

Zrimec et al. 2020

1 Plastic-degrading potential across the global 2 microbiome correlates with recent pollution trends

3 Jan Zrimec¹, Mariia Kokina^{1,2}, Sara Jonasson¹, Francisco Zorrilla^{1,3}, Aleksej Zelezniak^{1,4*}

4

5 1 - Department of Biology and Biological Engineering, Chalmers University of Technology,
6 Kemivägen 10, SE-412 96, Gothenburg, Sweden

7 2 - Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade,
8 Nemanjina 6, 11080, Belgrade, Serbia

9 3 - Current address: MRC Toxicology Unit, Tennis Ct Rd, Cambridge CB2 1QR, United
10 Kingdom

11 4 - Science for Life Laboratory, Tomtebodavägen 23a, SE-171 65, Stockholm, Sweden

12 * corresponding author (email: aleksej.zelezniak@chalmers.se)

Zrimec et al. 2020

13 Abstract

14 Poor recycling has accumulated millions of tons of plastic waste in terrestrial and marine
15 environments. While biodegradation is a plausible route towards sustainable management of
16 plastic waste, the global diversity of plastic-degrading enzymes remains poorly understood.
17 Taking advantage of global environmental DNA sampling projects, here we construct HMM
18 models from experimentally-verified enzymes and mine ocean and soil metagenomes to assess
19 the global potential of microorganisms to degrade plastics. By controlling for false positives
20 using gut microbiome data, we compile a catalogue of over 30,000 non-redundant enzyme
21 homologues with the potential to degrade 10 different plastic types. While differences between
22 the ocean and soil microbiomes likely reflect the base compositions of these environments, we
23 find that ocean enzyme abundance might increase with depth as a response to plastic pollution
24 and not merely taxonomic composition. By obtaining further pollution measurements, we reveal
25 that the abundance of the uncovered enzymes in both ocean and soil habitats significantly
26 correlates with marine and country-specific plastic pollution trends. Our study thus uncovers the
27 earth microbiome's potential to degrade plastics, providing evidence of a measurable effect of
28 plastic pollution on the global microbial ecology as well as a useful resource for further applied
29 research.

Zrimec et al. 2020

30 1. Introduction

31 Despite demands for plastic production increasing annually, the problem of plastic waste
32 management remains largely unresolved and presents a global ecological problem ^{1,2}. The
33 majority of plastic waste ends up in landfills or dispersed in the environment, resulting in over
34 150 million metric tons currently circulating in marine environments with an estimated 4.8–12.7
35 million tons of plastic entering the ocean every year ³. Even monomer additives such as
36 Phthalate compounds, frequently used as plasticizers, are a major source of concern due to
37 their overuse in a variety of different products and adverse health effects ^{4,5}. While some
38 thermoplastics (PE, PP, PET, PVC, PA) can be recycled, contaminated and composite plastics
39 as well as thermosets (PU, vinyl esters) cannot be remolded or heated after the initial forming
40 ^{6,7}. However, although man-made synthetic plastics were designed to remain persistent in the
41 environments, the synthetic polymers, just as natural polymers, can serve as a microbial carbon
42 source ^{8–10}. Microorganisms thus mediate a number of plastic biodegradation reactions and
43 even the toughest plastics including PET ¹⁰ and PU ¹¹, can be transformed and metabolized by
44 microbial species across different environments ^{12–17}. Yet, despite their involvement in the global
45 biogeochemical cycle, the true microbial potential for plastic degradation across different global
46 habitats is not yet fully understood ⁹.

47
48 The isolation, identification and characterization of microorganisms with plastic-degrading
49 potential are frequently conducted from aquatic environments ^{18–21}, waste disposal landfills ^{22–25}
50 or places that are in direct contact with the plastic, such as plastic refineries ^{26–28}. However,
51 growing microorganisms outside of their natural environments using conventional approaches is
52 extremely challenging ²⁹ and limits the amount of isolated species that can be cultured and
53 studied to as little as 1% or lower ³⁰. Studying single microbial isolates also limits our
54 understanding of the microbial ecology of plastic degradation, where microbial consortia were
55 found to act synergistically, producing more enzymes and degrading plastics more efficiently
56 than individual species ^{31,32}. Likewise, localized analyses from single locations hinder our
57 understanding of the global environmental impact of plastic materials ³³. On the other hand, with
58 advances in environmental DNA sequencing and computational algorithms, metagenomic
59 approaches enable studying the taxonomic diversity and identifying the functional genetic
60 potential of microbial communities in their natural habitats ^{33–35}. For example, global ocean
61 sampling revealed over 40 million mostly novel non-redundant genes from 35,000 species ³⁵,
62 whereas over 99% of the ~160 million genes identified in global topsoil cannot be found in any

Zrimec et al. 2020

63 previous microbial gene catalogue ³⁴. This indicates that global microbiomes carry an enormous
64 unexplored functional potential with unculturable organisms as a source of many novel enzymes
65 ³⁰. Identification of such enzymes involved in the biological breakdown of plastics is an important
66 first step towards a sustainable solution for plastic-waste utilisation ^{36,37}. However, despite the
67 availability of experimentally determined protein sequence data on plastic-degrading enzymes
68 ^{10,38-43}, no large-scale global analysis of the microbial plastic-degrading potential has yet been
69 performed.

70

71 In the present study, we explore the global potential of microorganisms to degrade plastics. We
72 compile a dataset of all known plastic-degrading enzymes with sequence-based experimental
73 evidence and construct a library of HMM models, which we use to mine global metagenomic
74 datasets covering a diverse collection of oceans, seas and soil habitats ^{34,35,44,45}. By controlling
75 for false-positives using gut microbiome data ⁴⁶, we compile a catalogue of over 30,000 non-
76 redundant enzyme homologues with the potential to degrade 10 different plastic types.
77 Comparison of the ocean and soil fractions shows that the uncovered enzymatic potential likely
78 reflects the major differences related to the composition of these two environments. Further
79 analysis of metagenome-assembled genomes in the ocean reveals a significant enrichment of
80 plastic-degrading enzymes within members of the Alpha- and Gamma-proteobacteria classes,
81 and supports the notion that enzyme abundance increases with depth as a response to plastic
82 pollution and not merely taxonomic composition ⁴⁷⁻⁴⁹. By relating the identified enzymes to the
83 respective habitats and measured environmental variables within the soil and ocean
84 environments, we further show that the abundance of the uncovered enzymes significantly
85 correlates with both marine and country-specific plastic pollution measurements ⁵⁰⁻⁵⁵,
86 suggesting that the earth's microbiome might already be adapting to current global plastic
87 pollution trends.

Zrimec et al. 2020

88 2. Results

89 Global microbiome harbours thousands of potential plastic- 90 degrading enzymes

91 To probe the potential for plastic degradation across the global microbiome, we mined published
92 studies ^{10,38–42,56–61} and databases ⁴³ and compiled a dataset of known enzymes with
93 experimentally observed evidence of plastic modifying or degrading activity, representing a total
94 of 95 sequenced plastic enzymes spanning 17 different plastic types from 56 distinct microbial
95 species (Figure 1a, Methods M1, Dataset S1). The types of plastics (13 types) and plastic
96 additives (4 types of phthalate-based compounds, see Figure 1a: additives marked with a star)
97 spanned the main types of globally produced plastics that constitute the major fraction of global
98 plastic waste ¹, except for PP and PVC, for which no representatives could be found (Figure
99 S1). To enable efficient searching across global metagenomic datasets we built Hidden Markov
100 models (HMMs) ⁶² by including the known homologous sequences from the Uniprot Trembl
101 database ⁶³ (Figure 1a,b, Figure S2). Briefly, we clustered the known enzymes to obtain
102 representative sequences (95% seq. id., Figure 1a) and used these to query the Uniprot Trembl
103 database and obtain an expanded dataset of a total of 16,834 homologous enzyme sequences
104 (*E*-value < 1e-10, Methods M2, Figure S2). Each group of enzyme sequences at a given Blast
105 sequence identity cutoff ranging from 60% ⁶⁴ to 90% was then clustered (95% seq. id.) to obtain
106 groups of representative sequences that were used to construct a total of 1204 HMM models
107 (Figure 1a, Figure S3, Methods M2).

108

109 The HMMs were then used to search for homologous sequences from the metagenomes
110 spanning 236 sampling locations (Methods M3, Figure 1e) that included global ocean ³⁵, global
111 topsoil ³⁴ and additional Australian ⁴⁵ and Chinese topsoil projects ⁴⁴ (Methods M1, Table S1).
112 With over 73% of orthologous groups shared between gut and ocean microbiomes ³⁵, a high
113 number of false positive identifications would be expected, as certain enzymes might have
114 related evolutionary ancestry but no plastic degradation activity. Thus, as a control, we filtered
115 the environmental hits by comparing them to those in the gut microbiome ⁴⁶, where little to none
116 plastic enzyme coding potential should exist. Briefly, for each HMM model *precision* and *recall*
117 were computed by comparing the corresponding hits in the global microbiomes to those in the
118 gut microbiome and, to minimize the risk of false positives, models with hits in the global

Zrimec et al. 2020

119 microbiomes with scores above a precision threshold of 99.99% and AUC of 75% were retained
120 (Figure 1c, Methods M3). The final filtered results with the global microbiomes contained 121
121 unique HMM models, of which 99 HMM models matched (*E*-value < 1e-16) to ocean samples
122 and 105 to soil samples, representing 10% of the initial HMM models used prior to filtering
123 (Table S1). Consequently, an average of 1 in 4 organisms in the analysed global microbiome
124 was found to carry a potential plastic-degrading enzyme (Table S1, Dataset S2).

125

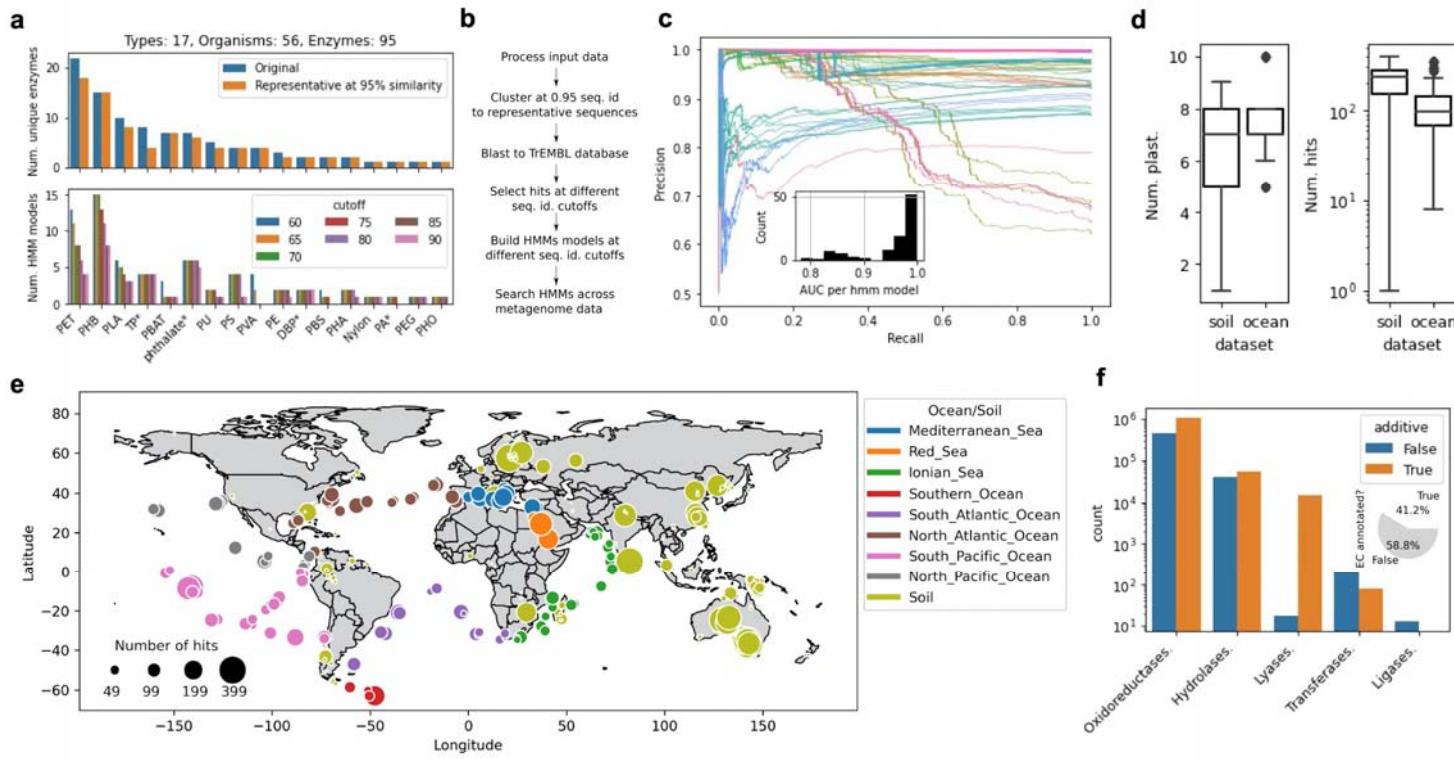
126 The recovery of unique plastic types was ~60%, 10 in ocean and 9 in soil datasets, respectively,
127 identifying altogether 11,906 hits in the ocean and 18,119 in the soil datasets (Figure 1e). Of
128 these, 38 HMM models matched 43% of hits corresponding to the 6 plastic polymers (Figure
129 S4a: PBAT, PEG, PET, PHB, PLA, PU) and 83 HMM models identified 57% of hits corresponding
130 to the 4 additives (Figure S4a: DBP, PA, TP, phthalate). Specifically, of the plastic polymer
131 enzyme hits, PU was found only in the ocean and not in the soil microbiome, whereas over 2-
132 fold higher amounts of PEG, PBAT and PHB and a 2-fold lower amount of PET were found in
133 the ocean fraction compared to the soil (Figure S4a). The amount of hits corresponding to
134 additives was significantly (Fisher's exact test one-tailed *p*-value = 5.4e-6) larger in the soil
135 fraction than the ocean fraction, representing 69% of the total amount of soil hits compared to
136 39% in the ocean fraction and resulting in an almost 4-fold increase in the average amount of
137 additives across the soil sampling sites (Figure S4b). On the other hand, the overall number of
138 plastic polymers across the samples was relatively similar in both the soil and ocean fractions,
139 with a 15% larger amount observed in the soil samples (Figure S4b). The resulting amount of all
140 hits including polymers and additives was thus, on average, over 2-fold larger across the soil
141 samples than in the ocean samples, whereas the amount of distinct plastic types was equal
142 (Figure 1d). These results were however much more variable across the soil fraction, where, for
143 instance, the variability of the number of hits across soil sampling sites was over 4-fold larger
144 compared to the ocean fraction (Figure 1d).

145

146 The identified enzyme hits were annotated using orthologous function mapping^{65,66} (Methods
147 M3), which assigned EC enzyme classifications for 41% of the hits (Figure 1f inset) with the
148 majority of the annotated enzyme classes corresponding to oxidoreductases, hydrolases and
149 lyases (Figure 1f). An over 2-fold larger fraction of monomer additives were annotated
150 compared to the general polymer plastics, meaning that, whereas ~1% of the additives were
151 annotated, this was the case with only 29% of the general polymers (Figure S5a). Despite
152 similarities in distributions of the general classes across the ocean and soil fractions (Figure 1f),

Zrimec et al. 2020

153 37% less hits were annotated with the soil fraction (Figure S5b). Further analysis showed that
154 indeed differences in function were present, with the ocean fraction possessing an 11% larger
155 diversity of enzyme functions than soil (Figure S6a: 40 vs 36 distinct enzyme types with at least
156 3 occurrences) and 27% of the enzyme functions differing among the two microbiome fractions.
157 The difference between additives and polymer plastics was however discernible already at the
158 level of general enzyme classes (Figure S5c). Similarly, in both ocean and soil fractions, an
159 almost 3-fold larger amount of functional diversity was present with the additives than with the
160 polymers, and only a single function (2%) was shared among the additive and polymer groups
161 (Figure S6b).



162 **Figure 1. Global microbiome harbours thousands of potential plastic-degrading enzymes.** (a) Compiled
163 enzyme dataset and representative sequences obtained by clustering (95% seq. id. cutoff), covering the major types
164 of pollutant plastics (PVA, polyvinyl alcohol; PLA, polylactic acid; PU, polyurethane; PHB, polyhydroxybutyrate; PBS,
165 polybutylene succinate; PET, polyethylene terephthalate; Nylon; PBAT, polybutylene adipate terephthalate; PE,
166 polyethylene; PEG, polyethylene glycol) and additives/plasticisers (phthalate; PA, phthalic acid; DBP, di-n-butyl
167 phthalate; TP, terephthalic acid). The lower plot shows the final constructed HMM models across the different
168 sequence identity cutoffs. (b) Overview of the procedure to construct the HMM models. (c) Precision-recall curves
169 with the 99 HMM models that returned results in the ocean fraction. Inset: area under the curve (AUC) with these
170 HMM models. (d) Number of plastic-degrading enzyme hits and plastic types across the ocean and soil microbiome
171 fractions. (e) Plastic-degrading enzyme hits across the global microbiome. (f) Enzyme classes (EC) predicted with
172 orthologous function mapping⁶⁵ at the topmost EC level. Inset shows the amount of EC annotated results.

Zrimec et al. 2020

173 Earth microbiome's plastic-degrading potential might already be 174 adapting to global pollution trends

175 The analysed ocean microbiome spanned 67 locations sampled at 3 depth layers and across 8
176 oceans (Figure 1e, Methods M1). A significant (Rank Sum test p -value < 2.9e-2) increase of
177 plastic-degrading enzyme hits was identified in samples obtained from the Mediterranean Sea
178 and South Pacific Ocean compared to the other locations (Figure 2a, Table S3), which might
179 reflect the relatively high plastic pollution in these areas^{52,67}. A higher amount of pollution in
180 sampling areas in the lower longitudinal region, however, might be indicated by the significant
181 negative correlation (Spearman r was 0.393 and 0.357, p -value < 1.6e-5) of both the plastic
182 types and enzyme hits, respectively, with longitude (Figure 2b, Figure S7). Whereas the majority
183 of plastic polymer and monomer additive types were found across all oceans, PU was only
184 present in the Ionian Sea and South Pacific Ocean, whereas PLA only in the Ionian Sea, likely
185 reflecting their overall 6-fold lower content than the other plastic types (Figure S8a).

186

187 As expected according to published results showing an increasing amount of taxonomic and
188 functional richness with depth³⁵, we observed measurable depth stratification of the enzyme
189 hits in the ocean samples (Figure 2c). Both the amount of plastic types and enzyme hits were
190 positively correlated with depth (Spearman r was 0.552 and 0.384, p -value < 4.3e-6,
191 respectively) as well as negatively correlated with temperature (Spearman r was 0.451 and
192 0.336, p -value < 6.7e-5, respectively, Figure 2b,c, Figure S7). This was also supported by
193 Principal coordinate analysis (PCoA) on enzyme hits across samples (Methods M3), where the
194 first principal coordinate carrying 25% of the data variance correlated significantly (Spearman r
195 was 0.453 and -0.420, p -value < 4e-7) with both depth and temperature, respectively (Figure
196 S9,10). We therefore next reconstructed metagenome-assembled genomes (MAGs) in the
197 ocean samples and predicted their taxonomies (Methods M1). The results corroborated a
198 significant correlation (Spearman r of 0.392 and 0.548, p -value < 2.5e-6) between the number of
199 plastic types and enzyme hits, respectively, with the number of unique organisms at the family
200 level (Figure S11; similar results with other taxonomic levels). We found that, although the
201 majority (62%) of organisms (MAGs) were associated with a single plastic type (Figure 2d
202 inset), 2.5% of them carried enzymes corresponding to 4 or more different plastic types (Figure
203 2d inset, Figure S12). Analysis of the plastic distribution across species showed that the number
204 of enzyme hits was significantly (Fisher's exact test one-tailed p -value < 1.4e-05) enriched
205 within Alpha- and Gamma-proteobacteria, which can be expected since this is the most

Zimec et al. 2020

206 abundant and diverse phylum in the dataset (Figure 2d, Table S4). Nevertheless, the results
207 suggested that the observed plastic-degrading enzyme abundance (Figure 2d) might not be a
208 reflection of merely taxonomic and functional richness, but also of recently uncovered large
209 amounts of plastic pollution below the ocean surface^{47–49}.

210

211 The analysed soil microbiome spanned 169 sampling locations across 38 countries and 11
212 distinct environmental habitats (Figure 1e, Methods M1). To ensure the accuracy of cross-
213 habitat and cross-country comparisons, due to the different technical specifications of sample
214 acquisition and processing across the metagenomes^{34,44,45}, here we focused on the uniformly
215 processed global topsoil dataset³⁴, which also represented the largest fraction of the data (163
216 sampling locations) covering all given countries and habitats. A significant (Rank Sum test *p*-
217 value < 4.8e-3) increase of plastic-degrading enzyme hits was identified in samples from the
218 Moist tropical forests and Tropical montane forests habitats compared to the other habitats
219 (Figure 2e). This was corroborated by a significant correlation (Spearman *r* was 0.248 and
220 0.332, *p*-value < 5e-5) of both the amount of plastic types and enzyme hits, respectively, with
221 longitude as well as the amount of enzyme hits with both the measured annual moisture content
222 (Spearman *r* = 0.292, *p*-value = 6.8e-6) and precipitation levels (Spearman *r* = 0.330, *p*-value =
223 4.6e-8, Figure 2f, Figure S13,14). Interestingly, the soil habitats contained the most distinct
224 differences of plastic content compared to the ocean microbiome, with all plastic types present
225 only in the Moist tropical forests and Temperate deciduous forests (Figure S8b). Besides these
226 two areas, PET for example was additionally found only in the Mediterranean habitat (Figure
227 S8b).

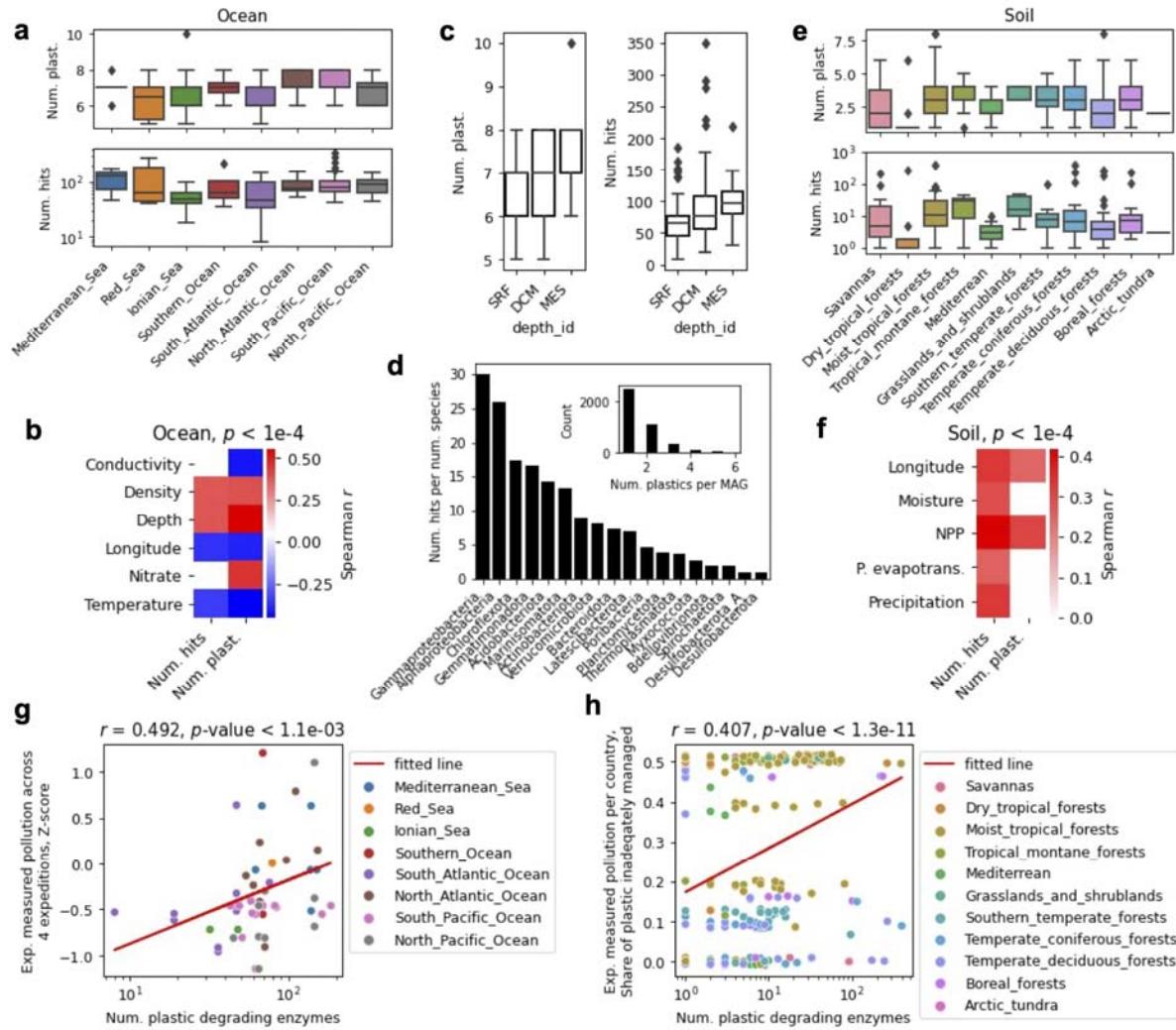
228

229 Since the results suggested that the plastic-degrading enzyme hits might reflect actual global
230 pollution trends (Figure 2a,e), and considering that global pollution with plastics and
231 microplastics has been an ongoing and steadily increasing problem for over 5 decades^{68,69}, we
232 next determined if the global potential for plastic degradation reflected the current plastic
233 pollution trends. We obtained data from 4 ocean expeditions^{50–54}, pooling the data to cover 61%
234 of the ocean sampling locations at the surface depth layer, and matched the closest data points
235 to those of the ocean sampling locations at a maximum radius of 400 km (see sensitivity
236 analysis in Table S2, Methods M1). Similarly, by obtaining a dataset of mismanaged and
237 inadequately managed plastic waste across different countries^{55,70} we achieved a 72%
238 coverage of the soil samples across 35 countries. Using these common pollution datasets, we
239 indeed observed significant correlation (Spearman *r* of 0.492 and 0.407, *p*-value < 1.1e-3)

Zimec et al. 2020

240 between the numbers of identified enzymes and pollution trends within both the ocean and soil
 241 microbiomes, respectively (Figure 2g,h). Strikingly, this observed correlation between the
 242 abundance of plastic-degrading enzymes with global pollution suggests that the global
 243 microbiome might already be adapting to the effects of global plastic pollution.

244



245

246

247 **Figure 2. Earth microbiome's plastic-degrading potential might already be adapting to global pollution**
 248 **trends.** (a) Number of plastic-degrading enzyme hits and different plastic types found across 8 oceans. (b)
 249 Correlation between the number of enzyme hits and different plastic types with ocean environmental variables:
 250 longitude [°], depth [m], conductivity [mS/cm], temperature [°C], water density [kg/m] and nitrate content [$\mu\text{mol/l}$] ³⁵. All
 251 p -values $< 1e-4$. (c) Number of enzyme hits and different plastic types across the ocean sampling depth layers ³⁵. (d)
 252 Number of enzyme hits relative to the number of species obtained with the metagenome-assembled genome (MAG)
 253 analysis at the phylum level (class-level for Proteobacteria) (Methods M1, see text). Inset: number of plastic types per
 254 MAG. (e) Number of plastic-degrading enzyme hits and different plastic types found across 11 soil habitats. (f)
 255 Correlation between the number of enzyme hits and different plastic types with soil environmental variables: longitude

Zrimec et al. 2020

256 [°], avg. monthly moisture content [%], net primary productivity (NPP) [$\text{g cm}^{-2} \text{yr}^{-1}$], avg. yearly potential
257 evapotranspiration and precipitation [L/m^2] ³⁴. All p -values $< 1\text{e-}4$. (g) Correlation of ocean plastic-degrading enzyme
258 hits with experimentally measured plastic pollution across 4 ocean expeditions ⁵⁰⁻⁵⁴ (Methods M1). (h) Correlation of
259 soil plastic-degrading enzyme hits with the share of inadequately managed plastic per country ⁵⁵.

260 3. Discussion

261 Here, we catalogued potential plastic-degrading enzymes, including the majority of massively
262 produced and globally polluting polymers (Figure 1a, Figure S1) as well as the major additives
263 involved in plastic production, identified from metagenomes sampled from soils and oceans
264 across the globe ^{34,35,44,45} (Figure 1e). We used an initial set of 95 experimentally verified
265 published sequences (Dataset S1) and expanded it with Uniprot sequences to build enzyme
266 sequence models (Hidden Markov Models ⁶²) for mining metagenomic data (Figure 1a,b). We
267 identified a total of 30,000 enzyme hits in the ocean and soil microbiomes (Figure 1e: 11,906
268 and 18,119, respectively) corresponding to 10 major plastics types, including 6 polymers and 4
269 additives (Figure 1d, Figure S4). To minimize the number of false positive hits, we used the gut
270 microbiome ⁴⁶ as a negative control (Figure 1c), that is, we assumed that gut microbiome is not
271 evolved to degrade plastics and thus enzyme hits that are similar to the ones found in the
272 human gut would indicate false positives. Nearly 60% of identified plastic-degrading enzymes
273 did not map to any known enzyme classes (Figure 1f), suggesting that novel plastic-degrading
274 functional content was uncovered, which is not surprising considering the vast amounts of novel
275 functions being uncovered in recent large-scale metagenomic studies ^{33–35,49}.

276

277 A potential reason for the observed functional differences between the soil and ocean
278 microbiomes (Figure 1d,f, Figure S4,5,6) could arise not only from the different plastic
279 availability and pollution trends across these environments ^{50–52,55}, but also from the general
280 mechanical and chemical differences between these two environments ⁷¹. For instance, the
281 ocean is a highly dynamic environment due to its compositional medium with a larger degree of
282 mixing. As such, compared to soil that is in large part composed of solids, one can expect an
283 intrinsically lower community and functional stratification per unit volume in the ocean ³⁵. The
284 increased variability of enzyme hits and plastic types across soil habitats (Figure 1d, Figure
285 S12), for instance, was likely a reflection of such differences. Furthermore, the large fluctuations
286 in temperature, salinity and mechanical forces in the ocean lead to it intrinsically possessing
287 many polymer-degrading properties ^{72–74}, differing from those in the soil ⁷¹ and possibly resulting
288 in further preferences in the specific functional content. On the other hand, the soil generally
289 contains a higher observed overall species richness ^{34,75}, and thus it is likely that certain enzyme
290 families are overrepresented in each environment. This, as well as the fact that additive
291 monomers are likely easier to degrade than the general plastic polymers due to being simpler
292 molecules, could be the reason behind the observed large differences in the additive versus

Zimec et al. 2020

293 polymer content between the ocean and soil fractions (Figure S5,6). Moreover, the uncovered
294 additive-degrading enzymes in soil likely corresponded to overrepresented but unknown
295 enzyme classes in soil that could not be identified using the orthogonal mapping procedure^{65,66}
296 (Figure S5b).

297

298 Plastics have been increasingly mass produced ever since the economic and social explosion
299 after the 2nd world war with the first signs of global plastic pollution concern arising over half a
300 century ago^{68,69}, giving ample evolutionary time for microbial functional adaptation to these
301 compounds^{49,76,77}. Such adaptation was recently uncovered with PET-degrading enzymes
302 across ocean metagenomes of planktonic communities⁴⁹, where multiple fully-functional
303 enzyme variants were found to be evolved from ancestral enzymes degrading polycyclic
304 aromatic hydrocarbons, suggesting that the current PET exposure already provides sufficiently
305 strong selective pressures to direct the evolution and repurposing of such enzymes. Similarly,
306 enzymes degrading other plastic types have been shown to be widely occurring with numerous
307 homologs in diverse organisms and likely arising from well conserved general enzyme classes
308^{78,79}. Indeed, here we find multiple lines of evidence supporting that the global microbiome's
309 plastic-degrading potential reflects recent measurements of environmental plastic pollution.
310 Firstly, we find that taxonomic and functional richness is likely not the only driver of the
311 observed depth stratification of enzyme hits (Figure 2c). The organisms found to carry the
312 largest amount of plastic-degrading enzymes (Figure 2d) do not completely reflect initial
313 taxonomic estimates in the ocean³⁵, indicating that the plastic-degrading potential also reflects
314 the recently uncovered trends of an increasing amount of plastic pollution below the surface
315 (<200m)⁴⁸ with considerable microplastic pollution in the mesopelagic zone⁴⁷, which are
316 potentially stronger drivers of the observed depth stratification⁴⁹. Secondly, certain habitats
317 containing the highest amounts of observed enzyme hits, such as the Mediterranean Sea and
318 South Pacific Ocean (Figure 2a), are known to be highly polluted areas^{52,67}. Lastly, this
319 prompted us to verify and uncover the significant measurable correlation of both ocean and soil
320 enzyme hits with experimentally measured pollution across oceans and countries from multiple
321 datasets⁵⁰⁻⁵⁵ (Figure 2g,h), suggesting that the earth microbiome's potential for plastic
322 degradation is already evolving as a response to the rise in environmental pollution.

323

324 Considering that natural plastic-degradation processes are very slow (e.g. predicted life time of
325 a PET bottle at ambient conditions ranges from 16 to 48 years⁸⁰), the utilisation of synthetic
326 biology approaches to enhance current plastic-degradation processes is of crucial importance

Zrimec et al. 2020

327 ^{81,82}. Moreover, although there is still unexplored diversity in microbial communities, synergistic
328 degradation of plastics by microorganisms holds great potential to revolutionise the
329 management of global plastic waste ^{36,37}. To this end, the methods and data on novel plastic-
330 degrading enzymes produced here can help researchers (i) gain further information about the
331 taxonomic diversity of such enzymes as well as understanding of the mechanisms and steps
332 involved in the biological breakdown of plastics, (ii) point toward the areas with increased
333 availability of novel enzymes, and (iii) provide a basis for further application in industrial plastic-
334 waste biodegradation.

Zrimec et al. 2020

335 4. Methods

336 M1. Datasets

337 We compiled the initial dataset of 95 sequenced plastic enzymes spanning 17 plastic types with
338 experimentally observed evidence of plastic modifying or degrading activity from published
339 studies ^{10,38–42,56–61} and databases ⁴³ (Dataset S1).

340 Metagenomic sequencing data was obtained from the Tara ocean expedition ³⁵, global ⁴⁴,
341 Australian ⁴⁵ and Chinese topsoil projects ³⁴ and a gut microbiome study ⁴⁶. From the
342 sequencing data metagenomic assemblies were reconstructed using MEGAHIT v1.2.9 ⁸³ with
343 the ‘--presets meta-sensitive’ parameter, except with Tara oceans where the published
344 assemblies were used ³⁵. Metagenome-assembled genomes (MAGs) were constructed for the
345 ocean dataset by first cross-mapping paired end reads to assemblies with kallisto v0.46.1 ⁸⁴ to
346 obtain contig coverage information across samples. This information was then input to
347 CONCOCT v1.1.0 ⁸⁵ to generate a draft bin set. MetaBAT2 v.2.12.1 ⁸⁶ and MaxBin2 v2.2.5 ⁸⁷
348 were also used to generate additional draft bin sets. Finally, the three bin sets were de-
349 replicated and reassembled using metaWRAP v1.2.3 ⁸⁸ with parameters ‘-x 10 -c 50’ to obtain
350 the final set of MAGs. Default settings were used except where otherwise stated. Environmental
351 data for the Tara ocean and global topsoil microbiomes was obtained as specified in the
352 respective publications ^{34,35}: (i) ocean data from the PANGEA database (www.pangaea.de), (ii)
353 soil data from the Atlas of the Biosphere ([https://nelson.wisc.edu/sage/data-and-
354 models/atlas/maps.php](https://nelson.wisc.edu/sage/data-and-models/atlas/maps.php)), except for temperature and precipitation data that was obtained from
355 the WorldClim database (<https://www.worldclim.org/>). With the ocean data the prokaryote
356 fraction was used ³⁵. Global topsoil habitats were used as defined ³⁴. Experimentally measured
357 pollution data across the ocean from published ocean expeditions ^{50–54} was pooled by
358 normalizing the data using the Box-Cox transform ⁸⁹ and computing Z-scores.
359

360 M2. Construction of HMM models

361 To construct the HMM models, we first obtained representative sequences from the initial input
362 sequence data by clustering them using CD-HIT v4.8.1 ^{90,91} with default settings, except a word
363 size of 5, cluster size of 5 and seq. id. cutoff of 95%. To expand the sequence space for building
364 the HMM models, the Uniprot Trembl database ⁶³ was queried with the representative enzyme

Zrimec et al. 2020

365 sequences using BLAST+ v2.6⁹² with default settings except for an *E*-value cutoff of 1e-10. For
366 each group of enzyme sequences at a given Blast sequence identity cutoff ranging from 60% to
367 90% in increments of 5%, representative sequences were obtained by clustering using CD-HIT
368 with the same parameters as above. Finally, HMM models were constructed using the HMMER
369 v3.3 *hmmbuild* utility⁹³ (<http://hmmer.org/>) with default settings.
370

371 M3. Statistical and correlation analysis

372 For identifying homologous sequences in metagenomes *hmmscan* from HMMER v3.3⁹³ was
373 used with default settings. To minimize the risk of false positive results, we filtered the
374 environmental hits by comparing their bitscore to those obtained with the gut microbiome. For
375 each HMM model *precision* and *recall* were computed by comparing the corresponding hits in
376 the global microbiomes to those in the gut microbiome, where only models with a minimum of
377 20 data points and hits in the global microbiomes with an *E*-value cutoff below 1e-16 and scores
378 above a precision threshold of 99.99% and AUC of 75% were retained. Additionally, only the
379 lowest *E*-value and bitscore hit was retained for each gene in the global metagenomes. The
380 precision-recall analysis was performed using Scikit-learn v0.23.1⁹⁴ with default settings.
381 Orthologous function mapping was performed using EggNOG-mapper v2^{65,66} with default
382 settings. Principal coordinate analysis (PcoA) was performed using Scikit-bio v0.5.5
383 (<http://scikit-bio.org/>) with default settings and the Bray Curtis distance. For statistical hypothesis
384 testing, Scipy v1.1.0⁹⁵ was used with default settings. The Spearman correlation coefficient was
385 used for correlation analysis. All tests were two-tailed except where stated otherwise.
386

387 M4. Software

388 Snakemake v5.10.0⁹⁶, Python v3.6 (www.python.org) and R v3.6 (www.r-project.org) were
389 used for computations.

Zrimec et al. 2020

390 Author contributions

391 JZ and AZ conceptualized the project; JZ, SJ, FZ and AZ designed the computational analysis;
392 JZ, MK, SJ, FZ and AZ performed the computational analysis; JZ and AZ interpreted the results;
393 JZ, MK, and AZ wrote the initial draft manuscript; JZ and AZ revised the draft and wrote the final
394 manuscript.

395 Competing Interests

396 The authors declare no competing interests.

397 Acknowledgements

398 We thank Roland Geyer, Nikolai Maximenko, Laurent Lebreton, Jose Borrero for kindly sharing
399 their data. We also thank Michelle Toschack, Gregg Treinish and Abigail Burrows for providing
400 access to Adventure Scientists data on plastic pollution. The computations were enabled with
401 resources provided by the Swedish National Infrastructure for Computing (SNIC) at C3SE
402 partially funded by the Swedish Research Council through grant agreement no. 2018-05973.
403 Mikael Ohman and Thomas Svedberg at C3SE are acknowledged for technical assistance in
404 making the code run on Vera C3SE resources. The study was supported by SciLifeLab funding
405 and Formas early-career research grant 2019-01403.

406 References

- 407 1. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made.
408 *Science Advances* **3**, e1700782 (2017).
- 409 2. Rathoure, A. K. *Zero Waste: Management Practices for Environmental Sustainability: Management Practices for Environmental Sustainability*. (CRC Press, 2019).
- 410 3. Jambeck, J. R. et al. Marine pollution. Plastic waste inputs from land into the ocean.
411 *Science* **347**, 768–771 (2015).
- 412 4. Sathyarayana, S. et al. Unexpected results in a randomized dietary trial to reduce
413 phthalate and bisphenol A exposures. *J. Expo. Sci. Environ. Epidemiol.* **23**, 378–384
414 (2013).
- 415 5. Meeker, J. D., Sathyarayana, S. & Swan, S. H. Phthalates and other additives in plastics:
416 human exposure and associated health outcomes. *Philos. Trans. R. Soc. Lond. B Biol. Sci.*
417 **364**, 2097–2113 (2009).
- 418 6. Sharma, A., Aloysius, V. & Visvanathan, C. Recovery of plastics from dumpsites and
419 landfills to prevent marine plastic pollution in Thailand. *Waste Disposal & Sustainable
420 Energy* 1–13 (2019).
- 421 7. Hopewell, J., Dvorak, R. & Kosior, E. Plastics recycling: challenges and opportunities.
422 *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **364**, 2115–2126 (2009).
- 423 8. Chen, C.-C., Dai, L., Ma, L. & Guo, R.-T. Enzymatic degradation of plant biomass and
424 synthetic polymers. *Nature Reviews Chemistry* **4**, 114–126 (2020).
- 425 9. Bank, M. S. & Hansson, S. V. The Plastic Cycle: A Novel and Holistic Paradigm for the
426 Anthropocene. *Environ. Sci. Technol.* **53**, 7177–7179 (2019).
- 427 10. Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate).
428 *Science* **351**, 1196–1199 (2016).
- 429 11. Bittner, N. et al. Novel urethanases for the enzymatic decomposition of polyurethanes.
430 *European Patent* (2020).
- 431 12. Gaytan, I. et al. Degradation of Recalcitrant Polyurethane and Xenobiotic Additives by a
432 Selected Landfill Microbial Community and Its Biodegradative Potential Revealed by
433 Proximity Ligation-Based Metagenomic Analysis. *Front. Microbiol.* **10**, (2020).
- 434 13. Ji, J. B., Zhang, Y. T., Liu, Y. C., Zhu, P. P. & Yan, X. Biodegradation of plastic monomer
435 2,6-dimethylphenol by *Mycobacterium neoaurum* B5-4. *Environ. Pollut.* **258**, (2020).
- 436 14. Kumar, A. et al. Microbial lipolytic enzymes - promising energy-efficient biocatalysts in
437 bioremediation. *Energy* **192**, (2020).
- 438 15. Rosato, A. et al. Microbial colonization of different microplastic types and biotransformation
439 of sorbed PCBs by a marine anaerobic bacterial community. *Sci. Total Environ.* **705**,
440 (2020).
- 441 16. Urbanek, A. K. et al. Biochemical properties and biotechnological applications of microbial
442 enzymes involved in the degradation of polyester-type plastics. *Biochimica Et Biophysica
443 Acta-Proteins and Proteomics* **1868**, (2020).
- 444 17. Yuan, J. H. et al. Microbial degradation and other environmental aspects of
445 microplastics/plastics. *Sci. Total Environ.* **715**, (2020).
- 446 18. Dussud, C. et al. Evidence of niche partitioning among bacteria living on plastics, organic

448 particles and surrounding seawaters. *Environ. Pollut.* **236**, 807–816 (2018).

449 19. Oberbeckmann, S., Loeder, M. G. J., Gerdts, G. & Osborn, A. M. Spatial and seasonal
450 variation in diversity and structure of microbial biofilms on marine plastics in Northern
451 European waters. *FEMS Microbiol. Ecol.* **90**, 478–492 (2014).

452 20. Oberbeckmann, S., Kreikemeyer, B. & Labrenz, M. Environmental Factors Support the
453 Formation of Specific Bacterial Assemblages on Microplastics. *Front. Microbiol.* **8**, 2709
454 (2017).

455 21. De Tender, C. A. et al. Bacterial Community Profiling of Plastic Litter in the Belgian Part of
456 the North Sea. *Environ. Sci. Technol.* **49**, 9629–9638 (2015).

457 22. Skariyachan, S. et al. Enhanced polymer degradation of polyethylene and polypropylene by
458 novel thermophilic consortia of *Brevibacillus* sps. and *Aneurinibacillus* sp. screened from
459 waste management landfills and sewage treatment plants. *Polym. Degrad. Stab.* **149**, 52–
460 68 (2018).

461 23. Janatunaim, R. Z. & Fibriani, A. Construction and Cloning of Plastic-degrading
462 Recombinant Enzymes (MHETase). *Recent Pat. Biotechnol.* **14**, 229–234 (2020).

463 24. Munir, E., Harefa, R. S. M., Priyani, N. & Suryanto, D. Plastic degrading fungi *Trichoderma*
464 *viride* and *Aspergillus nomius* isolated from local landfill soil in Medan. *IOP Conf. Ser.:
465 Earth Environ. Sci.* **126**, 012145 (2018).

466 25. Bardají, D. K. R., Furlan, J. P. R. & Stehling, E. G. Isolation of a polyethylene degrading
467 *Paenibacillus* sp. from a landfill in Brazil. *Arch. Microbiol.* **201**, 699–704 (2019).

468 26. Gupta, K. K. & Devi, D. ISOLATION AND CHARACTERIZATION OF LOW DENSITY
469 POLYETHYLENE DEGRADING BACILLUS spp. FROM GARBAGE DUMP SITES. (2017).

470 27. Skariyachan, S. et al. Novel bacterial consortia isolated from plastic garbage processing
471 areas demonstrated enhanced degradation for low density polyethylene. *Environ. Sci.
472 Pollut. Res. Int.* **23**, 18307–18319 (2016).

473 28. Sarmah, P. & Rout, J. Efficient biodegradation of low-density polyethylene by cyanobacteria
474 isolated from submerged polyethylene surface in domestic sewage water. *Environ. Sci.
475 Pollut. Res. Int.* **25**, 33508–33520 (2018).

476 29. Tramontano, M. et al. Nutritional preferences of human gut bacteria reveal their metabolic
477 idiosyncrasies. *Nature microbiology* **3**, 514–522 (2018).

478 30. Berini, F., Casciello, C., Marcone, G. L. & Marinelli, F. Metagenomics: novel enzymes from
479 non-culturable microbes. *FEMS Microbiol. Lett.* **364**, (2017).

480 31. Carniel, A., Valoni, E., Nicomedes, J., Gomes, A. D. & de Castro, A. M. Lipase from
481 *Candida antarctica* (CALB) and cutinase from *Humicola insolens* act synergistically for PET
482 hydrolysis to terephthalic acid. *Process Biochem.* **59**, 84–90 (2017).

483 32. Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the ‘Plastisphere’: Microbial
484 Communities on Plastic Marine Debris. *Environ. Sci. Technol.* **47**, 7137–7146 (2013).

485 33. Ferrer, M. et al. Estimating the success of enzyme bioprospecting through metagenomics:
486 current status and future trends. *Microb. Biotechnol.* **9**, 22–34 (2016).

487 34. Bahram, M. et al. Structure and function of the global topsoil microbiome. *Nature* **560**, 233–
488 237 (2018).

489 35. Sunagawa, S., Coelho, L. P., Chaffron, S. & Kultima, J. R. Structure and function of the
490 global ocean microbiome. (2015).

491 36. Danso, D., Chow, J. & Streit, W. R. Plastics: Environmental and Biotechnological

492 Perspectives on Microbial Degradation. *Appl. Environ. Microbiol.* **85**, (2019).

493 37. Roager, L. & Sonnenschein, E. C. Bacterial Candidates for Colonization and Degradation of
494 Marine Plastic Debris. *Environ. Sci. Technol.* **53**, 11636–11643 (2019).

495 38. Miyakawa, T. et al. Structural basis for the Ca(2+)-enhanced thermostability and activity of
496 PET-degrading cutinase-like enzyme from *Saccharomonospora viridis* AHK190. *Appl.*
497 *Microbiol. Biotechnol.* **99**, 4297–4307 (2015).

498 39. Herrero Acero, E. et al. Enzymatic Surface Hydrolysis of PET: Effect of Structural Diversity
499 on Kinetic Properties of Cutinases from *Thermobifida*. *Macromolecules* **44**, 4632–4640
500 (2011).

501 40. Roth, C. et al. Structural and functional studies on a thermostable polyethylene
502 terephthalate degrading hydrolase from *Thermobifida fusca*. *Appl. Microbiol. Biotechnol.* **98**,
503 7815–7823 (2014).

504 41. Oelschlägel, M., Zimmerling, J., Schlömann, M. & Tischler, D. Styrene oxide isomerase of
505 *Sphingopyxis* sp. Kp5.2. *Microbiology* **160**, 2481–2491 (2014).

506 42. Oelschlägel, M., Gröning, J. A. D., Tischler, D., Kaschabek, S. R. & Schlömann, M. Styrene
507 oxide isomerase of *Rhodococcus opacus* 1CP, a highly stable and considerably active
508 enzyme. *Appl. Environ. Microbiol.* **78**, 4330–4337 (2012).

509 43. Gan, Z. & Zhang, H. PMBD: a Comprehensive Plastics Microbial Biodegradation Database.
510 *Database* vol. 2019 (2019).

511 44. Li, X. et al. Legacy of land use history determines reprogramming of plant physiology by
512 soil microbiome. *ISME J.* **13**, 738–751 (2019).

513 45. Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil
514 microbial diversity database. *Gigascience* **5**, 21 (2016).

515 46. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and
516 diabetic glucose control. *Nature* **498**, 99–103 (2013).

517 47. Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics
518 across the epipelagic and mesopelagic water column. *Sci. Rep.* **9**, 7843 (2019).

519 48. Pabortsava, K. & Lampitt, R. S. High concentrations of plastic hidden beneath the surface
520 of the Atlantic Ocean. *Nat. Commun.* **11**, 4073 (2020).

521 49. Alam, I. et al. Rapid Evolution of Plastic-degrading Enzymes Prevalent in the Global Ocean.
522 *Cold Spring Harbor Laboratory* 2020.09.07.285692 (2020) doi:10.1101/2020.09.07.285692.

523 50. Eriksen, M. et al. Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces
524 Weighing over 250,000 Tons Afloat at Sea. *PLoS One* **9**, e111913 (2014).

525 51. Goldstein, M. C., Rosenberg, M. & Cheng, L. Increased oceanic microplastic debris
526 enhances oviposition in an endemic pelagic insect. *Biol. Lett.* **8**, 817–820 (2012).

527 52. Law, K. L. et al. Distribution of surface plastic debris in the eastern Pacific Ocean from an
528 11-year data set. *Environ. Sci. Technol.* **48**, 4732–4738 (2014).

529 53. Barrows, A. Understanding Microplastic Distribution: A Global Citizen Monitoring Effort.
530 *MICRO* 2016. *Fate and Impact of Microplastics in Marine Ecosystems* 22 (2016).

531 54. Christiansen, K. S. Global and Gallatin Microplastics Initiatives. *Adventure Scientists*
532 (2018).

533 55. Jambeck, J. R., Geyer, R., Wilcox, C. & Siegler, T. R. Plastic waste inputs from land into
534 the ocean. (2015).

535 56. Dresler, K., van den Heuvel, J., Müller, R.-J. & Deckwer, W.-D. Production of a recombinant

536 polyester-cleaving hydrolase from *Thermobifida fusca* in *Escherichia coli*. *Bioprocess*
537 *Biosyst. Eng.* **29**, 169–183 (2006).

538 57. Vega, R. E., Main, T. & Howard, G. T. Cloning and expression in *Escherichia coli* of
539 apolyurethane-degrading enzyme from *Pseudomonasfluorescens*. *Int. Biodeterior.*
540 *Biodegradation* **43**, 49–55 (1999).

541 58. Matsubara, M., Suzuki, J., Deguchi, T., Miura, M. & Kitaoka, Y. Characterization of
542 manganese peroxidases from the hyperlignolytic fungus IZU-154. *Appl. Environ. Microbiol.*
543 **62**, 4066–4072 (1996).

544 59. Nakamura, K., Tomita, T., Abe, N. & Kamio, Y. Purification and characterization of an
545 extracellular poly(L-lactic acid) depolymerase from a soil isolate, *Amycolatopsis* sp. strain
546 K104-1. *Appl. Environ. Microbiol.* **67**, 345–353 (2001).

547 60. Matsuda, E., Abe, N., Tamakawa, H., Kaneko, J. & Kamio, Y. Gene cloning and molecular
548 characterization of an extracellular poly(L-lactic acid) depolymerase from *Amycolatopsis* sp.
549 strain K104-1. *J. Bacteriol.* **187**, 7333–7340 (2005).

550 61. Beltrametti, F. et al. Sequencing and functional analysis of styrene catabolism genes from
551 *Pseudomonas fluorescens* ST. *Appl. Environ. Microbiol.* **63**, 2232–2239 (1997).

552 62. Eddy, S. R. What is a hidden Markov model? *Nat. Biotechnol.* **22**, 1315–1316 (2004).

553 63. UniProt: the universal protein knowledgebase. *Nucleic Acids Res.* **45**, D158–D169 (2016).

554 64. Tian, W. & Skolnick, J. How well is enzyme function conserved as a function of pairwise
555 sequence identity? *J. Mol. Biol.* **333**, 863–882 (2003).

556 65. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically
557 annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids*
558 *Res.* **47**, D309–D314 (2019).

559 66. Huerta-Cepas, J. et al. Fast Genome-Wide Functional Annotation through Orthology
560 Assignment by eggNOG-Mapper. *Mol. Biol. Evol.* **34**, 2115–2122 (2017).

561 67. Cózar, A. et al. Plastic Accumulation in the Mediterranean Sea. *PLOS ONE* vol. 10
562 e0121762 (2015).

563 68. Ryan, P. G. A brief history of marine litter research. in *Marine anthropogenic litter* 1–25
564 (Springer, Cham, 2015).

565 69. Carpenter, E. J. & Smith, K. L., Jr. Plastics on the Sargasso sea surface. *Science* **175**,
566 1240–1241 (1972).

567 70. Ritchie, H. & Roser, M. Plastic pollution. *Our World in Data* (2018).

568 71. Chamas, A., Moon, H., Zheng, J. & Qiu, Y. Degradation Rates of Plastics in the
569 Environment. *ACS Sustainable* (2020).

570 72. Lucas, N. et al. Polymer biodegradation: Mechanisms and estimation techniques – A
571 review. *Chemosphere* vol. 73 429–442 (2008).

572 73. Min, K., Cuifff, J. D. & Mathers, R. T. Ranking environmental degradation trends of plastic
573 marine debris based on physical properties and molecular structure. *Nature*
574 *Communications* vol. 11 (2020).

575 74. Gewert, B., Plassmann, M. M. & MacLeod, M. Pathways for degradation of plastic polymers
576 floating in the marine environment. *Environ. Sci. Process. Impacts* **17**, 1513–1521 (2015).

577 75. Walters, K. E. & Martiny, J. B. H. Alpha-, beta-, and gamma-diversity of bacteria varies
578 across global habitats. *bioRxiv* (2020).

579 76. Newton, M. S., Arcus, V. L., Gerth, M. L. & Patrick, W. M. Enzyme evolution: innovation is

580 easy, optimization is complicated. *Curr. Opin. Struct. Biol.* **48**, 110–116 (2018).

581 77. Chaguza, C. Bacterial survival: evolve and adapt or perish. *Nature Reviews Microbiology*
582 vol. 18 5–5 (2020).

583 78. Cordova, S. T. & Sanford, J. Testing the Hypothesis that the Nylonase NylB Protein Arose
584 de novo via a Frameshift Mutation. (2020).

585 79. Siddiq, M. A., Hochberg, G. K. & Thornton, J. W. Evolution of protein specificity: insights
586 from ancestral protein reconstruction. *Curr. Opin. Struct. Biol.* **47**, 113–122 (2017).

587 80. Muller, R. J., Kleeberg, I. & Deckwer, W. D. Biodegradation of polyesters containing
588 aromatic constituents. *J. Biotechnol.* **86**, 87–95 (2001).

589 81. Tournier, V. *et al.* An engineered PET depolymerase to break down and recycle plastic
590 bottles. *Nature* **580**, 216–219 (2020).

591 82. Austin, H. P. *et al.* Characterization and engineering of a plastic-degrading aromatic
592 polyesterase. *Proc. Natl. Acad. Sci. U. S. A.* **115**, E4350–E4357 (2018).

593 83. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node
594 solution for large and complex metagenomics assembly via succinct de Bruijn graph.
595 *Bioinformatics* **31**, 1674–1676 (2015).

596 84. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq
597 quantification. *Nat. Biotechnol.* **34**, 525–527 (2016).

598 85. Alneberg, J. *et al.* Binning metagenomic contigs by coverage and composition. *Nat.*
599 *Methods* **11**, 1144–1146 (2014).

600 86. Kang, D. D. *et al.* MetaBAT 2: an adaptive binning algorithm for robust and efficient
601 genome reconstruction from metagenome assemblies. *PeerJ* **7**, e7359 (2019).

602 87. Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to
603 recover genomes from multiple metagenomic datasets. *Bioinformatics* **32**, 605–607 (2016).

604 88. Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-
605 resolved metagenomic data analysis. *Microbiome* **6**, 158 (2018).

606 89. Box, G. E. P. & Cox, D. R. An Analysis of Transformations. *J. R. Stat. Soc. Series B Stat.*
607 *Methodol.* **26**, 211–243 (1964).

608 90. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-
609 generation sequencing data. *Bioinformatics* **28**, 3150–3152 (2012).

610 91. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein
611 or nucleotide sequences. *Bioinformatics* vol. 22 1658–1659 (2006).

612 92. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment
613 search tool. *J. Mol. Biol.* **215**, 403–410 (1990).

614 93. Eddy, S. R. Profile hidden Markov models. *Bioinformatics* **14**, 755–763 (1998).

615 94. Pedregosa, F. *et al.* Scikit-learn: Machine learning in Python. *the Journal of machine*
616 *Learning research* **12**, 2825–2830 (2011).

617 95. Virtanen, P. *et al.* SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nat.*
618 *Methods* **17**, 261–272 (2020).

619 96. Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine.
620 *Bioinformatics* **28**, 2520–2522 (2012).