

Ketamine blocks morphine-induced conditioned place preference and anxiety-like behaviors in mice.

Authors:

Greer McKendrick^{1,3}, Hannah Garrett^{3,6}, Holly E. Jones^{2,3,6}, Dillon S. McDevitt^{2,3}, Sonakshi Sharma³, Yuval Silberman⁴, Nicholas M. Graziane^{5*}

Author Affiliations:

¹ Neuroscience graduate program, Penn State College of Medicine, Hershey, PA 17033, USA

² Summer Undergraduate Research Internship Program, Penn State College of Medicine

³ Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA

⁴ Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA

⁵ Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA

⁶These authors contributed equally: Hannah Garrett and Holly E. Jones.

* Correspondence:

Nicholas Graziane, Ph.D.

E-mail: ngraziane@pennstatehealth.psu.edu

Address: Department of Anesthesiology and Perioperative Medicine, Mail Code H187

Pennsylvania State College of Medicine

500 University Drive

Hershey, PA 17033

Telephone: 717-531-0003 X-329159

Fax: 717-531-6221

Running title: Ketamine effects on morphine-induced CPP

Abstract

Patients suffering from opioid use disorder often relapse during periods of abstinence, which is posited to be caused by negative affective states that drive motivated behaviors. Here, we explored whether conditioning mice with morphine in a CPP training paradigm evoked anxiety-like behavior during morphine abstinence. To do this, mice were conditioned with morphine (10 mg/kg, i.p.) for five days. 24 h following conditioning, anxiety levels were tested by measuring time in the open arms of the elevated plus maze. The next day, mice were placed in the three compartment chamber to measure morphine-induced conditioned place preference (CPP). Our results show that following morphine conditioning, mice spent significantly less time in the open arm of the elevated plus maze and expressed robust morphine CPP on CPP test day.

Furthermore, we found that an acute treatment with (*R,S*)-ketamine (10 mg/kg, i.p.), a medication demonstrating promise for preventing anxiety-related phenotypes, 30 min. prior to testing on post conditioning day 1, increased time spent in the open arm of the elevated plus maze in saline- and morphine-conditioned mice. Additionally, we found that a second injection of ketamine 30 min. prior to CPP tests on post conditioning day 2 prevented morphine-induced CPP, which lasted for up to 28 d post conditioning. Furthermore, we found that conditioning mice with 10% (w/v) sucrose using an oral self-administration procedure did not evoke anxiety-like behavior, but elicited robust CPP, which was attenuated by ketamine treatment 30 min. prior to CPP tests. Overall, our results suggest that the ketamine-induced block of morphine CPP may not be attributed solely to alleviating negative affective states, but potentially through impaired memory of morphine-context associations.

Keywords: negative affect, morphine, conditioned place preference, anxiety, opioid use disorder, ketamine, psychedelics

1 **Introduction**

2 The motivation to continually seek and obtain addictive substances during periods of abstinence
3 or recovery is caused, in part, by the necessity to avoid aversive internal states (Solomon and
4 Corbit, 1978). Evidence for this comes from patients with substance use disorders who self-
5 report urges and intentions to take drugs to avoid drug-withdrawal symptoms (O'Brien,
6 1975; Baker et al., 2004; Wikler, 2013) or to cope with negative affect (Perkins and Grobe,
7 1992; Zinser et al., 1992; Wetter et al., 1994; Cooney et al., 1997; Conklin and Perkins, 2005; Fox
8 et al., 2007). For example, abstinence from morphine, a highly addictive opioid, facilitates
9 increases in anxiety (Gold et al., 1978; 1979), which is a potential factor in continued drug use
10 (Martins et al., 2012).

11 In order to better understand the mechanisms mediating drug-craving and subsequent relapse,
12 preclinical models have been developed whereby drug-seeking behaviors are monitored in drug-
13 exposed rodents. In the conditioned place preference (CPP) paradigm, a drug is paired with a
14 context during conditioning. This is followed by a test day whereby the time spent in the drug-
15 paired context is measured. This behavioral paradigm is a form of Pavlovian learning whereby
16 an injection of a drug (i.e., unconditioned stimulus) elicits a hedonic feeling of pleasure (i.e.,
17 unconditioned response), which, when paired with a context (neutral stimulus), invokes incentive
18 value to the context (i.e., now a conditioned stimulus), thus driving a behavioral response to
19 “seek” the context (conditioned response). This is similar to sign-tracking behaviors (Huston et
20 al., 2013), which refer to a behavior that is directed toward a stimulus as a result of that stimulus
21 becoming associated with a reward (Huys et al., 2014). Therefore, CPP provides a valuable tool
22 used to understand how drugs of abuse become associated with environmental contexts, which is
23 implicated in context-induced drug craving and relapse (O'Brien CP, 1986; O'Brien et al., 1992).
24 We have found that five days of morphine (10 mg/kg) conditioning elicits robust morphine CPP
25 (Graziane et al., 2016; McDevitt and Graziane, 2019). However, it is unclear whether this “drug
26 context-seeking” behavior is mediated by negative affective states. Additionally, it is unclear
27 whether a subanesthetic dose of ketamine, an anxiolytic agent (Engin et al., 2009b), blocks
28 morphine-induced CPP by mitigating morphine-induced negative affective states.

29 Here, we attempt to investigate whether morphine conditioning in our CPP paradigm generates
30 negative affect during morphine abstinence. Additionally, we investigate whether an acute,
31 subanesthetic dose of (R,S)-ketamine prior to testing is sufficient to disrupt morphine-induced
32 anxiety and/or morphine-induced CPP behaviors. Lastly, it has been shown that an acute
33 administration of (R,S)-ketamine is sufficient to block the expression of morphine CPP (Suzuki
34 et al., 2000). Here, we investigate whether this ketamine-induced block of morphine CPP, in our
35 behavioral training paradigm, is mediated by the impairment of drug-context associations or by
36 the attenuation of morphine-induced negative affective states.

37 **Methods**

38 *Animals*

39 All experiments were done in accordance with procedures approved by the Pennsylvania State
40 University College of Medicine Institutional Animal Care and Use Committee. Male C57BL/6J

41 mice aged 5-8 weeks were purchased from Jackson Labs (stock #000664) (Bar Harbor, ME),
42 singly-housed, and maintained on a regular 12 hour light/dark cycle (lights on 07:00, lights off
43 19:00) with *ad libitum* food and water. Mice were singly housed for the following reasons. First,
44 we have reliably developed morphine conditioned place preference (CPP) in singly-housed mice
45 (Graziane et al., 2016;McDevitt and Graziane, 2019). Second, evidence suggests that socially
46 isolated rodents are more vulnerable to developing drug-context associations (Whitaker et al.,
47 2013). In humans, social isolation increases vulnerability to substance use disorders (Newcomb
48 and Bentler, 1988;Sinha, 2008), which often are accompanied by the development of drug-
49 context associations (O'Brien CP, 1986;O'Brien et al., 1992;Xue et al., 2012). Therefore, our
50 studies are designed to model this patient population.

51 *Drugs*

52 (–)-morphine sulfate pentahydrate was provided by the National Institute on Drug Abuse Drug
53 Supply Program. Ketamine hydrochloride (racemic mixture of 50% *R*-ketamine and *S*-ketamine)
54 (Dechra Pharmaceuticals, Northwich, United Kingdom) was purchased from the Comparative
55 Medicine Department at the Pennsylvania State University College of Medicine.

56 *Non-Contingent Conditioned Place Preference*

57 Conditioned place preference (CPP) chambers (Med Associates) were located in the mouse
58 housing room and consisted of three distinct compartments separated by manual guillotine-style
59 doors. Each compartment had distinct contextual characteristics: the middle (neutral)
60 compartment (7.2 cm × 12.7 cm × 12.7 cm) had grey walls and grey plastic floor, while the
61 choice compartments (16.8 cm × 12.7 cm × 12.7 cm, each) had either white walls and stainless
62 steel mesh floor or black walls and stainless steel grid floor. All compartments were illuminated
63 with a dim light during use. Immediately following use the entire preference chamber was
64 cleaned thoroughly with a scent-free soap solution. Mouse locations, activity counts, and time
65 spent in each compartment were collected via automated data-collection software (Med
66 Associates) via infrared photobeam strips lining each compartment. Morphine administration
67 was verified with the Straub tail response and enhanced locomotor activity (Bilbey et al.,
68 1960;Graziane et al., 2016;McDevitt and Graziane, 2019).

69 Habituation. Mice were placed in the center compartment with free access to all three
70 compartments for 20 min once a day for two days. Time spent (seconds) in each compartment
71 was recorded.

72 Conditioning. 24 h after habituation, mice received 5 d conditioning training. Morphine-paired
73 compartments were assigned based on the least preferred side (a biased approach) (Tzschenkentke,
74 2007) calculated by averaging time spent in each compartment over the 2 habituation days.
75 Similar to conditioning studies with alcohol (Gremel et al., 2006), we find that C57BL/6J mice
76 will reliably develop morphine CPP using a biased approach. During conditioning, mice received
77 an injection of saline and were placed into the most preferred compartment for 40 min. 6 h later,
78 mice received an injection of saline (control group) or morphine (10 mg/kg, i.p.) and were placed
79 into their least preferred compartment for 40 min. (Koo et al., 2014;Graziane et al., 2016).

80 Post conditioning. 48 h or 28 d after the last conditioning day, mice were placed in the 3-
81 compartment chamber and allowed to move freely for 20 min. Our post-conditioning took place
82 at a time point corresponding to 3 h prior to drug conditioning (e.g., morphine conditioning took
83 place at 3 P.M., post-conditioning tests took place 2 or 28 days later at 12 P.M.). CPP scores
84 were calculated as time spent in the drug-paired side minus the average time spent on the same
85 side during preconditioning (Bohn et al., 2003). Activity counts are defined as any beam break
86 within a current zone. This is inclusive of grooming, rearing, and lateral movements. Mice were
87 treated with 0.9% saline (0.1 ml, i.p.) or with (R,S)-ketamine (10 mg/kg, i.p.) 30 min. prior to the
88 first CPP test. The dose of ketamine was selected based on preclinical data demonstrating that a
89 10 mg/kg dose of ketamine produces a maximal effect on morphine CPP (Suzuki et al., 2000)
90 and produces plasma concentrations associated with subanesthetic ketamine doses capable of
91 eliciting antidepressant effects in mice and in humans (Zarate et al., 2012;Zanos et al., 2016).

92 *Sucrose Oral Self-Administration Conditioned Place Preference*

93 Habituation. Mice were placed in the center compartment with free access to all three
94 compartments for 20 min. once a day for two days. Time spent (seconds) in each compartment
95 was recorded.

96
97 Conditioning. Drinking bottles were created as described in Freet et al., 2013 (Freet et al., 2013).
98 Briefly, we modified 10 mL serological pipettes by tapering both ends, placing a stainless-steel
99 sipper tube (Ancare; OT-300) in one end and a silicon stopper (Fisher Scientific; 09-704-1D) in
100 the other. Bottles were inserted into plastic holders that were then placed directly into CPP
101 chambers (for chamber description, see Non-Contingent Conditioned Place Preference), where
102 they were positioned so that the sipper was ~5 cm above the chamber floor. Pennsylvania State
103 University Fabrication shop constructed plexiglass tops that were placed along the top of the 3-
104 compartment apparatus and allowed for plastic bottle holders to be placed into chambers. Oral
105 self-administration was recorded as the mL prior and following all sessions. Similar to the i.p.
106 CPP methodology, we utilized a biased approach in which the 10% sucrose (w/v) solution was
107 placed in the least-preferred context. 24 h after habituation, mice underwent two 14 h overnight
108 sessions (separated by 24 h), confined to the least preferred chamber on the first night (ON1)
109 with access to water (control groups) or a 10% sucrose solution and confined to the most
110 preferred side on the second night (ON2) with access to water. Mice then received 5 days of
111 conditioning (C1-C5), where morning sessions consisted of 40 min. in the most-preferred context
112 with access to water. 6 h later, afternoon sessions consisted of 40 min. in the least preferred
113 context with access to water (control groups) or 10% sucrose solution.

114 Post conditioning. 48 h or 21 d after the last conditioning day, mice were placed in the 3-
115 compartment chamber and allowed to move freely for 20 min. Our post-conditioning took place
116 at a time point corresponding to 3 h prior to drug conditioning (e.g., sucrose conditioning took
117 place at 3 P.M., post-conditioning tests took place 2 or 21 days later at 12 P.M.). No bottles were
118 present in the chambers on preference tests. CPP scores were calculated as time spent in the least
119 preferred side on test day minus the average time spent on the same side during preconditioning
120 (Bohn et al., 2003). Mice treated with (R,S)-ketamine (10 mg/kg, i.p.) (water+ketamine and
121 sucrose+ketamine groups) received injections 30 min. prior to the first CPP test on post
122 conditioning day 2.

123 *Elevated Plus Maze*

124 The elevated-plus maze, a well-established method to measure anxiety in rodents, was
125 implemented to measure anxiety-like behavior (Pellow et al., 1985b; Handley and McBlane,
126 1993; Dawson and Tricklebank, 1995). The elevated-plus maze for mice (Stoelting, Item #60140)
127 was raised approximately 50 cm from the ground. The floor of the elevated portion of the maze
128 was gray. Two opposite arms (35 × 5 cm each) of the maze were enclosed by a 15 cm high wall
129 and the remaining two arms were “open.” A center space (5 cm²) between these four arms was
130 also not enclosed. The elevated portion of the apparatus was cleaned thoroughly with a scent-free
131 soap solution after each trial. Behavioral tests were performed in the animal housing room under
132 ambient light of the light cycle.

133 24 h after the last conditioning day in the CPP apparatus, mice were placed in the center space
134 facing the open arm and allowed to explore the apparatus for 5 minutes prior to being placed
135 back into their home cage (Grisel et al., 2008). Each trial was video recorded using a GoPro
136 camera (Hero7 white) and analyzed by researchers blinded to treatment condition of the mice.
137 Time in the open arm was measured when the body of the mouse cleared the center space. Mice
138 were treated with 0.9% saline (0.1 ml, i.p.) or ketamine (10 mg/kg, i.p.) 30 min. prior to the
139 elevated plus maze test.

140 *Statistical Analysis*

141 Statistical significance was assessed in GraphPad Prism software using a Student’s t-test, one- or
142 two-way ANOVA with Bonferroni’s correction for multiple comparisons as specified. F values
143 for two-way ANOVA statistical comparisons represent interactions between variables unless
144 stated otherwise. Two-tailed tests were performed for Student’s t-test. For correlation analysis,
145 the Pearson’s correlation coefficient, and subsequent linear regression, were determined. P<0.05
146 was considered to indicate a statistically significant difference.

147 **Results**

148 **Morphine conditioning elicits anxiety-like behaviors during morphine abstinence**

149 Repeated exposure to morphine increases levels of anxiety both in humans and in animal models
150 of substance use disorders (Gold et al., 1978; 1979; Becker et al., 2017). Additionally, it is posited
151 that relapse to opioids in abstinent patients is caused by negative affective states, thus driving
152 drug-seeking behaviors (Solomon and Corbit, 1978; Koob and Le Moal, 2008; Evans and Cahill,
153 2016). In an attempt to provide evidence that morphine-induced CPP, using our training
154 paradigm, is mediated, in part, by negative affective states, 24 h following the last morphine
155 conditioning session (**Fig. 1A**), we measured anxiety-like behavior using the elevated plus maze
156 (EPM) (Pellow et al., 1985a). We found that morphine-treated mice, who showed robust
157 locomotor sensitization by conditioning day 5 (**Fig. 1B**), expressed a significant decrease in the
158 percent time spent in the open arm of the EPM compared to saline-treated controls ($t_{(38)}=3.35$,
159 $p=0.002$, Student’s t-test) (**Fig. 1C**). To correlate anxiety levels with CPP scores, mice
160 underwent CPP tests 24 h following EPM tests (**Fig. 1A**). We found that 5 d morphine

161 conditioning elicited significant increases in place preference for the drug-paired compartment
162 ($t_{(38)}=5.61$, $p<0.0001$, Student's t-test) (**Fig. 1D**). However, we found no correlation between
163 anxiety-like behaviors and CPP score in morphine-conditioned mice (Pearson's correlation
164 coefficient = -0.162; simple linear regression: $F_{(1,15)}=0.404$, $p=0.53$, $R^2=0.03$) or in saline-
165 conditioned, control mice (Pearson's correlation coefficient = -0.095; simple linear regression:
166 $F_{(1,21)}=0.191$, $p=0.67$, $R^2=0.01$) (**Figs. 1E and F**). Overall, these results suggest that morphine
167 conditioning in a CPP paradigm is sufficient to facilitate anxiety-like behaviors during short-term
168 abstinence, but that the animal's anxiety-like behavior is not correlated with the amount of time
169 spent in the morphine-paired compartment on CPP test day.

170 **Ketamine blocks morphine-induced anxiety-like behaviors and morphine CPP**

171 Evidence suggests that (*R,S*)-ketamine, a noncompetitive NMDA receptor antagonist (Lodge et
172 al., 1982; Kohrs and Durieux, 1998), is an effective treatment for anxiety and substance use
173 disorders (Krupitsky et al., 2002a; Ivan Ezquerra-Romano et al., 2018; Taylor et al., 2018).
174 Because of this, we investigated whether an acute injection of (*R,S*)-ketamine (30 min. prior to
175 EPM and CPP testing) would be sufficient to block morphine-induced anxiety-like behaviors
176 and/or morphine-induced CPP (**Fig. 2A**). Following conditioning with morphine, which
177 produced robust locomotor sensitization (**Fig. 2B**), we found that the first (*R,S*)-ketamine
178 injection prior to the EPM test on post-conditioning day 1 (PC1) significantly increased the
179 percent time in the open arms of the EPM ($F_{(3, 52)}=22.2$, $p<0.0001$, one-way ANOVA, Bonferroni
180 post hoc test) (**Fig. 2C**). Additionally, we found that a second (*R,S*)-ketamine injection prior to
181 CPP tests on post-conditioning day 2 (PC2) was sufficient to prevent morphine-induced CPP
182 ($F_{(3, 52)}=14.04$, $p<0.0001$, one-way ANOVA, Bonferroni post hoc test) (**Fig. 2D**), which was
183 likely not attributed to ketamine-induced changes in locomotor activity ($F_{(3,52)}=0.447$, $p=0.72$,
184 two-way repeated measures ANOVA) (**Fig. 2E**).

185 **Acute ketamine treatment blocks the long-term expression of morphine CPP**

186 We have previously shown that morphine-induced CPP, using the paradigm described in this
187 study, is sufficient to elicit long-lasting CPP for up to 28 d post conditioning (Graziane et al.,
188 2016). Because of this, we tested whether ketamine administration during early abstinence was
189 sufficient to block the prolonged expression of morphine-induced CPP (**Fig. 3A**). We found that
190 two injections of (*R,S*)-ketamine, one on post conditioning day 1 (prior to elevated arm maze
191 tests) and the second on post conditioning day 2 (prior to CPP tests), was sufficient to prevent the
192 prolonged expression of morphine-induced CPP on PC28 (column factor: $F_{(3, 38)}=10.25$,
193 $p<0.0001$, two-way repeated measures ANOVA, Bonferroni post hoc test) (**Fig. 3B**).

194 **Acute ketamine treatment prevents the expression of sucrose CPP**

195 To further investigate whether the ketamine block of morphine CPP is through potential memory
196 impairment and/or anxiolytic effects, we evaluated the effect of ketamine on the CPP of a natural
197 reward (i.e., sucrose). We rationalized that if ketamine blocks morphine CPP by specifically
198 alleviating negative affective states, without impairing memory of drug-context associations,
199 then ketamine would be ineffective at blocking sucrose CPP, a natural reward, which does not
200 evoke anxiety-like behaviors (**Fig. 4C**). To test this, we conditioned mice over 7 days (**Fig. 4A**)

201 to orally self-administer water (controls) or sucrose in the least preferred compartment of the
202 CPP chamber (see Methods for conditioning paradigm). Mice conditioned with sucrose drank
203 significantly more than mice conditioned with water over all conditioning days ($F_{(15, 175)}=462.1$,
204 $p<0.0001$, two-way repeated measures ANOVA, Bonferroni post hoc test) (**Fig. 4B**). The water
205 consumed in the most preferred chamber during conditioning days 1-5 did not differ between
206 groups ($F_{(12, 140)}=0.596$, $p=0.843$, two-way repeated measures ANOVA) (**Supplementary Figure**
207 **1**). On post-conditioning day 1 (PC1), anxiety-like behavior was measured using the EPM. We
208 found that the percent time in the open arm of the EPM in sucrose-conditioned mice was not
209 significantly different from mice conditioned with water ($t_{(17)}=0.184$, $p=0.856$, Student's t-test)
210 (**Fig. 4C**) suggesting that sucrose exposure did not elicit anxiety-like behaviors during short-term
211 abstinence. 24 h later, on post-conditioning day 2 (PC2), water- and sucrose-conditioned mice
212 underwent a CPP test 30 min. after receiving an acute injection of (*R,S*)-ketamine (10 mg/kg,
213 i.p.). Our data show that (*R,S*)-ketamine attenuated sucrose-induced CPP on PC2 ($F_{(3, 35)}=6.31$,
214 $p=0.0015$, one-way ANOVA, Bonferroni post hoc test) (**Fig. 4D**) and this ketamine-induced
215 attenuation of sucrose CPP persisted to abstinence day 21 ($F_{(3, 32)}=5.51$, $p=0.004$, one-way
216 ANOVA, Bonferroni post hoc test) (**Supplementary Figure 2**).

217 Lastly, we investigated whether the ketamine block of morphine-induced anxiety-like behavior
218 and morphine-induced CPP was potentially attributed to ketamine-induced behavioral
219 disinhibition, leading the animal to explore more. To do this, we monitored entrance counts and
220 exploratory counts in the CPP chamber on test day. We found that there was no significant
221 difference in entrance or exploratory counts in the CPP chamber when comparisons were made
222 between saline versus ketamine injected mice undergoing the same treatment during
223 conditioning (**Figs. 4E and F**). These results suggest that the effects of ketamine on morphine-
224 driven behaviors is unlikely mediated by behavioral disinhibition.

225 Discussion

226 Our results show that the percent time spent in the open arms of the elevated plus maze is
227 decreased in animals conditioned with morphine. Additionally, we show that an acute injection
228 of (*R,S*)-ketamine 30 min prior to the elevated plus maze and CPP tests is sufficient to block
229 morphine-induced anxiety-like behaviors and morphine-induced CPP (post-conditioning day 2
230 through post-conditioning day 28), as well as attenuates sucrose-induced CPP (post-conditioning
231 day 2 through post-conditioning day 21). We further find that ketamine, at least in the dose tested
232 here, does not alter behavioral disinhibition in either morphine-CPP or sucrose-CPP mice.
233 Together these findings indicate that ketamine may inhibit morphine CPP behaviors, at least in
234 part, via reductions in withdrawal-induced anxiety-like behaviors. Our data do not, however, rule
235 out the possibility that ketamine-induced effects on morphine CPP may also be mediated in part
236 by impairing memory of morphine-context associations.

237 Anxiety-like behaviors during morphine abstinence

238 Morphine possesses anxiolytic-like properties during initial exposure (Koks et al., 1999;Sasaki et
239 al., 2002;Shin et al., 2003). However, during opioid abstinence, symptoms of anxiety (Gold et
240 al., 1978;1979;Li et al., 2009;Shi et al., 2009) or anxiety-like behaviors are observed (Cabral et
241 al., 2009;Becker et al., 2017). Here, we show that 24 h following repeated morphine injections

242 (once a day for 5 days), mice display anxiety-like behaviors in the elevated plus maze (**Fig. 1C**).
243 These results are similar to previous studies showing escalating doses of morphine over a 6 day
244 period induce anxiety-like behaviors in the marble burying task (Becker et al., 2017).
245 Additionally, our observed morphine-induced anxiety-like behavior is timed with anxiogenic
246 neurobiological responses that occur during acute opioid abstinence including, increases in
247 norepinephrine release in the extended amygdala (Fuentealba et al., 2000;Aston-Jones and
248 Harris, 2004), norepinephrine-induced modulation of the extended amygdala (Aston-Jones et al.,
249 1999;Delfs et al., 2000;Smith and Aston-Jones, 2008), activation of the amygdalar
250 corticotrophin-releasing factor (CRF) system (Heinrichs et al., 1995;Maj et al., 2003), and
251 decreases in dopamine transmission (Diana et al., 1995). However, the observed morphine-
252 induced anxiety-like behavior may be dependent upon morphine exposure as it has been shown
253 that morphine does not elicit anxiety-like behaviors following three morphine injections (10
254 mg/kg) occurring every other day (Benturquia et al., 2007). This may be related to
255 neurobiological mechanisms associated with different drug exposure regimens. We have
256 previously shown that morphine exposure significantly increases the expression of silent
257 synapses, excitatory glutamatergic synapses that express functional NMDA receptors, but lack
258 functional AMPA receptors (Hanse et al., 2013), in the nucleus accumbens shell. We found that
259 this increase in silent synapse expression is observed 24 h after the last of five morphine
260 injections (once a day for five days), but not 24 h after the last of three morphine injections (once
261 a day for three days) (Graziante et al., 2016;Hearing et al., 2018;McDevitt and Graziante, 2018).
262 Future experiments will be required to test whether this morphine-induced change in the nucleus
263 accumbens shell regulates morphine-induced anxiety-like behaviors.

264 The observed anxiety-like behaviors following morphine conditioning in a three chamber
265 apparatus (**Fig. 1F**) may suggest that animals seek the drug-paired chamber as a consequence of
266 negative reinforcement to alleviate aversive affective states facilitated by opioid abstinence.
267 Importantly, our injection regimen of morphine 10 mg/kg once a day for 5 consecutive days does
268 not induce signs of somatic withdrawal in mice including jumping, wet dog shakes, teeth
269 chattering, rearing, tremor, diarrhea, or mastication (Gallego et al., 2010). This coincides with
270 the lack of observed somatic withdrawal symptoms following a more prolonged injection
271 regimen of 5 daily morphine (10 mg/kg, i.p.) injections over 4 weeks (Robinson and Kolb,
272 1999). Although more studies are required, it is plausible that specific opioid dosing regimens
273 may be implemented in a preclinical setting in order to separate opioid-induced negative
274 affective states (e.g., anxiety) from confounds induced by somatic signs of opioid withdrawal,
275 which are ineffective at reinstating opioid seeking or morphine CPP in opioid dependent rodents
276 (Shaham et al., 1996;Lu et al., 2005) as well as in humans (Miller et al., 1979). Separating
277 opioid-induced negative affective states (e.g., anxiety) from confounds induced by somatic signs
278 of opioid withdrawal is not a new idea and has been demonstrated previously with doses of
279 naloxone (used to precipitate opioid withdrawal) that were sub-threshold for somatic signs of
280 opioid withdrawal (Gracy et al., 2001).

281 Based on our results, it would be expected that facilitating a negative affective state during
282 morphine abstinence would enhance the expression of morphine CPP. However, evidence
283 suggests that this is not the case, as forced swim stress, which would be expected to elicit a
284 strong negative affective state, immediately prior to CPP testing in morphine-conditioned
285 animals has either no effect on morphine CPP (Attarzadeh-Yazdi et al., 2013) or significantly

286 decreases morphine CPP (Haghparast et al., 2014). Additionally, corticosterone administration,
287 which is expected to facilitate depression-like behaviors (Gregus et al., 2005), prior to CPP tests
288 has no effect on morphine CPP (Attarzadeh-Yazdi et al., 2013). These results are surprising
289 especially considering the robust effect of stressful stimuli in reinstating morphine CPP in
290 extinguished rodents (Ribeiro Do Couto et al., 2006; Wang et al., 2006; Karimi et al., 2014). It is
291 possible that morphine CPP tested during abstinence (e.g., Attarzadeh-Yazdi et al., 2013)
292 reaches a ceiling effect, making it unlikely that exposure to a stressor (e.g., forced swim) will
293 enhance the CPP score (i.e., occlusion). It is also possible that the stressor elicits a decreased
294 locomotor state potentially resulting in reduced morphine CPP (e.g., Haghparast et al., 2014).

295 *Ketamine's effects on anxiety-like behaviors*

296 Ketamine has recently been shown to be a potential effective treatment for anxiety disorders
297 (Glue et al., 2018; Shadli et al., 2018; Taylor et al., 2018). In humans, ketamine displays a
298 biphasic dose effect on anxiety, with low doses decreasing anxiety and higher doses increasing
299 anxiety (Jansen, 1989; Krystal et al., 1994). Likewise, in rodents, ketamine induces anxiolytic-
300 like behaviors (Engin et al., 2009a; Zhang et al., 2015; Fraga et al., 2018) as well as anxiogenic-
301 like phenotypes likely dependent upon the dose, temporal relationship between ketamine
302 injection and test onset, and rodent species (Silvestre et al., 1997; da Silva et al., 2010). Here, we
303 demonstrate that in C57BL/6J mice, acute injection of ketamine at 10 mg/kg, i.p. 30 min prior to
304 testing is sufficient to block morphine-induced anxiety-like behaviors during a 24 h abstinence
305 time period (**Fig. 2C**). Additionally, we find that ketamine significantly increases percent time in
306 the open arm of the elevated plus maze in mice conditioned with saline. This significant change
307 observed in saline conditioned animals suggests that ketamine, at the dose and temporal
308 relationship of ketamine injection and test onset, is sufficient to overcome baseline anxiety-like
309 behaviors in animals exposed to a novel environment (i.e., elevated plus maze).

310 Despite the evidence suggesting that the antagonistic effects of ketamine on NMDA receptors in
311 the bed nucleus of the stria terminalis attenuate negative affective states (Louderback et al.,
312 2013), the mechanisms mediating the observed anxiolytic-like effects are unknown. In addition
313 to acting as a non-competitive antagonist to NMDA receptors in the extended amygdala,
314 evidence suggests that ketamine interacts with hyperpolarization-activated cyclic nucleotide-
315 gated (HCN) channels as well as dopamine, serotonin, sigma, opioid, and cholinergic receptors
316 (Scheller et al., 1996; Cai et al., 1997; Kubota et al., 1999; Lydic and Baghdoyan, 2002; Wang et
317 al., 2012; Zanos et al., 2018). Additionally, ketamine metabolites are biologically active as
318 antagonists to NMDA receptors (Ebert et al., 1997) and α 7 nicotinic acetylcholine receptors
319 (Moaddel et al., 2013), while also possessing agonistic activity for α -amino-3-hydroxy-5-methyl-
320 4-isoxazolepropionic acid (AMPA) receptors (Zanos et al., 2016; Tyler et al., 2017). Because of
321 the undiscriminating activity of ketamine and its metabolites, it has been difficult to pinpoint
322 how ketamine influences anxiety states both in humans and in preclinical models.

323 *Ketamine's effects on morphine-induced conditioned place preference*

324 Using a paradigm known to induce robust CPP for up to 28 d post conditioning (Graziane et al.,
325 2016), we show that an acute injection of ketamine 30 min prior to the CPP test on abstinence
326 day 2 is sufficient to block morphine-induced CPP. These results are not likely caused by

327 changes in locomotor activity as activity counts during habituation (baseline) were not
328 significantly different from activity counts measured following ketamine administration (**Fig.**
329 **2E**). Our results are in line with previous publications demonstrating that ketamine blocks
330 morphine-induced CPP in mice (Suzuki et al., 2000). However, the effects on locomotor activity
331 are conflicting. Whereas, our results and those from previous publications show that ketamine
332 does not influence locomotor activity (Lindholm et al., 2012), others have found that locomotor
333 activity is increased (Filibeck and Castellano, 1980) or decreased following ketamine
334 administration (Akillioglu et al., 2012). These discrepancies are likely due to the temporal
335 relationship between ketamine treatment and test onset. Here, we performed our tests 30 min
336 following ketamine injection similar to previous studies (Lindholm et al., 2012), while tests
337 performed 5 min or 15 min following ketamine administration appear to increase or decrease
338 locomotor activity, respectively (Filibeck and Castellano, 1980;Akillioglu et al., 2012). The half-
339 life of ketamine is ~13-25 min. in mice following i.p. administration (Maxwell et al., 2006;Zanos
340 et al., 2016;Ganguly et al., 2018). Therefore, it is possible that the locomotor effects observed are
341 due to ketamine action prior to metabolism, while the effects on negative affect are potentially
342 attributed to ketamine metabolites including hydroxynorketamine (Li et al., 2015;Zanos et al.,
343 2016). This hypothesis will need to be tested in future experiments. Moreover, our results are
344 based on using a fixed dose of ketamine at 10 mg/kg, thus preventing dose-response
345 observations. Future investigations are required to test how varying ketamine doses may
346 influence morphine-induced conditioned place preference as well as morphine-induced anxiety-
347 like behaviors.

348 Based on our findings that ketamine elicited anxiolytic-like behaviors following an acute
349 injection, it is possible that the acute administration of ketamine was sufficient to prevent a
350 negative affective state during 24 h morphine abstinence, thus facilitating the lack of motivation
351 to seek a context paired with a drug reward (i.e., morphine-induced CPP). It is also plausible that
352 the block of morphine-induced CPP by ketamine may be mediated by its effects on cognition and
353 memory, thus blocking the recall of morphine-context associations (Ghoneim et al.,
354 1985;Newcomer et al., 1999;Morgan et al., 2004) (Malhotra et al., 1996;Pfenninger et al., 2002).
355 Evidence suggests that ketamine-induced deficits in cognitive functioning and memory occur
356 during the consolidation or, as shown in rodents, reconsolidation (Zhai et al., 2008) of
357 information, rather than the retrieval of already learned associations (Honey et al., 2005).
358 Furthermore, it has been shown in rodent models that the memory impairing effects of ketamine
359 are not attributed to its effects on memory retrieval (Goulart et al., 2010). Therefore, an acute
360 injection of ketamine prior to CPP tests is not likely to influence already encoded morphine-
361 context associations. However, we found that ketamine was effective at attenuating sucrose-
362 induced CPP, despite the lack of anxiety-like behavior induced by sucrose conditioning (**Figs.**
363 **4C and D**). Therefore, these data suggest that ketamine is able to interfere with memory
364 associated with Pavlovian learning when administered prior to retrieval of already learned
365 associations. We acknowledge that our data does not unequivocally demonstrate that the
366 ketamine-induced block of morphine CPP is solely mediated by impairing already learned
367 associations. Therefore, future studies are required to test whether blocking only morphine-
368 induced negative affective states are sufficient to prevent morphine CPP.

369 Lastly, our data suggest that the effects of ketamine on morphine-induced anxiety-like behavior
370 and on morphine CPP is not likely a result of ketamine-induced behavioral disinhibition, which

371 would be expected to increase exploratory behaviors. We found that ketamine had no effect on
372 entrance counts or exploratory behaviors in the CPP apparatus (**Fig. 4E and F**).

373 Overall, our data suggest that ketamine may influence morphine CPP by altering negative
374 affective states as well as by altering memory of learned associations. However, this does not
375 rule out that ketamine's effects on morphine-induced CPP may be mediated by other
376 mechanisms of action as ketamine has proven effective for treating pain (Weisman,
377 1971;Laskowski et al., 2011;Jonkman et al., 2017), depression (Khorramzadeh and Lotfy,
378 1973;Sofia and Harakal, 1975), and inflammation (Roytblat et al., 1998;Beilin et al., 2007;Loix
379 et al., 2011).

380 *Ketamine as a treatment option for substance use disorders*

381 There is growing clinical and preclinical evidence that ketamine may be a potential treatment
382 option for substance use disorders (Ivan Ezquerra-Romano et al., 2018;Jones et al., 2018).
383 Through the use of Ketamine Assisted Psychotherapy (KAP) (Ivan Ezquerra-Romano et al.,
384 2018), alcohol-dependent patients (Krupitsky and Grinenko, 1997;Kolp et al., 2006), heroin-
385 dependent patients (Krupitsky et al., 2002b;Krupitsky et al., 2007), and cocaine-dependent
386 patients (Dakwar et al., 2017) showed greater rates of abstinence and reductions in drug craving.
387 These results have been echoed in preclinical models of substance use disorders as acute
388 ketamine injections significantly attenuate alcohol self-administration (Sabino et al., 2013) and
389 prevent the reconsolidation of morphine-induced CPP (Zhai et al., 2008). Here, we discovered a
390 novel and unexpected loss of long-term expression of morphine-induced CPP in animals injected
391 with (R,S)-ketamine at time points corresponding to 24 and 48 h post CPP conditioning. These
392 results demonstrate the profound effect that (R,S)-ketamine has on reward-related behaviors and
393 opens up many avenues including, investigating temporal effects of ketamine treatment at later
394 time points following conditioning, the neurocircuit mechanisms mediating this prolonged
395 ketamine effect on morphine-induced CPP, and the specificity for drug-context associations
396 versus other forms of memory. With the ever increasing use of ketamine as an antidepressant in
397 major depressive disorder (Berman et al., 2000;Diazgranados et al., 2010;Ibrahim et al.,
398 2011;Zarate et al., 2012;Murrough et al., 2013b), applying its therapeutic use to patients
399 suffering from substance use disorders holds potential value as an alternative treatment option.

400 *Limitations to the use of ketamine as a treatment option for substance use disorders*

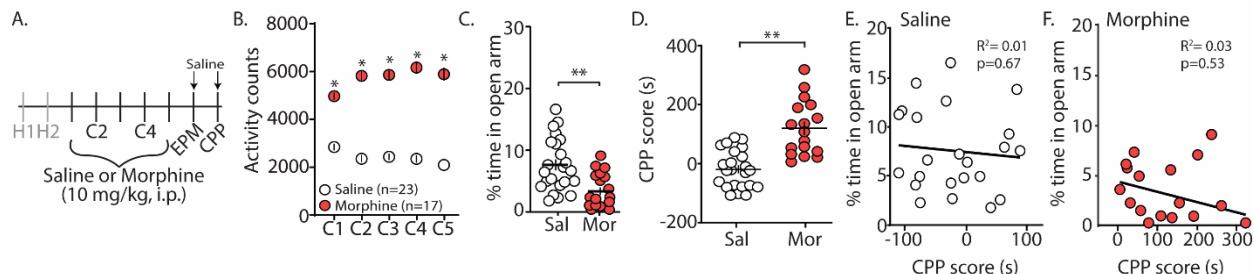
401 Despite its therapeutic value, ketamine has undesirable side effects including drowsiness,
402 confusion, dizziness, and dissociative psychiatric side effects (Zarate et al., 2006;Diazgranados
403 et al., 2010;Ibrahim et al., 2011;Murrough et al., 2013a). Additionally, evidence suggests that
404 ketamine impairs cognition and memory (Harris et al., 1975;Ghoneim et al., 1985;Malhotra et
405 al., 1996;Newcomer et al., 1999;Pfenninger et al., 2002;Morgan et al., 2004;Honey et al.,
406 2005;Mathew et al., 2010;Driesen et al., 2013) and may cause urological effects (Middela and
407 Pearce, 2011). A limitation of ketamine use as a treatment option for substance use disorders is
408 its abuse potential (Liu et al., 2016). However, controlled studies in patients addressing the abuse
409 potential of low-dose ketamine are lacking and if the long-lasting ketamine effects shown here in
410 mice translate to human patients, the abuse liability can be mitigated by monthly physician-
411 administered injections.

412 **Conclusions**

413 Here, we found that morphine conditioning in a three-compartment apparatus that elicits robust
414 CPP was sufficient to evoke anxiety-like behaviors in mice. Additionally, we provided evidence
415 that acute ketamine pretreatment produces anxiolytic-like behaviors and blocks morphine-
416 induced CPP for a prolonged time period, suggesting that ketamine is a potential option for
417 attenuating negative reinforcement as well as learned associations that are implicated in
418 substance use disorders.

419 **Acknowledgements**

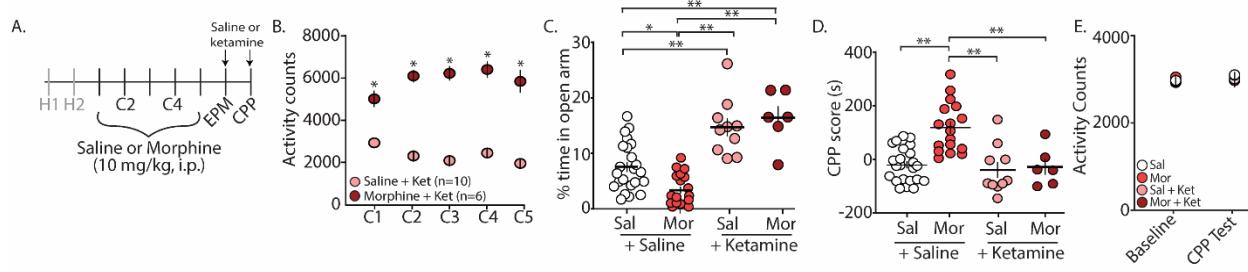
420 We thank Dr. Diane McCloskey for edits and comments on this project as well as Dr. Patrick
421 Randall and Dr. Zheng-Ming Ding for their comments on the project. The study was supported
422 by the Brain & Behavioral Research NARSAD Young Investigator Award (27364NG), the
423 Pennsylvania State Junior Faculty Scholar Award (NG), the Pennsylvania Department of Health
424 using Tobacco CURE Funds (NG), and the Pennsylvania State Research Allocation Project
425 Grant (NG). Morphine was provided by the Drug Supply Program of NIDA NIH.

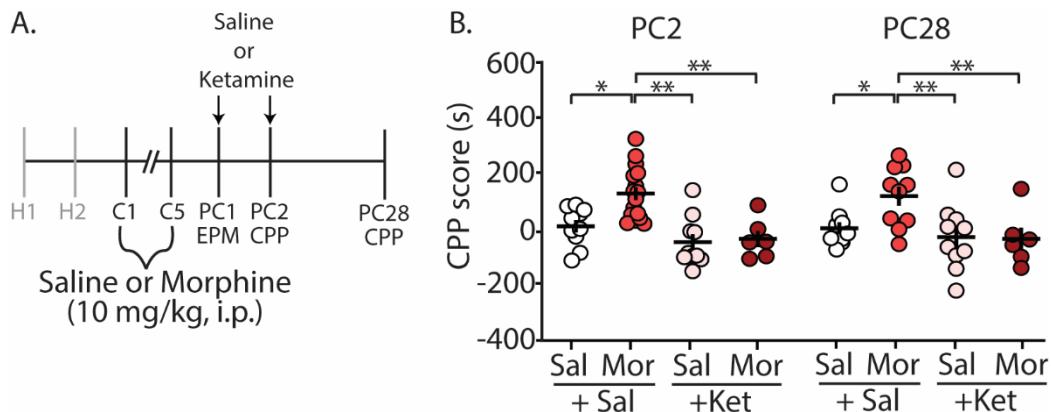

426 **Author Contributions Statement**

427 G.M., H.G, H.E.J., D.S.M., S.S. Y.S., and N.M.G. designed the experiments, performed the
428 analyses, and wrote the manuscript. H.E.J., G.M., H.G., D.S.M., and S.S performed behavioral
429 training and testing.

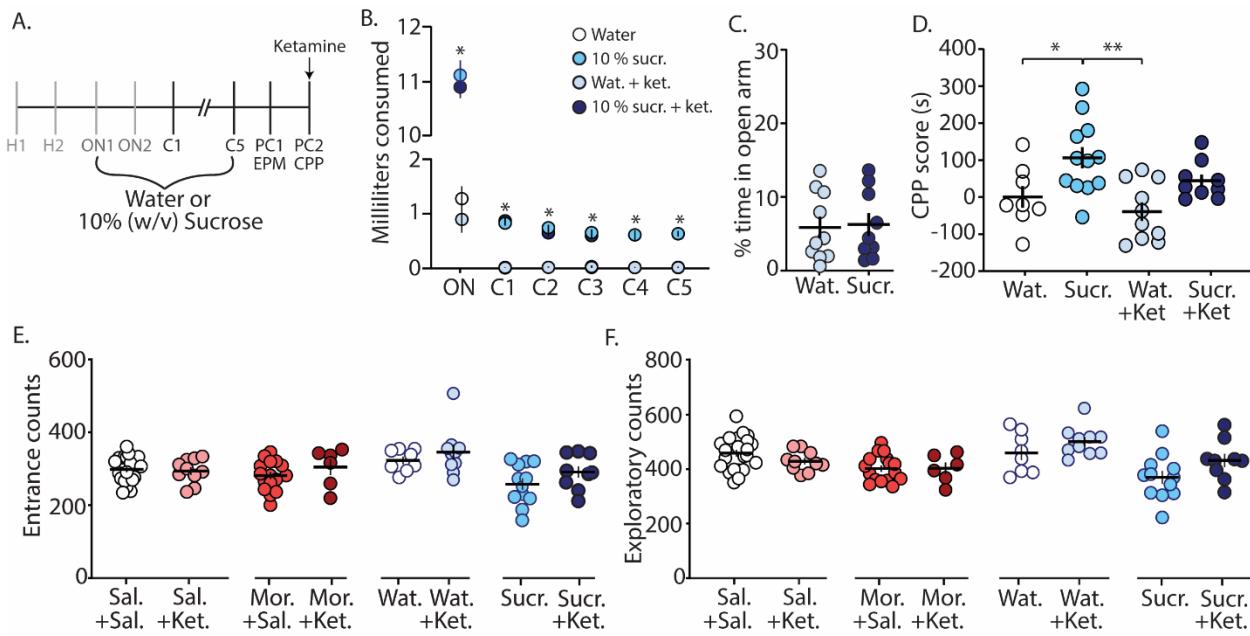
430 **Declaration of Interest**

431 Declarations of interest: none

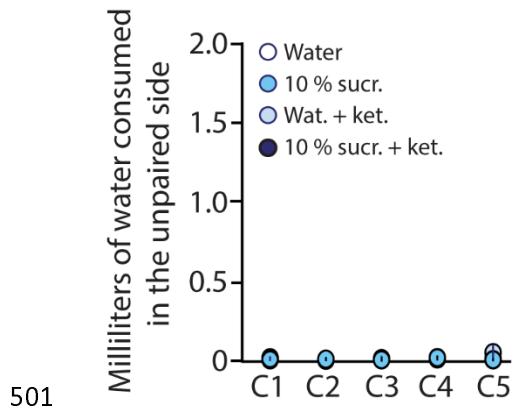

Fig. 1

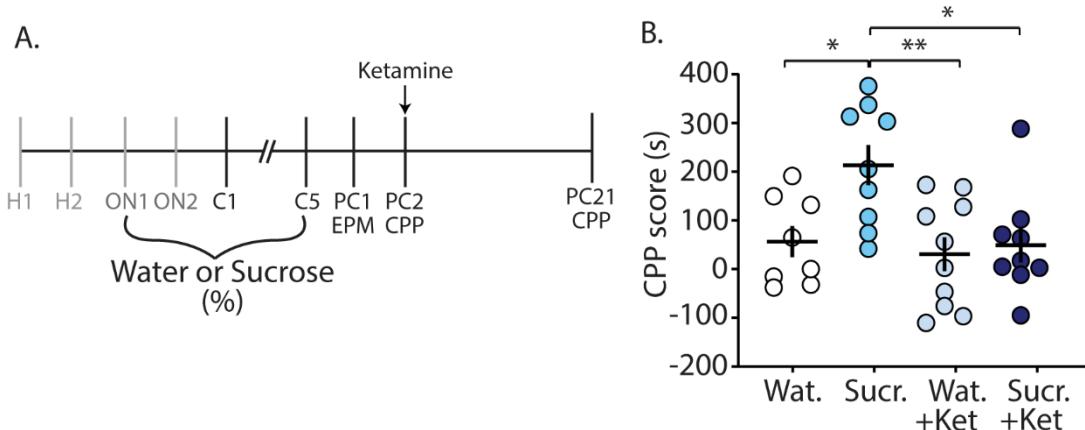

432

433 **Figure 1.** Morphine conditioning in a CPP paradigm elicits anxiety-like behaviors during 24 h
434 abstinence. (A) Time line and drug regimen of the behavioral procedure. Animals underwent two
435 days of habituation (H), followed by five days of saline or morphine (10 mg/kg, i.p.)
436 conditioning (C), before being subjected to tests measuring anxiety-like behaviors using an
437 elevated plus maze (EPM) 24 h post conditioning. 24 h post EPM tests, CPP tests were
438 performed. Animals were injected with saline 30 min. prior to EPM and CPP tests. (B) Summary
439 showing that morphine conditioning over 5 days produces robust locomotor sensitization ($F_{(4, 152)} = 17.1$,
440 $p < 0.0001$, two-way repeated measures ANOVA, Bonferroni post hoc test). (C)
441 Summary showing that morphine (Mor)-conditioned mice spent significantly less time in the
442 open arms of the elevated plus maze compared to saline (Sal)-conditioned mice 24 h following
443 the last conditioning day ($t_{(38)} = 3.35$, $p = 0.002$, Student's t-test). (D) Summary showing that
444 morphine conditioning produced reliable CPP ($t_{(38)} = 5.61$, $p < 0.0001$, Student's t-test). (E)
445 Correlation of the % time in the open arm of the elevated plus maze and CPP score in saline- or
446 (F) morphine-conditioned mice. * $p < 0.05$, ** $p < 0.01$.


447

448
449 **Figure 2.** Acute (*R,S*)-ketamine injection produces anxiolytic-like behaviors in mice 24 h after
450 conditioning and blocks morphine-induced CPP. (A) Time line and drug regimen of the
451 behavioral procedure. Saline or (*R,S*)-ketamine (10 mg/kg, i.p.) was injected 30 min. prior to
452 elevated plus maze (EPM) test with the second injection taking place 30 min. prior to the first
453 conditioned place preference (CPP) test. (B) Summary showing that morphine conditioning over
454 5 days (C1-C5) produces robust locomotor sensitization ($F_{(4, 56)}=12.55$, $p<0.0001$, two-way
455 repeated measures ANOVA, Bonferroni post hoc test). (C) Summary showing that (*R,S*)-
456 ketamine significantly increased the time spent in the open arms of the elevated plus maze in
457 both saline (Sal)- and morphine (Mor)-conditioned mice ($F_{(3, 52)}=22.2$, $p<0.0001$, one-way
458 ANOVA, Bonferroni post hoc test) (animals not receiving (*R,S*)-ketamine are the same data as
459 shown in Fig. 1C). (D) Summary showing that morphine produced reliable CPP at post
460 conditioning day 2, which was blocked by (*R,S*)-ketamine injected 30 min prior to testing ($F_{(3, 52)}=14.04$,
461 $p<0.0001$, one-way ANOVA, Bonferroni post hoc test) (saline and morphine groups
462 are the same animals as shown in Fig. 1D). (E) Summary showing the activity counts in the CPP
463 chamber during habituation (baseline) and during the CPP test in saline (Sal)- or morphine
464 (Mor)-conditioned mice treated with saline or (*R,S*)-ketamine 30 min prior to testing
465 ($F_{(3,52)}=0.447$, $p=0.72$, two-way repeated measures ANOVA). * $p<0.05$, ** $p<0.01$.




466
467 **Figure 3.** (R,S)-ketamine administration during early abstinence is sufficient to prevent the
468 prolonged retention of morphine-induced CPP at post conditioning day 28. (A) Time line and
469 drug regimen of the behavioral procedure. (R,S)-ketamine (10 mg/kg, i.p.) was injected 30 min.
470 prior to the EPM test on post-conditioning day 1 (PC1) and again on the first CPP test on post
471 conditioning day 2 (PC2) (i.e., each mouse received a ketamine injection before the EPM test
472 and a second ketamine injection the next day prior to the CPP test). The second CPP test was run
473 on PC28. (B) Summary showing that morphine produced reliable CPP 28 d post conditioning,
474 which was blocked by (R,S)-ketamine (column factor: $F_{(3, 38)}=10.25$, $p<0.0001$, two-way repeated
475 measures ANOVA, Bonferroni post hoc test) (PC2 data is the same data shown in Fig. 2D).
476 Abbrev.: EPM=elevated plus maze; CPP=conditioned place preference. * $p<0.05$, ** $p<0.01$.

477 **Figure 4.** Ketamine administration attenuates sucrose-induced conditioned place preference. (A)
478 Time line and sucrose regimen of the behavioral procedure. Following sucrose oral self-
479 administration in the three compartment apparatus, mice underwent EPM testing on post-
480 conditioning day 1 (PC1). 24 h later, mice received no injection or (*R,S*)-ketamine (10 mg/kg,
481 i.p.) 30 min. prior to the conditioned place preference (CPP) test on post-conditioning day 2
482 (PC2). (B) Summary showing the milliliters of water or sucrose consumed for each training
483 session in the least preferred chamber. Groups conditioned with sucrose (i.e., sucrose (sucr.) and
484 sucrose+ketamine (sucr.+ket.) groups) drank significantly more than groups conditioned with
485 water (i.e., water (Wat.) and water+ketamine (Wat.+Ket.) groups) ($F_{(15, 175)} = 462.1$, $p < 0.0001$,
486 two-way repeated measures ANOVA, Bonferroni post hoc test). (C) Summary showing that
487 conditioning with sucrose had no effect on anxiety-like behaviors as both water- and sucrose-
488 conditioned mice displayed similar % time in the open arm of the EPM ($t_{(17)} = 0.184$, $p = 0.856$,
489 Student's t-test). (D) Summary showing that oral self-administration of sucrose produced CPP at
490 PC2, which was blocked by (*R,S*)-ketamine treatment ($F_{(3, 35)} = 6.31$, $p = 0.0015$, one-way
491 ANOVA, Bonferroni post hoc test). (E) Summary showing that ketamine injections 30 min. prior
492 to CPP test did not impact entrance counts in the CPP apparatus (Sal.+Sal. vs. Sal.+Ket.:
493 $t_{(31)} = 0.295$, $p = 0.770$; Mor.+Sal. vs. Mor.+Ket.: $t_{(21)} = 1.13$, $p = 0.272$; Wat.+Sal. vs. Wat.+Ket.:
494 $t_{(16)} = 0.874$, $p = 0.395$; Sucr.+Sal. vs. Sucr.+Ket.: $t_{(19)} = 1.43$, $p = 0.168$, Student's t-test). (F)
495 Summary showing that ketamine injections 30 min. prior to CPP test did not impact exploratory
496 counts in the CPP apparatus (Sal.+Sal. vs. Sal.+Ket.: $t_{(31)} = 1.42$, $p = 0.166$; Mor.+Sal. vs.
497 Mor.+Ket.: $t_{(21)} = 0.045$, $p = 0.964$; Wat.+Sal. vs. Wat.+Ket.: $t_{(16)} = 1.26$, $p = 0.226$; Sucr.+Sal. vs.
498 Sucr.+Ket.: $t_{(19)} = 1.80$, $p = 0.088$, Student's t-test). * $p < 0.05$, ** $p < 0.01$.

500

506

507 **Supplementary Figure 2.** (R,S)-ketamine administration during early abstinence blocks the
508 prolonged retention of sucrose-induced CPP at post conditioning day 21. (A) Time line and drug
509 regimen of the behavioral procedure. (R,S)-ketamine (10 mg/kg, i.p.) was injected 30 min. prior
510 to the first CPP test on post conditioning day 2 (PC2). (B) Summary showing that oral self-
511 administration of sucrose produced CPP for the sucrose-paired context 21 days after
512 conditioning. This prolonged expression of sucrose-induced CPP was blocked by (R,S)-ketamine
513 when injected 30 min prior to testing on PC2 ($F_{(3, 32)}=5.51$, $p=0.004$, one-way ANOVA,
514 Bonferroni post hoc test).

515

516 **References cited**

517 Akillioglu, K., Melik, E.B., Melik, E., and Boga, A. (2012). Effect of ketamine on exploratory
518 behaviour in BALB/C and C57BL/6 mice. *Pharmacology Biochemistry and Behavior*
519 100, 513-517.

520 Aston-Jones, G., Delfs, J.M., Druhan, J., and Zhu, Y. (1999). The bed nucleus of the stria
521 terminalis. A target site for noradrenergic actions in opiate withdrawal. *Ann N Y Acad Sci*
522 877, 486-498.

523 Aston-Jones, G., and Harris, G.C. (2004). Brain substrates for increased drug seeking during
524 protracted withdrawal. *Neuropharmacology* 47, 167-179.

525 Attarzadeh-Yazdi, G., Karimi, S., Azizi, P., Yazdi-Ravandi, S., Hesam, S., and Haghparast, A.
526 (2013). Inhibitory effects of forced swim stress and corticosterone on the acquisition but
527 not expression of morphine-induced conditioned place preference: involvement of
528 glucocorticoid receptor in the basolateral amygdala. *Behavioural brain research* 252,
529 339-346.

530 Baker, T.B., Piper, M.E., McCarthy, D.E., Majeskie, M.R., and Fiore, M.C. (2004). Addiction
531 motivation reformulated: an affective processing model of negative reinforcement.
532 *Psychol Rev* 111, 33-51.

533 Becker, J.a.J., Kieffer, B.L., and Le Merrer, J. (2017). Differential behavioral and molecular
534 alterations upon protracted abstinence from cocaine versus morphine, nicotine, THC and
535 alcohol. *Addict Biol* 22, 1205-1217.

536 Beilin, B., Rusabrov, Y., Shapira, Y., Roytblat, L., Greengberg, L., Yardeni, I.Z., and Bessler, H.
537 (2007). Low-dose ketamine affects immune responses in humans during the early
538 postoperative period. *Br J Anaesth* 99, 522-527.

539 Benturquia, N., Le Guen, S., Canestrelli, C., Lagente, V., Apiou, G., Roques, B.P., and Noble, F.
540 (2007). Specific blockade of morphine- and cocaine-induced reinforcing effects in
541 conditioned place preference by nitrous oxide in mice. *Neuroscience* 149, 477-486.

542 Berman, R.M., Cappiello, A., Anand, A., Oren, D.A., Heninger, G.R., Charney, D.S., and
543 Krystal, J.H. (2000). Antidepressant effects of ketamine in depressed patients. *Biol
544 Psychiatry* 47, 351-354.

545 Bilbey, D.L., Salem, H., and Grossman, M.H. (1960). The anatomical basis of the straub
546 phenomenon. *Br J Pharmacol Chemother* 15, 540-543.

547 Bohn, L.M., Gainetdinov, R.R., Sotnikova, T.D., Medvedev, I.O., Lefkowitz, R.J., Dykstra,
548 L.A., and Caron, M.G. (2003). Enhanced rewarding properties of morphine, but not
549 cocaine, in beta(arrestin)-2 knock-out mice. *J Neurosci* 23, 10265-10273.

550 Cabral, A., Ruggiero, R.N., Nobre, M.J., Brando, M.L., and Castilho, V.M. (2009). GABA and
551 opioid mechanisms of the central amygdala underlie the withdrawal-potentiated startle
552 from acute morphine. *Prog Neuropsychopharmacol Biol Psychiatry* 33, 334-344.

553 Cai, Y.-C., Ma, L., Fan, G.-H., Zhao, J., Jiang, L.-Z., and Pei, G. (1997). Activation of
554 N-Methyl-d-Aspartate Receptor Attenuates Acute
555 Responsiveness of δ -Opioid Receptors. *Molecular Pharmacology* 51, 583-587.

556 Conklin, C.A., and Perkins, K.A. (2005). Subjective and reinforcing effects of smoking during
557 negative mood induction. *J Abnorm Psychol* 114, 153-164.

558 Cooney, N.L., Litt, M.D., Morse, P.A., Bauer, L.O., and Gaupp, L. (1997). Alcohol cue
559 reactivity, negative-mood reactivity, and relapse in treated alcoholic men. *J Abnorm
560 Psychol* 106, 243-250.

561 Da Silva, F.C.C., Do Carmo De Oliveira Cito, M., Da Silva, M.I.G., Moura, B.A., De Aquino
562 Neto, M.R., Feitosa, M.L., De Castro Chaves, R., Macedo, D.S., De Vasconcelos,
563 S.M.M., De França Fonteles, M.M., and De Sousa, F.C.F. (2010). Behavioral alterations
564 and pro-oxidant effect of a single ketamine administration to mice. *Brain Research
565 Bulletin* 83, 9-15.

566 Dakwar, E., Hart, C.L., Levin, F.R., Nunes, E.V., and Foltin, R.W. (2017). Cocaine self-
567 administration disrupted by the N-methyl-D-aspartate receptor antagonist ketamine: a
568 randomized, crossover trial. *Molecular Psychiatry* 22, 76-81.

569 Dawson, G.R., and Tricklebank, M.D. (1995). Use of the elevated plus maze in the search for
570 novel anxiolytic agents. *Trends in pharmacological sciences* 16, 33-36.

571 Delfs, J.M., Zhu, Y., Druhan, J.P., and Aston-Jones, G. (2000). Noradrenaline in the ventral
572 forebrain is critical for opiate withdrawal-induced aversion. *Nature* 403, 430-434.

573 Diana, M., Pistis, M., Muntoni, A., and Gessa, G. (1995). Profound decrease of mesolimbic
574 dopaminergic neuronal activity in morphine withdrawn rats. *J Pharmacol Exp Ther* 272,
575 781-785.

576 Diazgranados, N., Ibrahim, L., Brutsche, N.E., Newberg, A., Kronstein, P., Khalife, S.,
577 Kammerer, W.A., Quezado, Z., Luckenbaugh, D.A., Salvadore, G., Machado-Vieira, R.,
578 Manji, H.K., and Zarate, C.A., Jr. (2010). A randomized add-on trial of an N-methyl-D-
579 aspartate antagonist in treatment-resistant bipolar depression. *Arch Gen Psychiatry* 67,
580 793-802.

581 Driesen, N.R., McCarthy, G., Bhagwagar, Z., Bloch, M.H., Calhoun, V.D., D'souza, D.C.,
582 Gueorguieva, R., He, G., Leung, H.C., Ramani, R., Anticevic, A., Suckow, R.F., Morgan,
583 P.T., and Krystal, J.H. (2013). The impact of NMDA receptor blockade on human
584 working memory-related prefrontal function and connectivity. *Neuropsychopharmacology* 38, 2613-2622.

585 Ebert, B., Mikkelsen, S., Thorkildsen, C., and Borgbjerg, F.M. (1997). Norketamine, the main
586 metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex
587 and spinal cord. *Eur J Pharmacol* 333, 99-104.

588 Engin, E., Treit, D., and Dickson, C.T. (2009a). Anxiolytic- and antidepressant-like properties of
589 ketamine in behavioral and neurophysiological animal models. *Neuroscience* 161, 359-
590 369.

591 Engin, E., Treit, D., and Dickson, C.T. (2009b). Anxiolytic- and antidepressant-like properties of
592 ketamine in behavioral and neurophysiological animal models. *Neuroscience* 161, 359-
593 369.

594 Evans, C.J., and Cahill, C.M. (2016). Neurobiology of opioid dependence in creating addiction
595 vulnerability. *F1000Res* 5.

596 Filibeck, U., and Castellano, C. (1980). Strain dependent effects of ketamine on locomotor
597 activity and antinociception in mice. *Pharmacol Biochem Behav* 13, 443-447.

598 Fox, H.C., Bergquist, K.L., Hong, K.I., and Sinha, R. (2007). Stress-induced and alcohol cue-
599 induced craving in recently abstinent alcohol-dependent individuals. *Alcohol Clin Exp
600 Res* 31, 395-403.

601 Fraga, D.B., Olescowicz, G., Moretti, M., Siteneski, A., Tavares, M.K., Azevedo, D., Colla,
602 A.R.S., and Rodrigues, A.L.S. (2018). Anxiolytic effects of ascorbic acid and ketamine in
603 mice. *J Psychiatr Res* 100, 16-23.

604

605 Freet, C.S., Wheeler, R.A., Leuenberger, E., Mosblech, N.A., and Grigson, P.S. (2013). Fischer
606 rats are more sensitive than Lewis rats to the suppressive effects of morphine and the
607 aversive kappa-opioid agonist spiradoline. *Behav Neurosci* 127, 763-770.

608 Fuentealba, J.A., Forray, M.I., and Gysling, K. (2000). Chronic morphine treatment and
609 withdrawal increase extracellular levels of norepinephrine in the rat bed nucleus of the
610 stria terminalis. *J Neurochem* 75, 741-748.

611 Gallego, X., Murtra, P., Zamalloa, T., Canals, J.M., Pineda, J., Amador-Arjona, A., Maldonado,
612 R., and Dierssen, M. (2010). Increased opioid dependence in a mouse model of panic
613 disorder. *Front Behav Neurosci* 3, 60.

614 Ganguly, S., Panetta, J.C., Roberts, J.K., and Schuetz, E.G. (2018). Ketamine Pharmacokinetics
615 and Pharmacodynamics Are Altered by P-Glycoprotein and Breast Cancer Resistance
616 Protein Efflux Transporters in Mice. *Drug Metab Dispos* 46, 1014-1022.

617 Ghoneim, M.M., Hinrichs, J.V., Mewaldt, S.P., and Petersen, R.C. (1985). Ketamine: behavioral
618 effects of subanesthetic doses. *J Clin Psychopharmacol* 5, 70-77.

619 Glue, P., Neehoff, S.M., Medlicott, N.J., Gray, A., Kibby, G., and Mcnaughton, N. (2018).
620 Safety and efficacy of maintenance ketamine treatment in patients with treatment-
621 refractory generalised anxiety and social anxiety disorders. *J Psychopharmacol* 32, 663-
622 667.

623 Gold, M.S., Redmond, D.E., Jr., and Kleber, H.D. (1978). Clonidine blocks acute opiate-
624 withdrawal symptoms. *Lancet* 2, 599-602.

625 Gold, M.S., Redmond, D.E., Jr., and Kleber, H.D. (1979). Noradrenergic hyperactivity in opiate
626 withdrawal supported by clonidine reversal of opiate withdrawal. *Am J Psychiatry* 136,
627 100-102.

628 Goulart, B.K., De Lima, M.N.M., De Farias, C.B., Reolon, G.K., Almeida, V.R., Quevedo, J.,
629 Kapczinski, F., Schröder, N., and Roesler, R. (2010). Ketamine impairs recognition
630 memory consolidation and prevents learning-induced increase in hippocampal brain-
631 derived neurotrophic factor levels. *Neuroscience* 167, 969-973.

632 Gracy, K.N., Dankiewicz, L.A., and Koob, G.F. (2001). Opiate withdrawal-induced fos
633 immunoreactivity in the rat extended amygdala parallels the development of conditioned
634 place aversion. *Neuropsychopharmacology* 24, 152-160.

635 Graziane, N.M., Sun, S., Wright, W.J., Jang, D., Liu, Z., Huang, Y.H., Nestler, E.J., Wang, Y.T.,
636 Schluter, O.M., and Dong, Y. (2016). Opposing mechanisms mediate morphine- and
637 cocaine-induced generation of silent synapses. *Nat Neurosci* 19, 915-925.

638 Gregus, A., Wintink, A.J., Davis, A.C., and Kalynchuk, L.E. (2005). Effect of repeated
639 corticosterone injections and restraint stress on anxiety and depression-like behavior in
640 male rats. *Behav Brain Res* 156, 105-114.

641 Gremel, C.M., Gabriel, K.I., and Cunningham, C.L. (2006). Topiramate does not affect the
642 acquisition or expression of ethanol conditioned place preference in DBA/2J or
643 C57BL/6J mice. *Alcohol Clin Exp Res* 30, 783-790.

644 Grisel, J.E., Bartels, J.L., Allen, S.A., and Turgeon, V.L. (2008). Influence of beta-Endorphin on
645 anxious behavior in mice: interaction with EtOH. *Psychopharmacology (Berl)* 200, 105-
646 115.

647 Haghparast, A., Fatahi, Z., Alamdary, S.Z., Reisi, Z., and Khodagholi, F. (2014). Changes in the
648 Levels of p-ERK, p-CREB, and c-fos in Rat Mesocorticolimbic Dopaminergic System
649 After Morphine-Induced Conditioned Place Preference: The Role of Acute and
650 Subchronic Stress. *Cellular and Molecular Neurobiology* 34, 277-288.

651 Handley, S.L., and Mcblane, J.W. (1993). An assessment of the elevated X-maze for studying
652 anxiety and anxiety-modulating drugs. *Journal of pharmacological and toxicological*
653 *methods* 29, 129-138.

654 Hanse, E., Seth, H., and Riebe, I. (2013). AMPA-silent synapses in brain development and
655 pathology. *Nat Rev Neurosci* 14, 839-850.

656 Harris, J.A., Biersner, R.J., Edwards, D., and Bailey, L.W. (1975). Attention, learning, and
657 personality during ketamine emergence: a pilot study. *Anesth Analg* 54, 169-172.

658 Hearing, M., Graziane, N., Dong, Y., and Thomas, M.J. (2018). Opioid and Psychostimulant
659 Plasticity: Targeting Overlap in Nucleus Accumbens Glutamate Signaling. *Trends*
660 *Pharmacol Sci* 39, 276-294.

661 Heinrichs, S.C., Menzaghi, F., Schulteis, G., Koob, G.F., and Stinus, L. (1995). Suppression of
662 corticotropin-releasing factor in the amygdala attenuates aversive consequences of
663 morphine withdrawal. *Behav Pharmacol* 6, 74-80.

664 Honey, G.D., Honey, R.A., Sharar, S.R., Turner, D.C., Pomarol-Clotet, E., Kumaran, D.,
665 Simons, J.S., Hu, X., Rugg, M.D., Bullmore, E.T., and Fletcher, P.C. (2005). Impairment
666 of specific episodic memory processes by sub-psychotic doses of ketamine: the effects of
667 levels of processing at encoding and of the subsequent retrieval task.
Psychopharmacology (Berl) 181, 445-457.

668 Huston, J.P., Silva, M.A., Topic, B., and Müller, C.P. (2013). What's conditioned in conditioned
669 place preference? *Trends Pharmacol Sci* 34, 162-166.

670 Huys, Q.J.M., Tobler, P.N., Hasler, G., and Flagel, S.B. (2014). "Chapter 3 - The role of
671 learning-related dopamine signals in addiction vulnerability," in *Progress in Brain*
672 *Research*, eds. M. Diana, G. Di Chiara & P. Spano. Elsevier), 31-77.

673 Ibrahim, L., Diazgranados, N., Luckenbaugh, D.A., Machado-Vieira, R., Baumann, J.,
674 Mallinger, A.G., and Zarate, C.A., Jr. (2011). Rapid decrease in depressive symptoms
675 with an N-methyl-d-aspartate antagonist in ECT-resistant major depression. *Prog*
676 *Neuropsychopharmacol Biol Psychiatry* 35, 1155-1159.

677 Ivan Ezquerra-Romano, I., Lawn, W., Krupitsky, E., and Morgan, C.J.A. (2018). Ketamine for
678 the treatment of addiction: Evidence and potential mechanisms. *Neuropharmacology* 142,
679 72-82.

680 Jansen, K. (1989). Near death experience and the NMDA receptor. *BMJ (Clinical research ed.)*
681 298, 1708-1708.

682 Jones, J.L., Mateus, C.F., Malcolm, R.J., Brady, K.T., and Back, S.E. (2018). Efficacy of
683 Ketamine in the Treatment of Substance Use Disorders: A Systematic Review. *Frontiers*
684 *in psychiatry* 9, 277-277.

685 Jonkman, K., Dahan, A., Van De Donk, T., Aarts, L., Niesters, M., and Van Velzen, M. (2017).
686 Ketamine for pain. *F1000Research* 6, F1000 Faculty Rev-1711.

687 Karimi, S., Attarzadeh-Yazdi, G., Yazdi-Ravandi, S., Hesam, S., Azizi, P., Razavi, Y., and
688 Haghparast, A. (2014). Forced swim stress but not exogenous corticosterone could induce
689 the reinstatement of extinguished morphine conditioned place preference in rats:
690 involvement of glucocorticoid receptors in the basolateral amygdala. *Behav Brain Res*
691 264, 43-50.

692 Khorramzadeh, E., and Lotfy, A.O. (1973). The use of ketamine in psychiatry. *Psychosomatics*
693 14, 344-346.

694 Kohrs, R., and Durieux, M.E. (1998). Ketamine: teaching an old drug new tricks. *Anesth Analg*
695 87, 1186-1193.

696

697 Koks, S., Soosaar, A., Voikar, V., Bourin, M., and Vasar, E. (1999). BOC-CCK-4,
698 CCK(B)receptor agonist, antagonizes anxiolytic-like action of morphine in elevated plus-
699 maze. *Neuropeptides* 33, 63-69.

700 Kolp, E., Friedman, H.L., Young, M.S., and Krupitsky, E. (2006). Ketamine Enhanced
701 Psychotherapy: Preliminary Clinical Observations on Its Effectiveness in Treating
702 Alcoholism. *The Humanistic Psychologist* 34, 399-422.

703 Koo, J.W., Lobo, M.K., Chaudhury, D., Labonte, B., Friedman, A., Heller, E., Pena, C.J., Han,
704 M.H., and Nestler, E.J. (2014). Loss of BDNF signaling in D1R-expressing NAc neurons
705 enhances morphine reward by reducing GABA inhibition. *Neuropsychopharmacology*
706 39, 2646-2653.

707 Koob, G.F., and Le Moal, M. (2008). Review. Neurobiological mechanisms for opponent
708 motivational processes in addiction. *Philos Trans R Soc Lond B Biol Sci* 363, 3113-3123.

709 Krupitsky, E., Burakov, A., Romanova, T., Dunaevsky, I., Strassman, R., and Grinenko, A.
710 (2002a). Ketamine psychotherapy for heroin addiction: immediate effects and two-year
711 follow-up. *J Subst Abuse Treat* 23, 273-283.

712 Krupitsky, E., Burakov, A., Romanova, T., Dunaevsky, I., Strassman, R., and Grinenko, A.
713 (2002b). Ketamine psychotherapy for heroin addiction: immediate effects and two-year
714 follow-up. *Journal of Substance Abuse Treatment* 23, 273-283.

715 Krupitsky, E.M., Burakov, A.M., Dunaevsky, I.V., Romanova, T.N., Slavina, T.Y., and
716 Grinenko, A.Y. (2007). Single Versus Repeated Sessions of Ketamine-Assisted
717 Psychotherapy for People with Heroin Dependence. *Journal of Psychoactive Drugs* 39,
718 13-19.

719 Krupitsky, E.M., and Grinenko, A.Y. (1997). Ketamine Psychedelic Therapy (KPT): A Review
720 of the Results of Ten Years of Research. *Journal of Psychoactive Drugs* 29, 165-183.

721 Krystal, J.H., Karper, L.P., Seibyl, J.P., Freeman, G.K., Delaney, R., Bremner, J.D., Heninger,
722 G.R., Bowers, M.B., Jr., and Charney, D.S. (1994). Subanesthetic effects of the
723 noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual,
724 cognitive, and neuroendocrine responses. *Arch Gen Psychiatry* 51, 199-214.

725 Kubota, T., Hirota, K., Yoshida, H., Takahashi, S., Anzawa, N., Ohkawa, H., Kushikata, T., and
726 Matsuki, A. (1999). Effects of sedatives on noradrenaline release from the medial
727 prefrontal cortex in rats. *Psychopharmacology (Berl)* 146, 335-338.

728 Laskowski, K., Stirling, A., Mckay, W.P., and Lim, H.J. (2011). A systematic review of
729 intravenous ketamine for postoperative analgesia. *Can J Anaesth* 58, 911-923.

730 Li, S.X., Shi, J., Epstein, D.H., Wang, X., Zhang, X.L., Bao, Y.P., Zhang, D., Zhang, X.Y.,
731 Kosten, T.R., and Lu, L. (2009). Circadian alteration in neurobiology during 30 days of
732 abstinence in heroin users. *Biol Psychiatry* 65, 905-912.

733 Li, X., Martinez-Lozano Sinues, P., Dallmann, R., Bregy, L., Hollmen, M., Proulx, S., Brown,
734 S.A., Detmar, M., Kohler, M., and Zenobi, R. (2015). Drug Pharmacokinetics
735 Determined by Real-Time Analysis of Mouse Breath. *Angew Chem Int Ed Engl* 54, 7815-
736 7818.

737 Lindholm, J.S.O., Autio, H., Vesa, L., Antila, H., Lindemann, L., Hoener, M.C., Skolnick, P.,
738 Rantamäki, T., and Castrén, E. (2012). The antidepressant-like effects of glutamatergic
739 drugs ketamine and AMPA receptor potentiator LY 451646 are preserved in bdnf+/-
740 heterozygous null mice. *Neuropharmacology* 62, 391-397.

741 Liu, Y., Lin, D., Wu, B., and Zhou, W. (2016). Ketamine abuse potential and use disorder. *Brain*
742 *Research Bulletin* 126, 68-73.

743 Lodge, D., Anis, N.A., and Burton, N.R. (1982). Effects of optical isomers of ketamine on
744 excitation of cat and rat spinal neurones by amino acids and acetylcholine. *Neurosci Lett*
745 29, 281-286.

746 Loix, S., De Kock, M., and Henin, P. (2011). The anti-inflammatory effects of ketamine: state of
747 the art. *Acta Anaesthesiol Belg* 62, 47-58.

748 Louderback, K.M., Wills, T.A., Muglia, L.J., and Winder, D.G. (2013). Knockdown of BNST
749 GluN2B-containing NMDA receptors mimics the actions of ketamine on novelty-induced
750 hypophagia. *Transl Psychiatry* 3, e331.

751 Lu, L., Chen, H., Su, W., Ge, X., Yue, W., Su, F., and Ma, L. (2005). Role of withdrawal in
752 reinstatement of morphine-conditioned place preference. *Psychopharmacology* 181, 90-
753 100.

754 Lydic, R., and Baghdoyan, H.A. (2002). Ketamine and MK-801 decrease acetylcholine release in
755 the pontine reticular formation, slow breathing, and disrupt sleep. *Sleep* 25, 617-622.

756 Maj, M., Turchan, J., Śmiałowska, M., and Przewłocka, B. (2003). Morphine and cocaine
757 influence on CRF biosynthesis in the rat central nucleus of amygdala. *Neuropeptides* 37,
758 105-110.

759 Malhotra, A.K., Pinals, D.A., Weingartner, H., Sirocco, K., Missar, C.D., Pickar, D., and Breier,
760 A. (1996). NMDA receptor function and human cognition: the effects of ketamine in
761 healthy volunteers. *Neuropsychopharmacology* 14, 301-307.

762 Martins, S.S., Fenton, M.C., Keyes, K.M., Blanco, C., Zhu, H., and Storr, C.L. (2012). Mood and
763 anxiety disorders and their association with non-medical prescription opioid use and
764 prescription opioid-use disorder: longitudinal evidence from the National Epidemiologic
765 Study on Alcohol and Related Conditions. *Psychol Med* 42, 1261-1272.

766 Mathew, S.J., Murrough, J.W., Aan Het Rot, M., Collins, K.A., Reich, D.L., and Charney, D.S.
767 (2010). Riluzole for relapse prevention following intravenous ketamine in treatment-
768 resistant depression: a pilot randomized, placebo-controlled continuation trial. *Int J
769 Neuropsychopharmacol* 13, 71-82.

770 Maxwell, C.R., Ehrlichman, R.S., Liang, Y., Trief, D., Kanes, S.J., Karp, J., and Siegel, S.J.
771 (2006). Ketamine produces lasting disruptions in encoding of sensory stimuli. *J
772 Pharmacol Exp Ther* 316, 315-324.

773 McDevitt, D.S., and Graziane, N.M. (2018). Neuronal mechanisms mediating pathological
774 reward-related behaviors: A focus on silent synapses in the nucleus accumbens.
775 *Pharmacol Res* 136, 90-96.

776 McDevitt, D.S., and Graziane, N.M. (2019). Timing of Morphine Administration Differentially
777 Alters Paraventricular Thalamic Neuron Activity. *eNeuro* 6, ENEURO.0377-0319.2019.

778 Middela, S., and Pearce, I. (2011). Ketamine-induced vesicopathy: a literature review. *Int J Clin
779 Pract* 65, 27-30.

780 Miller, D.B., Dougherty, J.A., and Wikler, A. (1979). Interoceptive conditioning through
781 repeated suppression of morphine-abstinence. II. Relapse-testing. *The Pavlovian journal
782 of biological science* 14, 170-176.

783 Moaddel, R., Abdurakhmanova, G., Kozak, J., Jozwiak, K., Toll, L., Jimenez, L., Rosenberg, A.,
784 Tran, T., Xiao, Y., Zarate, C.A., and Wainer, I.W. (2013). Sub-anesthetic concentrations
785 of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in alpha7 nicotinic
786 acetylcholine receptors. *Eur J Pharmacol* 698, 228-234.

787 Morgan, C.J., Mofeez, A., Brandner, B., Bromley, L., and Curran, H.V. (2004). Acute effects of
788 ketamine on memory systems and psychotic symptoms in healthy volunteers.
789 *Neuropsychopharmacology* 29, 208-218.

790 Murrough, J.W., Iosifescu, D.V., Chang, L.C., Al Jundi, R.K., Green, C.E., Perez, A.M., Iqbal,
791 S., Pillemer, S., Foulkes, A., Shah, A., Charney, D.S., and Mathew, S.J. (2013a).
792 Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site
793 randomized controlled trial. *Am J Psychiatry* 170, 1134-1142.

794 Murrough, J.W., Perez, A.M., Pillemer, S., Stern, J., Parides, M.K., Aan Het Rot, M., Collins,
795 K.A., Mathew, S.J., Charney, D.S., and Iosifescu, D.V. (2013b). Rapid and longer-term
796 antidepressant effects of repeated ketamine infusions in treatment-resistant major
797 depression. *Biol Psychiatry* 74, 250-256.

798 Newcomb, M.D., and Bentler, P.M. (1988). Impact of adolescent drug use and social support on
799 problems of young adults: A longitudinal study. *Journal of Abnormal Psychology* 97, 64-
800 75.

801 Newcomer, J.W., Farber, N.B., Jevtovic-Todorovic, V., Selke, G., Melson, A.K., Hershey, T.,
802 Craft, S., and Olney, J.W. (1999). Ketamine-induced NMDA receptor hypofunction as a
803 model of memory impairment and psychosis. *Neuropsychopharmacology* 20, 106-118.

804 O'brien, C.P. (1975). Experimental analysis of conditioning factors in human narcotic addiction.
805 *Pharmacol Rev* 27, 533-543.

806 O'brien, C.P., Childress, A.R., Mclellan, A.T., and Ehrman, R. (1992). Classical conditioning in
807 drug-dependent humans. *Ann N Y Acad Sci* 654, 400-415.

808 O'brien Cp, E.R., Ternes Jw (1986). "Classical conditioning in human opioid dependence.," in
809 *Behavioral analysis of drug dependence*, ed. S.I. Goldberg S. (Orlando, FL: Academic),
810 329-356.

811 Pellow, S., Chopin, P., File, S.E., and Briley, M. (1985a). Validation of open:closed arm entries
812 in an elevated plus-maze as a measure of anxiety in the rat. *J Neurosci Methods* 14, 149-
813 167.

814 Pellow, S., Chopin, P., File, S.E., and Briley, M. (1985b). Validation of open:closed arm entries
815 in an elevated plus-maze as a measure of anxiety in the rat. *Journal of neuroscience*
816 *methods* 14, 149-167.

817 Perkins, K.A., and Grobe, J.E. (1992). Increased desire to smoke during acute stress. *Br J Addict*
818 87, 1037-1040.

819 Pfenninger, E.G., Durieux, M.E., and Himmelseher, S. (2002). Cognitive impairment after small-
820 dose ketamine isomers in comparison to equianalgesic racemic ketamine in human
821 volunteers. *Anesthesiology* 96, 357-366.

822 Ribeiro Do Couto, B., Aguilar, M.A., Manzanedo, C., Rodríguez-Arias, M., Armario, A., and
823 Miñarro, J. (2006). Social stress is as effective as physical stress in reinstating morphine-
824 induced place preference in mice. *Psychopharmacology* 185, 459-470.

825 Robinson, T.E., and Kolb, B. (1999). Morphine alters the structure of neurons in the nucleus
826 accumbens and neocortex of rats. *Synapse* 33, 160-162.

827 Roytblat, L., Talmor, D., Rachinsky, M., Greengberg, L., Pekar, A., Appelbaum, A., Gurman,
828 G.M., Shapira, Y., and Duvdenani, A. (1998). Ketamine attenuates the interleukin-6
829 response after cardiopulmonary bypass. *Anesth Analg* 87, 266-271.

830 Sabino, V., Narayan, A.R., Zeric, T., Steardo, L., and Cottone, P. (2013). mTOR activation is
831 required for the anti-alcohol effect of ketamine, but not memantine, in alcohol-preferring
832 rats. *Behavioural brain research* 247, 9-16.

833 Sasaki, K., Fan, L.W., Tien, L.T., Ma, T., Loh, H.H., and Ho, I.K. (2002). The interaction of
834 morphine and gamma-aminobutyric acid (GABA)ergic systems in anxiolytic behavior:
835 using mu-opioid receptor knockout mice. *Brain Res Bull* 57, 689-694.

836 Scheller, M., Bufler, J., Hertle, I., Schneck, H.J., Franke, C., and Kochs, E. (1996). Ketamine
837 blocks currents through mammalian nicotinic acetylcholine receptor channels by
838 interaction with both the open and the closed state. *Anesth Analg* 83, 830-836.

839 Shadli, S.M., Kawe, T., Martin, D., Mcnaughton, N., Neehoff, S., and Glue, P. (2018). Ketamine
840 Effects on EEG during Therapy of Treatment-Resistant Generalized Anxiety and Social
841 Anxiety. *Int J Neuropsychopharmacol*.

842 Shaham, Y., Rajabi, H., and Stewart, J. (1996). Relapse to heroin-seeking in rats under opioid
843 maintenance: the effects of stress, heroin priming, and withdrawal. *The Journal of
844 neuroscience : the official journal of the Society for Neuroscience* 16, 1957-1963.

845 Shi, J., Li, S.X., Zhang, X.L., Wang, X., Le Foll, B., Zhang, X.Y., Kosten, T.R., and Lu, L.
846 (2009). Time-dependent neuroendocrine alterations and drug craving during the first
847 month of abstinence in heroin addicts. *Am J Drug Alcohol Abuse* 35, 267-272.

848 Shin, I.C., Kim, H.C., Swanson, J., Hong, J.T., and Oh, K.W. (2003). Anxiolytic effects of acute
849 morphine can be modulated by nitric oxide systems. *Pharmacology* 68, 183-189.

850 Silvestre, J.S., Nadal, R., Pallares, M., and Ferre, N. (1997). Acute effects of ketamine in the
851 holeboard, the elevated-plus maze, and the social interaction test in Wistar rats. *Depress
852 Anxiety* 5, 29-33.

853 Sinha, R. (2008). Chronic stress, drug use, and vulnerability to addiction. *Annals of the New York
854 Academy of Sciences* 1141, 105-130.

855 Smith, R.J., and Aston-Jones, G. (2008). Noradrenergic transmission in the extended amygdala:
856 role in increased drug-seeking and relapse during protracted drug abstinence. *Brain Struct
857 Funct* 213, 43-61.

858 Sofia, R.D., and Harakal, J.J. (1975). Evaluation of ketamine HCl for anti-depressant activity.
859 *Arch Int Pharmacodyn Ther* 214, 68-74.

860 Solomon, R.L., and Corbit, J.D. (1978). An Opponent-Process Theory of Motivation. *The
861 American Economic Review* 68, 12-24.

862 Suzuki, T., Kato, H., Aoki, T., Tsuda, M., Narita, M., and Misawa, M. (2000). Effects of the
863 non-competitive NMDA receptor antagonist ketamine on morphine-induced place
864 preference in mice. *Life Sci* 67, 383-389.

865 Taylor, J.H., Landeros-Weisenberger, A., Coughlin, C., Mulqueen, J., Johnson, J.A., Gabriel, D.,
866 Reed, M.O., Jakubovski, E., and Bloch, M.H. (2018). Ketamine for Social Anxiety
867 Disorder: A Randomized, Placebo-Controlled Crossover Trial.
868 *Neuropsychopharmacology* 43, 325-333.

869 Tyler, M.W., Yourish, H.B., Ionescu, D.F., and Haggarty, S.J. (2017). Classics in Chemical
870 Neuroscience: Ketamine. *ACS Chemical Neuroscience* 8, 1122-1134.

871 Tzschentke, T.M. (2007). Measuring reward with the conditioned place preference (CPP)
872 paradigm: update of the last decade. *Addict Biol* 12, 227-462.

873 Wang, J., Fang, Q., Liu, Z., and Lu, L. (2006). Region-specific effects of brain corticotropin-
874 releasing factor receptor type 1 blockade on footshock-stress- or drug-priming-induced
875 reinstatement of morphine conditioned place preference in rats. *Psychopharmacology*
876 185, 19-28.

877 Wang, M., Wong, A.H., and Liu, F. (2012). Interactions between NMDA and dopamine
878 receptors: A potential therapeutic target. *Brain Research* 1476, 154-163.

879 Weisman, H. (1971). Anesthesia for pediatric ophthalmology. *Ann Ophthalmol* 3, 229-232.

880 Wetter, D.W., Smith, S.S., Kenford, S.L., Jorenby, D.E., Fiore, M.C., Hurt, R.D., Offord, K.P.,
881 and Baker, T.B. (1994). Smoking outcome expectancies: factor structure, predictive
882 validity, and discriminant validity. *J Abnorm Psychol* 103, 801-811.

883 Whitaker, Leslie r., Degoulet, M., and Morikawa, H. (2013). Social Deprivation Enhances VTA
884 Synaptic Plasticity and Drug-Induced Contextual Learning. *Neuron* 77, 335-345.

885 Wikler, A. (2013). *Opioid Dependence: Mechanisms and Treatment*. Springer US.

886 Xue, Y.X., Luo, Y.X., Wu, P., Shi, H.S., Xue, L.F., Chen, C., Zhu, W.L., Ding, Z.B., Bao, Y.P.,
887 Shi, J., Epstein, D.H., Shaham, Y., and Lu, L. (2012). A memory retrieval-extinction
888 procedure to prevent drug craving and relapse. *Science* 336, 241-245.

889 Zanos, P., Moaddel, R., Morris, P.J., Georgiou, P., Fischell, J., Elmer, G.I., Alkondon, M., Yuan,
890 P., Pribut, H.J., Singh, N.S., Dossou, K.S.S., Fang, Y., Huang, X.-P., Mayo, C.L.,
891 Wainer, I.W., Albuquerque, E.X., Thompson, S.M., Thomas, C.J., Zarate Jr, C.A., and
892 Gould, T.D. (2016). NMDAR inhibition-independent antidepressant actions of ketamine
893 metabolites. *Nature* 533, 481.

894 Zanos, P., Moaddel, R., Morris, P.J., Riggs, L.M., Highland, J.N., Georgiou, P., Pereira, E.F.R.,
895 Albuquerque, E.X., Thomas, C.J., Zarate, C.A., Jr., and Gould, T.D. (2018). Ketamine
896 and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms.
897 *Pharmacological reviews* 70, 621-660.

898 Zarate, C.A., Jr., Brutsche, N., Laje, G., Luckenbaugh, D.A., Venkata, S.L., Ramamoorthy, A.,
899 Moaddel, R., and Wainer, I.W. (2012). Relationship of ketamine's plasma metabolites
900 with response, diagnosis, and side effects in major depression. *Biol Psychiatry* 72, 331-
901 338.

902 Zarate, C.A., Jr., Singh, J.B., Carlson, P.J., Brutsche, N.E., Ameli, R., Luckenbaugh, D.A.,
903 Charney, D.S., and Manji, H.K. (2006). A randomized trial of an N-methyl-D-aspartate
904 antagonist in treatment-resistant major depression. *Arch Gen Psychiatry* 63, 856-864.

905 Zhai, H., Wu, P., Chen, S., Li, F., Liu, Y., and Lu, L. (2008). Effects of scopolamine and
906 ketamine on reconsolidation of morphine conditioned place preference in rats. *Behav
907 Pharmacol* 19, 211-216.

908 Zhang, L.-M., Zhou, W.-W., Ji, Y.-J., Li, Y., Zhao, N., Chen, H.-X., Xue, R., Mei, X.-G., Zhang,
909 Y.-Z., Wang, H.-L., and Li, Y.-F. (2015). Anxiolytic effects of ketamine in animal
910 models of posttraumatic stress disorder. *Psychopharmacology* 232, 663-672.

911 Zinser, M.C., Baker, T.B., Sherman, J.E., and Cannon, D.S. (1992). Relation between self-
912 reported affect and drug urges and cravings in continuing and withdrawing smokers. *J
913 Abnorm Psychol* 101, 617-629.

914