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ABSTRACT

CRISPR (clustered regularly interspaced short palindromic repeats) -based gene inactivation
provides a powerful means of linking genes to particular cellular phenotypes. CRISPR-based
screening has mostly relied upon using large genomic pools of single guide RNAs (sgRNAs).
However, this approach is limited to phenotypes that can be enriched by chemical selection or
FACS sorting. Here, we developed a microscopy-based approach, which we name optical en-
richment, to computationally select cells displaying a particular CRISPR-induced phenotype,
mark them by photo-conversion of an expressed photo-activatable fluorescent protein, and
then isolate the fluorescent cells using fluorescence-activated cell sorting (FACS). A plugin was
developed for the open source software pManager to automate the phenotypic identification
and photo-conversion of cells, allowing ~1.5 million individual cells to be screened in 8 hr. We
used this approach to screen 6092 sgRNAs targeting 544 genes for their effects on nuclear size
regulation and identified 14 bona fide hits. These results present a highly scalable approach to

facilitate imaging-based pooled CRISPR screens.
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INTRODUCTION

High throughput sequencing in combination with CRISPR technology has greatly accelerated
discoveries in biology through unbiased identification of many new molecular players in key
biological processes’ 4. Using a high diversity single guide RNA (sgRNA) library, large num-
bers of genes can be manipulated simultaneously in a pooled manner and the sgRNA abun-
dance differences can be determined with high throughput sequencing in a short amount of
time with low labor and financial cost. Thus far, pooled CRISPR screens have been limited to
phenotypes that can be transformed into sgRNA abundance differences, including growth ef-
fects57 or phenotypes that can be directly examined by flow cytometry® or single cell molecular
profiling®-14. However, many important cellular phenotypes can only be detected under a mi-
croscope, which requires a robust method for transforming optically identified phenotypes into
differences in sgRNA abundance. Recently, several in situ sequencing5.16 and cell isolation
methods17-20 were developed which allow microscopes to be used for screening. However,

these methods contain non-high throughput steps that limit their scalability.

Here, we report an imaging-based pooled CRISPR screening method using optical enrichment
by automated photo-conversion of a photo-activatable fluorescent protein. Similar to tradi-
tional enrichment based pooled CRISPR screens, cells are infected with a sgRNA library and
high throughput sequencing is used to examine sgRNA abundance. Instead of traditional en-
richment strategies, we use optical enrichment— cells exhibiting the desired phenotype are
identified and photo-activated automatically under a microscope. Photo-activated cells are
then isolated using flow cytometry. We evaluated this approach using a synthetic fluorescent
reporter to estimate screening accuracy and capacity. We then applied this approach to identi-
fy genes that regulate nuclear size. This approach is modular, fast, allows millions of cells to be

screened within a few hours, and can be easily scaled up to a genome wide level.
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RESULTS

An Optical Approach for Cell Enrichment by Patterned lllumination followed by FACS

Sorting

We developed an approach, which we term optical enrichment, to select cells of interest using
a microscope and mark them by photo-conversion, enabling cell isolation using FACS (Fig. 1a).
To achieve this, we engineered hTERT-RPE1 cells expressing the photo-activatable fluorescent
protein PA-mCherry and observed them under a microscope. Cells of interest were selected
by automated image analysis and then photo-converted with patterned illumination using a
digital micromirror device (DMD) (Fig. S1a). To avoid undesired photo-conversion of neighbor-
ing cells, we limited the conversion pattern to nuclei as identified by the H2B-mGFP signal (Fig.
S1b). We developed a plugin for the open source microscope control software pManager?1
called Auto-PhotoConverter that automates these steps and has a pluggable interface for im-

age analysis code so that it can be used for any desired phenotype (https://github.com/nicost/

mnfinder) (Fig. S1c). After harvesting the cells, the photo-converted cells were isolated by
FACS. By varying the conversion time of the PA-mCherry, we were also able to create differ-
ent populations of cells of different intensities, that were clearly distinguished by FACS (Fig. 1b
and 1c). This approach makes it possible to analyze multiple phenotypes simultaneously, as

discussed below.

We next tested the specificity of the photo-conversion approach using a mixture of cells ex-
pressing the fluorescent marker mIFP and cells not expressing mIFP. The Auto-PhotoConvert-
er plugin was used to identify and generate a conversion mask based on mIFP fluorescence,
the mIFP expressing cells were photo-converted (yielding mIFP-mCherry double positive cells).
All cells were then collected and analyzed by FACS (Fig. 1d). We calculated the specificity of

this assay from the ratio of true positive and all positive cells (number of cells positive for both
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mCherry and mIFP divided by all mCherry positives x100%). When the initial subset of mIFP
positive cells was 30%, the specificity was calculated as 98.3% (Fig. 1e). The specificity varied
with the percentage of mIFP positive cells at the beginning of the experiment and ranged from
80% to ~100% (initial percentage of mIFP positive cells ranges in between 0% and 50%) (Fig.
S2). These results indicate the assay yields reliable hit identification regardless of the percent-

age of hits in the library.

Optical enrichment enables accurate sgRNA Identification

Having established that we can recover photo-converted cells with high specificity, we next
tested if we can successfully identify specific sgRNAs sequences present in these cells. For
these experiments, we again selected cells expressing mIFP. Control cells and mIFP positive
cells were separately infected with two different sgRNA libraries at a low multiplicity of infection
(MOI) to guarantee single sgRNA per cell (Fig. 2a). These two populations were then mixed at a
ratio of 9:1 mIFP negative: mIFP positive. A total of 6843 sgRNAs were infected in this mixed
population and two biological replicates were performed separately. At least 200-fold cover-
age of the sgRNA library was guaranteed throughout the screen, including library infection, se-
lection, imaging and FACS. For each replicate, we screened a single imaging plate. A total of
1,825,740 and 1,490,188 RPE-1 cells in the two replicates, were imaged separately using a 20x
objective. Automated imaging and photo-conversion of the plate took ~8 hr. The mCherry
positive cells and the control population were separately prepared for high throughput se-

quencing for sgRNA information extraction.

For simplicity, we use the terms “mIFP sgRNAs” for the sgRNAs used to infect mIFP positive
cells and “control sgRNAs” for the sgRNAs used to infect mIFP negative cells. Since the mIFP
positive phenotype is not induced by our sgRNA library, we can group different numbers of

sgRNAs for analysis (i.e. 1 sgRNA/group or 2sgRNAs/group). These computationally generat-
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ed groups are used as a proxy for genes in normal sgRNA libraries, as they are also targeted
with multiple different sgRNAs. Following sequencing, a phenotypic score was calculated for
each sgRNA as its relative enrichment in the mCherry sorted population compared with the
control sample. Phenotypic scores of sgRNAs assigning in the same group were then aver-

aged to give a phenotypic score of the given group (Supplementary file 1).

Our results show that, mIFP sgRNAs could be distinguished from control sgRNAs in a single
experimental replicate (Fig. 2b, top left). Combining data from both replicates significantly im-
proved segregation of the mIFP and control groups (Fig. 2b, top right). Not surprisingly, the
greater the number of sgRNAs assigned to a group (see above), the better the detection of
sgRNA hits (Fig. 2b, bottom). Two sgRNAs per group is enough for a reliable screening result,

even using a single replicate (Fig. 2b bottom left). Thus, we demonstrate that pooled CRISPR

libraries can be screened for phenotypes under a microscope by optical enrichment.

Improved Phenotype Identification through Multi-parameter Labeling

In most pooled CRISPR screens, only cells showing the phenotype of interest are selected and
the relative enrichment of a given sgRNA is calculated based on comparison with the whole
cell population. However, this whole cell population is usually collected separately and in-
cludes both positive and negative cells, which reduces the perceived enrichment in the positive
population (Supplementary file 1). We therefore investigated calculating the relative enrichment
of a given sgRNA by comparing with the true negative cells. Not all mCherry negative cells are
true negative cells since there are unanalyzed regions outside of the microscope field of view
(grey region in Fig. 2c top panel) and cells that fail to pass the filters for phenotype identifica-
tion (Supplementary file 2). Thus, true negative cells also need to be labeled before harvesting.
This task requires selecting for multiple phenotypes simultaneously. We achieved this within

the same experiment using different photo-conversion times for true positives (2 sec) and true
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negatives (100 ms) and then separating them by FACS (Fig. 2c¢). For comparison, cells going
through the same experimental procedure but were not analyzed during image analysis (unana-
lyzed cells, mCherry negative cells) were also collected to determine the sgRNA composition in
the total cell population. As shown in Fig. 2d, the peaks indicating mIFP genes and control
genes were separated to a much greater extent when compared with true negative cells than
with the whole cell population (unanalyzed sample). This result suggests that this approach
indeed can significantly improve screening pooled sgRNA libraries. Additionally, other than la-
beling true positives and true negatives, this approach can also be used to screen for multiple
different phenotypes which greatly expands the phenotypes that could be studied with our ap-

proach.

Pooled CRISPR Screen for Factors involved in Nuclear Size Regulation

To further test our screening method, we performed a screen for regulators of nuclear size. We
generated a CRISPRI library of 6092 sgRNAs representing 544 genes whose translation effi-
ciency is upregulated during the G2 phase of the cell cycle. This library includes sgRNAs tar-
geting FBXO5, which is known to cause larger nuclei after knock down22.23, and served as the
positive control. For this experiment, hTERT-RPE1 cells were further engineered with CRISPRi
modality (dCas9-KRAB) to inhibit transcription of genes targeted by the sgRNA library. We se-
lected 2 control sgRNAs that have no targeting sites in the human genome, and as expected
had no discernible effect on nuclear size (Fig. S3). Nuclear sizes were measured for control
cells and the value of the top 0.5% was used as the screening threshold. As shown in Fig. 3a,
H2B-GFP fluorescence of cells infected with this sgRNA library was imaged using an epi-fluo-
rescence microscope and nuclear size was determined by automated image analysis (Supple-

mentary file 2).
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Positive cells were photo-activated and sorted together with mCherry negative cells (unana-
lyzed cells) as a comparison. Two biological replicates were performed, each consisting of 4
imaging plates, containing 5,521,518 and 5,795,313 RPE-1 cells in total respectively. Both
replicates were completed within 2 days (each plate taking 7-10 hr). The 4 imaging plates per
replicate were carried out as separate screening experiments, termed runs, and data was only
combined after sgRNA abundance determination (Fig. 3b). Control groups were generated
computationally by randomly regrouping all the sgRNAs and a phenotypic score was calculat-
ed for each gene and control group. Data of the 4 runs were averaged and a score summariz-
ing effects from both severity of the phenotype (phenotypic score) as well as confidence level (-
log(p value)) was calculated (Supplementary file 1). A value of the top 0.1 percentile of control
groups was used as a cutoff for hits (Fig 3c and Fig. S4). The two replicates combined yielded
28 hits of which 15 genes were found in both replicates, including the positive control FBXO5
(Fig. 3d and 3e). To validate the 15 genes that emerged in both replicates of the microscope-
based screen for enlarged nuclei, each gene was individually targeted. 14 out of 15 hits (the
exception was TACC3) were confirmed to be real hits, with cells exhibiting larger nuclei after

knock down (Fig. 4a and Fig. S5).

To estimate the minimum requirements for performing an optical enrichment pooled CRISPR
screens, we computationally analyzed the effect of both library composition and number of
runs on the screening results. Utilizing data from replicate 2, we re-ran the analysis, comparing
results when fewer sgRNAs per gene and/or fewer runs were included. We binned the sgRNAs
based upon three commercially available CRISPRIi libraries: 10 sgRNAs/gene and the “Top5” or
“Supp5” sub-pools of the sgRNA library24. “Top5” and “Supp5” libraries were first designed in
Jonathan Weissman'’s lab by splitting their original 10 sgRNAs/gene library based on predicted
sgRNA activity24. As expected, using more sgRNAs and/or runs allowed more hits to be identi-
fied (Fig. 3f), and the “Top5” sgRNAs yielded more hits than “Supp5” sgRNAs. However, even

when using only the Top5 sgRNAs for two runs or 10 sgRNAs with a single run, around 10 hits
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were successfully identified (Fig. 3f). Thus, based upon factors such as the time to run a
screen and available sgRNAs, fewer sgRNAs/gene and/or less runs might be used in a screen

with the expectation of a somewhat reduced identification rate.

Since nuclear size often positively correlates with DNA content and cell size, we also sorted
cells based upon H2B-mGFP intensity (as a proxy for DNA content) or forward scattering (FSC)
signal (cell size) (Fig. 3g and S6). To compare results directly, these two screens were per-
formed at the same time as our imaging-based nuclear size screen (Fig. 3g). The top 10 per-
centile of cells based on either GFP fluorescence or FSC signal were separately sorted and
prepared for high throughput sequencing. In the H2B-mGFP intensity screen, two replicates
identified 10 and 12 hits respectively, with 7 in common, while 6 and 0 were identified in the
FSC screen (Fig. S6). Together, a total of 16 genes were captured in the H2B-mGFP and FSC
screens (Fig. 3h); 13 out of these 16 genes were also identified through the imaging based nu-
clear size screen. These data suggest that a direct measurement utilizing a microscope can
provide significant improvement in hit yield even for phenotypes that could be indirectly

screened with other approaches.
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DISCUSSION

High throughput sequencing has transformed our ability to perform pooled genetic screens on
a broad scale. However, applying enrichment-based pooled CRISPR screens to optical based
phenotypes has been challenging. In this study, we developed a simple imaging-based pooled
CRISPR screening method. Using a photo-activatable fluorescent protein PA-mCherry, cells of
interest can be easily labeled through photo-activation and isolated with FACS sorting, which
enables sgRNA identification by high throughput sequencing. We have combined this optical
enrichment strategy with pooled CRISPR-Cas9 to perform imaging based CRISPR screens.
Recently, a similar strategy was independently developed by another group, highlighting the
broad applicability and power of this approach toward identifying key regulators of previously

intractable phenotypes?®.

Advantages and Limitations of Phenotypic Screening by Optical Enrichment

Image processing and microscopic operations are the time limiting steps of most imaging-
based genetic screens. Our optical enrichment based pooled screening method is fast and
scalable. For example, the image analysis code developed for this study can be run on milli-
second time scale per field of view, and cells can be completely separated from the control
population on a FACS machine with as little as 100 ms photo-conversion time (Fig. 1c). This
process is fast, which makes high speed screening of large amounts of cells possible. In our
system, 1.5 million RPE-1 cells can be imaged and photo-converted in 8 hr with a 20x objec-
tive. This is significantly faster than the in situ methods. For phenotypes as penetrant as mIFP
positive phenotype, a library of 6092 sgRNAs with 2 sgRNA/gene can be successfully screened
with a single replicate. A genome scale screen of such a phenotype can be executed within 3
days (time of image analysis and photo conversion). Even for more complex phenotypes, such
as the nuclear size screen described here, a genomic screen can be finished within 2 weeks

using the “Top5” sgRNA library and 3 runs. This time can be even shortened with further opti-
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mization such as the use of a microscope with a larger field of view, a lower magnification ob-

jective, optimization of imaging analysis algorithms, etc.

Optical enrichment screening also is possible to undertake for phenotypic screens with rela-
tively low hit rates. In our nuclear size screen, more than 1.5 millions cells were analyzed dur-
ing each run, but only 2000-4000 cells were recovered after FACS sorting due to the low hit
rate (2.76%). With our optimization of small cell number genomic DNA preparation (methods),

we are now able to process sequencing samples from only a few thousand cells.

Our optical-enrichment screening approach also has the advantage of being able to screen
multiple phenotypes simultaneously by using different photo-activation times. With PA-mCher-
ry, we show that 4 distinct phenotypes could be potentially sorted (Fig. 1c). We demonstrate
this in practice by differential photo-activation of true positive and negative cells to improve
screening sensitivity. However, differential time of photo-activation could also be applied to
analyze different phenotypes. This approach can be further developed by combining multiple

photo-activatable fluorescent proteins in each cell.

Our approach also has some limitations. Phenotypes were identified during image analysis/
photo-conversion process, thus the analysis code has to be fast and robust. In our study, fluo™
rescent labeling was used to facilitate phenotype identification and a custom analysis code
was generated for each phenotype. In our assay, either phenotype only takes couple hundred
milliseconds to identify while this requires developing analysis code for each single phenotype.
However, this could be overcome by implementing other image analysis stragedies, including
deep learning, which will further benefits laboratories which do not have image processing ex-
perts. Additionally, our approach is currently not compatible with fixation assay, thus transient

phenotypes might be difficult to capture. However, we expect this to be solvable by further
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optimizing our screening pipeline to make it possible to prepare sequencing samples after fixa-

tion.

Optical Enrichment compared to Other Methods for Phenotypic Screening

Two other methods have recently been developed to use imaging both for phenotypic screen-
ing and decoding to permit sgRNA identification in individual cells in situ15.16. In both methods,
CRISPR sgRNA expression constructs were modified to express both a sgRNA and a barcode.
The barcode can be read out either by in situ sequencing’® or sequential fluorescence in situ
hybridization (FISH)'6. Both methods require sgRNA to be re-barcoded necessitating de-novo
design and library re-synthesis preventing reuse of most existing sgRNA libraries. In addition,
cells need to be fixed preventing further cell-based assays of the identified cells. Most impor-

tantly, both of these methods cannot easily scale to the whole genome because of barcoding

limitations and the long imaging time required.

Another newly published method, similar to ours, also uses high throughput sequencing as an
end point assay. Instead of using FACS to enrich cells of interest, this method cultures cells on
microcraft arrays (magnetic polystyrene particles designed to capture single clones) to enable
cell isolation as separate clones (CRaft-1D)20. This method also can use most available sgRNA
libraries and is compatible with further live cell studies. However, it is difficult to perform a
genome wide screen with CRaft-ID, since it requires single cell isolation during cell culture and
thus limits the number of cells that can be screened (6000 colonies/array). In addition, CRaft-
ID can not be used to screen for phenotypes that cause defects in monoclonal growth, includ-
ing essential genes. Our assay, on the other hand, provides an option for genome-wide

screens and allows for study of genes essential to growth.

Genes involved in Nuclear Size Regulation
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We applied optical enrichment to a screen for genes involved in nuclear size determination. Of
the 15 genes that were identified in replicate screens, all have known roles during cell cycle
regulation except KRI1 which is involved in cell death regulation in C. elegans25 (Supplementary
file 3). Six genes are involved in spindle function and chromosome segregation, which includes
KIF1126, NUP6227, SPDL128 and three core chromosomal passenger complex (CPC) compo-
nents INCENP, AURKB and CDCAB829:30, Three genes function in DNA damage and repair,
namely TICRR31.32), TOP2A33.34 and RAD5135:36, while the remaining four play roles in histone
synthesis (CASP8AP237), DNA maintenance (DNA238:39) and cell cycle regulation (SKA140.41 and
FBX052223) (Supplementary file 3). Some of these functions might directly explain the larger
nuclei phenotype after knock down. For example, the loss of FBXO5 was suggested to lead to
cellular senescence, resulting in larger nuclei23. Knockdown of CPC components including
AURKB, INCENP and CDCAS8 leads to asymmetrical distribution of nuclear material and cy-
tokinesis failure, thereby generating abnormally large nuclei2®30. This notion also matches with
the observation that FBXO5 knock down produces only larger nuclei while knock down of CPC

components also leads to smaller nuclei, especially at later stages (Fig. S7).

To begin to understand the mechanism underlying nuclear size regulation of our 14 hits, we in-
vestigated changes in DNA content, measured by H2B-mGFP, and cell size, assessed using
forward scattering on FACS, after knock down. Almost all hit genes show increases in both
H2B-mGFP fluorescence and FSC signal (Fig. 4b and Fig. S5), indicating an unchanged ratio of
nuclear size, DNA content and cellular size after knock down (Fig. 4c). This result is expected
based upon both the nucleoskeletal theory, which highlights the role of DNA content in nuclear
size regulation, and the karyoplasmic ratio theory, which suggests that nuclear size is always
related with cellular size42-45. Two interesting exceptions were CASP8AP2 and AURKB which
have a much higher DNA content/nuclear size ratio (Fig. 4c left panel) that awaits further inves-

tigation.
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Conclusion

In summary, our data demonstrate the power of our optical enrichment based pooled CRISPR
screening method to study previously inaccessible phenotypes with high efficiency and accu-
racy. This method is simple, fast, uses open source software, and can be applied to commer-
cial or institutional genome-scale CRISPR sgRNA libraries. A digital micromirror device is re-
quired, but this can be introduced into the light path of common commercial microscopes.
This screening approach could be broadly applied across many biological phenotypes includ-
ing morphological changes, sub-cellular organization and cellular dynamics. Pluggable image
analysis code enables selection of any desired morphological phenotypes as long as fast and
robust detection code can be created, which is also an area highly suited for deep learning ap-
proaches. We also anticipate that this screening approach can be integrated with other profil-
ing technologies such as single cell sequencing, further expanding its application to other re-

search fields.
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ONLINE METHODS

Plasmid Sequences
CRISPRI construct (Addgene 85969) and sgRNA parental construct (Addgene 84832) were a
kind gift from Jonathan Weissman lab. Other plasmid constructs used in this study are de-

scribed in Supplementary file 4.

Cell Line Generation

hTERT-RPE1 CRISPRi

All the hTERT-RPE1 cells were grown in DMEM/F-12 media supplemented with 10% FBS and
Pen/Strep (complete DMEM/F-12 medium). CRISPRi modality dCas9-KRAB-BFP construct
was stably expressed in hTERT-RPE1 cells via lentiviral infection, as described below. BFP

positive cells were sorted after 2 days.

hTERT-RPE1 CRISPRi PA-mCherry

The photo-convertible cell line was generated starting with hTERT-RPE1 CRISPRI cell line. The
PA-mCherry construct was stably expressed in hTERT-RPE1 CRISPRI cells via lentiviral infec-
tion as described below. Monoclonal cell lines were grown and screened under the micro-
scope to select clones with successfully integrated PA-mCherry construct. A cell line that
showed high fluorescence and homogeneous activation after photo-conversion was chosen to

use in this study.

hTERT-RPE1 CRISPRi PA-mCherry H2B-mGFP and hTERT-RPE1 CRISPRi PA-mCherry H2B-
mGFP mIFP-NLS
H2B-mGFP and mIFP-NLS constructs were sequentially integrated into hTERT-RPE1 CRISPRi

PA-mCherry cells via lentiviral infection. GFP positive cells or GFP/mIFP double positive cells

were selected by FACS at 2days post-infection.
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sgRNA Sequences

Two negative control sgRNAs were used in this study and their protospacer sequences (the
part of the target sequences) are GCTGCATGGGGCGCGAATCA and GTGCACCCGGCTAG-
GACCGG. sgRNA libraries used in this study were gifts from Jonathan Weissman’s lab. Since
the cell line used (hTERT-RPE1 CRISPRi PA-mCherry) for the mIFP proof-of-principle screen
has CRISPRi modality, we used two CRISPRa sgRNA libraries for this screen. These two li-
braries are described in Supplementary files 5 and 6. The CRISPRi sgRNA library used in the
nuclear size screen is described in Supplementary file 7. sgRNAs used for hit verification are

listed in Supplementary file 8.

Lentivirus Preparation and Transduction

For CRISPRIi modality construct and sgRNA libraries, lentiviral particles were packaged by
transfecting HEK293T in a 15 cm cell culture dishes at 70% confluency with 8 ug plasmid, 1 pg
PMD2.G, 8 ug dR8.91, 48 pl TransIT-LT1 transfection reagent (Mirus Bio) and 1300ul serum-
free Opti-MEM medium. Medium containing lentivirus was collected 72 hr post-transfection
and concentrated 10 fold using an Amicon Ultra Centrifugal Unit (MilliporeSigma). For other
constructs including PA-mCherry, H2B-mGFP, mIFP-NLS and small scale sgRNA virus prepa-
rations, lentiviral particles were packaged by transfecting HEK293T in a 6-well plate at 70%
confluency with 1 pg PA-mCherry plasmid, 0.1 ug PMD2.G, 0.9 pg psPAX2, 10 pl TransIT-LT1
transfection reagent (Mirus Bio) and 250 pl serum free Opti-MEM medium. Medium containing
lentivirus was collected 72 hr post-transfection and concentration was not needed. 250 pl su-
pernatant was used to transduce a 6-well plate of corresponding cells by spinning infection at
2000rpm for 1 hr. Polybrene infection reagent (Sigma) was used to increase infection efficien-
cy. Medium was replaced with complete DMEM/F-12 medium immediately after spinning in-
fection. Cells were puromycin selected at 5 pg/ml to select for cells successfully receiving the

sgRNA (sgRNA construct harbors puromycin resistance cassette). For screening, cells were
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puromycin selected for 3 days and for hit verification and follow up analysis, cells were select-

ed for 2 days.

Microscopy

Cells were grown in 96-well glass bottom dishes (Matriplate, Brooks) after puromycin selection.
Images were acquired and analyzed by dpi-fluorescence imaging using Nikon Eclipse Ti-E mi-
croscope with a 20x 0.75na (Plan Fluor) objective. A digital micromirror device (DMD, DLP
LightCrafter 6500 Evaluation Model, Texas Instrument) was positioned behind the back port of
the microscope and illuminated using a Sutter HPX-L5UVLambda LED light source (8W output
centered around 405 nm) coupled to a (3 or 5) mm liquid light guide with an optical lens. The
DMD image was projected into the sample plane using a 100 mm focal length achromatic dou-
blet lens, and a 1x beam “expander” consisting of a pair of 80 mm focal length achromatic
lenses, followed by a 450 nm long pass dichroic mirror positioned under the dichroic mirrors
used for epi-illumination (Fig. S2). With all pixels of the DMD in the “on” position, we measured
~40 mW in the back focal plane of the objective. During image acquisition, cells were main-
tained at a constant temperature of 36°C-37°C using a stage top incubator (Tokai Hit). Camera
exposure times were usually set to 500ms for GFP channel; 100ms for mCherry channel and

1000 ms for mIFP channel.

FACS

For the mIFP proof-of-principle and nuclear size screen, cells were trypsinized and sorted us-
ing a BD FACSAria lll. For hit analysis, cells were analyzed with BD FACSAria |l after 2 days’

of puromycin selection. Cells were gated for single cell population and the GFP and FSC levels

were analyzed using Flowjo v10.6.2. Detail gating strategy was provided in Supplementary

file 9.

Sequencing sample preparation
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Sequencing sample was prepared using a protocol from Jonathan Weissman lab (https://

weissmanlab.ucsf.edu/CRISPR/llluminaSequencingSamplePrep.pdf) except that genomic DNA

of positively sorted samples was extracted with the Arcturus PicoPure DNA Extraction Kit for

small cell number genomic DNA extraction.

Data analysis
The screening analysis pipeline was based on a pipeline developed in Jonathan Weissman’s

lab (https://github.com/mhorlbeck/ScreenProcessing). The formula used in the calculation is

listed in Supplementary file 1.

mIFP proof-of-principle screen and Nuclear size screen

For the mIFP proof-of-principle screen, mIFP positive cells ('nTERT-RPE1 CRISPRi PA-mCherry
H2B-mGFP mIFP-NLS) and mIFP negative cells (nTERT-RPE1 CRISPRi PA-mCherry H2B-
mGFP) were stably transduced with the “mIFP sgRNA library” (CRISPRa library with 860 ele-
ments, see Supplementary file 5) and the “control sgRNA library” (CRISPRa library with 6100
elements, see Supplementary file 6) separately. For the nuclear size screen, cells (nTERT-RPE1
CRISPRi PA-mCherry H2B-mGFP) were stably transduced with the “nuclear size

library” (CRISPRI library with 6190 elements, see Supplementary file 7). To guarantee that cells
receive no more than one sgRNA per cell, BFP was expressed on the same sgRNA construct
and cells were analyzed by FACS the day after transduction. The experiment only continues
when 10-15% of the cells were BFP positive. These cells were further enriched by puromycin
selection (a puromycin resistance gene was expressed from the sgRNA construct) for 3 days to
prepare for imaging. Cells were then seeded into 96-well glass bottom imaging dishes (Ma-
triplate, Brooks) and imaged the next day. Either mIFP positive cells or cells passing the nu-
clear size filter were identified and photo-converted automatically using the Auto-PhotoCon-
verter Micro-Manager plugin. Cells were then harvested by trypsinization and isolated by

FACS. Sorted samples were used to prepare sequencing samples.
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Fig. 1|. Imaging based Pooled CRISPR Screen. a, Schematic of imaging based pooled
CRISPR screen. Cells expressing PA-mCherry are infected with pooled sgRNA library and
imaged using a microscope. Images are collected and analyzed automatically to generate a
conversion mask targeting cells of interest. Exposure with blue light photo-converts cells of
interest into mCherry positive cells that are subsequently isolated by FACS. Samples are
analyzed by high-throughput sequencing for sgRNA identification. b-c, hTERT-RPE1 PA-
mCherry cells can be converted into different fluorescent intensity levels b that are clearly
distinguished by FACS c¢. 100ms is enough for successful photo-conversion. Scale bar:
100um. d, Schematic of experiment to measure specificity. mIFP expression was used as a
phenotype to measure specificity. mIFP positive (nTERT-RPE1 PA-mCherry H2B-mGFP
mIFP-NLS) and mIFP negative cells ("nTERT-RPE1 PA-mCherry H2B-mGFP) were mixed and
analyzed under GFP and mIFP channel separately. A conversion mask was generated for
each mIFP positive cell. Cells identified by FACS to be mIFP and mCherry double positive
are true positives while mCherry positive cells without mIFP fluorescence result from
accidental conversion (false positive cells). Specificity is defined as the percentage of true
positives of all mCherry positive cells. Example images of image analysis (GFP channel, —;
mIFP channel, —), photo-conversion (Blue light channel, —), after photo-conversion
(mCherry channel, —) are shown. Scale bar: 100pm. e, Cells of interest can be successfully
isolated with high accuracy. Example FACS data is shown. Specificity measured at different

percentage of mIFP positive cells in the initial mixture is shown in Fig. S2.
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Fig. 2| Optical Enrichment enables Accurate sgRNA Identification in a Pooled CRISPR
Screen. a, Schematic of mIFP proof-of-principle screen. mIFP is used to identify
“positive” cells as in Fig. 1d. However, mIFP positive and mIFP negative cells were
separately transduced with two different sgRNA libraries. Mixed population of mIFP
positive and negative cells were then imaged and converted as described in Fig. 1d.
mCherry positive and mCherry negative cells were then isolated by FACS and prepared for
high throughput sequencing to extract sgRNA information. b, Distribution of phenotypic
scores of all the sgRNAs or grouped sgRNAs in 4 different analysis mode. Top left: single
sgRNA/group, single replicate; Top right: single sgRNA/group, average of 2 replicates;
Bottom left: 2 sgRNAs/group, single replicate; Bottom right: 2 sgRNAs/group, average of 2
replicates; Red: mIFP groups; Grey: control groups. ¢, Schematic of dual-conversion
experiment. Image acquisition generally does not cover the complete imaging well which
leaves cells not imaged and unanalyzed. Experiment as described in Fig. 2a but mIFP
negative cells were also photo-converted (100 ms). mIFP positive cells were converted
using a longer conversion time (2000 ms) to guarantee a clear distinction by FACS. Lower
panel shows an example of FACS data. d, Phenotype identification is improved by
comparing with true negative cells rather than unanalyzed cells. Distribution of phenotypic
scores of all the groups compared with either unanalyzed sample or negatively sorted
sample. 2 sgRNAs were randomly grouped. Data is averaged between 2 replicates. Red:

mIFP groups; Grey or Blue: control groups.
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Fig. 3| Screens for nuclear size regulators. a, Schematic of nuclear size screen. Cells
(hnTERT-RPE1 dCas9-KRAB PA-mCherry H2B-mGFP) were transduced with a CRISPRI
sgRNA library and imaged under the GFP channel. Cells with nuclei larger than 1000 pm2
were photo-converted, sorted and analyzed by deep sequencing. Example images of
nuclei, (GFP channel, —), photo-conversion (Blue light channel, —), after photo-conversion
(mCherry channel, —) are shown. Scale bar: 100 pm. b, Work flow of one replicate of the
nuclear size screen. For each replicate, transduced cells were seeded into 4 glass-bottom
imaging plates. Cells in each single imaging plate were imaged, analyzed, photo-
converted, sorted and sequenced separately, termed as separate runs. There were 4 runs
in each replicate and sequencing data from these 4 runs was either analyzed separately, or
combined (see f). ¢, Screening result of one replicate. Detailed calculation was described in
Supplementary file 1 and the other replicate is shown in Fig. S4. d, Comparison between
two replicates. e, List of genes identified from two replicates. Red: hit. Grey: non-hit. f,
Number of hits identified using data averaging from different numbers of runs and/or
different library compositions. Error bar: standard deviation. g, Work flow of three screens,
namely nuclear size screen, H2B-mGFP screen and FSC screen. After transducing the
sgRNA library, cells were split and prepared for either imaging analysis (nuclear size screen)
or FACS sorting (H2B-mGFP screen and FSC screen). h, Comparison of hits identified in

FSC screen, GFP screen and nuclear size screen.
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Fig. 4| Characterization of Hits Identified in Nuclear Size Screen.

a, Each hit identified in both replicates was verified under the microscope after infecting
with 3-4 sgRNA constructs targeting the gene. Cells were puromycin selected for 2 days
before imaging. BFP was expressed from the same sgRNA construct. Example images of
4 hits and their distribution of nuclear sizes are shown in a, all the others are listed in Fig.
S5 (at least 1919 cells were analyzed for each gene). b, Most cells developed a larger
cellular size and higher H2B-mGFP level after knock down. Cells were infected with the
same 3-4 sgRNAs/gene and puromycin selected for 3 days before FACS analysis. Example
FACS data of the same 4 hits are shown in b and all the others are shown in Fig. S5. c,
Most cells maintained a constant ratio between nuclear size and DNA content or cellular
size after knock down. TACCS, confirmed to be a control gene was used for comparison

(Grey bar).
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Fig. S1| Microscope and pManager Plugin for Photo-Conversion Experiments. a. A
digital micro mirror device (DMD) and a LED blue (centered around 405nm) light source
were engineered on a Nikon Eclipse Ti-E microscope as shown in the figure. A computer
was used to control the DMD which reflects light into the microscope only when pixels are
in the “on” position, so displaying a mask matching the cell photo-converts that cell. b,
Schematic of photo-conversion experiment. hnTERT-RPE1 PA-mCherry H2B-mGFP cells
were seeded in a glass-bottom plate the day before imaging. Example images of cells
undergone image analysis (GFP channel, —), photo-conversion (Blue light channel, —),
before and after photo-conversion (mCherry channel, —) are shown. Scale bar: 100um. c,
A pManager plugin was developed to enable automatic image acquisition, analysis and
photo-conversion. An analysis plugin defines its own set of parameters that can be
manipulated by the user. Two analysis plugins were used in this study: one for cell

identification and another for nuclear size measurement.
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Fig. S2| High Photo-conversion Specificity across a Broad Range of Percentage of Hits.

Different ratios of mIFP positive cells and mIFP negative cells were mixed to measure

specificity at different percentage of hits. mIFP positive cells were photo-converted to become

mCherry positive, and FACS analysis was used to measure the fraction of mCherry positive

cells that were also mIFP positive (true positives).
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Fig. S3| Negative Control sgRNAs do not Affect Nuclear Size after Viral Infection. Two

negative control sgRNAs which have no target sites in the human genome were designed.

Cells ("nTERT-RPE1 dCas9-KRAB PA-mCherry H2B-mGFP) were infected and puromycin

selected for 3 days before imaging. A BFP was encoded on the sgRNA construct as a marker

for successful infection. FACS results show no correlation between nuclear size and BFP

intensity.
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Fig. S4| Nuclear Size Screen Result of the Second Replicate.

First replicate is shown in Fig. 3c.
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Fig. S5

Fig. S5| Characterization of Hits Identified in Both Replicates of the Nuclear Size
Screens. Example images, distribution of nuclear size, FACS data of H2B-mGFP

fluorescence and FSC distribution of each hit (other than the 4 shown in Fig. 4) after

knock down are shown (at least 1919 cells were analyzed for each gene).
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Fig. S6
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Fig. S6| Screen results of FSC and GFP screens.
Cells (nTERT-RPE1 dCas9-KRAB PA-mCherry H2B-mGFP) were infected and

puromycin selected for 3 days. The top 10 percentile of cells based on either GFP
fluorescence or FSC signal were separately sorted and prepared for high throughput

sequencing. Screen results of two replicates were shown.
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Fig. S7
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Fig. S7| Nuclear Size Distributions Evolve Differently after Knock Down. Nuclear size
distributions of FBXO5 (blue) and CPC components AURKB, CDCA8 and INCENP (green)
were measured by microscopy 4, 5, and 6 days after infection (at least 1163 cells were

analyzed).
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