

# 1 Consistent ultra-long DNA sequencing with automated slow pipetting

2 Trent M. Prall<sup>1</sup> <https://orcid.org/0000-0003-0635-4152>  
3 Emma K. Neumann<sup>1</sup> <https://orcid.org/0000-0003-2453-8297>  
4 Julie A. Karl<sup>1</sup> <https://orcid.org/0000-0002-4447-4721>  
5 Cecilia G. Shortreed<sup>1</sup> <https://orcid.org/0000-0003-0654-5952>  
6 David A. Baker<sup>1</sup> <https://orcid.org/0000-0002-6811-8238>  
7 Hailey E. Bussan<sup>1</sup> <https://orcid.org/0000-0002-0961-7109>  
8 Roger W. Wiseman<sup>1, 2</sup> <https://orcid.org/0000-0002-7682-7085>  
9 David H. O'Connor<sup>1, 2</sup> <https://orcid.org/0000-0003-2139-470X>

10

11 (corresponding author: [dhoconno@wisc.edu](mailto:dhoconno@wisc.edu) 608-890-0845)

12

13 <sup>1</sup>Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison

14 <sup>2</sup>Wisconsin National Primate Research Center, University of Wisconsin, Madison

## 15 **Abstract**

16 **Background** Oxford Nanopore Technologies instruments can sequence reads of great length.  
17 Long reads improve sequence assemblies by unambiguously spanning repetitive elements of  
18 the genome. Sequencing reads of significant length requires the preservation of long DNA  
19 template molecules through library preparation by pipetting reagents as slowly as possible to  
20 minimize shearing. This process is time-consuming and inconsistent at preserving read length  
21 as even small changes in volumetric flow rate can result in template shearing.

22 **Results** We have designed SAILS (Slow Nucleic Acid Instrument for Long Sequences), a 3D-  
23 printable instrument that automates slow pipetting of reagents used in long read library  
24 preparation for Oxford Nanopore sequencing. Across six sequencing libraries, SAILS  
25 preserved more reads exceeding one hundred kilobases in length and increased its libraries'  
26 average read length over manual slow pipetting.

27 **Conclusions** SAILS is a low-cost, easily deployable solution for improving sequencing  
28 projects that require reads of significant length. By automating the slow pipetting of library  
29 preparation reagents, SAILS increases the consistency and throughput of long read Nanopore  
30 sequencing.

31

## 32 **Keywords**

33 Oxford Nanopore Technologies, GridION, MinION, DNA sequencing, Long read sequencing,  
34 Ultra-long, Ultra-high molecular weight DNA, de novo assembly

35

## 36 **Background**

37 Oxford Nanopore Technologies' (ONT) MinION and GridION instruments generate reads  
38 of unprecedented length [1]. Long reads improve genomic assemblies by spanning repetitive

39 regions and structural variation within the genome. These regions have historically complicated  
40 alignments created solely using shorter, second-generation sequencing reads [2]. An increased  
41 understanding of these genomic features is crucial as evidence linking heritable structural  
42 variation with disease phenotypes is emerging [3]. ONT sequencing has resolved the nucleotide  
43 identity of gaps left by 100 base pair (bp) Illumina reads aligned to GRCh38 better than other  
44 long read sequencing technologies [4]. These gaps included coding exons for 76 genes with  
45 known disease-associated mutations cataloged in the Human Gene Mutation Database [5]. A  
46 pathogenic deletion in TMEM231, a gene known to be involved in Meckel-Gruber syndrome,  
47 was uncovered by ONT reads [6]. This mutation had been masked by ambiguous mapping of  
48 short reads to a paralogous pseudogene locus. Recently, the first telomere-to-telomere  
49 assemblies of the human X and Y chromosomes were created using ONT sequencing [7, 8]. In  
50 these assemblies, ultra-long reads in excess of one megabase pair (Mb) were used to bridge  
51 the previous assemblies' centromeric gaps. Using similar methods, ONT generated long reads  
52 have been utilized to establish more contiguous assemblies for important model organisms [9–  
53 12].

54 Sequencing long reads requires isolating high molecular weight (HMW) DNA and  
55 preserving those DNA molecules through library preparation [13]. Methods for obtaining and  
56 preserving HMW DNA have been developed for use in the field of optical mapping, which  
57 benefits from continuous strands of DNA [14]. For example, DNA in solution can be condensed  
58 into a compact conformation by adding neutral polymers that exert osmotic pressure to nearby  
59 double helices [15]. Condensed DNA can also be induced by adding cationic ligands into  
60 solution to promote attractive interactions of DNA segments. DNA is resistant to shearing by  
61 pipetting when in condensed conformation [16]. Unfortunately, elongation of condensed DNA  
62 requires monovalent salts that could interfere with ONT sequencing pores. In 1984, Schwartz et  
63 al. pioneered pulsed gradient gel electrophoresis that allowed for the separation of

64 chromosomal-sized DNA [17]. Consistent ultra-long DNA isolation was accomplished by  
65 suspending cells in low-melting-point agarose and diffusing lysing reagents into the resulting  
66 suspension. The “nuclei-method” later expanded on this technique by enriching cell nuclei  
67 before embedding in agarose to remove cytoplasmic and other cellular lysates from the  
68 resulting DNA [18]. Second-generation short read sequencing can be performed on DNA  
69 extracted using the nuclei method [19]. However, gel extraction protocols designed for  
70 preserving high molecular weight DNA sequences require access to specialized electroelution  
71 chambers or pulsed-field gel electrophoresis systems [20]. HMW DNA can also be obtained  
72 using phenol-chloroform extractions based on a previously published protocol [21]. This  
73 protocol uses caustic chemicals and requires several hours to perform [13]. Alternatively,  
74 Circulomics Inc. has developed a thermoplastic substrate that can bind and release large  
75 quantities of DNA without damaging it [22]. They have created an isolation kit (Nanobind) using  
76 the substrate that produces large amounts of HMW DNA in approximately sixty minutes.  
77 Recently, Circulomics has reported a 2.44 Mb continuous read sequenced by MinION  
78 representing the longest single read ever sequenced [23]. Regardless of the isolation method,  
79 the resulting HMW DNA must undergo library preparation, which introduces more opportunities  
80 for shearing to occur.

81 Long read ONT libraries are prepared using the Rapid Sequencing Kit ([SQK-RAD004](#)).  
82 This protocol involves simultaneous fragmentation and ligation of tags by a transposome  
83 complex followed by the attachment of sequencing adaptors to template molecules before  
84 loading onto flow cells for sequencing. Throughout library preparation, DNA is susceptible to  
85 shearing by pipetting. A single draw using a normal-bore pipette tip shears megabase DNA, so  
86 wide-bore tips are used to reduce the amount of shearing [16]. DNA shearing can also be  
87 mitigated by pipetting at a slow rate [16]. Because the standard RAD004 sequencing protocol  
88 wasn't initially intended for long read sequencing, a modified RAD004 protocol was developed

89 to preserve template length [24]. In this protocol, HMW DNA and sequencing reagents are  
90 mixed by pipetting up and down as slowly as possible eighteen total times [25]. N50 denotes  
91 the minimum length for which half of the read lengths in a pool are equal to or longer, and it is  
92 used to estimate the distribution of read lengths within a pool. When implemented, the modified  
93 RAD004 protocol increased the average N50 from 10.6 kilobases across thirty-nine standard  
94 library preparations to 99.7 kilobases across two modified library preparations from a single  
95 sample [24]. Performing the long read RAD004 protocol for a single flow cell typically requires  
96 two hours of manual pipetting to perform [13]. This process can be a significant challenge for  
97 technicians to effectively execute and is limited in throughput. To address this challenge, we  
98 have designed and tested SNAILS (Slow Nucleic Acid Instrument for Long Sequences), an  
99 open-sourced, 3D-printed robot that automates slow pipetting steps used in long read RAD004  
100 library preparations. SNAILS eliminates some of the variables inherent to manual slow pipetting  
101 caused by unsteady hands. Additionally, SNAILS dramatically increases the long read  
102 sequencing throughput capabilities of a single technician.

103

## 104 **Results**

### 105 **SNAILS - Slow Nucleic Acid Instrument for Long Sequences**

106 We hypothesized that slow pipetting reagents could be automated by rotating a pipette  
107 plunger using a DC motor. To accomplish this, we created SNAILS, a 3D-printed scaffold  
108 designed around the VistaLab Ovation M micropipette that aligns a twelve-volt direct current  
109 planetary gear motor with a three-axle gear train connected to the pipette's plunger (Fig 1A, B).  
110 An L298N motor driver supplies current to the motor and is controlled through 3.3-volt signals  
111 generated by a raspberry pi 3B+ microcontroller. This configuration allows the direction of  
112 current, and by extension the direction of motion, to be programmatically toggled to aspirate or  
113 dispense volumes (Fig 1C). The three-axle gear train creates a 36:7 ratio between the motor

114 and pipette plunger that downshifts the motor's twelve rotations per minute to approximately  
115 1.25 rotations per minute (Fig 1D). This results in a volumetric flow rate of around 6  $\mu$ l per  
116 minute when used with a P100 micropipette. SNAILS are printed in multiple pieces that are  
117 assembled by connecting dovetailed joints attached to each piece (Supplementary Figures 1-4)  
118 Files for printing, assembly instructions, and source code for SNAILS are freely available for  
119 download from github (<https://github.com/dholab/SNAILS>).

120 **Comparison of high molecular weight DNA isolations**

121 Three HMW DNA isolations were performed using approximately  $2 \times 10^7$  peripheral blood  
122 mononuclear cells per isolation from a single rhesus macaque. Eighteen sequencing libraries  
123 were prepared from these DNA isolations using ONT SQK-RAD004 library preparation kits. One  
124 of three pipetting methods was used for library preparation: manual aspiration using an  
125 Eppendorf P200 micropipette, manual rotation using an Ovation M P100 micropipette, and  
126 automated rotation of an Ovation M P100 micropipette using SNAILS. Manual aspirational and  
127 rotational pipetting were performed by technicians with considerable experience in long read  
128 RAD004 preparations. Rotational pipetting was performed by rotating the pipette's plunger as  
129 slowly as possible to draw and dispense liquids. SNAILS were operated by more novice  
130 technicians with no experience performing long read library preparations by hand. Each of the  
131 pipetting methods was used to create two libraries simultaneously from each isolation to  
132 produce of six sequencing runs per pipetting method. It has been observed that MinKNOW  
133 arbitrarily fragments base called reads during sequencing [26]. Therefore, we informatically  
134 fused reads post-sequencing to accurately assess the read length retention between pipetting  
135 methods using whale\_watch.py from the BulkVis toolset [26]. This process also ensures that all  
136 analyzed reads successfully map to the hg38 reference genome to eliminate the possibility of  
137 spurious long reads that have been observed during Nanopore sequencing runs (see Methods).  
138 The results of each library preparation are displayed in Table 1. We calculated the mean N50  
139 across all three pipetting methods to estimate the relative length distribution. Future studies

140 might benefit from quantification of HMW DNA using pulsed field gel electrophoresis, as HMW  
141 DNA is highly viscous and difficult to measure with simpler quantification methods. N50 values  
142 vary substantially per isolation with means of 23,124 bp; 15,741 bp; and 19,975 bp from  
143 isolations one, two, and three, respectively. All eighteen N50s fell below the expected range of  
144 greater than 50 kb. It should be noted that DNA extractions were performed from cryopreserved  
145 cells. DNA extracted from cryopreserved cells has been shown to yield slightly shorter lengths  
146 than DNA extracted from fresh cells [24]. This suggests that the input gDNA was not  
147 exceptionally HMW. However, a considerable amount of ultra-long reads greater than 100 kb  
148 were generated in the study, and so the pipetting methods still demonstrate long read retention.  
149 The length of DNA within a pool can vary substantially between HMW isolations. Therefore,  
150 DNA length is still limited by HMW isolations and automated library preparation serves only to  
151 preserve existing long molecules.

152 **Comparison of read length retention**

153 To test SAILS' efficiency, long read retention of pipetting by manual aspiration, manual  
154 rotation, and automated rotation performed by SAILS was compared through various metrics.  
155 We observed that SAILS produced more total reads than either manual pipetting method  
156 (Figure 2A). Across six flow cells, SAILS produced 5,251,774 reads in total, exceeding both  
157 manual aspiration that produced 4,216,634 total reads and manual rotation that produced  
158 2,810,324 total reads (Supplementary Table 1). The total reads generated by each flow cell is  
159 subject to many confounding variables. For instance, the number of available pores per flowcell  
160 will clearly influence sequence yield. To account for flow cell quality, we analyzed the mean  
161 reads per pore for each pipetting method (Figure 2B). SAILS produced a mean reads per pore  
162 of 624, exceeding the mean of 543 reads sequenced by manual aspiration and the mean of 459  
163 reads sequenced by manual rotation. However, this increase in mean reads per pore is mostly  
164 the result of DNA isolation two, where SAILS produced a far greater number of reads than  
165 from other isolations.

166 Across eighteen library preparations, only SAILS retained ultra-long reads in excess of  
167 one Mb: 1,253,204 bp and 1,021,308 bp (Table 2). In contrast, the maximum lengths of reads  
168 preserved by manual aspiration and rotation were 798,240 bp and 862,322 bp, respectively.  
169 SAILS produced six reads longer than the maximum read produced by manual rotation and  
170 nine reads longer than the longest read produced by manual aspiration. These findings suggest  
171 that automated rotation of the pipette plunger via SAILS is a superior method of read length  
172 retention though more comparative library preparations are necessary to confirm the observed  
173 trend.

174 The length distribution for the combined reads from each pipetting method is displayed  
175 in Figure 3A. Manual rotation produced a mean read length of 8,583 bp across six libraries. This  
176 surpassed SAILS' mean length of 6,630 bp and manual aspiration's mean length of 5,209 bp.  
177 This hierarchy was mirrored when comparing N50s produced by each method (Figure 3C).  
178 Pipetting by manual aspiration resulted in the lowest mean N50 of 16,203 bp across six cells. By  
179 comparison, the mean N50 produced by manual and automated rotation of the plunger were  
180 22,221 bp and 20,381 bp, respectively. SAILS produced higher N50s in five of the six  
181 sequencing runs from the same DNA isolations over manual aspiration (Table 1). Additionally,  
182 SAILS produced the highest N50 for a single run (31,810 bp) despite having a lower mean  
183 N50 than manual rotation (Table 1).

184 When the results of all six flow cells were combined, SAILS retained more reads of  
185 longer length than either manual method (Figure 3B). In silico modeling has predicted that an  
186 N50 greater than 100 kb will substantially improve the continuity of genomic assemblies [24].  
187 We therefore compared the number of reads greater than or equal to 100 kb retained by each  
188 pipetting method (Figure 3D). SAILS produced a combined 23,884 reads greater than or equal  
189 to 100 kb in length (Supplementary Table 1). This number exceeded both manual aspiration and  
190 rotation that produced 13,079 and 14,424 reads, respectively. We then compared the mean  
191 number of reads greater than or equal to 100 kb sequenced across libraries to assess whether

192 SAILS was more consistently retaining beneficially long reads. SAILS produced the highest  
193 mean of 3,981. Manual rotation resulted in a mean of 2,968 and aspiration produced a mean of  
194 2,180. The difference in means was significant between automated and aspirated pipetting by  
195 one-way ANOVA (p-value = 0.0428). No significant difference was observed between  
196 automated and manual rotation. This significant difference between manual aspiration and  
197 SAILS was also observed by comparing the mean total base pairs of reads greater than 100  
198 kb and 200 kb. These comparisons resulted in p-values of 0.0415 and 0.0441, respectively  
199 (Figure 3E,F). These findings suggest that SAILS is comparable to manual rotation of the  
200 pipette plunger for length preservation through RAD004 library preparations. Furthermore,  
201 SAILS appears to be preserving significantly more long reads than the common practice of  
202 slowly aspirating the pipette.

203 The initial eighteen flowcells used to compare pipetting methods resulted in relatively low  
204 N50s compared to what has been reported in the field [24]. We suspected that this may be the  
205 result of low-quality DNA isolations because all pipetting methods resulted in similarly small  
206 N50s. We developed SAILS to increase the throughput of our internal whole genome  
207 sequencing efforts. To date, we have used SAILS to prepare over 200 long-read libraries,  
208 some of which have resulted in N50s that exceed 100 kb. We have included sequencing results  
209 from four exemplary flow cells to demonstrate SAILS' ability to preserve desirably high N50s  
210 (Figure 4). These four libraries were prepared individually from four separate HMW phenol-  
211 chloroform DNA isolations. Libraries four and five were prepared from a single rhesus macaque  
212 and libraires six and seven were prepared from a single cynomolgus macaque. Each library  
213 yielded more than twenty-six thousand reads (Figure 4A). However, the first two libraries  
214 produced notably more reads when compared to the second two. This difference may be the  
215 result of less available pores at the beginning of sequencing. Flow cells four and five began  
216 sequencing with a reported 1382, and 1383 available pores whereas flow cells six and seven  
217 began sequencing with 1117 and 962 pores. The difference between runs was less pronounced

218 when total reads were adjusted to account for available pores though still noticeably different  
219 (Figure 4B). The four flow cells resulted in N50s of 119.3 kb, 118.2 kb, 178.4 kb, and 164.5 kb,  
220 respectively (Figure 4C). Libraries five and six produced exceptionally high N50s exceeding 150  
221 kb. It is possible that the decreased yield from flow cells five and six was due in part to the  
222 larger relative length within the libraries. We have begun investigating whether decreased yield  
223 can be partially alleviated by performing routine nuclease flushes and reloading fresh library.  
224 The ten longest mapping reads from libraries four and five all exceeded 1 Mb with a maximum  
225 length of 1.87 Mb (Supplementary Table 2). By comparison, libraries six and seven did not  
226 contain any reads exceeding 1Mb in length despite resulting in considerable larger N50s than  
227 libraries four and five.

228 All four runs resulted in over a combined 1.08 Gigabase pairs from reads greater than  
229 100 kb in length and a combined 647 Mb from reads greater than 200 kb in length (Figure 4  
230 E,F). By comparison, the longest library prepared by SNAILS from the initial eighteen libraries  
231 resulted in a combined 1.04 Gigabase pairs from reads greater than 100 kb in length and 332  
232 Mb from reads greater than 200 kb in length (Figure 3E, F). This further suggests that the  
233 quality of HMW DNA isolation is perhaps a larger determinant of relative DNA length given that  
234 SNAILS were used to prepare all five libraries. Based on this theory, we are actively working to  
235 adapt DNA purification kits manufactured by Circulomics and New England Biolabs into our  
236 workflows. Our thought is that phenol-chloroform DNA purification may be difficult to perform  
237 reliably and that perhaps an alternative purification methodology can more consistently produce  
238 desirable HMW DNA. Library five appeared to be somewhat exceptional in both yield and  
239 length. This library resulted in an N90 of 71.5 kb meaning 90% of the reads in the library were  
240 71.5 kb or greater in length (Figure 4D). These results are somewhat perplexing given that  
241 library five was prepared identically to the other presented libraries and began sequencing with  
242 nearly the same amount available pores as library four (1382, and 1383, respectively). It  
243 therefor stands that additional factors play an important roll in the determination of DNA length

244 through sequencing. However, the results of the presented four exemplary libraries demonstrate  
245 that SAILS' slow pipetting is capable of maintaining N50s of desirable length with the obvious  
246 advantage of alleviating time-consuming pipetting while increasing throughput.

247

248 **Discussion**

249 Minimizing HMW DNA shearing during library preparation is a necessary precaution  
250 needed to maximize the advantages of ONT long read sequencing. We have designed and  
251 tested SAILS, a 3D-printed instrument that automates the slow pipetting steps used during the  
252 modified RAD004 library preparation protocol. SAILS retain more long reads when compared  
253 to libraries prepared by conventional slow aspiration pipetting. The amount of manual  
254 preparation time saved is arguably the most considerable advantage provided by SAILS. The  
255 RAD004 long read protocol typically requires at least two hours to prepare a single library for  
256 only eighteen pipetting steps [13]. Developing the ability to prepare long read libraries requires  
257 substantial training to execute properly. Moreover, only technicians with steady and dexterous  
258 hands can effectively pipette at the consistent, slow rate necessary to preserve length. SAILS  
259 reduces the amount of hands-on time required to prepare libraries to a few minutes and the  
260 technical burden to executing a couple of commands. This enables task-shifting to less trained  
261 staff. Moving forward, we plan to expand on the SAILS design by creating a pipette-mounted  
262 version. A pipette-mounted chassis could be attached to a poseable or robotic arm to give  
263 SAILS 360 degrees of motion. This design would essentially eliminate any manual intervention  
264 that remains when using the present SAILS design, thereby completely automating long read  
265 library preparation via the RAD004 protocol. Furthermore, increased range of motion could  
266 allow SAILS to be more easily applied to a broader range of protocols requiring delicate  
267 pipetting of samples such as Circulomics' disk-based or phenol-chloroform extractions. John  
268 Tyson's Rocky Mountain protocol is a promising approach to increasing N50s using the ligation

269 sequencing kit and forgoing bead cleanups. The anticipated Circulomics' ultra-long library  
270 preparation kits are also reporting encouraging early results. It is our understanding that all  
271 these methods require delicate pipetting of samples and reagents. Therefore, SNAILS can be  
272 adapted to fit the protocols' needs and eliminate the risk of shearing caused by manual  
273 pipetting.

274 Liquid handling robots manufactured by Tecan, Eppendorf, and others are theoretically  
275 capable of automating long read library preparation by designing custom protocols. However,  
276 liquid handling robots are not designed for slow pipetting and require knowledge of the  
277 instrument's programmatic background to implement custom protocols. By comparison, SNAILS  
278 is explicitly designed for slow pipetting and operates with pythonic code that requires little  
279 programmatic expertise to customize the speed, draw volume, and number of pipetting steps.  
280 This specialization sacrifices SNAILS' ability to perform more complex protocols. However,  
281 SNAILS has a meager cost of entry when compared to enterprise liquid handling robots. 3D  
282 printing has become an increasingly utilized resource in the development of biological  
283 instrumentation and laboratory consumables [27]. In the past five years, 3D printers have  
284 rapidly decreased in price, fostering an open-sourced, at-home printing community. At the  
285 writing of this manuscript, Creatality 3D's Ender 3 printer can be purchased for under \$200 USD  
286 and is equipped with a bed large enough to handle printing pieces for SNAILS. When printed  
287 using 20% infill and support density of 25, the entire structure amounts to roughly 350 grams of  
288 polylactic acid, which costs approximately \$30 USD. The remaining electronic components can  
289 be inexpensively sourced (Supplementary Table 2). Together, the total cost of a single SNAILS  
290 is roughly \$165 USD. This cost of entry pales in comparison to the cost of labor required for the  
291 same task. Because of this entry cost, multiple SNAILS can be assembled and run in tandem by  
292 a single technician. For example, we have deployed SNAILS that are often run simultaneously  
293 to produce eight long read libraries in a single day. The SNAILS approach to library preparation

294 is an economically viable solution for increasing throughput without a significant sacrifice to read  
295 length.

296 Manual slow pipetting is inherently difficult to perform. Maintaining a consistent  
297 volumetric flow rate isn't easily measurable or reproducible when slow pipetting is performed by  
298 hand. Minute changes in volumetric flow rate caused by slight hand movements can result in  
299 DNA shearing. SAILS resolves these inconsistencies through its voltage-dependent volumetric  
300 flow rate. The voltage supplied to SAILS' motor can be manipulated using a pulse width  
301 modulation signal delivered by a microcontroller to the L298N driver. The stepwise changes in  
302 pipetting rate can be accurately benchmarked to optimize ultra-long read retention. Any  
303 pipetting will inevitably result in DNA shearing, yet performing multiple pipetting steps is  
304 necessary to ligate sequencing adaptors to DNA molecules. Theoretically, performing less  
305 pipetting steps in library preparation will result in less DNA shearing. However, this may come at  
306 the cost of total reads sequenced. SAILS can help establish optimal protocol conditions to  
307 maximize length and long read yield.

308 As presented here, SAILS are an admittedly imperfect system with several remaining  
309 areas of improvement. Though SAILS' speed of pipetting seems to accommodate highly  
310 viscous HMW DNA, DNA shearing still may occur. Across six flow cells, SAILS showed larger  
311 variation in N50 than manual rotation of the pipette. This may be a result of technical ability as  
312 manual rotation was performed by experienced technician while SAILS were operated by a  
313 more novice technician. The total yield of each flow could possibly have been increased by  
314 implementing nuclease flushes. After the preparation of this manuscript, we have used nuclease  
315 flushes with SAILS, which has resulted in a general increase in throughput. However, more  
316 factors are involved in maintaining long sequences than the rate and consistency of pipetting. A  
317 more in-depth investigation into the factors affecting length retention is necessary to help guide  
318 the development of SAILS and other ultra-long read protocols.

319

## 320 **Conclusions**

321 SNAILS is a cost-effective, easily-deployable, robotic pipette that automates long read  
322 RAD004 library preparation for ONT sequencing. SNAILS outperforms conventional slow  
323 pipetting in terms of preserving reads exceeding 100 kb in length and acquiring larger N50s  
324 within a sequencing library. Additionally, SNAILS allow untrained technicians to perform  
325 effective slow pipetting while simultaneously increasing throughput of a single technician without  
326 sacrificing the libraries quality. SNAILS serves as a platform for immediately increasing the  
327 quantity and quality of long read libraries and provides a basis for future optimization of long  
328 read retention.

329

## 330 **Abbreviations**

331 SNAILS: Slow nucleic acid instrument for long sequences; RAD: Rapid adaptor; ONT: Oxford  
332 Nanopore Technologies; HMW: high molecular weight; bp: base pairs; kb: kilobase pair; Mb:  
333 Megabase pair

334

## 335 **Methods**

### 336 **CAD, 3D printing**

337 All 3D printed portions of the robot were designed in Solidworks 2019  
338 (<https://www.solidworks.com/>), a computer-aided designing and computer-aided engineering  
339 program. All 3D printing was conducted on Ultimaker 3, S3, and S5 machines with polylactic  
340 acid. Solidworks part files were converted to STL files and imported to the Ultimaker Cura  
341 program (<https://github.com/Ultimaker/Cura>). Parts were positioned on the build plate at least  
342 0.5 cm apart with flat faces down. For the towers, the layer height was set to 0.2 mm, infill to  
343 20%, support material unchecked, and the remaining settings left at default. For the base, motor  
344 holder, and bridge parts, the layer height was set at 0.2 mm, infill to 20%, support density to

345 25%, support material checked, and the remaining settings left at default. Before submitting the  
346 print job to the printer, the Ultimaker was loaded with polylactic acid and the build plate was  
347 covered in glue from the Ultimaker glue sticks to ensure the parts would not shift while printing.  
348 The Solidworks parts were converted to Solidworks drawings to create the figures. The e -  
349 *landscape.slddrft* size sheet was used as a base, and the sheet format was suppressed. Multiple  
350 angles for each part were included using the Model View tool under View Layout and  
351 dimensions were added using the Smart Dimensions tool under Annotation with the significant  
352 figures, size, and units edited in the Document Properties under Dimensions.

### 353 **SAILS assembly**

354 All support material was removed, and dovetail joints were assembled. Due to the margin of  
355 error in printing using the Ultimaker, a Dremel was used to shave down parts and a mallet was  
356 used to squarely mesh dovetail joints. Raspbian v4.19 was installed using NOOBS v3.3.1 to a  
357 32 GB micro sd card and booted on a Raspberry Pi model 3B+. Electronic components were  
358 assembled into a solderless circuit as depicted in Figure 1C. Briefly, the general-purpose  
359 input/output pins 23, 24, 25, and ground pin 6 were connected to IN1, IN2, ENA, and GND  
360 terminals of the L298N motor driver board, respectively. The positive and negative leads of a  
361 twelve-volt direct current power supply were connected to the twelve-volt and GND terminals of  
362 the L298N motor driver, respectively. Finally, the two terminals of a twelve-volt direct current  
363 planetary motor were connected to the OUT1 and OUT2 terminals of the L298N motor driver.  
364 Protocols were written in python3 and downloaded to the rpi  
365 (<https://github.com/emmagn/SAILS>). All sources for parts used in assembly are displayed in  
366 Supplementary Table 3..

### 367 **Animal selection and sample collection**

368 Blood was obtained from two rhesus macaques (rh1990, r02072) and one cynomolgus  
369 macaque (cy0161) housed at the Wisconsin National Primate Research Center. The animals  
370 were released after blood was collected. Peripheral blood mononuclear cells were isolated from

371 the buffy coat following density gradient centrifugation with ficoll and frozen in liquid nitrogen.  
372 Sampling was performed following protocols approved by the University of Wisconsin-Madison  
373 Institutional Animal Care and Use Committee and in accordance with the regulations and  
374 guidelines outlined in the Animal Welfare Act, the Guide for the Care and Use of Laboratory  
375 Animals, and the Weatherall report (<https://mrc.ukri.org/documents/pdf/the-use-of-non-human-primates-in-research/>).

### 377 **High Molecular Weight DNA Extraction**

378 DNA was extracted from frozen peripheral blood mononuclear cells using a previously  
379 described ultra-long DNA extraction protocol [24] with some modifications. For each extraction,  
380 roughly twenty million cells were thawed and then spun at 300 x g for 10 min. The supernatant  
381 was removed, and the pelleted cells were resuspended in 200  $\mu$ l PBS. In a 15 ml conical tube,  
382 the resuspended cells were added to 10 ml of TLB (100 mM NaCl, 10 mM Tris-Cl pH 8.0, 25  
383 mM EDTA pH 8.0, 0.5% (w/v) SDS, 20 ug/ml Qiagen RNase A, H<sub>2</sub>O) and vortexed at full speed  
384 for 5 sec. The samples were then incubated at 37°C for 1 hr. Qiagen Proteinase K (200 ug/ml)  
385 was then added and mixed by slow end-over-end inversion three times. Samples were  
386 incubated at 50°C for 2 hrs with 3x end-over-end inversion every 30 min. The lysate was slowly  
387 pipetted into two phase-lock 15 ml conical tubes in 5 ml increments. The phase lock conical  
388 tubes were prepared prior to DNA isolation by adding ~2 ml autoclaved high-vacuum silicone  
389 grease into 15 ml conical tubes and spinning max speed for 1 min. To each phase-lock tube of  
390 lysate, 2.5 ml buffer-saturated phenol and 2.5 ml chloroform were added before rotational  
391 mixing at 20 rpm for 10 min. Tubes were then spun down at 4000 rpm for 10 min in an  
392 Eppendorf 5810R centrifuge with a swinging-bucket rotor. After centrifugation, the aqueous  
393 phase was poured slowly into a new phase-lock 15 ml conical tube. The addition of phenol and  
394 chloroform, rotational mixing, and centrifugation was repeated with the second set of phase-lock  
395 tubes. The aqueous phases from both phase-lock tubes were slowly poured into a single 50 ml

396 conical tube before adding 4 ml of 5 M ammonium acetate and 30 ml of ice-cold 100% ethanol.  
397 The mixture was incubated at room temperature while the DNA visibly precipitated. Once the  
398 DNA rose to the surface of the mixture, a glass capillary hook was used to retrieve the DNA.  
399 The hooked DNA was dipped into 70% ethanol, then carefully worked off of the hook into an  
400 Eppendorf DNA LoBind 1.5 ml tube. One ml of 70% ethanol was added to the tube before  
401 spinning down at 10,000 x g for 1 min and the supernatant was removed. This process was  
402 repeated for a second 70% ethanol wash, and any remaining ethanol was evaporated off during  
403 a 15 min incubation at room temperature. 100  $\mu$ l of elution buffer (10 mM Tris-Cl pH 8.0, H<sub>2</sub>O)  
404 was added before incubating the DNA at 4°C for at least two days. A total of three ultra-long  
405 DNA isolations were performed.

406 **Library Preparation**

407 For each library preparation, pipetting was performed using one of three techniques: manual  
408 aspiration, manual rotation, and automated rotation with SAILS. All pipetting was performed  
409 with wide-bore pipette tips. For manual aspiration libraries, volumes were pipetted up and down  
410 by hand as slowly as possible. For manual rotation, the pipette plunger was twisted by hand as  
411 slowly as possible to aspirate and dispense. For automated rotation, a SAILS was  
412 programmed to rotate the pipette plunger at a rate of approximately 1.25 rotations per minute.  
413 An aliquot of 16  $\mu$ l HMW DNA from each library was loaded into a flow cell on an Oxford  
414 Nanopore Technologies (Oxford, United Kingdom) GridION. We used the ONT SQK-RAD004  
415 Rapid Sequencing Kit with modifications of a previously described library preparation [24]  
416 optimized for this kit. This procedure is also described in Karl et al. (manuscript in publication).  
417 1.5  $\mu$ l fragmentation mix (FRA) and 3.5  $\mu$ l of elution buffer were added to the DNA aliquot and  
418 pipetted five times to mix. The samples were then placed on an Applied Biosystems Thermal  
419 Cycler (ThermoFisher Scientific, Waltham, MA, USA) at 30°C for 1 min followed by 80°C for 1  
420 min. One  $\mu$ l of rapid adaptor (RAP) was added to the solution and pipetted five times. The

421 library was then incubated at room temperature while the flow cells were primed as follows. For  
422 each flow cell, 30  $\mu$ l of flush tether (FLT) was added to a tube of flush buffer (FLB), and a very  
423 small volume of buffer was removed from the priming port in order to remove the air gap. 800  $\mu$ l  
424 of the Flush tether + Flush buffer solution were added to the priming port. Following a five  
425 minute incubation, the SpotOn port was opened and 200  $\mu$ l of the FLT + FLB solution was  
426 slowly added to the priming port so that small volumes of solution rise from the SpotOn port and  
427 then return to the cell. 34  $\mu$ l of the sequencing buffer (SQB) and 20  $\mu$ l of water were added to  
428 the sample solution and pipetted three times. Finally, 75  $\mu$ l of the prepared library was slowly  
429 drawn into a pipette with a wide bore tip. The library was then added dropwise to the SpotON  
430 port.

#### 431 **MinION Sequencing and base calling**

432 Eighteen R9.4 (FLO-MIN106) total MinION flow cells were loaded with ultra-long DNA libraries  
433 and sequenced for 48 hours and default parameters on a GridION instrument according to ONT  
434 guidelines using their MinKNOW software to control each sequencing run. Different versions of  
435 MinKNOW were used throughout the course of the study as updates were released; specific  
436 versions are recorded in the metadata in the fast5 files for each run. Only reads that passed the  
437 preliminary default screening of MinKNOW were used for base calling. Base calling was  
438 performed using the GPU-enabled guppy version 3.2.4 software provided by ONT with the  
439 following settings: [--config dna\_r9.4.1\_450bps\_hac.cfg --num\_callers 14 --chunk\_size 500 --  
440 gpu\_runners\_per\_device 8 --chunks\_per\_runner 768]. Currently, Guppy and MinKNOW are  
441 only available to ONT customers via their community site  
442 (<https://community.nanoporetech.com>).

#### 443 **Fusing split reads and read statistics**

444 `Whale_watch.py` was used to identify and fuse reads that were incorrectly split during  
445 sequencing as previously described [26]. Briefly, basecalled fastq files were merged into a

446 single file and mapped against the human reference genome GRCh38 [28] using minimap2  
447 [29] and saved as a .paf output file. Next, whale\_merge.py was run on the resulting .paf files  
448 along with their corresponding merged fastq files to output fastq files containing fused reads.  
449 Read lengths, N50s, and N90s for fused fastq files were calculated using stats.py from the  
450 bbtools suite (<https://sourceforge.net/projects/bbmap/>). Figures and statistics were generated  
451 using Prism 8.4.0 for MacOS (GraphPad Software, San Diego, California USA,  
452 [www.graphpad.com](http://www.graphpad.com)).

453

## 454 **Declarations**

### 455 **Ethical approval and consent to participate**

456 The rhesus macaque used in this study was cared for by the staff at the Wisconsin National  
457 Primate Research Center in accordance with the regulations, guidelines, and recommendations  
458 outlined in the Animal Welfare Act, the Guide for the Care and Use of Laboratory Animals, and  
459 the Weatherall report (55–57). The University of Wisconsin-Madison College of Letters and  
460 Science and Vice Chancellor for Research and Graduate Education Centers Institutional Animal  
461 Care and Use Committee approved the nonhuman primate research covered under protocol  
462 G005401-R01. The University of Wisconsin-Madison Institutional Biosafety Committee  
463 approved this work under protocol B00000117.

### 464 **Consent for publication**

465 Not applicable.

### 466 **Availability of data and materials**

467 The datasets used during the current study are available from the corresponding author on  
468 reasonable request. The accompanying files and schematics are freely available for use at  
469 <https://github.com/dholab/SNAILS>.

### 470 **Competing interests**

471 The authors declare that they have no competing interests.

472 **Funding**

473 This work was made possible by financial support through a supplement to contract

474 HHSN272201600007C from the National Institute of Allergy and Infectious Diseases of the NIH.

475 TMP is supported by training grant T32 GM135119 of the NIH. This research was conducted in

476 part at a facility constructed with support from Research Facilities Improvement Program grants

477 RR15459-01 and RR020141-01. This work was also supported in part by the Office of Research

478 Infrastructure Programs/OD (P51OD011106) awarded to the WNPRC, Madison-Wisconsin. The

479 funders played no role in study design, data collection and analysis, decision to publish, or

480 preparation of the manuscript. Publication costs were funded by contract HHSN272201600007C

481 from the National Institute of Allergy and Infectious Diseases of the NIH.

482 **Authors' contributions**

483 TP designed and supervised the project, performed the analysis, and wrote the manuscript. TP

484 and EN created the SNAILS design. EN created CAD schematics, 3D printed designs and wrote

485 the manuscript. TP, JK, EN, and CS performed sequencing experiments. DB wrote software

486 code. HB, RW, and DO provided data interpretation. All authors read and approved the final

487 manuscript.

488 **Acknowledgements**

489 The authors would like to thank Phoenix Shepherd for creating the SNAILS acronym.

490

491 **References**

492 1. Midha, M. K., M. Wu, and K. P. Chiu. 2019. Long-read sequencing in deciphering human

493 genetics to a greater depth. *Hum Genet* 138: 1201-1215.

494 2. Nagarajan, N., and M. Pop. 2013. Sequence assembly demystified. *Nat Rev Genet* 14:

495 157-167.

496 3. Weischenfeldt, J., O. Symmons, F. Spitz, and J. O. Korbel. 2013. Phenotypic impact of  
497 genomic structural variation: insights from and for human disease. *Nat. Rev. Genet.* 14:  
498 125-138.

499 4. Ebbert, M. T. W., T. D. Jensen, K. Jansen-West, J. P. Sens, J. S. Reddy, P. G. Ridge, J.  
500 S. K. Kauwe, V. Belzil, L. Pregent, M. M. Carrasquillo, D. Keene, E. Larson, P. Crane, Y.  
501 W. Asmann, N. Ertekin-Taner, S. G. Younkin, O. A. Ross, R. Rademakers, L. Petrucelli,  
502 and J. D. Fryer. 2019. Systematic analysis of dark and camouflaged genes reveals  
503 disease-relevant genes hiding in plain sight. *Genome Biol* 20: 97.

504 5. Stenson, P. D., M. Mort, E. V. Ball, K. Shaw, A. Phillips, and D. N. Cooper. 2014. The  
505 Human Gene Mutation Database: building a comprehensive mutation repository for clinical  
506 and molecular genetics, diagnostic testing and personalized genomic medicine. *Hum*  
507 *Genet* 133: 1-9.

508 6. Watson, C. M., P. Dean, N. Camm, J. Bates, I. M. Carr, C. A. Gardiner, and D. T.  
509 Bonthron. 2020. Long-read nanopore sequencing resolves a TMEM231 gene conversion  
510 event causing Meckel-Gruber syndrome. *Hum. Mutat.* 41: 525-531.

511 7. Miga, K. H., S. Koren, A. Rhie, M. R. Vollger, A. Gershman, A. Bzikadze, S. Brooks, E.  
512 Howe, D. Porubsky, G. A. Logsdon, V. A. Schneider, T. Potapova, J. Wood, W. Chow, J.  
513 Armstrong, J. Fredrickson, E. Pak, K. Tigyi, M. Kremitzki, C. Markovic, V. Maduro, A.  
514 Dutra, G. G. Bouffard, A. M. Chang, N. F. Hansen, A. B. Wilfert, F. Thibaud-Nissen, A. D.  
515 Schmitt, J. M. Belton, S. Selvaraj, M. Y. Dennis, D. C. Soto, R. Sahasrabudhe, G. Kaya, J.  
516 Quick, N. J. Loman, N. Holmes, M. Loose, U. Surti, R. A. Risques, T. A. Graves Lindsay,  
517 R. Fulton, I. Hall, B. Paten, K. Howe, W. Timp, A. Young, J. C. Mullikin, P. A. Pevzner, J.  
518 L. Gerton, B. A. Sullivan, E. E. Eichler, and A. M. Phillippy. 2020. Telomere-to-telomere  
519 assembly of a complete human X chromosome. *Nature* 585: 79-84.

520 8. Jain, M., H. E. Olsen, D. J. Turner, D. Stoddart, K. V. Bulazel, B. Paten, D. Haussler, H. F.  
521 Willard, M. Akeson, and K. H. Miga. 2018. Linear assembly of a human centromere on the  
522 Y chromosome. *Nat. Biotechnol.* 36: 321-323.

523 9. Giordano, F., L. Aigrain, M. A. Quail, P. Coupland, J. K. Bonfield, R. M. Davies, G.  
524 Tischler, D. K. Jackson, T. M. Keane, J. Li, J. X. Yue, G. Liti, R. Durbin, and Z. Ning. 2017.  
525 De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms. *Sci Rep* 7:  
526 3935.

527 10. Eccles, D., J. Chandler, M. Camberis, B. Henrissat, S. Koren, G. Le Gros, and J. J.  
528 Ewbank. 2018. De novo assembly of the complex genome of *Nippostrongylus brasiliensis*  
529 using MinION long reads. *BMC Biol* 16: 6.

530 11. Miller, D. E., C. Staber, J. Zeitlinger, and R. S. Hawley. 2018. Highly Contiguous Genome  
531 Assemblies of 15 *Drosophila* Species Generated Using Nanopore Sequencing. *G3*  
532 (*Bethesda*) 8: 3131-3141.

533 12. Tyson, J. R., N. J. O'Neil, M. Jain, H. E. Olsen, P. Hieter, and T. P. Snutch. 2018. MinION-  
534 based long-read sequencing and assembly extends the *Caenorhabditis elegans* reference  
535 genome. *Genome Res* 28: 266-274.

536 13. Gong, L., C. H. Wong, J. Idol, C. Y. Ngan, and C. L. Wei. 2019. Ultra-long Read  
537 Sequencing for Whole Genomic DNA Analysis. *J Vis Exp* 145:

538 14. Schwartz, D. C., and A. Samad. 1997. Optical mapping approaches to molecular  
539 genomics. *Curr. Opin. Biotechnol.* 8: 70-74.

540 15. Yoshikawa, K. 2001. Controlling the higher-order structure of giant DNA molecules. *Adv.*  
541 *Drug Deliv. Rev.* 52: 235-244.

542 16. Kovacic, R. T., L. Comai, and A. J. Bendich. 1995. Protection of megabase DNA from  
543 shearing. *Nucleic Acids Res.* 23: 3999-4000.

544 17. Schwartz, D. C., and C. R. Cantor. 1984. Separation of yeast chromosome-sized DNAs by  
545 pulsed field gradient gel electrophoresis. *Cell* 37: 67-75.

546 18. Zhang, M., Y. Zhang, C. F. Scheuring, C. C. Wu, J. J. Dong, and H. B. Zhang. 2012.  
547 Preparation of megabase-sized DNA from a variety of organisms using the nuclei method  
548 for advanced genomics research. *Nat Protoc* 7: 467-478.

549 19. Łopacińska-Jørgensen, J. M., J. N. Pedersen, M. Bak, M. M. Mehrjouy, K. T. Sørensen, P.  
550 F. Østergaard, B. Bilenberg, A. Kristensen, R. J. Taboryski, H. Flyvbjerg, R. Marie, N.  
551 Tommerup, and A. Silahtaroglu. 2017. Enrichment of megabase-sized DNA molecules for  
552 single-molecule optical mapping and next-generation sequencing. *Sci Rep* 7: 17893.

553 20. Pollman, M. J., and A. J. Zuccarelli. 1989. Rapid isolation of high-molecular-weight DNA  
554 from agarose gels. *Anal. Biochem.* 181: 12-17.

555 21. Sambrook, J. R. 2001. *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor  
556 Laboratory Press,

557 22. Zhang, Y., J. M. Burke, K. Gleitsman, S. M. Friedrich, K. J. Liu, and T. H. Wang. 2016. A  
558 Simple Thermoplastic Substrate Containing Hierarchical Silica Lamellae for High-  
559 Molecular-Weight DNA Extraction. *Adv Mater* 28: 10630-10636.

560 23. Liu, D. K. 2020. Generating Ultra Long Reads on Oxford Nanopore  
561 MinION/GridION/PromethION. *The Association of Biomolecular Resource Facilities*

562 24. Jain, M., S. Koren, K. H. Miga, J. Quick, A. C. Rand, T. A. Sasani, J. R. Tyson, A. D.  
563 Beggs, A. T. Dilthey, I. T. Fiddes, S. Malla, H. Marriott, T. Nieto, J. O'Grady, H. E. Olsen,  
564 B. S. Pedersen, A. Rhie, H. Richardson, A. R. Quinlan, T. P. Snutch, L. Tee, B. Paten, A.  
565 M. Phillippy, J. T. Simpson, N. J. Loman, and M. Loose. 2018. Nanopore sequencing and  
566 assembly of a human genome with ultra-long reads. *Nat Biotechnol* 36: 338-345.

567 25. Quick, J. Ultra-long read sequencing protocol for RAD004 V.3.

568 26. Payne, A., N. Holmes, V. Rakyan, and M. Loose. 2019. BulkVis: a graphical viewer for  
569 Oxford nanopore bulk FAST5 files. *Bioinformatics* 35: 2193-2198.

570 27. Duong, L. H., and P. C. Chen. 2019. Simple and low-cost production of hybrid 3D-printed  
571 microfluidic devices. *Biomicrofluidics* 13: 024108.

572 28. Schneider, V. A., T. Graves-Lindsay, K. Howe, N. Bouk, H. C. Chen, P. A. Kitts, T. D.  
573 Murphy, K. D. Pruitt, F. Thibaud-Nissen, D. Albracht, R. S. Fulton, M. Kremitzki, V.  
574 Magrini, C. Markovic, S. McGrath, K. M. Steinberg, K. Auger, W. Chow, J. Collins, G.  
575 Harden, T. Hubbard, S. Pelan, J. T. Simpson, G. Threadgold, J. Torrance, J. M. Wood, L.  
576 Clarke, S. Koren, M. Boitano, P. Peluso, H. Li, C. S. Chin, A. M. Phillippy, R. Durbin, R. K.  
577 Wilson, P. Flicek, E. E. Eichler, and D. M. Church. 2017. Evaluation of GRCh38 and de  
578 novo haploid genome assemblies demonstrates the enduring quality of the reference  
579 assembly. *Genome Res.* 27: 849-864.  
580 29. Li, H. 2018. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 34:  
581 3094-3100.  
582

## 583 **Tables**

584 **Table 1.** Results for eighteen SQK-RAD004 long read sequencing libraries

| DNA isolation | Method     | Pores available at run start | Number of bases (Gb) | Number of reads | Longest read (bp) | N50 size (bp) | N90 size (bp) |
|---------------|------------|------------------------------|----------------------|-----------------|-------------------|---------------|---------------|
| 1             | Aspiration | 1505                         | 4.25                 | 661189          | 737462            | 21327         | 2212          |
|               | Aspiration | 1528                         | 3.92                 | 644261          | 645672            | 19617         | 2077          |
|               | Rotation   | 1432                         | 2.56                 | 283481          | 862322            | 25482         | 3818          |
|               | Rotation   | 1362                         | 4.32                 | 365489          | 782247            | 30174         | 4891          |
|               | Automatio  | 1452                         | 4.97                 | 795794          | 1021308           | 13082         | 2333          |
|               | Automatio  | 1442                         | 4.92                 | 496674          | 1253204           | 29063         | 3933          |
|               | Mean       | 1454                         | 4.16                 | 541148          | 883703            | 23124         | 3211          |
| 2             | Aspiration | 883                          | 3.34                 | 673876          | 682744            | 12695         | 1909          |
|               | Aspiration | 1093                         | 3.16                 | 598310          | 774556            | 13510         | 2030          |
|               | Rotation   | 1046                         | 5.4                  | 617128          | 508355            | 17107         | 3407          |
|               | Rotation   | 1208                         | 7.41                 | 637349          | 526752            | 24163         | 4800          |
|               | Automatio  | 1182                         | 7.21                 | 1209053         | 508355            | 12382         | 2342          |
|               | Automatio  | 1571                         | 10.92                | 1608258         | 526752            | 14589         | 2654          |
|               | Mean       | 1164                         | 6.24                 | 890662          | 587919            | 15741         | 2857          |
| 3             | Aspiration | 1420                         | 5.06                 | 883721          | 605755            | 11809         | 2127          |
|               | Aspiration | 1629                         | 6.46                 | 755277          | 798240            | 18470         | 3381          |
|               | Rotation   | 1311                         | 8.02                 | 915877          | 661883            | 16458         | 3566          |
|               | Rotation   | 818                          | 4.24                 | 386642          | 584414            | 19942         | 4285          |
|               | Automatio  | 1421                         | 4.97                 | 596368          | 602104            | 21358         | 3539          |
|               | Automatio  | 1410                         | 6.89                 | 545627          | 717975            | 31810         | 5864          |
|               | Mean       | 1335                         | 5.94                 | 680585          | 661729            | 19975         | 3794          |

585

586

587 **Table 2.** Ten longest mapped reads per pipetting method

| Rank | Aspiration | Rotation | Automation |
|------|------------|----------|------------|
| 1    | 798240     | 862322   | 1253204    |
| 2    | 774556     | 831285   | 1021308    |
| 3    | 737462     | 782247   | 981305     |
| 4    | 716306     | 775581   | 929976     |
| 5    | 715053     | 735123   | 907341     |
| 6    | 696967     | 729766   | 903921     |
| 7    | 694147     | 719004   | 862183     |
| 8    | 682744     | 712077   | 845167     |
| 9    | 645672     | 697032   | 800208     |
| 10   | 637514     | 673953   | 769538     |

588

589 **Legends**

590 **Table 1. Results of eighteen SQK-RAD004 long read sequencing libraries.** Libraries were  
591 prepared in duplicate using one of three pipetting methods. All sequencing libraries were  
592 sequenced using Oxford Nanopore Technologies' GridION instrument. The pores available at  
593 start of run were calculated by the MinKNOW software and recorded at the start of sequencing.

594

595 **Table 2. Ten longest mapped reads sequenced per pipetting method.** Length is displayed  
596 in base pairs and was calculated after programmatic fusion of split reads (see methods). Top  
597 ten ranking is taken from the combined six sequencing libraries prepared by each pipetting  
598 method.

599

600 **Figure 1. Slow Nucleic Acid Instrument for Long Sequences schematics.** **A.** Rendering of a  
601 fully assembled SNAILS from five individual pieces. Each piece is printed with dovetail joints  
602 that are slid together during assembly. **B.** Dimensions of the fully assembled instrument. **C.**  
603 Circuit diagram for SNAILS motor, L298N, and microcontroller general-purpose input/output  
604 pins are representative of a Raspberry Pi 3B+; however, any microcontroller with configurable

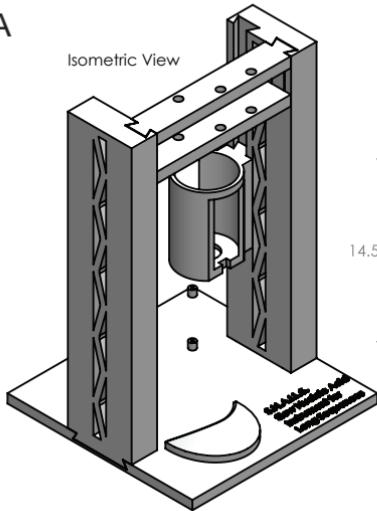
605 pins can be used. **D.** Rotations per minute ratios for four-axle gear train. M represents the  
606 motor's axle.

607

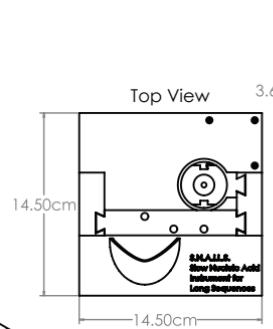
608 **Figure 2. Total reads sequenced per flow cell. A.** Total reads sequenced per library grouped  
609 by DNA isolation. **B.** Comparison of reads sequenced per available pore by pipetting method.  
610 Reads per pore we estimated by dividing the total reads per flow cell by the number of available  
611 pores at the beginning of sequencing. Available pores were calculated by MinKnow. The mean  
612 reads per pore of each pipetting method are denoted by the middle bars. The upper and lower  
613 bounds denote standard deviation.

614

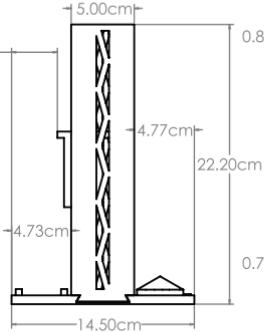
615 **Figure 3. Comparison long read retention by pipetting methods. A.** Distribution of log-  
616 transformed read lengths. Each violin plot represents the total reads sequenced across six  
617 library preparations. The Yellow region denotes 500-1000 kb. The orange region denotes 1-10  
618 Mb **B.** Comparative read length histogram. Each point represents total base pairs sequenced  
619 across six libraries. The Y-axis denotes log-transformed total base pairs sequenced. The X-axis  
620 denotes length in base pairs. **C.** Averages of N50 values per pipetting method. Mean is  
621 denoted by center line. Standard deviation is denoted by upper and lower bounds. The Yellow  
622 region denotes 500-1000 kb, and the orange region reads greater than one Mb. **D.** Number of  
623 reads greater than 100 kb sequenced per flow cell. Significant difference is denoted by the  
624 asterisk (p-value = 0.0438). **E.** Total base pairs of reads greater than 100 kb sequenced per  
625 flow cell. Significant difference is denoted by the asterisk (p-value = 0.0415). **F.** Total base pairs  
626 of reads greater than 200 kb sequenced per flow cell. Significant difference is denoted by the  
627 asterisk (p-value = 0.0441).


628

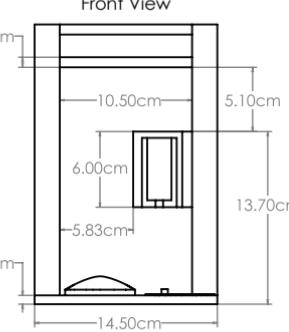
629 **Figure 4. Sequencing results for four exemplary RAD004 libraries prepared by SNAILS. A.**  
630 Total sequencing reads generated per flow cell. **B.** Reads sequenced per available pore. Reads per


631 pore we estimated by dividing the total reads per flow cell by the number of available pores at  
632 the beginning of sequencing. Available pores were calculated by MinKnow. **C.** N50 values for  
633 each flow cell. **D.** N90 values for each flow cell. **E.** Total base pairs of reads greater than 100 kb  
634 sequenced per flow cell. **F.** Total base pairs of reads greater than 200 kb sequenced per flow  
635 cell.

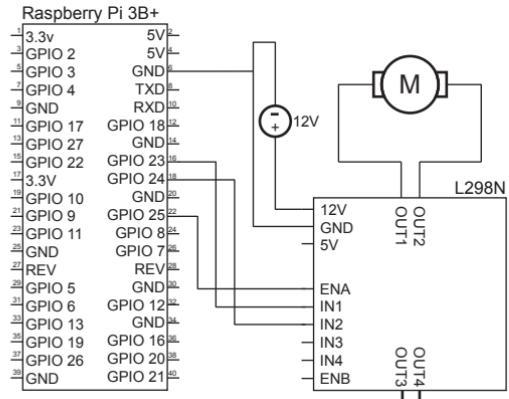
# Figure 1 Slow Nucleic Acid Instrument for Long Sequences schematics


A

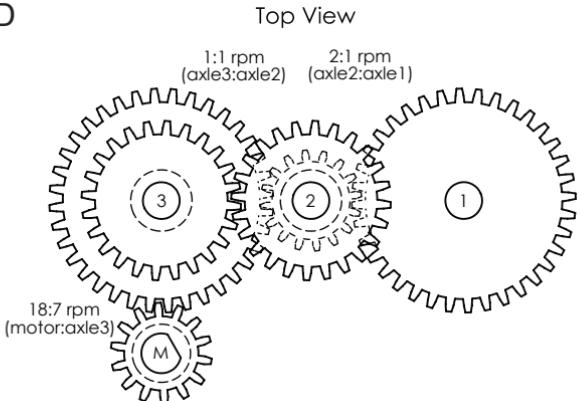



B



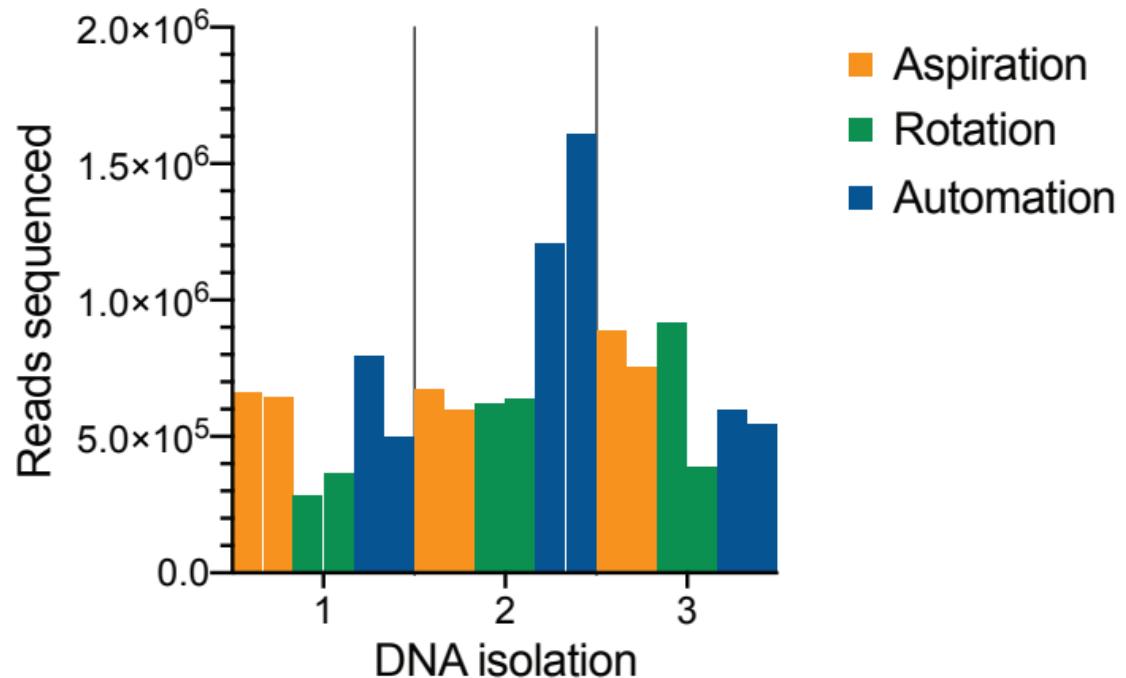

Side View



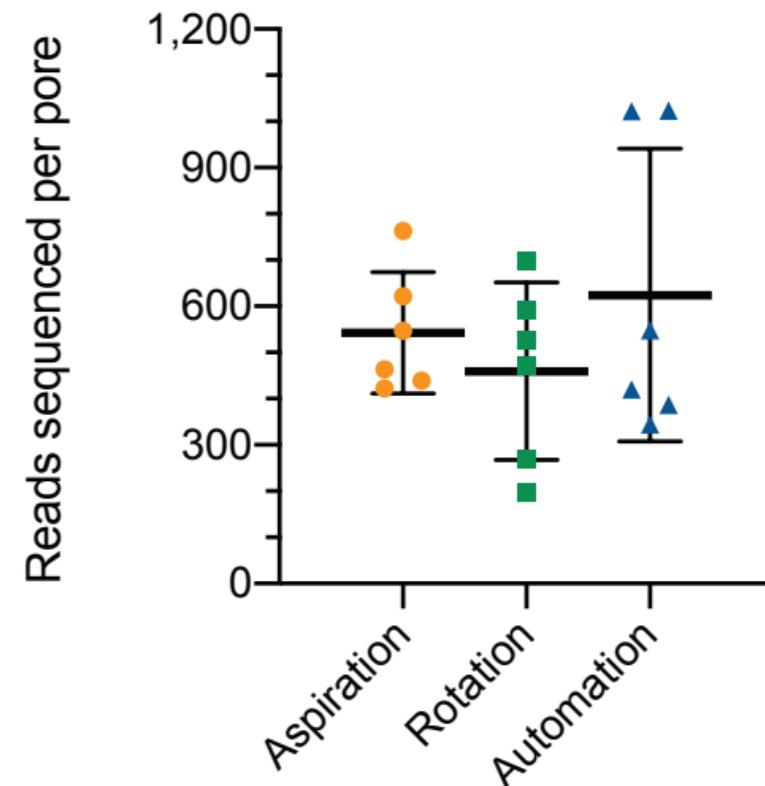

Front View



C

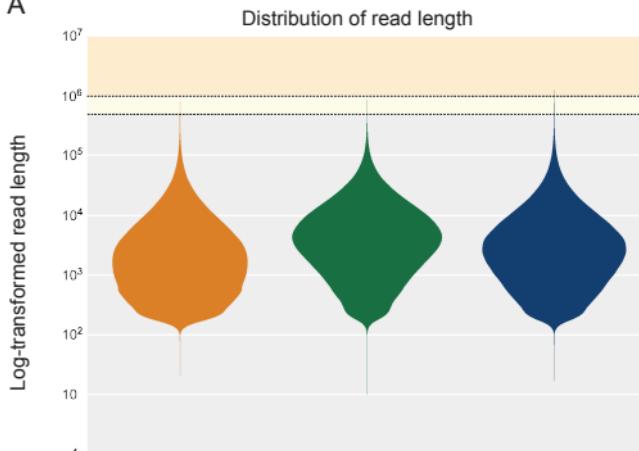



D

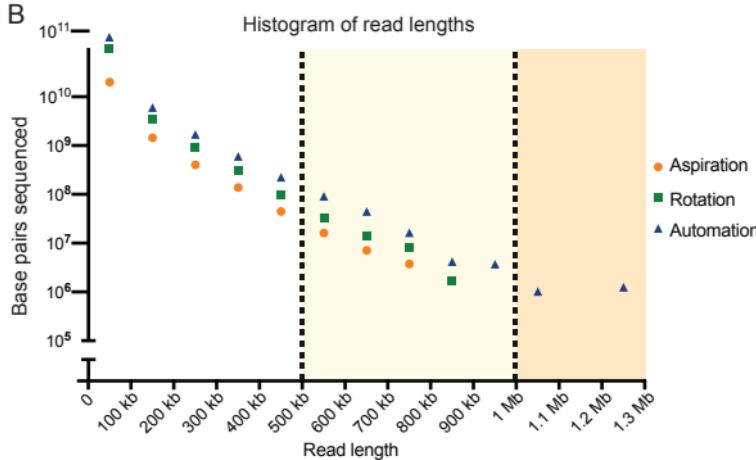



**Figure 2** Total reads sequenced per library

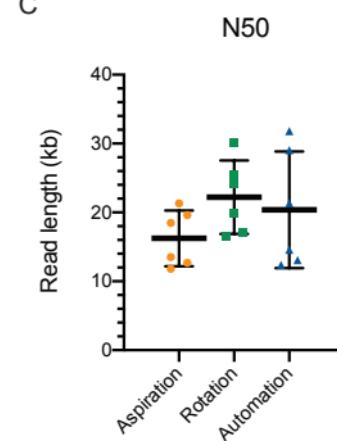
A



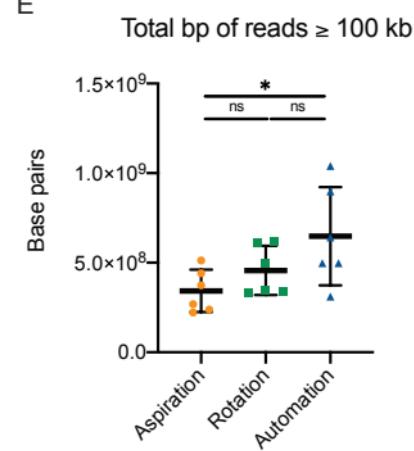

B



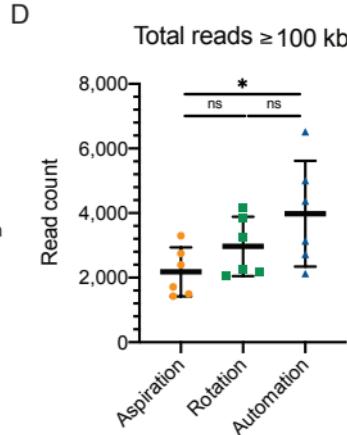

**Figure 3. Comparison of long read retention between pipetting methods**


**A**

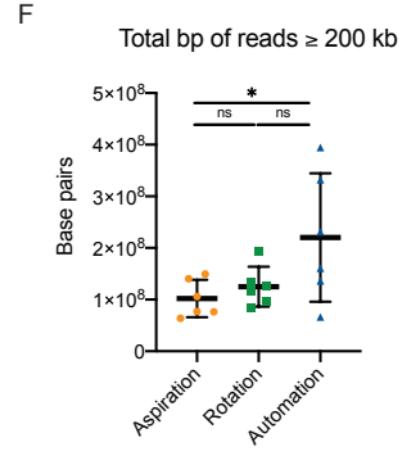



**B**

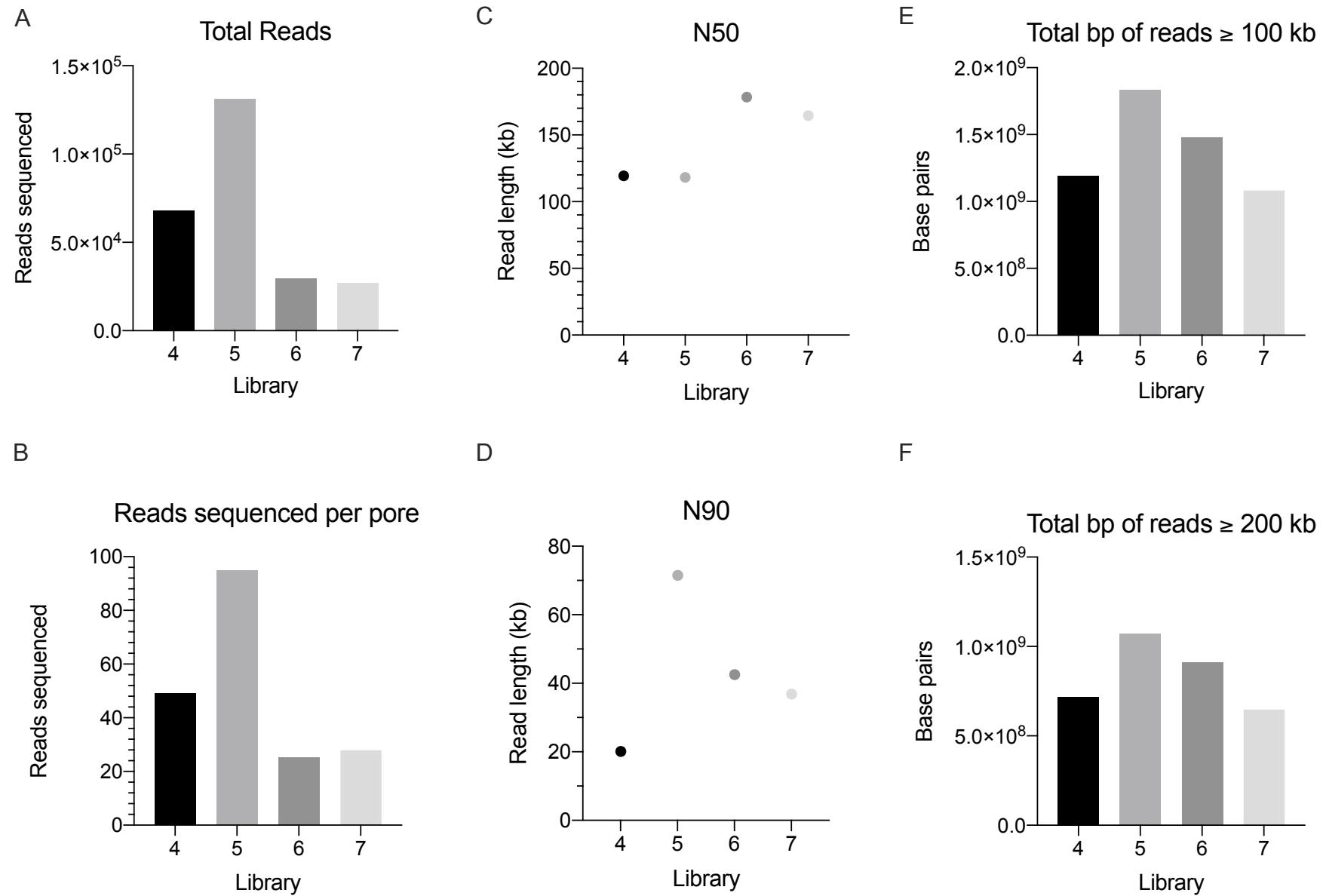



**C**




**E**




**D**



**F**



**Figure 4.** Sequencing results for four exemplary RAD004 libraries prepared by SNAILS

