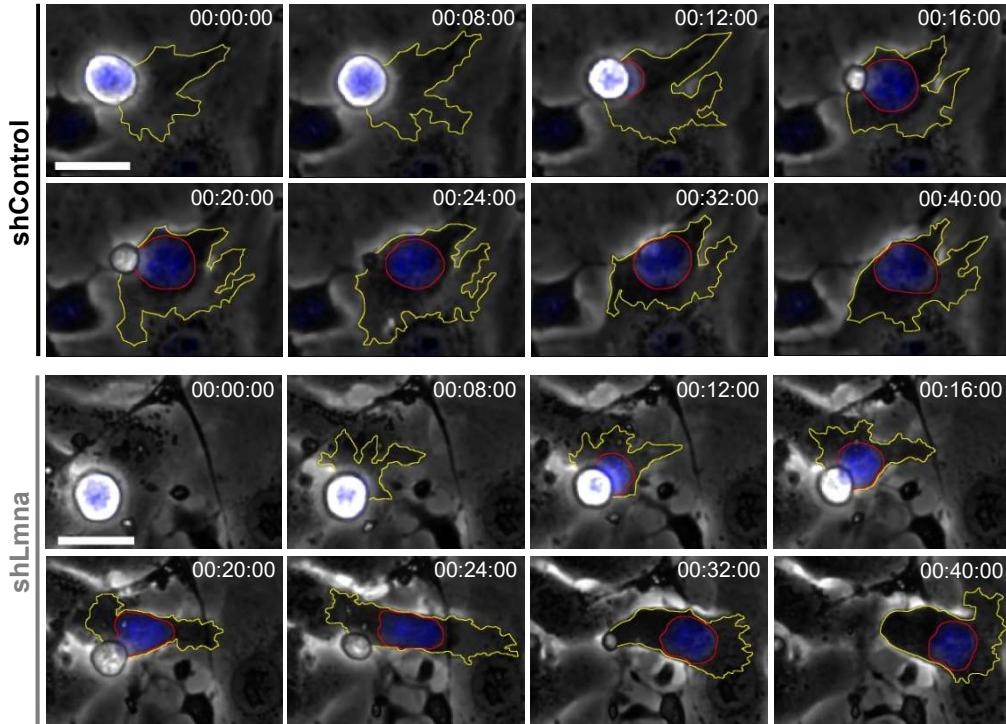
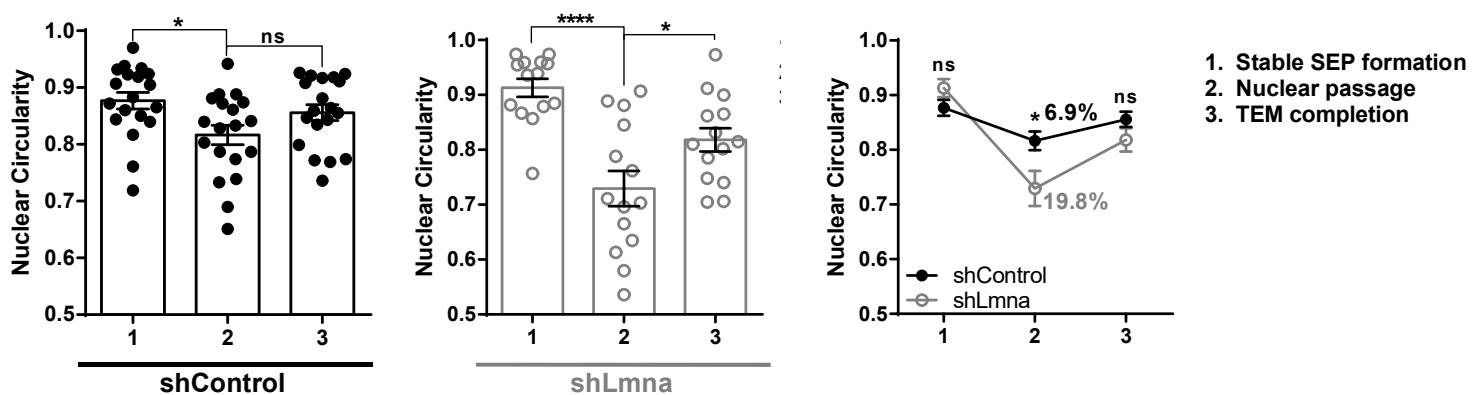
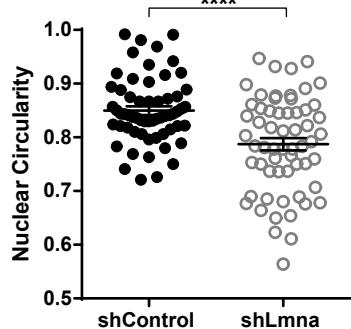
1237 Three-dimensional animated visualization of a CMTMR-labeled B16F10 cell (red) protruding through
1238 the CD31-labeled lung vasculature (cyan). Scale bar, 100 μ m

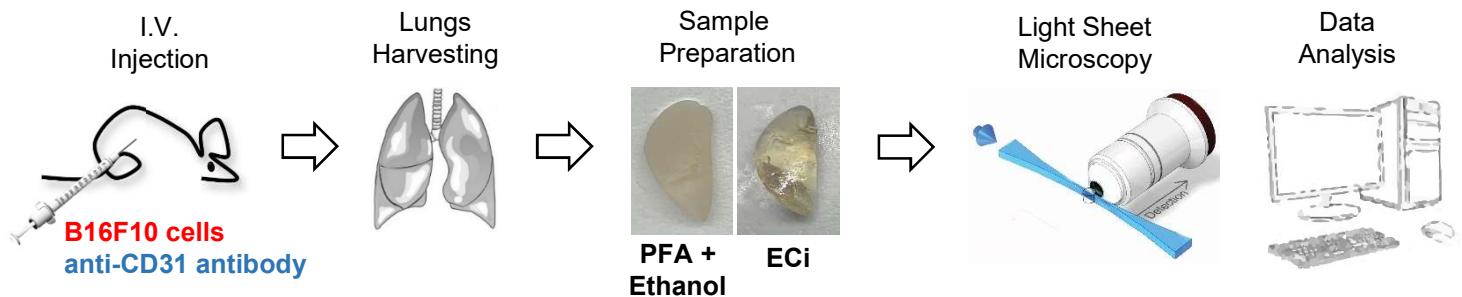
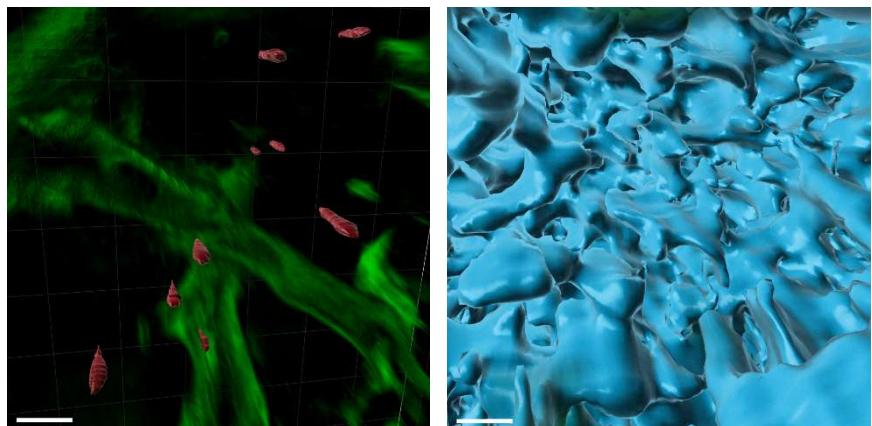
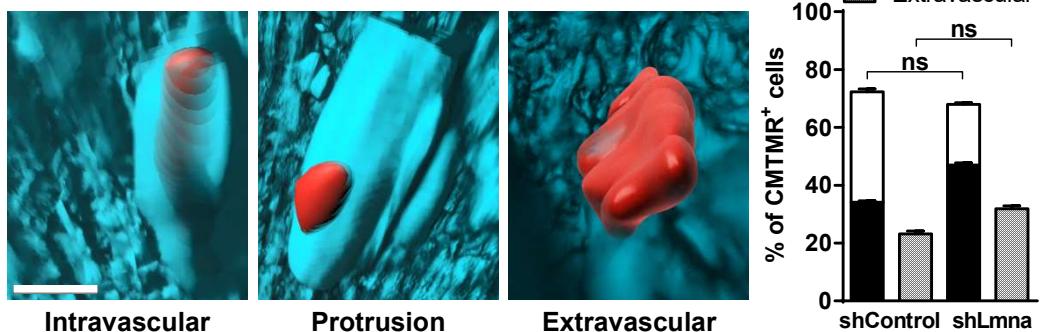
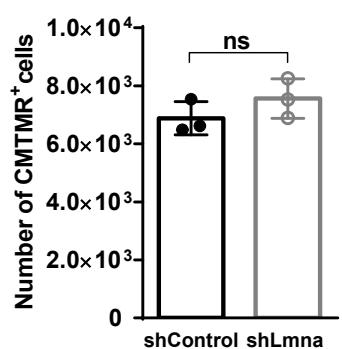






1239 **Video 8**



1240 **Example of an extravascular B16F10 cell**

1241 Three-dimensional animated visualization of a CMTMR-labeled B16F10 cell (red) located outside the
1242 CD31-labeled lung vasculature (cyan). Scale bar, 100 μ m

1243 **Supplementary File 1**





1244 DeSeq2 analysis output and gene expression levels in enriched Gene Ontology terms.





A**B****C****D****E****F****Figure 1**

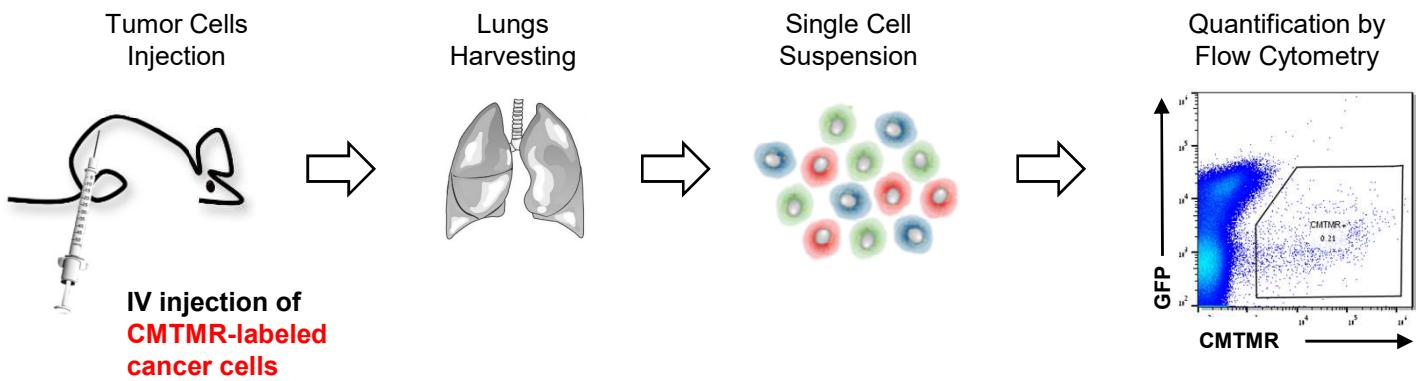
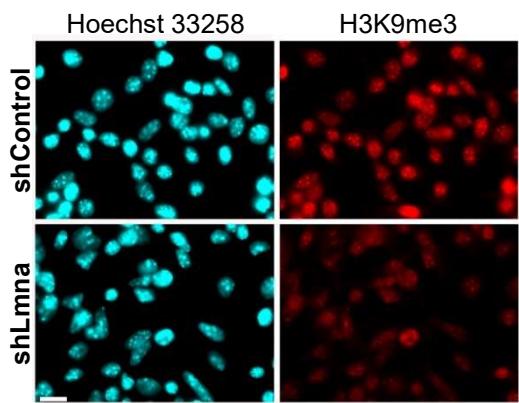
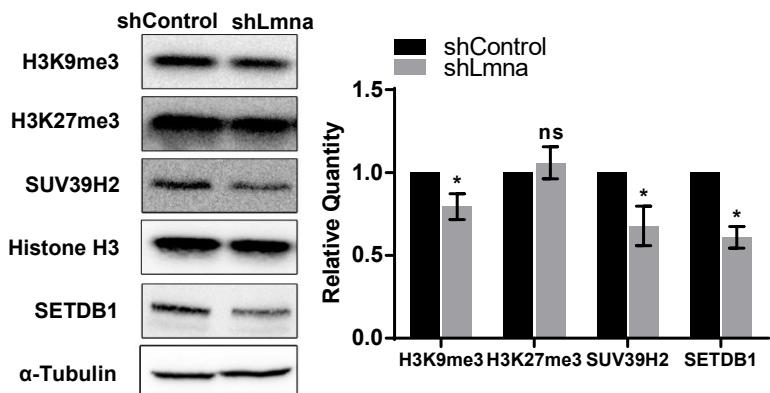
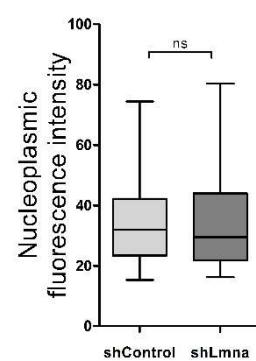
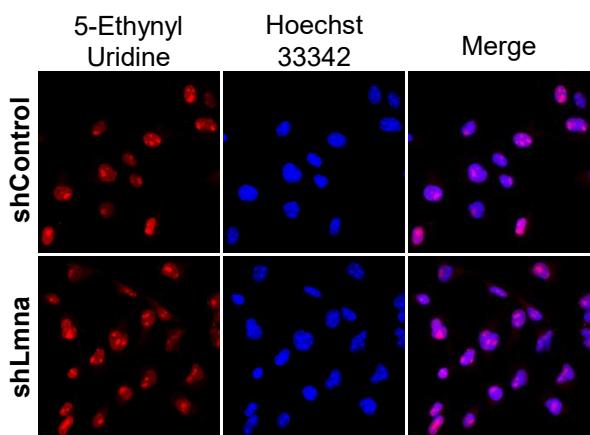
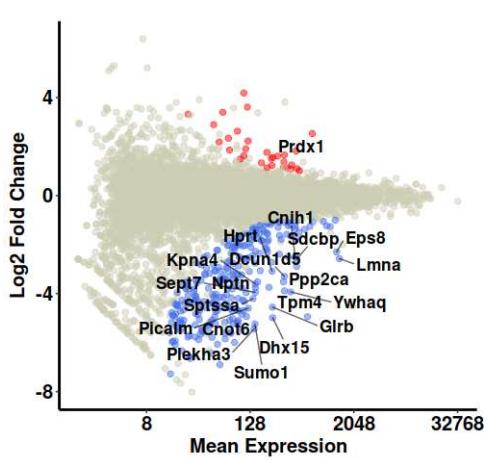
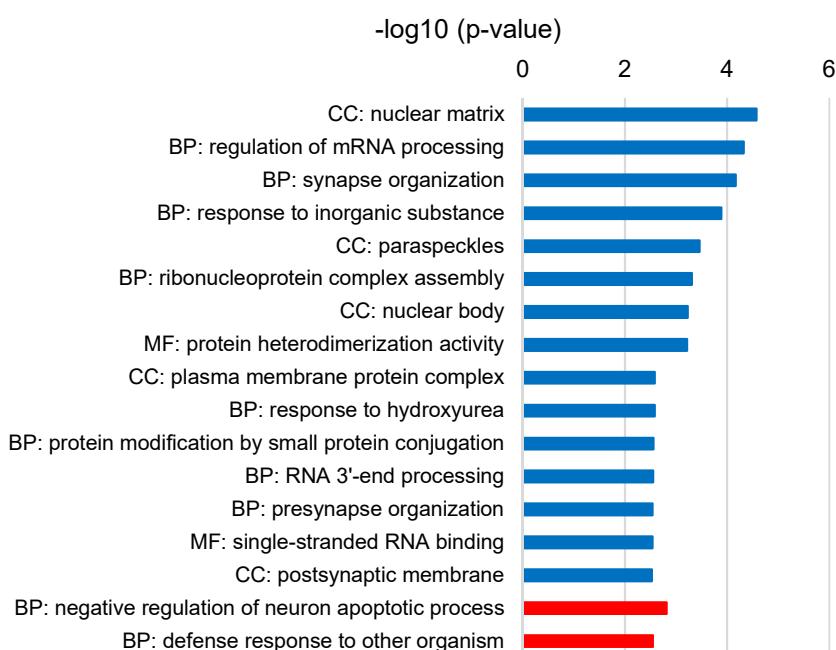

A**B**

Figure 1–figure supplement 1. Lamin A/C deficiency increases B16 melanoma cell chemotaxis through rigid pores.

(A) Haptotactic of B16F10 shControl vs shLmna-2 through 3 μ m pores transwell filters coated (+) or uncoated (-) with fibronectin (1.5 μ g/ml) for 4 h. **** p < 0.0001. (B) Migration of B16F10 cells towards HGF (50 ng/ml) measured through 8 or 3 μ m pore transwell filters after 4 h. Data are mean \pm SEM. The results shown are representative of 2 independent experiments. **p = 0.0076.







A**B****C****D****Figure 2**

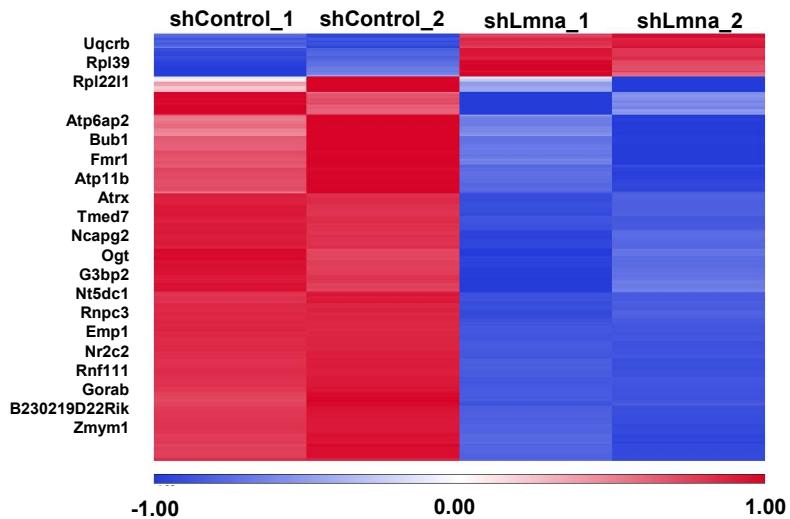
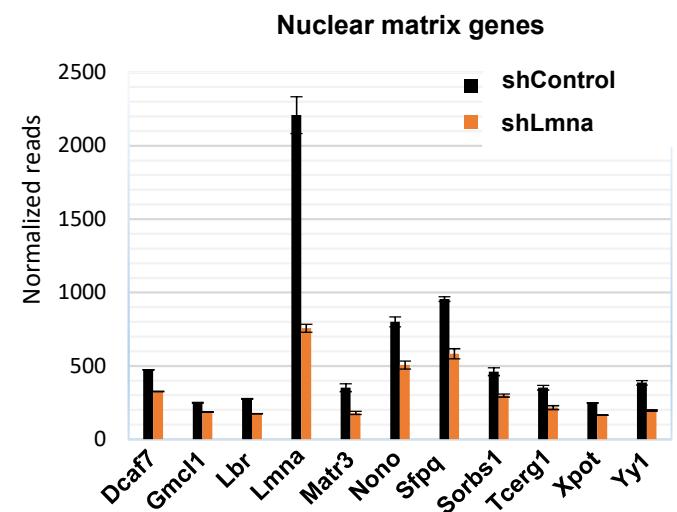
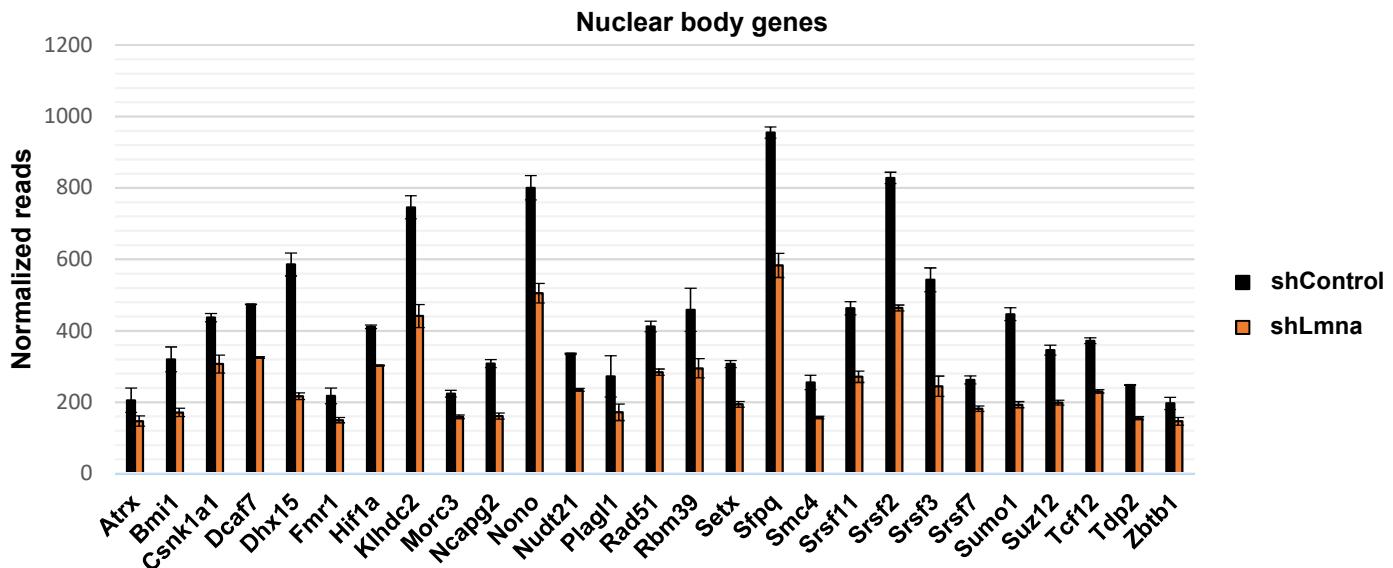
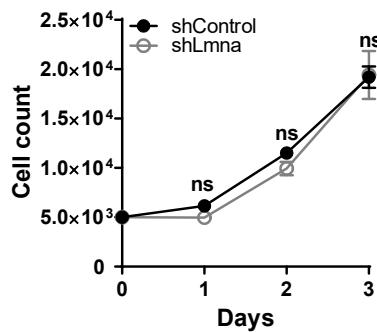
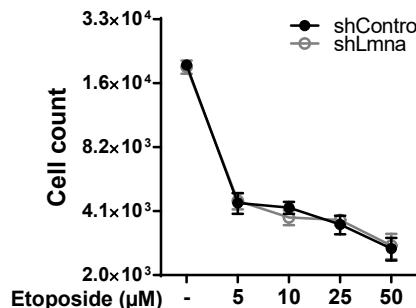
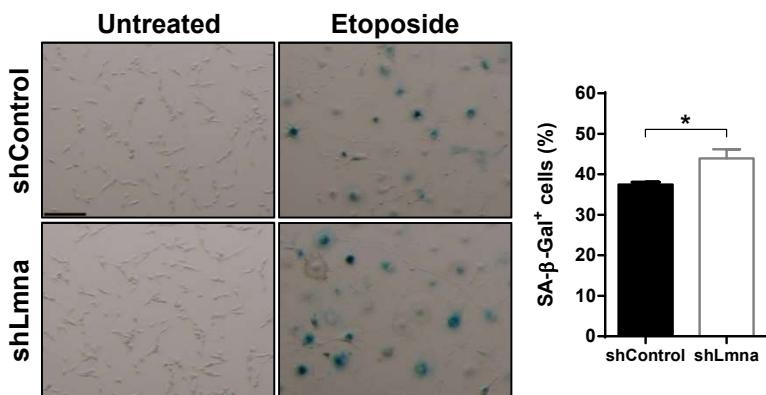
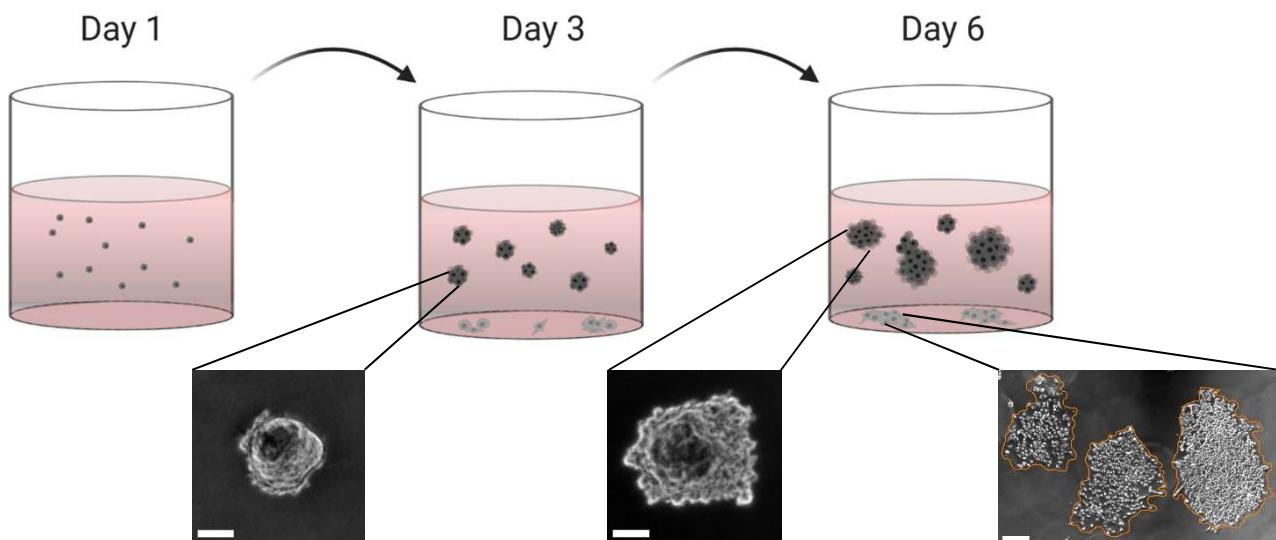
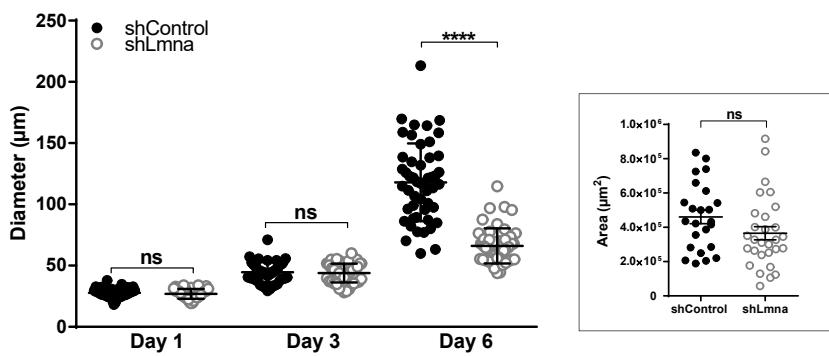
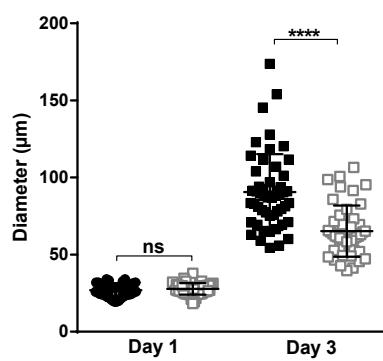



A**B****C****D****Figure 3**

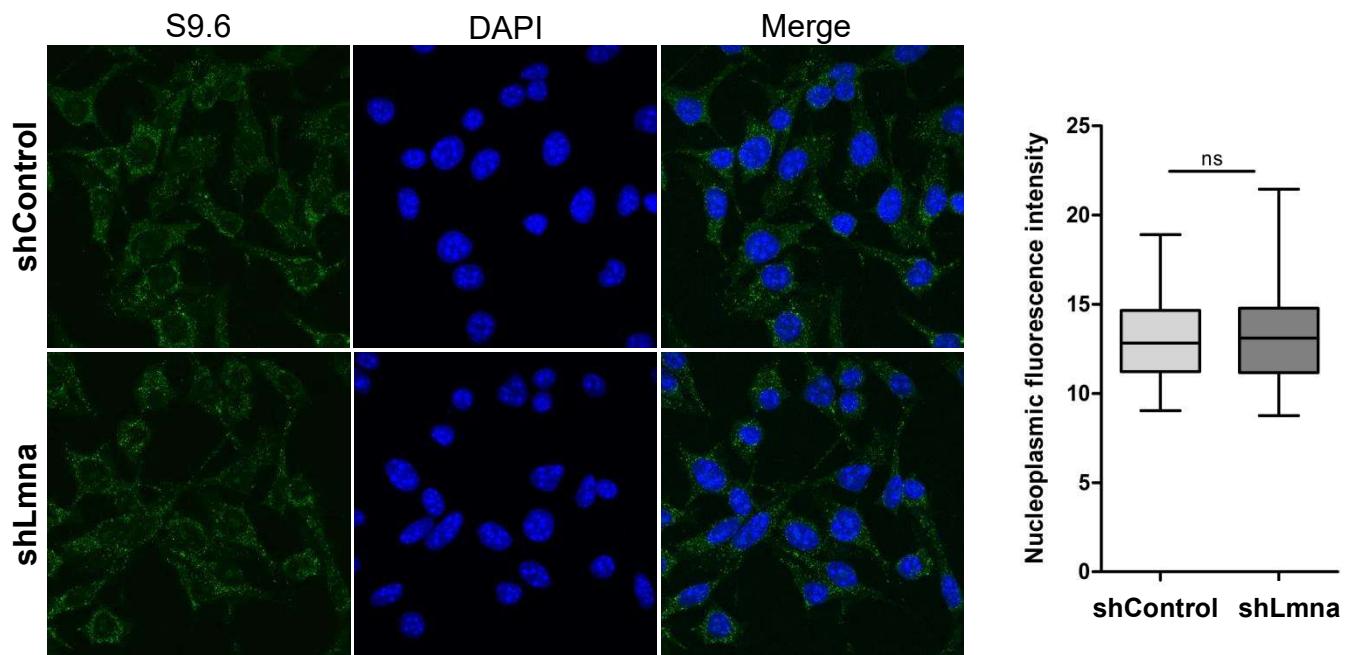
Figure 3–figure supplement 1. Quantification of cancer cells accumulation in lungs.







Scheme depicting the experimental pipeline necessary to quantify single cell accumulation in lungs of recipient mice. Cancer cells were labeled with CMTMR orange cell tracker for 30 min, washed and i.v. injected into recipient WT mice. After 3 hours, 3 or 7 days the mice were euthanized, their lungs harvested, minced and digested into single cell suspension and subsequently analyzed by flow cytometry.

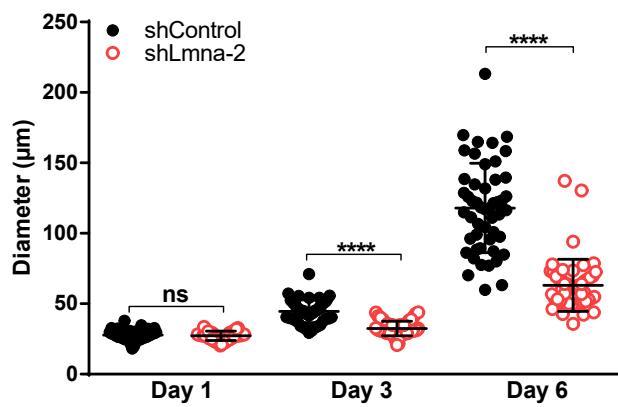
A**B****C****D****E****Figure 4**

A**B****C**

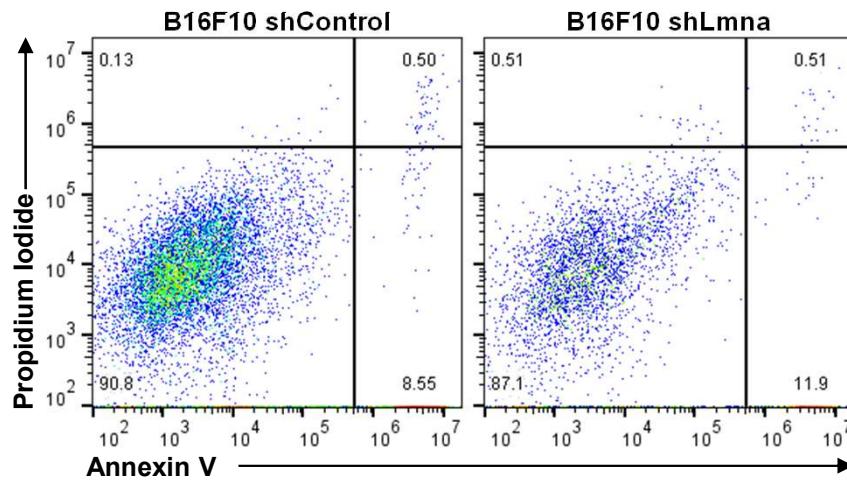
Figure 4–figure supplement 1. Lamin A/C downregulation alters gene transcription.


(A) Heatmap based on clustering of the 300 differentially expressed genes. Red and blue bars represent positive and negative changes, respectively, and the intensity of the color represents the standardized log2 expression level. The top differentially expressed (DE) genes are shown on the left. The full list is available in Table S1. (B, C) Individual gene expression levels of genes belonging to the enriched gene ontology (GO) terms: nuclear matrix (B) and nuclear body (C), summarized in Fig. 6E.

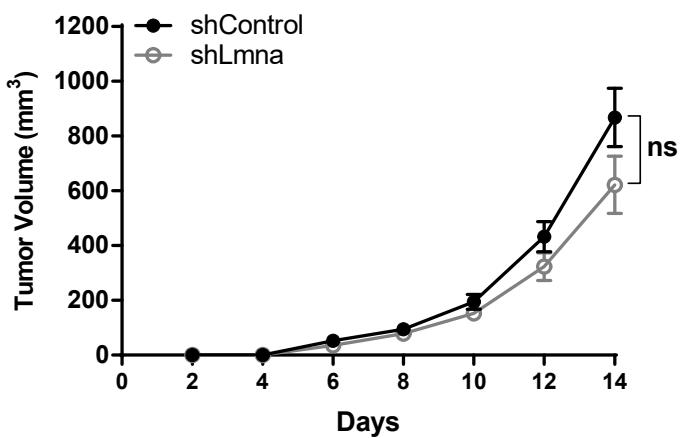
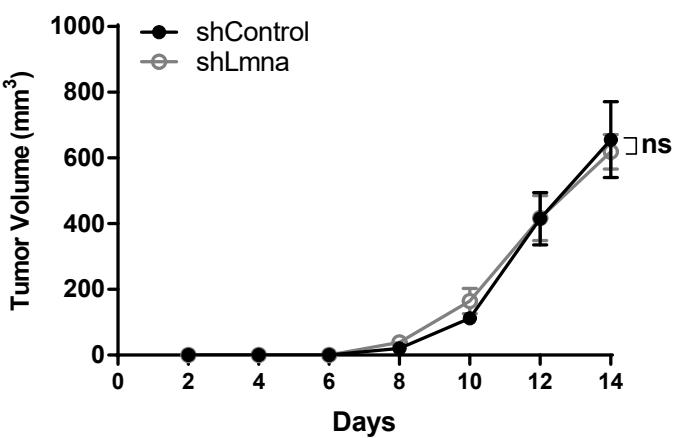
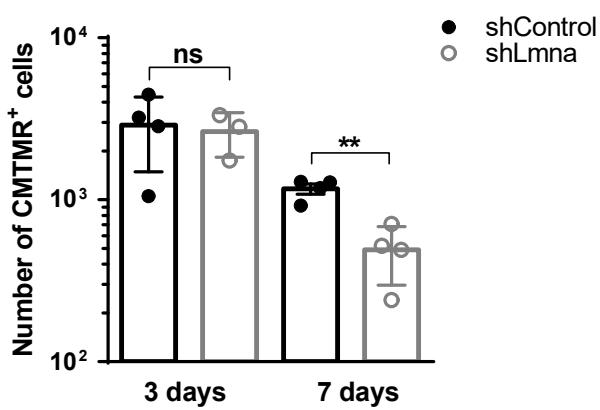
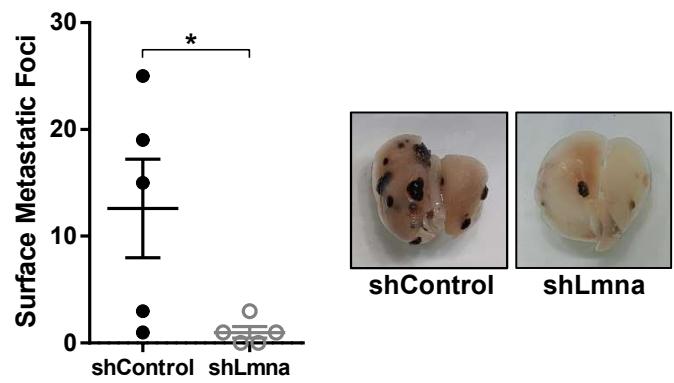
A**B****C****D****E****F****Figure 5**

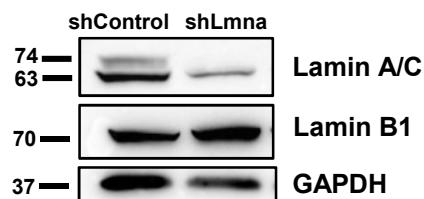
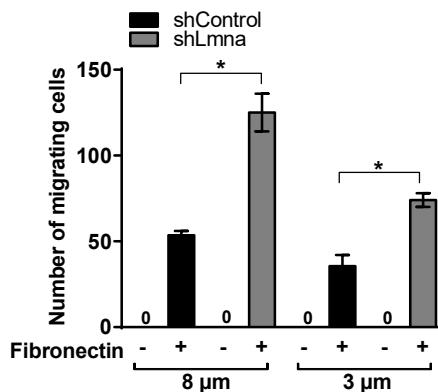
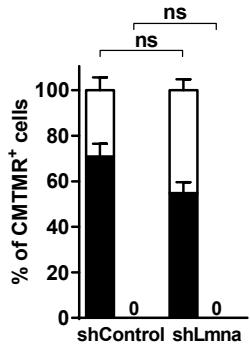
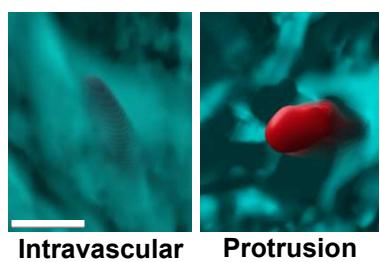
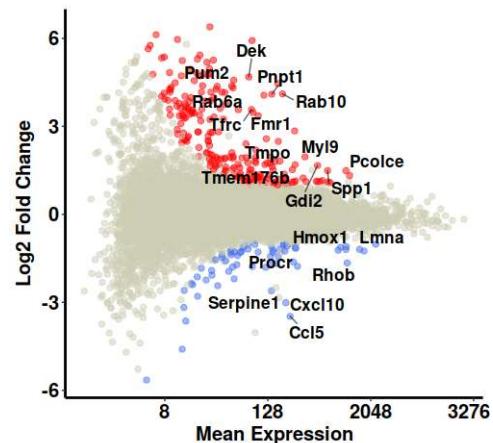
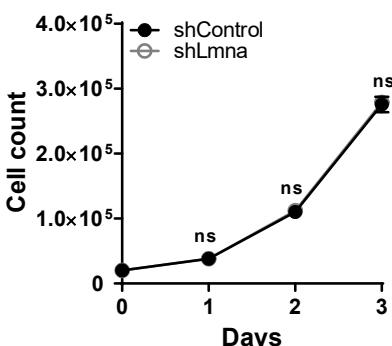
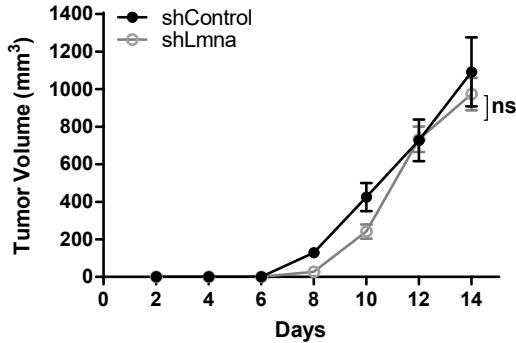
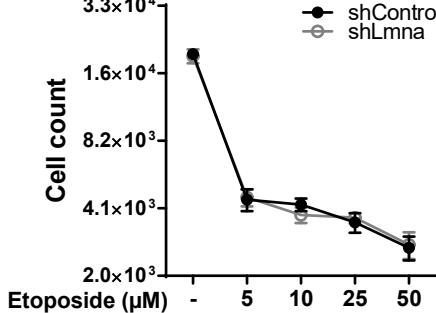
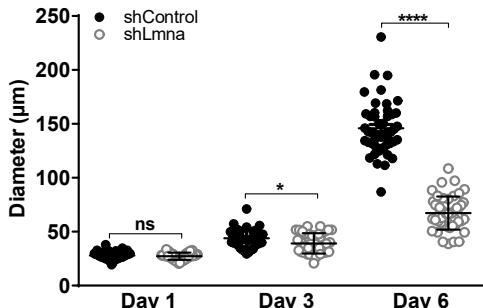
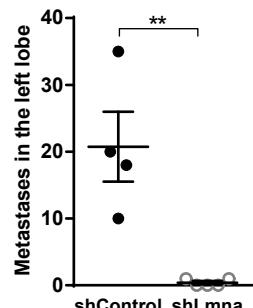
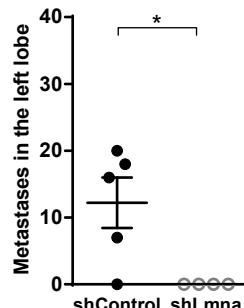

Figure 5-figure supplement 1. DNA damage-induced growth arrest and senescence of cancer cells induced by etoposide treatment in vitro.

Cancer cells were exposed to 5 μ M etoposide for 72 hours. The compound was subsequently removed and the cells were cultured with regular growth medium for additional 120 hours. Cells were then fixed in 0.5% glutaraldehyde for 15 min and stained for senescence associated β -Galactosidase as described in Krizhanovsky et al., 2008.


Figure 5-figure supplement 2. Lamin A/C downregulation doesn't alter R-loop (S9.6) formation in B16F10 cells.

R-loop mapping via S9.6-based anti DNA:RNA hybrid antibody immunofluorescence.





Figure 5–figure supplement 3. Soft agar colony formation assay












B16F10 (either shControl or shLmna-2 expressing) cells were embedded in soft agar and their growth was monitored for 6 days. Spheroid diameter was measured at days 1, 3, and 6 after seeding. n = 50 cells per group. Values represent the mean \pm SEM. The experiment shown is representative of two. ****p < 0.0001.

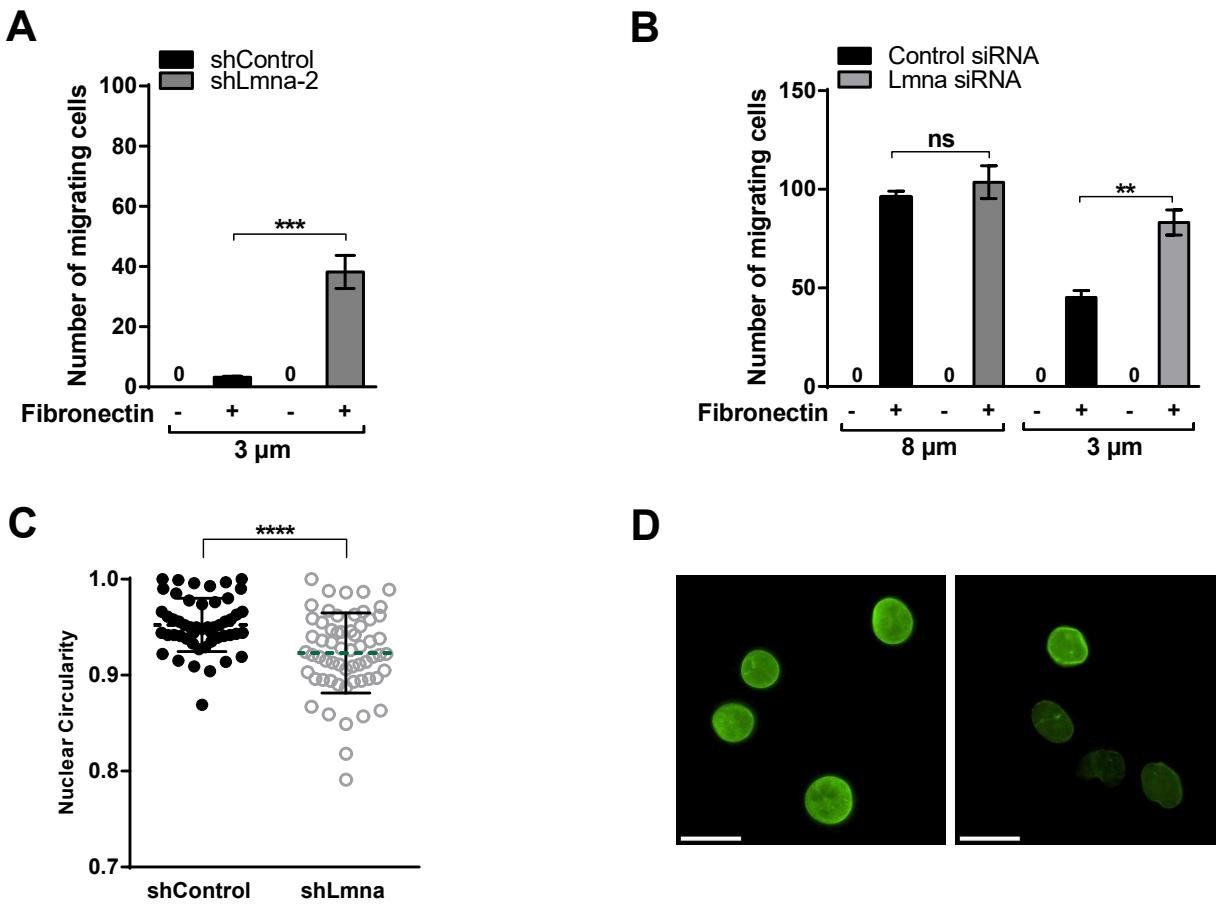
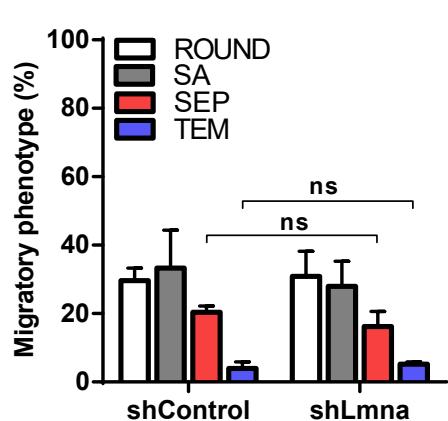
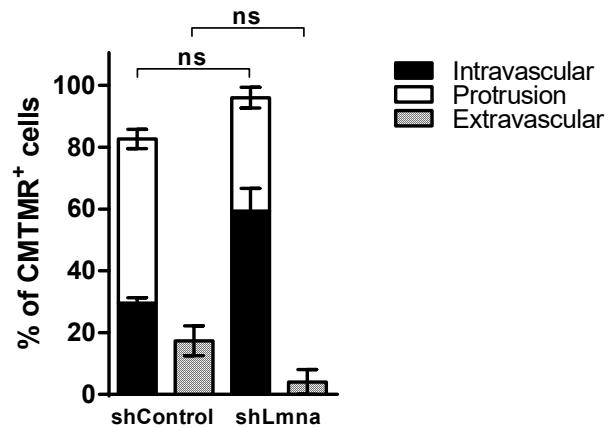
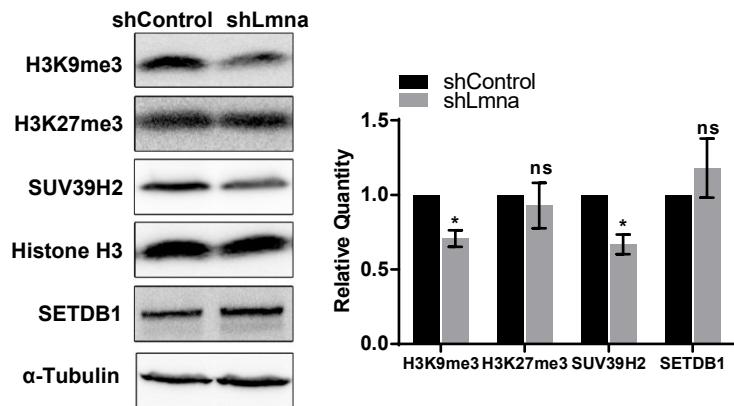
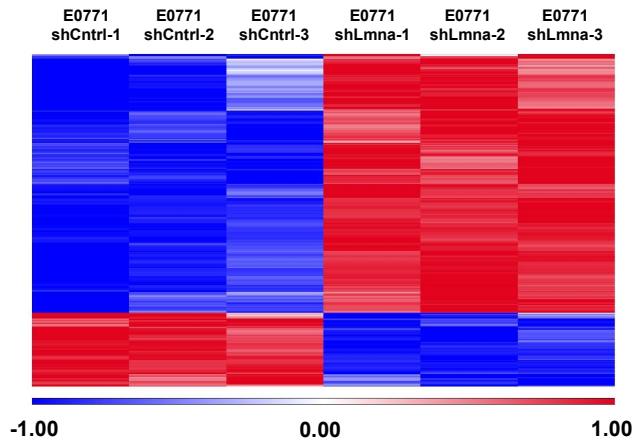
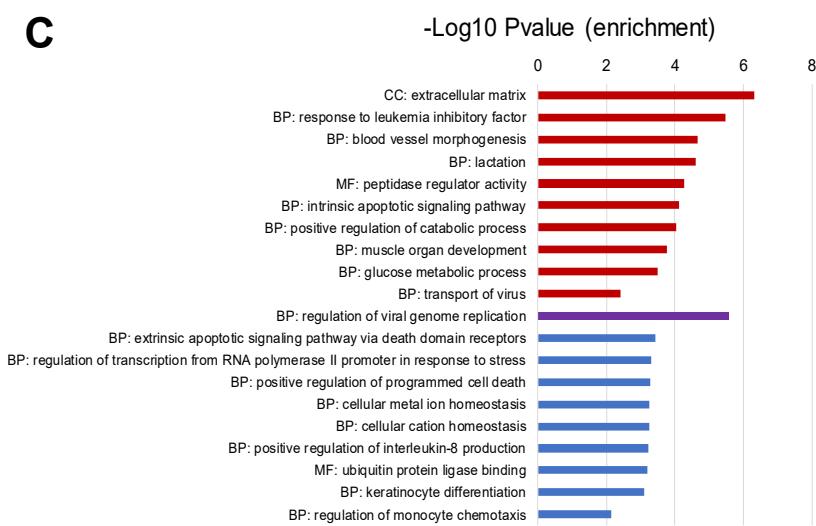


Figure 5—figure supplement 4. Representative flow cytometry data to illustrate gating and quadrant strategy for measurement of apoptosis.

Flow cytometry plots showing annexin V (X-axis) and propidium iodide (Y-axis) staining of B16F10 (either shControl or shLmna expressing) cells derived from 3D colonies grown in soft agar and extracted at day 6. The right lower quadrant represents annexin V positive/propidium iodide (PI) negative staining indicating early apoptosis. The right upper quadrant represents high annexin V and high PI staining indicating late apoptosis and the left upper quadrant represents low annexin V and high PI staining indicating necrosis. The left lower quadrant indicates viable cells.

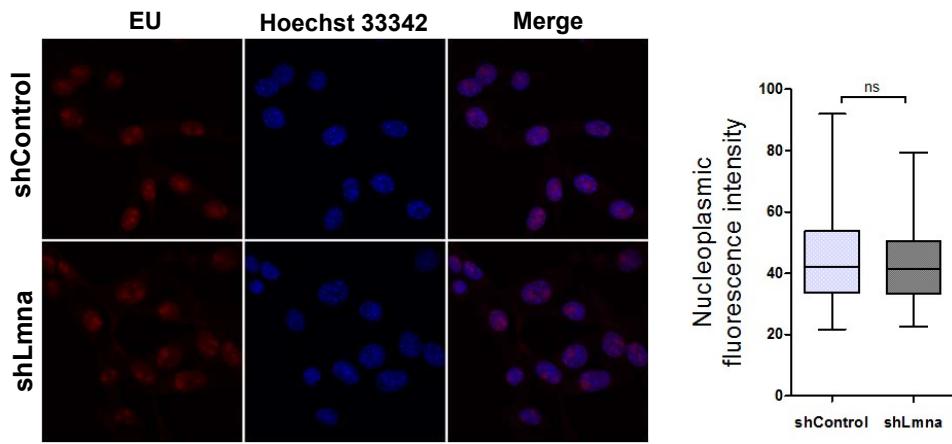


A**B****C****D****Figure 6**

A**B****C****D****E****F****G****H****I****J****Figure 7**




Figure 7–figure supplement 1. Downregulation of lamin A/C increases E0771 breast carcinoma cells squeezing through small rigid pores and alters nuclear shape.

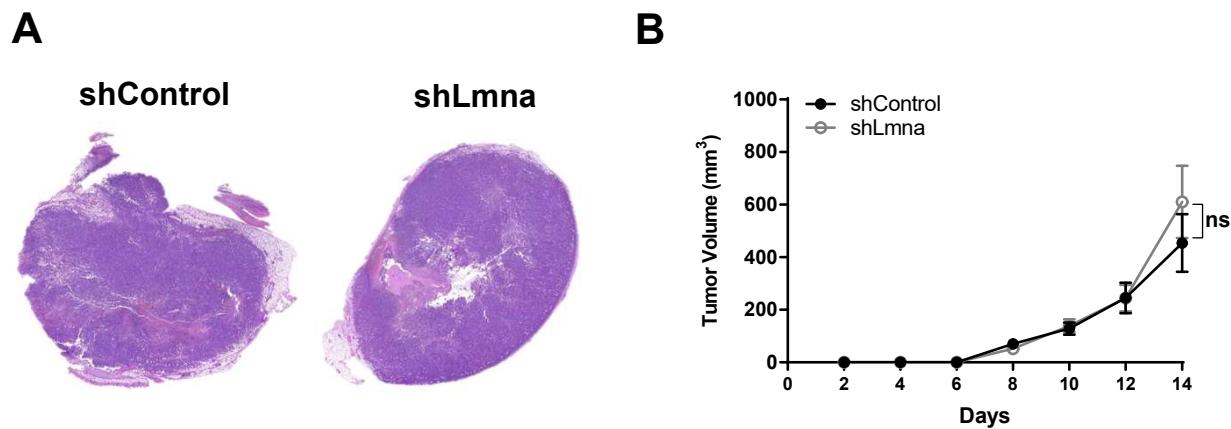
(A) Haptotactic of E0771 shControl vs shLmna-2 through 3 μ m pores transwell filters coated (+) or uncoated (-) with Fibronectin (1.5 μ g/ml) for 4 h. *** p = 0.0002. (B) Haptotactic migration of E0771 Control and Lmna siRNA cells (72 h post transfection), through 8 or 3 μ m pores transwell filters coated (+) or uncoated (-) with fibronectin (1.5 μ g/ml) for 4 h. Values represent the mean \pm SEM of five fields of view in each experimental group. Results shown are from a representative experiment of three. ***p = 0.0018. (C) Nuclear circularity of E0771 shControl and shLmna cells spread on a bEnd.3-derived basement membrane. ****p <0.0001. (D) Immunostaining of lamin A/C (green) in E0771 shControl and shLmna cells. Scale bar represents 20 μ m.

A**B**

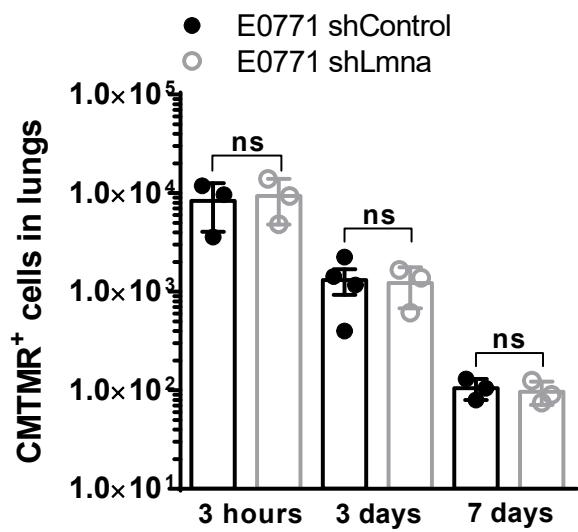

Figure 7–figure supplement 2. In vitro and in vivo breast carcinoma crossing of endothelial barriers is not enhanced by lamin A/C downregulation.

(A) Migratory phenotypes of E0771 breast carcinoma cells TEM. Distinct tumor cell categories (referred to as migratory phenotypes) taken from time lapse videomicroscopy segments of individual E0771 cells: round, spread above (SA), forming sub endothelial pseudopodia (SEP), and completing transendothelial migration (TEM). Values represent the mean \pm SEM of three fields in each experimental group. (B) Percentage of E0771 shControl and shLmna cells in a volume of $5 \times 10^9 \mu\text{m}^3$ of the left lung lobe (3 days after injection). Values are mean \pm SEM of 3 different lung's sections fields of view in each experimental group.

A**B****C**


Figure 7–figure supplement 3. Lamin A/C downregulation reduces heterochromatin content and alters gene transcription.

(A) Equal protein amounts from E0771 shControl or shLmna cells, separated by SDS-PAGE and analyzed for the indicated proteins by Western blot analysis. The bar graph represents the mean levels of H3K9me3, H3K27me3 and SUV39H2 normalized to Histone H3 and of SETDB1 normalized to α-Tubulin ± SEM of at least four independent experiments. *p < 0.05. (B) Heatmap based on clustering of 290 differentially expressed genes. Red and blue bars represent positive and negative changes, respectively, and the intensity of the color represents the standardized log2 expression level. (C) Gene ontology (GO) enrichment analysis of the top differentially downregulated (blue) and upregulated (red) genes in E0771 shLmna cells. Biological Process (BP), Molecular Function (MF) and Cellular Component (CC).


Figure 7–figure supplement 4. Fluorescence microscopy imaging of 5-ethynyl uridine (EU) incorporation (red) and Hoechst 33342 (blue) in E0771 shControl and shLmna cells.

Cells were grown with 1 mM EU for 1 h. The cells were fixed, permeabilized and treated with Alexa Fluor 594 azide. Nucleoplasmic fluorescence intensity of the EU staining was measured using ImageJ. Data from 3 independent experiments are shown in the boxplot.

Figure 7–figure supplement 5. Primary E0771 growth in the mammary fat pad or in the skin.

(A) Histology sections of breast primary tumors. A suspension of 10^4 E0771 (either shControl or shLmna expressing) cells in 50 μ l of Matrigel® Matrix mixed with PBS (at 1:1 v/v) was inoculated in the mammary fat pad of recipient mice. 14 days later, animals were euthanized, tumors extracted, and fixed in 4% PFA. (B) Number of E0771 shControl and shLmna present in the lungs of recipient mice 3 hours, 3 and 7 days after i.v. injection. $n = 3$ for each experimental group. Data are mean \pm SEM. The experiment shown is representative of three. (B) 10,000 E0771 shControl and shLmna cells were implanted subcutaneously in flank of C57BL/6 mice. Tumor growth was assessed every other day for 14 days post implantation. The experiment shown is representative of two.

Figure 7–figure supplement 6. E0771 accumulation in recipient lungs.

Number of E0771 shControl and shLmna recovered in the lungs of recipient mice 3 hours, 3 and 7 days after i.v. injection of 20,000 cells. $n = 3$ or 4 for each experimental group. Data are mean \pm SEM. The experiment shown is representative of two.