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Abstract

Patients suffering from opioid use disorder often relapse during periods of abstinence, which is
posited to be caused by negative affective states that drive motivated behaviors. Here, we
explored whether conditioning mice with morphine in a CPP training paradigm evoked anxiety-
like behavior during morphine abstinence. To do this, mice were conditioned with morphine (10
mg/kg, i.p.) for five days. 24 h following conditioning, anxiety levels were tested by measuring
time in the open arms of the elevated plus maze. The next day, mice were placed in the three
compartment chamber to measure morphine-induced conditioned place preference (CPP). Our
results show that following morphine conditioning, mice spent significantly less time in the open
arm of the elevated plus maze and expressed robust morphine CPP on CPP test day.
Furthermore, we found that an acute treatment with (R,S)-ketamine (10 mg/kg, i.p.), a
medication demonstrating promise for preventing anxiety-related phenotypes, 30 min. prior to
testing on post conditioning day 1, increased time spent in the open arm of the elevated plus
maze in saline- and morphine-conditioned mice. Additionally, we found that a second injection
of ketamine 30 min. prior to CPP tests on post conditioning day 2 prevented morphine-induced
CPP, which lasted for up to 28 d post conditioning. Furthermore, we found that conditioning
mice with 10% (w/v) sucrose using an oral self-administration procedure did not evoke anxiety-
like behavior, but elicited robust CPP, which was attenuated by ketamine treatment 30 min. prior
to CPP tests. Overall, our results suggest that the ketamine-induced block of morphine CPP may
not be attributed solely to alleviating negative affective states, but potentially through impaired
memory of morphine-context associations.

K eywor ds: negative affect, morphine, conditioned place preference, anxiety, opioid use
disorder, ketamine, psychedelics
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I ntroduction

The motivation to continually seek and obtain addictive substances during periods of abstinence
or recovery is caused, in part, by the necessity to avoid aversive internal states (Solomon and
Corbit, 1978). Evidence for this comes from patients with substance use disorders who self-
report urges and intentions to take drugs to avoid drug-withdrawal symptoms (O'Brien,
1975;Baker et al., 2004;Wikler, 2013) or to cope with negative affect (Perkins and Grobe,
1992;Zinser et al., 1992;Wetter et al., 1994;Cooney et al., 1997;Conklin and Perkins, 2005;Fox
et al., 2007). For example, abstinence from morphine, a highly addictive opioid, facilitates
increases in anxiety (Gold et al., 1978;1979), which is a potential factor in continued drug use
(Martins et al., 2012).

In order to better understand the mechanisms mediating drug-craving and subsequent relapse,
preclinical models have been developed whereby drug-seeking behaviors are monitored in drug-
exposed rodents. In the conditioned place preference (CPP) paradigm, a drug is paired with a
context during conditioning. This is followed by a test day whereby the time spent in the drug-
paired context is measured. This behavioral paradigm is a form of Pavlovian learning whereby
an injection of a drug (i.e., unconditioned stimulus) elicits a hedonic feeling of pleasure (i.e.,
unconditioned response), which, when paired with a context (neutral stimulus), invokes incentive
value to the context (i.e., now a conditioned stimulus), thus driving a behavioral response to
“seek” the context (conditioned response). This is similar to sign-tracking behaviors (Huston et
al., 2013), which refer to a behavior that is directed toward a stimulus as a result of that stimulus
becoming associated with a reward (Huys et al., 2014). Therefore, CPP provides a valuable tool
used to understand how drugs of abuse become associated with environmental contexts, which is
implicated in context-induced drug craving and relapse (O’Brien CP, 1986;0'Brien et al., 1992).
We have found that five days of morphine (10 mg/kg) conditioning elicits robust morphine CPP
(Graziane et al., 2016;McDevitt and Graziane, 2019). However, it is unclear whether this “drug
context-seeking” behavior is mediated by negative affective states. Additionally, it is unclear
whether a subanesthetic dose of ketamine, an anxiolytic agent (Engin et al., 2009b), blocks
morphine-induced CPP by mitigating morphine-induced negative affective states.

Here, we attempt to investigate whether morphine conditioning in our CPP paradigm generates
negative affect during morphine abstinence. Additionally, we investigate whether an acute,
subanesthetic dose of (R,S)-ketamine prior to testing is sufficient to disrupt morphine-induced
anxiety and/or morphine-induced CPP behaviors. Lastly, it has been shown that an acute
administration of (R,S)-ketamine is sufficient to block the expression of morphine CPP (Suzuki
et al., 2000). Here, we investigate whether this ketamine-induced block of morphine CPP, in our
behavioral training paradigm, is mediated by the impairment of drug-context associations or by
the attenuation of morphine-induced negative affective states.

Methods
Animals

All experiments were done in accordance with procedures approved by the Pennsylvania State
University College of Medicine Institutional Animal Care and Use Committee. Male C57BL/6J
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mice aged 5-8 weeks were purchased from Jackson Labs (stock #000664) (Bar Harbor, ME),
singly-housed, and maintained on a regular 12 hour light/dark cycle (lights on 07:00, lights off
19:00) with ad libitum food and water. Mice were singly housed for the following reasons. First,
we have reliably developed morphine conditioned place preference (CPP) in singly-housed mice
(Graziane et al., 2016;McDevitt and Graziane, 2019). Second, evidence suggests that socially
isolated rodents are more vulnerable to developing drug-context associations (Whitaker et al.,
2013). In humans, social isolation increases vulnerability to substance use disorders (Newcomb
and Bentler, 1988;Sinha, 2008), which often are accompanied by the development of drug-
context associations (O’Brien CP, 1986;0'Brien et al., 1992;Xue et al., 2012). Therefore, our
studies are designed to model this patient population.

Drugs

(-)-morphine sulfate pentahydrate was provided by the National Institute on Drug Abuse Drug
Supply Program. Ketamine hydrochloride (racemic mixture of 50% R-ketamine and S-ketamine)
(Dechra Pharmaceuticals, Northwich, United Kingdom) was purchased from the Comparative
Medicine Department at the Pennsylvania State University College of Medicine.

Non-Contingent Conditioned Place Preference

Conditioned place preference (CPP) chambers (Med Associates) were located in the mouse
housing room and consisted of three distinct compartments separated by manual guillotine-style
doors. Each compartment had distinct contextual characteristics: the middle (neutral)
compartment (7.2 cm x 12.7 cm x 12.7 cm) had grey walls and grey plastic floor, while the
choice compartments (16.8 cm x 12.7 cm x 12.7 cm, each) had either white walls and stainless
steel mesh floor or black walls and stainless steel grid floor. All compartments were illuminated
with a dim light during use. Immediately following use the entire preference chamber was
cleaned thoroughly with a scent-free soap solution. Mouse locations, activity counts, and time
spent in each compartment were collected via automated data-collection software (Med
Associates) via infrared photobeam strips lining each compartment. Morphine administration
was verified with the Straub tail response and enhanced locomotor activity (Bilbey et al.,
1960;Graziane et al., 2016;McDevitt and Graziane, 2019).

Habituation. Mice were placed in the center compartment with free access to all three
compartments for 20 min once a day for two days. Time spent (seconds) in each compartment
was recorded.

Conditioning. 24 h after habituation, mice received 5 d conditioning training. Morphine-paired
compartments were assigned based on the least preferred side (a biased approach) (Tzschentke,
2007) calculated by averaging time spent in each compartment over the 2 habituation days.
Similar to conditioning studies with alcohol (Gremel et al., 2006), we find that C57BL/6J mice
will reliably develop morphine CPP using a biased approach. During conditioning, mice received
an injection of saline and were placed into the most preferred compartment for 40 min. 6 h later,
mice received an injection of saline (control group) or morphine (10 mg/kg, i.p.) and were placed
into their least preferred compartment for 40 min. (Koo et al., 2014;Graziane et al., 2016).
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Post conditioning. 48 h or 28 d after the last conditioning day, mice were placed in the 3-
compartment chamber and allowed to move freely for 20 min. Our post-conditioning took place
at a time point corresponding to 3 h prior to drug conditioning (e.g., morphine conditioning took
place at 3 P.M., post-conditioning tests took place 2 or 28 days later at 12 P.M.). CPP scores
were calculated as time spent in the drug-paired side minus the average time spent on the same
side during preconditioning (Bohn et al., 2003). Activity counts are defined as any beam break
within a current zone. This is inclusive of grooming, rearing, and lateral movements. Mice were
treated with 0.9% saline (0.1 ml, i.p.) or with (R,S)-ketamine (10 mg/kg, i.p.) 30 min. prior to the
first CPP test. The dose of ketamine was selected based on preclinical data demonstrating that a
10 mg/kg dose of ketamine produces a maximal effect on morphine CPP (Suzuki et al., 2000)
and produces plasma concentrations associated with subanesthetic ketamine doses capable of
eliciting antidepressant effects in mice and in humans (Zarate et al., 2012;Zanos et al., 2016).

Sucrose Oral Self-Administration Conditioned Place Preference

Habituation. Mice were placed in the center compartment with free access to all three
compartments for 20 min. once a day for two days. Time spent (seconds) in each compartment
was recorded.

Conditioning. Drinking bottles were created as described in Freet et al., 2013 (Freet et al., 2013).
Briefly, we modified 10 mL serological pipettes by tapering both ends, placing a stainless-steel
sipper tube (Ancare; OT-300) in one end and a silicon stopper (Fisher Scientific; 09-704-1D) in
the other. Bottles were inserted into plastic holders that were then placed directly into CPP
chambers (for chamber description, see Non-Contingent Conditioned Place Preference), where
they were positioned so that the sipper was ~5 cm above the chamber floor. Pennsylvania State
University Fabrication shop constructed plexiglass tops that were placed along the top of the 3-
compartment apparatus and allowed for plastic bottle holders to be placed into chambers. Oral
self-administration was recorded as the mL prior and following all sessions. Similar to the i.p.
CPP methodology, we utilized a biased approach in which the 10% sucrose (w/v) solution was
placed in the least-preferred context. 24 h after habituation, mice underwent two 14 h overnight
sessions (separated by 24 h), confined to the least preferred chamber on the first night (ON1)
with access to water (control groups) or a 10% sucrose solution and confined to the most
preferred side on the second night (ON2) with access to water. Mice then received 5 days of
conditioning (C1-C5), where morning sessions consisted of 40 min. in the most-preferred context
with access to water. 6 h later, afternoon sessions consisted of 40 min. in the least preferred
context with access to water (control groups) or 10% sucrose solution.

Post conditioning. 48 h or 21 d after the last conditioning day, mice were placed in the 3-
compartment chamber and allowed to move freely for 20 min. Our post-conditioning took place
at a time point corresponding to 3 h prior to drug conditioning (e.g., sucrose conditioning took
place at 3 P.M., post-conditioning tests took place 2 or 21 days later at 12 P.M.). No bottles were
present in the chambers on preference tests. CPP scores were calculated as time spent in the least
preferred side on test day minus the average time spent on the same side during preconditioning
(Bohn et al., 2003). Mice treated with (R,S)-ketamine (10 mg/kg, i.p.) (water+ketamine and
sucrose+ketamine groups) received injections 30 min. prior to the first CPP test on post
conditioning day 2.
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Elevated Plus Maze

The elevated-plus maze, a well-established method to measure anxiety in rodents, was
implemented to measure anxiety-like behavior (Pellow et al., 1985b;Handley and McBlane,
1993;Dawson and Tricklebank, 1995). The elevated-plus maze for mice (Stoelting, Item #60140)
was raised approximately 50 cm from the ground. The floor of the elevated portion of the maze
was gray. Two opposite arms (35 x 5 cm each) of the maze were enclosed by a 15 cm high wall
and the remaining two arms were “open.” A center space (5 cm?) between these four arms was
also not enclosed. The elevated portion of the apparatus was cleaned thoroughly with a scent-free
soap solution after each trial. Behavioral tests were performed in the animal housing room under
ambient light of the light cycle.

24 h after the last conditioning day in the CPP apparatus, mice were placed in the center space
facing the open arm and allowed to explore the apparatus for 5 minutes prior to being placed
back into their home cage (Grisel et al., 2008). Each trial was video recorded using a GoPro
camera (Hero7 white) and analyzed by researchers blinded to treatment condition of the mice.
Time in the open arm was measured when the body of the mouse cleared the center space. Mice
were treated with 0.9% saline (0.1 ml, i.p.) or ketamine (10 mg/kg, i.p.) 30 min. prior to the
elevated plus maze test.

Satistical Analysis

Statistical significance was assessed in GraphPad Prism software using a Student’s t-test, one- or
two-way ANOVA with Bonferroni’s correction for multiple comparisons as specified. F values
for two-way ANOVA statistical comparisons represent interactions between variables unless
stated otherwise. Two-tailed tests were performed for Student’s t-test. For correlation analysis,
the Pearson's correlation coefficient, and subsequent linear regression, were determined. P<0.05
was considered to indicate a statistically significant difference.

Results
M or phine conditioning €licits anxiety-like behavior s during mor phine abstinence

Repeated exposure to morphine increases levels of anxiety both in humans and in animal models
of substance use disorders (Gold et al., 1978;1979;Becker et al., 2017). Additionally, it is posited
that relapse to opioids in abstinent patients is caused by negative affective states, thus driving
drug-seeking behaviors (Solomon and Corbit, 1978;Koob and Le Moal, 2008;Evans and Cabhill,
2016). In an attempt to provide evidence that morphine-induced CPP, using our training
paradigm, is mediated, in part, by negative affective states, 24 h following the last morphine
conditioning session (Fig. 1A), we measured anxiety-like behavior using the elevated plus maze
(EPM) (Pellow et al., 1985a). We found that morphine-treated mice, who showed robust
locomotor sensitization by conditioning day 5 (Fig. 1B), expressed a significant decrease in the
percent time spent in the open arm of the EPM compared to saline-treated controls (t(zs=3.35,
p=0.002, Student’s t-test) (Fig. 1C). To correlate anxiety levels with CPP scores, mice
underwent CPP tests 24 h following EPM tests (Fig. 1A). We found that 5 d morphine
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conditioning elicited significant increases in place preference for the drug-paired compartment
(t38=5.61, p<0.0001, Student’s t-test) (Fig. 1D). However, we found no correlation between
anxiety-like behaviors and CPP score in morphine-conditioned mice (Pearson’s correlation
coefficient = -0.162; simple linear regression: F,15=0.404, p=0.53, R?=0.03) or in saline-
conditioned, control mice (Pearson’s correlation coefficient = -0.095; simple linear regression:
F,21=0.191, p=0.67, R?=0.01) (Figs. 1E and F). Overall, these results suggest that morphine
conditioning in a CPP paradigm is sufficient to facilitate anxiety-like behaviors during short-term
abstinence, but that the animal’s anxiety-like behavior is not correlated with the amount of time
spent in the morphine-paired compartment on CPP test day.

K etamine blocks mor phine-induced anxiety-like behavior s and mor phine CPP

Evidence suggests that (R,S)-ketamine, a noncompetitive NMDA receptor antagonist (Lodge et
al., 1982;Kohrs and Durieux, 1998), is an effective treatment for anxiety and substance use
disorders (Krupitsky et al., 2002a;Ivan Ezquerra-Romano et al., 2018;Taylor et al., 2018).
Because of this, we investigated whether an acute injection of (R,S)-ketamine (30 min. prior to
EPM and CPP testing) would be sufficient to block morphine-induced anxiety-like behaviors
and/or morphine-induced CPP (Fig. 2A). Following conditioning with morphine, which
produced robust locomotor sensitization (Fig. 2B), we found that the first (R,S)-ketamine
injection prior to the EPM test on post-conditioning day 1 (PC1) significantly increased the
percent time in the open arms of the EPM (F3 52=22.2, p<0.0001, one-way ANOVA, Bonferroni
post hoc test) (Fig. 2C). Additionally, we found that a second (R,S)-ketamine injection prior to
CPP tests on post-conditioning day 2 (PC2) was sufficient to prevent morphine-induced CPP
(F(3,52=14.04, p<0.0001, one-way ANOVA, Bonferroni post hoc test) (Fig. 2D), which was
likely not attributed to ketamine-induced changes in locomotor activity (F(s2=0.447, p=0.72,
two-way repeated measures ANOVA) (Fig. 2E).

Acute ketamine treatment blocks the long-ter m expression of mor phine CPP

We have previously shown that morphine-induced CPP, using the paradigm described in this
study, is sufficient to elicit long-lasting CPP for up to 28 d post conditioning (Graziane et al.,
2016). Because of this, we tested whether ketamine administration during early abstinence was
sufficient to block the prolonged expression of morphine-induced CPP (Fig. 3A). We found that
two injections of (R,S)-ketamine, one on post conditioning day 1 (prior to elevated arm maze
tests) and the second on post conditioning day 2 (prior to CPP tests), was sufficient to prevent the
prolonged expression of morphine-induced CPP on PC28 (column factor: Fs, 3=10.25,
p<0.0001, two-way repeated measures ANOVA, Bonferroni post hoc test) (Fig. 3B).

Acute ketamine treatment prevents the expression of sucrose CPP

To further investigate whether the ketamine block of morphine CPP is through potential memory
impairment and/or anxiolytic effects, we evaluated the effect of ketamine on the CPP of a natural
reward (i.e., sucrose). We rationalized that if ketamine blocks morphine CPP by specifically
alleviating negative affective states, without impairing memory of drug-context associations,
then ketamine would be ineffective at blocking sucrose CPP, a natural reward, which does not
evoke anxiety-like behaviors (Fig. 4C). To test this, we conditioned mice over 7 days (Fig. 4A)
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201 to orally self-administer water (controls) or sucrose in the least preferred compartment of the

202  CPP chamber (see Methods for conditioning paradigm). Mice conditioned with sucrose drank
203 significantly more than mice conditioned with water over all conditioning days (Fs, 175= 462.1,
204  p<0.0001, two-way repeated measures ANOVA, Bonferroni post hoc test) (Fig. 4B). The water
205  consumed in the most preferred chamber during conditioning days 1-5 did not differ between
206 groups (F(12, 140=0.596, p=0.843, two-way repeated measures ANOVA) (Supplementary Figure
207  1). On post-conditioning day 1 (PC1), anxiety-like behavior was measured using the EPM. We
208  found that the percent time in the open arm of the EPM in sucrose-conditioned mice was not

209  significantly different from mice conditioned with water (t(17=0.184, p=0.856, Student’s t-test)
210  (Fig. 4C) suggesting that sucrose exposure did not elicit anxiety-like behaviors during short-term
211 abstinence. 24 h later, on post-conditioning day 2 (PC2), water- and sucrose-conditioned mice
212 underwent a CPP test 30 min. after receiving an acute injection of (R,S)-ketamine (10 mg/kg,

213 i.p.). Our data show that (R,S)-ketamine attenuated sucrose-induced CPP on PC2 (Fs, 35=6.31,
214  p=0.0015, one-way ANOVA, Bonferroni post hoc test) (Fig. 4D) and this ketamine-induced

215  attenuation of sucrose CPP persisted to abstinence day 21 (F, 32=5.51, p=0.004, one-way

216 ANOVA, Bonferroni post hoc test) (Supplementary Figure 2).

217  Lastly, we investigated whether the ketamine block of morphine-induced anxiety-like behavior
218 and morphine-induced CPP was potentially attributed to ketamine-induced behavioral

219  disinhibition, leading the animal to explore more. To do this, we monitored entrance counts and
220  exploratory counts in the CPP chamber on test day. We found that there was no significant

221  difference in entrance or exploratory counts in the CPP chamber when comparisons were made
222 between saline versus ketamine injected mice undergoing the same treatment during

223 conditioning (Figs. 4E and F). These results suggest that the effects of ketamine on morphine-
224  driven behaviors is unlikely mediated by behavioral disinhibition.

225 Discussion

226 Our results show that the percent time spent in the open arms of the elevated plus maze is

227  decreased in animals conditioned with morphine. Additionally, we show that an acute injection
228  of (RS-ketamine 30 min prior to the elevated plus maze and CPP tests is sufficient to block

229  morphine-induced anxiety-like behaviors and morphine-induced CPP (post-conditioning day 2
230  through post-conditioning day 28), as well as attenuates sucrose-induced CPP (post-conditioning
231 day 2 through post-conditioning day 21). We further find that ketamine, at least in the dose tested
232 here, does not alter behavioral disinhibition in either morphine-CPP or sucrose-CPP mice.

233 Together these findings indicate that ketamine may inhibit morphine CPP behaviors, at least in
234 part, via reductions in withdrawal-induced anxiety-like behaviors. Our data do not, however, rule
235  out the possibility that ketamine-induced effects on morphine CPP may also be mediated in part
236 by impairing memory of morphine-context associations.

237  Anxiety-like behaviors during morphine abstinence

238 Morphine possesses anxiolytic-like properties during initial exposure (Koks et al., 1999;Sasaki et
239 al., 2002;Shin et al., 2003). However, during opioid abstinence, symptoms of anxiety (Gold et
240 al., 1978;1979;Li et al., 2009;Shi et al., 2009) or anxiety-like behaviors are observed (Cabral et
241 al., 2009;Becker et al., 2017). Here, we show that 24 h following repeated morphine injections
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242  (once a day for 5 days), mice display anxiety-like behaviors in the elevated plus maze (Fig. 1C).
243 These results are similar to previous studies showing escalating doses of morphine over a 6 day
244  period induce anxiety-like behaviors in the marble burying task (Becker et al., 2017).

245  Additionally, our observed morphine-induced anxiety-like behavior is timed with anxiogenic
246 neurobiological responses that occur during acute opioid abstinence including, increases in

247  norepinephrine release in the extended amygdala (Fuentealba et al., 2000;Aston-Jones and

248  Harris, 2004), norepinephrine-induced modulation of the extended amygdala (Aston-Jones et al.,
249  1999;Delfs et al., 2000;Smith and Aston-Jones, 2008), activation of the amygdalar

250  corticotrophin-releasing factor (CRF) system (Heinrichs et al., 1995;Maj et al., 2003), and

251  decreases in dopamine transmission (Diana et al., 1995). However, the observed morphine-

252 induced anxiety-like behavior may be dependent upon morphine exposure as it has been shown
253  that morphine does not elicit anxiety-like behaviors following three morphine injections (10

254  mg/kg) occurring every other day (Benturquia et al., 2007). This may be related to

255  neurobiological mechanisms associated with different drug exposure regimens. We have

256  previously shown that morphine exposure significantly increases the expression of silent

257  synapses, excitatory glutamatergic synapses that express functional NMDA receptors, but lack
258  functional AMPA receptors (Hanse et al., 2013), in the nucleus accumbens shell. We found that
259 this increase in silent synapse expression is observed 24 h after the last of five morphine

260 injections (once a day for five days), but not 24 h after the last of three morphine injections (once
261  aday for three days) (Graziane et al., 2016;Hearing et al., 2018;McDevitt and Graziane, 2018).
262  Future experiments will be required to test whether this morphine-induced change in the nucleus
263 accumbens shell regulates morphine-induced anxiety-like behaviors.

264  The observed anxiety-like behaviors following morphine conditioning in a three chamber

265  apparatus (Fig. 1F) may suggest that animals seek the drug-paired chamber as a consequence of
266  negative reinforcement to alleviate aversive affective states facilitated by opioid abstinence.

267  Importantly, our injection regimen of morphine 10 mg/kg once a day for 5 consecutive days does
268  not induce signs of somatic withdrawal in mice including jumping, wet dog shakes, teeth

269  chattering, rearing, tremor, diarrhea, or mastication (Gallego et al., 2010). This coincides with
270  the lack of observed somatic withdrawal symptoms following a more prolonged injection

271 regimen of 5 daily morphine (10 mg/kg, i.p.) injections over 4 weeks (Robinson and Kolb,

272 1999). Although more studies are required, it is plausible that specific opioid dosing regimens
273  may be implemented in a preclinical setting in order to separate opioid-induced negative

274  affective states (e.g., anxiety) from confounds induced by somatic signs of opioid withdrawal,
275  which are ineffective at reinstating opioid seeking or morphine CPP in opioid dependent rodents
276  (Shaham et al., 1996;Lu et al., 2005) as well as in humans (Miller et al., 1979). Separating

277  opioid-induced negative affective states (e.g., anxiety) from confounds induced by somatic signs
278  of opioid withdrawal is not a new idea and has been demonstrated previously with doses of

279  naloxone (used to precipitate opioid withdrawal) that were sub-threshold for somatic signs of
280  opioid withdrawal (Gracy et al., 2001).

281  Based on our results, it would be expected that facilitating a negative affective state during
282  morphine abstinence would enhance the expression of morphine CPP. However, evidence
283 suggests that this is not the case, as forced swim stress, which would be expected to elicit a
284  strong negative affective state, immediately prior to CPP testing in morphine-conditioned
285  animals has either no effect on morphine CPP (Attarzadeh-Yazdi et al., 2013) or significantly
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decreases morphine CPP (Haghparast et al., 2014). Additionally, corticosterone administration,
which is expected to facilitate depression-like behaviors (Gregus et al., 2005), prior to CPP tests
has no effect on morphine CPP (Attarzadeh-Yazdi et al., 2013). These results are surprising
especially considering the robust effect of stressful stimuli in reinstating morphine CPP in
extinguished rodents (Ribeiro Do Couto et al., 2006;Wang et al., 2006;Karimi et al., 2014). It is
possible that morphine CPP tested during abstinence (e.g., Attarzadeh-Yazdi et. al., 2013)
reaches a ceiling effect, making it unlikely that exposure to a stressor (e.g., forced swim) will
enhance the CPP score (i.e., occlusion). It is also possible that the stressor elicits a decreased
locomotor state potentially resulting in reduced morphine CPP (e.g., Haghparast et al., 2014).

Ketamine's effects on anxiety-like behaviors

Ketamine has recently been shown to be a potential effective treatment for anxiety disorders
(Glue et al., 2018;Shadli et al., 2018;Taylor et al., 2018). In humans, ketamine displays a
biphasic dose effect on anxiety, with low doses decreasing anxiety and higher doses increasing
anxiety (Jansen, 1989;Krystal et al., 1994). Likewise, in rodents, ketamine induces anxiolytic-
like behaviors (Engin et al., 2009a;Zhang et al., 2015;Fraga et al., 2018) as well as anxiogenic-
like phenotypes likely dependent upon the dose, temporal relationship between ketamine
injection and test onset, and rodent species (Silvestre et al., 1997;da Silva et al., 2010). Here, we
demonstrate that in C57BL/6J mice, acute injection of ketamine at 10 mg/kg, i.p. 30 min prior to
testing is sufficient to block morphine-induced anxiety-like behaviors during a 24 h abstinence
time period (Fig. 2C). Additionally, we find that ketamine significantly increases percent time in
the open arm of the elevated plus maze in mice conditioned with saline. This significant change
observed in saline conditioned animals suggests that ketamine, at the dose and temporal
relationship of ketamine injection and test onset, is sufficient to overcome baseline anxiety-like
behaviors in animals exposed to a novel environment (i.e., elevated plus maze).

Despite the evidence suggesting that the antagonistic effects of ketamine on NMDA receptors in
the bed nucleus of the stria terminalis attenuate negative affective states (Louderback et al.,
2013), the mechanisms mediating the observed anxiolytic-like effects are unknown. In addition
to acting as a non-competitive antagonist to NMDA receptors in the extended amygdala,
evidence suggests that ketamine interacts with hyperpolarization-activated cyclic nucleotide-
gated (HCN) channels as well as dopamine, serotonin, sigma, opioid, and cholinergic receptors
(Scheller et al., 1996;Cai et al., 1997;Kubota et al., 1999;Lydic and Baghdoyan, 2002;Wang et
al., 2012;Zanos et al., 2018). Additionally, ketamine metabolites are biologically active as
antagonists to NMDA receptors (Ebert et al., 1997) and a7 nicotinic acetylcholine receptors
(Moaddel et al., 2013), while also possessing agonistic activity for a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors (Zanos et al., 2016;Tyler et al., 2017). Because of
the undiscriminating activity of ketamine and its metabolites, it has been difficult to pinpoint
how ketamine influences anxiety states both in humans and in preclinical models.

Ketamine's effects on morphine-induced conditioned place preference
Using a paradigm known to induce robust CPP for up to 28 d post conditioning (Graziane et al.,

2016), we show that an acute injection of ketamine 30 min prior to the CPP test on abstinence
day 2 is sufficient to block morphine-induced CPP. These results are not likely caused by
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changes in locomotor activity as activity counts during habituation (baseline) were not
significantly different from activity counts measured following ketamine administration (Fig.
2E). Our results are in line with previous publications demonstrating that ketamine blocks
morphine-induced CPP in mice (Suzuki et al., 2000). However, the effects on locomotor activity
are conflicting. Whereas, our results and those from previous publications show that ketamine
does not influence locomotor activity (Lindholm et al., 2012), others have found that locomotor
activity is increased (Filibeck and Castellano, 1980) or decreased following ketamine
administration (Akillioglu et al., 2012). These discrepancies are likely due to the temporal
relationship between ketamine treatment and test onset. Here, we performed our tests 30 min
following ketamine injection similar to previous studies (Lindholm et al., 2012), while tests
performed 5 min or 15 min following ketamine administration appear to increase or decrease
locomotor activity, respectively (Filibeck and Castellano, 1980;Akillioglu et al., 2012). The half-
life of ketamine is ~13-25 min. in mice following i.p. administration (Maxwell et al., 2006;Zanos
et al., 2016;Ganguly et al., 2018). Therefore, it is possible that the locomotor effects observed are
due to ketamine action prior to metabolism, while the effects on negative affect are potentially
attributed to ketamine metabolites including hydroxynorketamine (Li et al., 2015;Zanos et al.,
2016). This hypothesis will need to be tested in future experiments. Moreover, our results are
based on using a fixed dose of ketamine at 10 mg/kg, thus preventing dose-response
observations. Future investigations are required to test how varying ketamine doses may
influence morphine-induced conditioned place preference as well as morphine-induced anxiety-
like behaviors.

Based on our findings that ketamine elicited anxiolytic-like behaviors following an acute
injection, it is possible that the acute administration of ketamine was sufficient to prevent a
negative affective state during 24 h morphine abstinence, thus facilitating the lack of motivation
to seek a context paired with a drug reward (i.e., morphine-induced CPP). It is also plausible that
the block of morphine-induced CPP by ketamine may be mediated by its effects on cognition and
memory, thus blocking the recall of morphine-context associations (Ghoneim et al.,
1985;Newcomer et al., 1999;Morgan et al., 2004) (Malhotra et al., 1996;Pfenninger et al., 2002).
Evidence suggests that ketamine-induced deficits in cognitive functioning and memory occur
during the consolidation or, as shown in rodents, reconsolidation (Zhai et al., 2008) of
information, rather than the retrieval of already learned associations (Honey et al., 2005).
Furthermore, it has been shown in rodent models that the memory impairing effects of ketamine
are not attributed to its effects on memory retrieval (Goulart et al., 2010). Therefore, an acute
injection of ketamine prior to CPP tests is not likely to influence already encoded morphine-
context associations. However, we found that ketamine was effective at attenuating sucrose-
induced CPP, despite the lack of anxiety-like behavior induced by sucrose conditioning (Figs.
4C and D). Therefore, these data suggest that ketamine is able to interfere with memory
associated with Pavlovian learning when administered prior to retrieval of already learned
associations. We acknowledge that our data does not unequivocally demonstrate that the
ketamine-induced block of morphine CPP is solely mediated by impairing already learned
associations. Therefore, future studies are required to test whether blocking only morphine-
induced negative affective states are sufficient to prevent morphine CPP.

Lastly, our data suggest that the effects of ketamine on morphine-induced anxiety-like behavior
and on morphine CPP is not likely a result of ketamine-induced behavioral disinhibition, which
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would be expected to increase exploratory behaviors. We found that ketamine had no effect on
entrance counts or exploratory behaviors in the CPP apparatus (Fig. 4E and F).

Overall, our data suggest that ketamine may influence morphine CPP by altering negative
affective states as well as by altering memory of learned associations. However, this does not
rule out that ketamine’s effects on morphine-induced CPP may be mediated by other
mechanisms of action as ketamine has proven effective for treating pain (Weisman,
1971;Laskowski et al., 2011;Jonkman et al., 2017), depression (Khorramzadeh and Lotfy,
1973;Sofia and Harakal, 1975), and inflammation (Roytblat et al., 1998;Beilin et al., 2007;Loix
etal., 2011).

Ketamine as a treatment option for substance use disorders

There is growing clinical and preclinical evidence that ketamine may be a potential treatment
option for substance use disorders (lvan Ezquerra-Romano et al., 2018;Jones et al., 2018).
Through the use of Ketamine Assisted Psychotherapy (KAP) (lvan Ezquerra-Romano et al.,
2018), alcohol-dependent patients (Krupitsky and Grinenko, 1997;Kolp et al., 2006), heroin-
dependent patients (Krupitsky et al., 2002b;Krupitsky et al., 2007), and cocaine-dependent
patients (Dakwar et al., 2017) showed greater rates of abstinence and reductions in drug craving.
These results have been echoed in preclinical models of substance use disorders as acute
ketamine injections significantly attenuate alcohol self-administration (Sabino et al., 2013) and
prevent the reconsolidation of morphine-induced CPP (Zhai et al., 2008). Here, we discovered a
novel and unexpected loss of long-term expression of morphine-induced CPP in animals injected
with (R,S)-ketamine at time points corresponding to 24 and 48 h post CPP conditioning. These
results demonstrate the profound effect that (R,S)-ketamine has on reward-related behaviors and
opens up many avenues including, investigating temporal effects of ketamine treatment at later
time points following conditioning, the neurocircuit mechanisms mediating this prolonged
ketamine effect on morphine-induced CPP, and the specificity for drug-context associations
versus other forms of memory. With the ever increasing use of ketamine as an antidepressant in
major depressive disorder (Berman et al., 2000;Diazgranados et al., 2010;lbrahim et al.,
2011;Zarate et al., 2012;Murrough et al., 2013b), applying its therapeutic use to patients
suffering from substance use disorders holds potential value as an alternative treatment option.

Limitations to the use of ketamine as a treatment option for substance use disorders

Despite its therapeutic value, ketamine has undesirable side effects including drowsiness,
confusion, dizziness, and dissociative psychiatric side effects (Zarate et al., 2006;Diazgranados
et al., 2010;lbrahim et al., 2011;Murrough et al., 2013a). Additionally, evidence suggests that
ketamine impairs cognition and memory (Harris et al., 1975;Ghoneim et al., 1985;Malhotra et
al., 1996;Newcomer et al., 1999;Pfenninger et al., 2002;Morgan et al., 2004;Honey et al.,
2005;Mathew et al., 2010;Driesen et al., 2013) and may cause urological effects (Middela and
Pearce, 2011). A limitation of ketamine use as a treatment option for substance use disorders is
its abuse potential (Liu et al., 2016). However, controlled studies in patients addressing the abuse
potential of low-dose ketamine are lacking and if the long-lasting ketamine effects shown here in
mice translate to human patients, the abuse liability can be mitigated by monthly physician-
administered injections.
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Conclusions

Here, we found that morphine conditioning in a three-compartment apparatus that elicits robust
CPP was sufficient to evoke anxiety-like behaviors in mice. Additionally, we provided evidence
that acute ketamine pretreatment produces anxiolytic-like behaviors and blocks morphine-
induced CPP for a prolonged time period, suggesting that ketamine is a potential option for
attenuating negative reinforcement as well as learned associations that are implicated in
substance use disorders.
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433  Figure 1. Morphine conditioning in a CPP paradigm elicits anxiety-like behaviors during 24 h
434  abstinence. (A) Time line and drug regimen of the behavioral procedure. Animals underwent two
435  days of habituation (H), followed by five days of saline or morphine (10 mg/kg, i.p.)

436  conditioning (C), before being subjected to tests measuring anxiety-like behaviors using an

437  elevated plus maze (EPM) 24 h post conditioning. 24 h post EPM tests, CPP tests were

438  performed. Animals were injected with saline 30 min. prior to EPM and CPP tests. (B) Summary
439  showing that morphine conditioning over 5 days produces robust locomotor sensitization (F,
440  152= 17.1, p<0.0001, two-way repeated measures ANOVA, Bonferroni post hoc test). (C)

441  Summary showing that morphine (Mor)-conditioned mice spent significantly less time in the

442  open arms of the elevated plus maze compared to saline (Sal)-conditioned mice 24 h following
443 the last conditioning day (t(zs=3.35, p=0.002, Student’s t-test). (D) Summary showing that

444 morphine conditioning produced reliable CPP (t38=5.61, p<0.0001, Student’s t-test). (E)

445  Correlation of the % time in the open arm of the elevated plus maze and CPP score in saline- or
446  (F) morphine-conditioned mice. *p<0.05, **p<0.01.

447
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449  Figure 2. Acute (R,S)-ketamine injection produces anxiolytic-like behaviors in mice 24 h after
450  conditioning and blocks morphine-induced CPP. (A) Time line and drug regimen of the

451  behavioral procedure. Saline or (R,S)-ketamine (10 mg/kg, i.p.) was injected 30 min. prior to
452  elevated plus maze (EPM) test with the second injection taking place 30 min. prior to the first
453  conditioned place preference (CPP) test. (B) Summary showing that morphine conditioning over
454 5 days (C1-C5) produces robust locomotor sensitization (F, ss)= 12.55, p<0.0001, two-way

455  repeated measures ANOVA, Bonferroni post hoc test). (C) Summary showing that (RS-

456  ketamine significantly increased the time spent in the open arms of the elevated plus maze in
457  both saline (Sal)- and morphine (Mor)-conditioned mice (F, 52=22.2, p<0.0001, one-way

458  ANOVA, Bonferroni post hoc test) (animals not receiving (R,S)-ketamine are the same data as
459  shown in Fig. 1C). (D) Summary showing that morphine produced reliable CPP at post

460  conditioning day 2, which was blocked by (R,S)-ketamine injected 30 min prior to testing (F,
461  s52=14.04, p<0.0001, one-way ANOVA, Bonferroni post hoc test) (saline and morphine groups
462  are the same animals as shown in Fig. 1D). (E) Summary showing the activity counts in the CPP
463  chamber during habituation (baseline) and during the CPP test in saline (Sal)- or morphine

464  (Mor)-conditioned mice treated with saline or (R,S)-ketamine 30 min prior to testing

465  (F352=0.447, p=0.72, two-way repeated measures ANOVA). *p<0.05, **p<0.01.
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467  Figure 3. (R,S)-ketamine administration during early abstinence is sufficient to prevent the
468  prolonged retention of morphine-induced CPP at post conditioning day 28. (A) Time line and
469  drug regimen of the behavioral procedure. (R,S)-ketamine (10 mg/kg, i.p.) was injected 30 min.
470  prior to the EPM test on post-conditioning day 1 (PC1) and again on the first CPP test on post
471 conditioning day 2 (PC2) (i.e., each mouse received a ketamine injection before the EPM test
472 and a second ketamine injection the next day prior to the CPP test). The second CPP test was run
473  on PC28. (B) Summary showing that morphine produced reliable CPP 28 d post conditioning,
474  which was blocked by (R,S)-ketamine (column factor: F3, 35=10.25, p<0.0001, two-way repeated
475  measures ANOVA, Bonferroni post hoc test) (PC2 data is the same data shown in Fig. 2D).
476  Abbrev.: EPM=elevated plus maze; CPP=conditioned place preference. *p<0.05, **p<0.01.
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478  Figure 4. Ketamine administration attenuates sucrose-induced conditioned place preference. (A)
479  Time line and sucrose regimen of the behavioral procedure. Following sucrose oral self-
480  administration in the three compartment apparatus, mice underwent EPM testing on post-
481  conditioning day 1 (PC1). 24 h later, mice received no injection or (R,S)-ketamine (10 mg/kg,
482  i.p.) 30 min. prior to the conditioned place preference (CPP) test on post-conditioning day 2
483  (PC2). (B) Summary showing the milliliters of water or sucrose consumed for each training
484  session in the least preferred chamber. Groups conditioned with sucrose (i.e., sucrose (sucr.) and
485  sucrose+ketamine (sucr.+ket.) groups) drank significantly more than groups conditioned with
486  water (i.e., water (Wat.) and water+ketamine (Wat.+Ket.) groups) (Fas, 175y= 462.1, p<0.0001,
487  two-way repeated measures ANOVA, Bonferroni post hoc test). (C) Summary showing that
488  conditioning with sucrose had no effect on anxiety-like behaviors as both water- and sucrose-
489  conditioned mice displayed similar % time in the open arm of the EPM (t17y=0.184, p=0.856,
490  Student’s t-test). (D) Summary showing that oral self-administration of sucrose produced CPP at
491  PC2, which was blocked by (R,S)-ketamine treatment (F (3, 355=6.31, p=0.0015, one-way
492  ANOVA, Bonferroni post hoc test). (E) Summary showing that ketamine injections 30 min. prior
493  to CPP test did not impact entrance counts in the CPP apparatus (Sal.+Sal. vs. Sal.+Ket.:
494 t31)=0.295, p=0.770; Mor.+Sal. vs. Mor.+Ket.: t»1)=1.13, p=0.272; Wat.+Sal. vs. Wat.+Ket.:
495  t416=0.874, p=0.395; Sucr..+Sal. vs. Sucr.+Ket.: t19)=1.43, p=0.168, Student’s t-test). (F)
496  Summary showing that ketamine injections 30 min. prior to CPP test did not impact exploratory
497  counts in the CPP apparatus (Sal.+Sal. vs. Sal.+Ket.: t31y=1.42, p=0.166; Mor.+Sal. vs.
498  Mor.+Ket.: t21)=0.045, p=0.964; Wat.+Sal. vs. Wat.+Ket.: t16=1.26, p=0.226; Sucr..+Sal. vs.
499  Sucr.+Ket.: t10=1.80, p=0.088, Student’s t-test). *p<0.05, **p<0.01.
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502  Supplementary Figure 1. Summary showing that there is no significant difference in the
503  amount of water consumed in the most preferred side among all groups (F12, 140=0.596, p=0.843,
504  two-way repeated measures ANOVA).
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507 Supplementary Figure 2. (R,S)-ketamine administration during early abstinence blocks the

508  prolonged retention of sucrose-induced CPP at post conditioning day 21. (A) Time line and drug
509 regimen of the behavioral procedure. (R,S)-ketamine (10 mg/kg, i.p.) was injected 30 min. prior
510  to the first CPP test on post conditioning day 2 (PC2). (B) Summary showing that oral self-

511  administration of sucrose produced CPP for the sucrose-paired context 21 days after

512  conditioning. This prolonged expression of sucrose-induced CPP was blocked by (R,S)-ketamine
513  when injected 30 min prior to testing on PC2 (F3,32=5.51, p=0.004, one-way ANOVA,

514  Bonferroni post hoc test).
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