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ABSTRACT

Microbial growth characteristics have long been used to investigate fundamental questions of
biology. Colony-based high-throughput screens enable parallel fithess estimation of thousands of
individual strains using colony growth as a proxy for fithess. However, fithess estimation is
complicated by spatial biases affecting colony growth, including uneven nutrient distribution, agar
surface irregularities, and batch effects. Analytical methods that have been developed to correct
for these spatial biases rely on the following assumptions: i) that fithess effects are normally
distributed, and ii) that most genetic perturbations lead to minor changes in fitness. Although
reasonable for many applications, these assumptions are not always warranted and can limit the
ability to detect small fitness effects. Beneficial fitness effects, in particular, are notoriously difficult
to detect under these assumptions. Here, we developed the linear interpolation-based detector
(L1 Detector) framework to enable sensitive colony-based screening without making prior
assumptions about the underlying distribution of fithess effects. The LI Detector uses a grid of
reference colonies to assign a relative fithess value to every colony on the plate. We show that
the LI Detector is effective in correcting for spatial biases and equally sensitive towards increase
and decrease in fitness. LI Detector offers a tunable system that allows the user to identify small
fitness effects with unprecedented sensitivity and specificity. LI Detector can be utilized to develop
and refine gene-gene and gene-environment interaction networks of colony-forming organisms,

including yeast, by increasing the range of fitness effects that can be reliably detected.
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INTRODUCTION

Colony-based high-throughput screens (CBHTS) of microbes are increasingly used for basic
science biomedical and industrial research*. These screens involve growing manually or
robotically “pinned” grids of microbial colonies on agar plates and recording colony growth using
imagery. The images are computationally analyzed to generate a quantitative output of colony
size, which is used as a proxy for the organism’s fitness. The wide availability of tools to conduct
and analyze CBHTS, combined with the growing number of artificial gene constructs for microbial
model organisms, has provided a large-scale controlled approach to experimentally determine
the effects of genetic and environmental perturbations on the fitness of an organism. CBHTS have
been used to explore genetic interactions®®, protein-protein interactions’®, chemical-genetic

interactions!®2, and microbial pathogenicity®.

CBHTS fast track discovery thanks to the scale at which they are performed. However, spatial
biases like edge effects'*!5, local competition!®>1, batch effects!>'’, source plate memory*4, light
artifacts!®1®, agar surface nutrient heterogeneity#*® and humidity?, all lead to undesired colony
size differences that are not relevant to the biological question being investigated
(Supplementary Fig. S1). These spatial biases need to be corrected before making any
biological inferences. The extent of spatial bias is difficult to predict a priori, making its
identification and correction a substantial computational challenge?’. A variety of existing tools
implement normalization algorithms to correct for spatial biases, including the HT colony grid
analyzer?!, Colonyzer!®, ScreenMill'®, ScanLag?, SGATools®, Balony*®, Scan-o-matic*, and

MATLAB Colony Analyzer Toolkit (MCAT)!* (Supplementary Table S1).

Most of the existing tools rely on the following assumptions about the distribution of fithess effects

(DFE): that the colony sizes in an experiment are normally distributed and that genetic
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manipulations rarely cause significant fitness deviation from wildtype'®. These assumptions can
be violated in experiments with biased sets of mutants!’?*, or when experimental conditions
produce a high variance in the DFEY. Even in unbiased genome-scale screens, the assumption
of normal distribution is usually violated due to a skew towards negative fitness effects®>%’. As a
result, while existing methods can reliably detect large changes in fitness, they are less sensitive
in detecting small effects which are difficult to differentiate from noise. This difficulty in detecting
small fitness effects is especially pronounced for small increases in fitness. Overall, methods that
rely on strict assumptions about the underlying DFE reduce the power of CBHTSs for broader

scientific inquiry.

Here, we present the linear interpolation-based detector (LI Detector or LID), a CBHTS framework
designed to avoid making any a priori assumptions about the underlying DFE. This two-patrt,
experimental, and analytical framework utilizes a reference colony grid on every plate of the
experiment to predict and correct for spatial biases. The reference grid is an isogenic population
of colonies that are evenly distributed over the agar surface to act as internal local controls®2,
Our results show that the LI Detector’s reference colony based linear interpolant can successfully
control for spatial bias. LI Detector is a tunable system that can provide the users with the ability
to identify 5% or lower fitness effects with very high specificity and sensitivity. LI Detector performs
as well as a popular existing method (MCAT?4) when the underlying DFE is normal, and better

when that is not the case.
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95 RESULTS

Development of a new CBHTS framework
The LI Detector framework is specifically designed to correct spatial bias and sensitively detect
small but significant fithess changes without making a priori assumptions about the underlying
100 DFE of tested strains (thereafter, “mutant” strains). The experimental pipeline (Fig. 1A) follows a
pin-copy-upscale protocol that serves two purposes. It reduces colony size differences that arise
during the pinning process and adds a reference colony grid?® on every plate. The analytical
pipeline utilizes the reference colony grid to correct spatial bias and infer the fitness of mutant
strains relative to the reference strain. The analytical pipeline (Fig. 1B) consists of five main steps:
105 1) local artifact correction, 2) source normalization, 3) reference strain based background colony
size estimation using a 2-dimensional linear interpolant, 4) estimation of spatially-corrected
relative fitness as the ratio of the local artifact corrected colony sizes divided by the estimated
background colony sizes, and 5) empirical hypothesis testing to identify mutant strains with colony

size distributions that have a significantly larger or smaller mean than the reference strain.
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Figure 1. The LI Detector framework consists of integrated experimental and analytical pipelines. A. The
pin-copy-upscale experimental pipeline from frozen glycerol stocks (top) to imaging (bottom). Each box
represents a pinning step, and the steps within the sky-blue highlighted portion can be repeated until the
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desired colony density is reached. lllustrations to the right of the flowchart is a simplified representation of
115  four experimental plates. A reference population (grey) is introduced on every plate during the first upscale
step. The analytical pipeline uses this population for spatial bias correction and relative fitness estimations
for the mutant strains of interest (purple). B. Workflow of the analysis pipeline where columns from left to
right represent user inputs, analytical steps, and outputs. User inputs consist of raw colony size estimates
and the strain layout of the plates. The analytical pipeline performs: i) local artifact correction, ii) source
120 normalization, iii) reference-based background colony size estimation using a 2-dimensional linear
interpolation, iv) corrects for spatial bias by dividing the local artifact corrected colony sizes with the
background colony sizes and provides a measure of relative fitness, and iv) assighs empirical p-values
using the reference strain relative fitness distribution. The outputs include local artifact corrected colony
sizes, background colony sizes, spatially corrected relative fithess, and mutant strains identified as having
125 a mean colony size that is significantly larger or smaller than the reference strain.

The local artifact correction step is designed to reduce spatially localized colony size differences
that arise due to differential access to nutrients. It is similar to the competition correction feature
implemented by several existing methods!>. The source normalization step controls for

130 differences in colony sizes that occur as a result of the upscaling process. This step was
reimplemented from the interleaving feature of MCAT**. Briefly, it deconstructs the colony size
estimates of the higher density plates into subsets corresponding to the source plates used for
the upscaling (Supplementary Fig. S2). Both local artifact correction and source normalization
are provided as optional steps in the LI Detector analytical pipeline.

135
The background colony size estimation step predicts what the size that a reference colony would
be for every position of the plate. This step employs a 2-dimensional linear interpolant based on
the reference colony grid. Relative fitness is then assigned to every colony as a ratio of the local
artifact corrected colony size to the predicted background colony size. This estimate of relative

140 fitness corrects local spatial bias without making any assumptions of the underlying DFE. The
only assumption is that, for any location on the plate, the spatial bias is expected to affect the

reference and mutant colonies to an equal extent.
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Each mutant strain is assigned a relative fithess value corresponding to the average relative

145  fitness of its replicate colonies. The distribution of relative fithess estimates for the reference strain
is then used as null distribution to calculate empirical p-values describing the probability of the
reference strain having a more extreme value of relative fitness than the mutant strain. The
empirical p-values are used to determine the significance of the mutant strain fitness deviation
from the reference strain (see Materials and Methods).

150
In what follows, we compare the performance of LI Detector with one of the most versatile and
robust tools available for correcting spatial bias, MCAT. The overall workflow adopted for testing
the two methods’ performance is described in Table 1 and Supplementary Figure S3. In brief,
we estimated the specificity and sensitivity of the LI Detector and MCAT using colony size

155 datasets generated using an isogenic population of S. cerevisiae (see Materials and Methods).
A subset of colonies was mocked as references, and the rest were mocked as mutants. The LI
Detector and MCAT spatial bias correction was applied independently. For consistency, our
empirical p-value calculation strategy was used for the two methods. The mutant strains were
classified into beneficial, deleterious, or neutral phenotypes depending on whether their relative

160 fitness was significantly higher, significantly lower, or unchanged compared to the reference

distribution.
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Table 1 Empirical Strategy for Performance Evaluation

Test Time of Colony | Colony Size Expected Performance
Dataset Size Data Distribution Phenotype Measure
Condition _ . .
Negative tr =tm Uniform Neutral Specificity

tr > tm Deleterious

Bimodal

Condition tr < tm Beneficial
Positive Sensitivity
(Virtual Plates) Deleterious

tw = tr >ty Random Neutral

Beneficial

tr = Reference colony size time, tv = Mutant colony size time

165 The testing space consists of a condition negative and condition positive datasets. The colony size datasets
are generated using an isogenic population of S. cerevisiae grown on four 6144-density agar plates (see
Materials and Methods). These plates were imaged at eleven time points from pinning to saturation. A
subset of colonies on the plates were mocked as references, and the rest were mocked as mutants. This
dataset was considered condition negative, as the reference and mutant colonies: i) are isogenic, and ii)

170  grown to the same time point. The condition positive dataset was made up of virtual plates created by
combining reference and mutant colony size data from different time points, so that the DFE is either
bimodal or random. These datasets are used to measure the ability of the LI Detector to observe a variety
of fitness effects. tr represents the reference colony size time, and tv the mutant colony size time.

175  Construction of condition negative and positive datasets for performance evaluation
To evaluate the performance of the LI Detector, we constructed datasets where the underlying
DFE was known, but colony sizes were realistically affected by spatial biases and other technical
artifacts of CBHTS (Fig. 2A). To this end, we applied the pin-copy-upscale experimental pipeline
of our framework (Fig. 1A), starting with four 384-well glycerol stock plates, each containing

180 replicate frozen cultures of the same strain (FY42°). This procedure generated four 6144-density
agar plates containing 16 replicate colonies for each culture in the starting glycerol stock plates
(see Materials and Methods). The sizes of these colonies were measured at eleven time points
while they grew to saturation (Fig. 2B). The colonies originating from one of the glycerol stock
plates were treated as reference, and the rest were treated as mutants.

185
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To estimate specificity, we assembled a “condition negative” dataset consisting of colony size
measurements of our plates at eleven time points. None of the mutants in this dataset should be
significantly larger (beneficial) or smaller (deleterious) than the references (Fig. 2B). We then
assembled two artificial “condition positive” datasets consisting of “virtual plates” that we used to
190 evaluate the sensitivity of the LI Detector (Fig. 2C-D). These virtual plates were constructed so
that the underlying DFE would be known and readily comparable to the LI Detector and MCAT
results. The first condition positive set combined colony size estimates of the mock references
and mutants from two different time points, resulting in virtual plates with bimodal colony size
distributions: a reference distribution, and a mutant distribution with a smaller or larger mean
195 (Supplementary Fig. S4). The fitness effect was measured as the difference in the mean colony
sizes of the two distributions as a percentage of the reference distribution mean colony size (Fig.
2C). Doing this allowed us to evaluate sensitivity for a broad range of fitness effects. The second
condition positive set combined the reference distribution from a single time point with mutant
colony sizes from randomly chosen time points, resulting in virtual plates with random DFE (Fig.
200 2D). The random DFE allowed us to estimate sensitivity when the traditional assumptions used
for spatial bias correction are unwarranted. It is important to note that all virtual plates retain

realistic spatial biases in colony sizes because they maintain the original plate layout.

We leveraged the condition negative and positive datasets to compare the performance of LI
205  Detector (LID), LI Detector without source normalization (LID-SN), and LI Detector without local
artifact correction (LID-AC) with that of MCAT**. We also used a random generator (RND) to
assign background colony sizes by only taking the global colony size distribution of the reference
population into account. Lastly, the observed colony sizes were used as-is, as “fithess” estimates

to generate phenotype results when no normalization (NO NORM) was done on the datasets.

10
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Figure 2. Condition negative and positive datasets used for performance evaluation. A. lllustration of the
condition positive and negative datasets described in Table 1. The squares represent plates, and the circles
within them represent colonies. The reference colonies are colored as grey and the mutant colonies as
purple. The middle row represents the condition negative dataset shown as a single plate at three different
215 time points. There were 44 plates in this dataset. The top row shows two virtual plates made by combining
reference colony size data from one time point with mutant colony size data from another. These virtual
plates had a bimodal colony size distribution. There were 440 such virtual plates. The bottom row shows
two virtual plates where the reference colony size data taken from one time point is combined with mutant
colony size data randomly selected from any time point. These virtual plates had a random colony size
220  distribution. There were 44 such virtual plates. All virtual plates maintain the same spatial layout of colonies
as the condition negative dataset, as is shown by the arrows. tr is reference colony size time, and tw is
mutant colony size time. B. Reference and mutant population colony size density plots from the condition
negative dataset. Vertical black lines within the density plots represent the lower, middle, and upper quartile.
All mutants are expected to have a neutral phenotype. C. Fitness effect matrix of the condition positive
225  virtual plates with bimodal colony size distribution. Mutant (tm) and reference colony size time (ir) is
represented on the x-axis and y-axis, respectively. The fitness effect was calculated as the difference in

11
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mutant and reference mean colony sizes as a percentage of the reference mean colony size
(Supplementary Fig. S4). This dataset was used to calculate the sensitivity of the LI Detector as a function
of the fitness effect. D. Reference and mutant population colony size density plots from the condition positive

230 virtual plates with random colony size distribution. Vertical black lines within the density plots represent the
lower, middle, and upper quartile. Mutant strains could be beneficial, deleterious, or neutral. These virtual
plates were used to evaluate LI Detector's sensitivity in situations where a priori assumptions of fithess are
challenging to make.

235 LI Detector can accurately estimate background colony sizes and eliminate spatial bias
In our condition negative data set, variation in colony sizes should only stem from the natural
biological variation expected for an isogenic population and from the spatial bias. Hence, the
fithess estimates obtained after spatial bias removal should only reflect biological variability and
the added noise from the bias removal process. We measured the coefficient of variance

240 percentage (CV%) of the colony sizes and fithess estimates for images taken at multiple time
points (see Materials and Methods). LID, LID-AC, and MCAT showed a significant reduction
in CV% compared to NO-NORM, while LID-SN did not (Supplementary Fig. S5A). This finding
indicates that the LI Detector can reduce spatial bias and confirms that source-normalization plays
a vital role in doing so*.

245  The LI Detector's ability to remove spatial bias depends on the accuracy with which it can estimate
background colony sizes using the reference population colony sizes. We used the root mean
square error (RMSE) between background and observed colony sizes as a percentage of the
mean observed colony size to measure this. LID, LID-AC, and MCAT* RMSE% were
indistinguishable for the higher time points when the colonies begin to saturate (Supplementary

250 Fig. S5b). RMSE% for LID-SN was significantly higher than LID (p = 0.00019, Wilcoxon rank-sum
test), again indicating the importance of performing source-normalization (Supplementary Fig.
S5c¢). All methods performed better than RND. Overall, these findings show the LI Detector
performs as well as MCAT in eliminating spatial biases by integrating both global and local
spatial contexts.

255

12
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LI Detector identifies small fitness effects with high specificity and sensitivity

To evaluate the LI Detector’s ability to detect neutral, beneficial, and deleterious fitness effects,

we estimated its specificity and sensitivity using our condition negative and positive datasets,

respectively (Table 1, Fig. 2). Specificity was calculated as the proportion of mutant strains that
260  were correctly classified as neutral using our condition negative dataset (Fig. 2B). LID's specificity

was above 98% for an empirical p-value cut off of 0.05 and remained above 95% when that cut-

off was increased to an empirical p-value of 0.1. For comparison, MCAT** showed a maximum

specificity of 94.5% for an empirical p-value cut off of 0.05 using the same dataset (Fig. 3A).

265  Sensitivity was estimated as the proportion of mock mutant strains correctly classified as either
beneficial or deleterious at a false positive rate of 5% using our condition positive dataset with
bimodal fitness distribution (Fig. 2C, Supplementary Fig. S4). LID’s sensitivity was higher than
95% for beneficial and deleterious fitness effects of 5%, reaching 100% for fitness effects of about
7% (Fig. 3B). These findings show that LID is highly sensitive in observing small fitness effects;

270 notably, it is equally sensitive to increases and decreases in fitness. This result depended on the
fitness estimation strategy, with LID performing significantly better than LID-AC, LID-SN, and NO-
NORM (Supplementary Fig. S6). We also performed the same analysis using MCAT4. MCAT*
was 80% sensitive in detecting 5% fithess decreases, and only 40% sensitive when it came to
5% fitness increases (Fig. 3C). We hypothesize that MCAT’s lower sensitivity stems from its use

275 of a local window of surrounding mutants rather than a reference colony grid to estimate
background colony size. These results show that the LI Detector displays improved sensitivity,

remarkably so for beneficial effects, for the same specificity as MCAT.

13
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280  Figure 3. The LI Detector has high specificity and sensitivity. A. Average specificity (solid colored line) and
standard error (gray region) at various empirical p-value cut-offs for LID (blue) and MCAT™ (green).
Empirical p-values (x-axis) calculated using the reference strain relative fitness distribution (see Materials
and Methods). Specificity (y-axis) was estimated using the condition negative dataset as the proportion of
mutants classified as neutral (see Materials and Methods). B. LID phenotype classification results from the

285 virtual plates with bimodal distribution are arranged according to increasing fitness effects. Here, the fitness
effect is the mean mutant and mean reference colony size difference as a percentage of the reference
colony size for each virtual plate. Sensitivity is calculated as the proportion of mutants correctly identified
as significantly different (beneficial or deleterious) than the reference for each fitness effect value. The
dotted red line indicates a 5% fitness effect. A 5% false positive rate was maintained while generating these

290  results. C. MCAT™ phenotype classification results from the same data as B.

LI Detector maintains high sensitivity when the DFE is random
We designed the LI Detector to be highly sensitive regardless of the underlying DFE. To evaluate
295 LI Detector's performance when the underlying DFE is random, we used our condition positive

data set made of forty-four virtual plates with random colony size distribution (Fig. 2D). The forty-
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four plates combined contained 41.60% beneficial and 50.26% deleterious mutants with sixteen
replicate colonies of each (Fig. 4A). We found that LID was 98.93% sensitive, successfully
identifying 98.65% of beneficial and 99.20% of deleterious mutants (Fig. 4B). In comparison,
300 MCAT* was 83.08% sensitive and successful in identifying 82.76% of beneficial and 83.40% of
deleterious mutants (Fig. 4C). The false positive rate was maintained at 5% for both methods.
Virtual plate-wise phenotype classification results show that the actual classification (Fig. 4D) is
better captured by LID (Fig. 4E) and that MCAT?, in general, had more false negatives (Fig. 4F).
LID's neutral calls were mostly limited to fitness effects of 5% or smaller, whereas MCAT?* neutral
305 calls covered a wider range of fitness effects (Fig. 4G-1). That MCAT!* was considerably less
sensitive than LID in this scenario was not surprising, since a random underlying distribution of

fitness effects violates the assumptions of MCAT** and other existing methods.
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Figure 4. The LI Detector maintains high sensitivity even when the underlying DFE is random. A. The actual
classification of the mutants in the random DFE condition positive dataset, per construction, with 41.60%
beneficial, 50.26% deleterious, and 8.14% neutral. B. and C. show the classification results from LID and
MCAT™, respectively. D-F. Bar graphs showing D. actual, E. LID, and F. MCAT™ classification of mutants
for each virtual plate with random DFE. The virtual plates are arranged according to their reference colony
time point. G-I. Bar graph of pooled results from all plates arranged according to the fithess effects for the
G. actual classification, H. LID and I. MCAT". Each bar has a width of 10%. False positive rate was
maintained at 5% for both LID and MCAT' in these analyses.
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The LI Detector’s sensitivity increases with an increasing number of references and
replicates
LI Detector’s superior performance comes at the cost of having to integrate a reference colony
325 grid, and therefore use a higher number of plates to screen the same number of mutant colonies.
We analyzed how the number of references per plate and the number of replicates per strain
affected LID’s sensitivity. To do this, we computationally masked portions of the reference colony
grid and replicates, and then reanalyzed the virtual plates with bimodal and random DFE in our
condition positive dataset (see Materials and Methods). We observed that LID’s sensitivity in
330 detecting 5% fitness effects increased in proportion to the number of reference colonies per plate,
as well as to the number of replicates per strain in both sets of virtual plates (Fig. 5).
Unsurprisingly, sensitivity was higher for detecting a fithess effect of 7% (Supplementary Fig.
S7A). Increasing the number of replicates was most powerful when there were more references
on the plate (Supplementary Fig. S7B). In general, the sensitivity was higher in the virtual plates
335  with bimodal than random DFE (Fig. 5). These observations are consistent with the finding that
RMSE% is inversely related to the number of reference colonies per plate (Supplementary Fig.
S8). On the other hand, LID’s specificity was consistently above 95%, independent of the fithess
estimation strategy (see Materials and Methods), the proportion of references per plate, and the
number of replicates per mutant strain (Supplementary Fig. S9). The LI Detector users may
340 choose the number of references and replicates adequate for their purposes as a function of the

fithess effects they expect to observe and the sensitivity they aim to achieve.
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Figure 5. Sensitivity is directly related to the number of references and replicates. Sensitivity for observing

345 5% fitness effects, as a function of the varying proportion of references per plate (individual panels) and the
number of replicates per strain (x-axis) was estimated for virtual plates with bimodal (purple) and random
(orange) colony size distribution. Error bars represent a single standard deviation.
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DISCUSSION

350 LI Detector is a CBHTS framework (Fig. 1) that generates reliable and well-resolved fitness
estimations without being dependent on a priori assumptions of the DFE (Fig. 3A-B, Fig. 4B, E,
H). LI Detector is specifically designed to observe small deleterious and beneficial changes in
fithess (Fig. 3B). Therefore, it is a valuable method for improving the current gene-gene, gene-
environment and protein-protein interaction networks for colony-forming-microorganisms.

355
Existing spatial bias correction methods work best in unbiased genome-wide studies with a large
number of plates and mutants!’. While alternate methods have been developed to increase
sensitivity at the small scale level?, LI Detector provides a flexible approach that can be applied
to CBHTS independent of their scale and of the choice of strains to screen. For example, LI

360 Detector can be used as efficiently for a highly biased screen of non-synonymous mutations in a
single gene to identify important residues®-3®, or for a genome-wide synthetic genetic array used
to infer genetic interactions®3"%°, This freedom of experimental design expands the applicability

of CBHTS for broader scientific inquiry.

365 We show that LI Detector has the power to uncover significant fitness effects as small as 5% with
95% sensitivity when 25% of the plate is dedicated to reference colonies and mutant strains are
represented by 16 replicates colonies (Fig. 3b, Fig. 5). Smaller fithess effects can be observed
with comparable sensitivity by increasing the number of replicates per strain (Supplementary
Fig. S7A). Existing methods, like MCAT4, also provide quantitative output of fitness with high

370 resolution; however, without a reference grid and proper spatial bias correction, one cannot
statistically determine if the small effects are meaningful. LI Detector’s ability to detect small
increases in fitness, in particular, makes it a favorable method to examine gain-of-function

mutations, questions of evolutionary biology, and pharmacological screens of adaptation and
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resistancel®284148 The unprecedented sensitivity of LI Detector augments the discovery potential

375 of CBHTS.

A caveat of LI Detector is that a portion of the colony positions on the plates is sacrificed for
reference colonies that could otherwise be used for mutants. Consequently, this increases the
overall resources required for the experiment, including media, number of plates, storage space,
380 pinning time, and imaging time. We have shown that LI Detector’s accuracy in predicting
background colony sizes and its sensitivity in detecting small fitness effects is directly related to
the proportion of reference colonies on a plate (Fig. 5). However, the proportion of references per
plate and the number of replicates per strain can be tunable according to the user’s requirement.
It must be noted that the cost of reducing the number of references is lower for detecting more
385 substantial fithess effects. For example, sacrificing 12.5% of the plate for reference colonies
instead of 25% has almost no detriment to detecting 7% fithess effects (Fig. 5, Supplementary
Fig. S7a). A higher number of references and replicates can be used if the goal is to look for
minute changes in fitness, as are frequently observed with the deletion of non-essential genes or
minor changes to the coding sequence of a given gene. Alternatively, fewer references and
390 replicates may be used where larger fitness effects are expected or desired, such as finding the
most drug-resistant mutant. That said, users interested in large fitness effects exclusively may
use existing methods like MCAT instead of the LI Detector to save resources, as long as a priori

assumptions of the DFE are reasonable to make.

395 In summary, the LI Detector framework experimentally introduces a reference population grid on
plates whose colony size estimates are used to correct for spatial bias independently of the
underlying DFE. It has the potential to expand the utility of CBHTS by making them independent
of scale, sensitive towards small fithess effects, and equally sensitive in detecting increases and

decreases in fitness. Although developed and validated using S. cerevisiae, it can be applied to
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400 any colony-forming-microorganisms, including clinically relevant isolates, as long as they can be

grown in the laboratory.
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MATERIALS AND METHODS

Validation experiment using an isogenic population
405 A method validation experiment was conducted using an isogenic population that was mocked as
either references or mutants.

Yeast strain, medium and robotic equipment

A previously characterized prototrophic S. cerevisiae strain in the S288C background, FY42°, was
used to conduct experiments in YPD medium (1% w/v yeast extract, 2% w/v peptone, 2% wi/v

410 dextrose, and 2% agar in the case of solid medium). A single colony of FY42?° selected from a
streak out was used to inoculate liquid YPD medium and grown overnight at 30°C. This culture
was used to create four 384-well glycerol stocks with wells containing 18uL of 50% glycerol and
42uL of culture media. Two to five wells in each stock were left empty to create gaps in the colony
grid when pinned on solid medium. The stocks were stored at -80°C before use. The benchtop

415 RoToR HDA robotic plate handler (Singer Instruments Co Ltd, Roadwater, UK) was used for plate
to plate cell transfer.

Pin-copy-upscale

The LI Detector experimental pipeline follows a pin-copy-upscale protocol when starting from
frozen glycerol stocks. The copy-upscale steps are repeated until the desired colony density is
420 reached (Fig. 1A). The four glycerol stock plates were pinned at 384-density to generate working
copy agar plates. This process was performed using the RoToR HDA robot with default settings
(Supplementary Table S2). The working copies were incubated at 30°C for 60 hours to reach
saturation. These were then copied 1-to-1 to make transition plates (#1) using default RoToR
HDA settings (Supplementary Table S2) and incubated at 30°C for 48 hours. Distinct
425  combinations of the four transition plates (#1) were then condensed to make four 1536-density

upscale plates (#1) using default RoToR HDA settings (Supplementary Table S2). The distinct
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combinations ensure that colony grids from each plate occupy different positions on the four
higher-density plates. The upscale plates (#1) were incubated at 30°C for 30 hours, after which
they were copied 1-to-1 to transition plates (#2) using custom RoToR HDA settings
430 (Supplementary Table S2). The overshoot setting value at the target plate was increased to
compensate for the agar surface's unevenness and the smaller pin size of the higher density pin
pads. These plates were incubated at 30°C for 30 hours. Four upscale plates (#2) were then
made by condensing the four transition plates (#2) in distinct combinations using default RoToR
HDA settings (Supplementary Table S2). These were incubated at 30°C until they reached
435 saturation and imaged at the following eleven time points: 1.0, 1.4, 2.9,4.0,4.9,6.1, 6.9, 7.8, 9.0,
10.0, 11.0 hours. All images are available at

https://pitt.box.com/s/xbchjoad4ta30q2950g4avfypjrqz7pog.

For the purposes of evaluating the performance of LI Detector, colonies originating from a random
440  working copy were mocked as reference strains, while the colonies from the other three working
copies were mocked as mutant strains. In the upscale plates (#2) used for our analyses, 1/4™ of
all colonies correspond to references, and the rest are treated as mutants. These plates had 16
technical replicates for every colony that was present in the working copy. Supplementary Figure
S10 provides a simplified visual representation of the plates at all pinning stages.
445
Colony size estimation
Raw estimates of colony sizes are an input to the LI Detector framework (Fig. 1B) and can be
obtained in the user’'s manner of choice. Here, a custom-made lightbox with an overhead camera
mount was built to acquire high-resolution images using a commercially available SLR camera
450 (18Mpixel Rebel T6, Canon USA Inc., Melville, NY, USA). The 6144-density upscale plates (#2)
were imaged at eleven time points beginning right after pinning until the colonies reached

saturation, around 11 hours later. Saturation was determined as the point at which the colonies
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would touch each other if the plates were incubated for any longer. The images were analyzed in
bulk using the “analyze_directory_of_images()” function of the MATLAB Colony Analyzer Toolkit
455 (MCAT)™ with the default threshold parameter (1.25) to provide colony size estimations

(https://github.com/sauriiiin/lidetector/blob/master/imageanalyzer.m). The output files containing

colony size information along with the images is available at

https://pitt.box.com/s/xbchjoad4ta30q2950g4avfypjrqz7poq.

460 Spatially cognizant colony size database
A unique position identifier (pos) was given to every possible colony position across the different
plates of the experiment. Each pos was linked to plate density, plate number, column number,
row number and stored in a “position to coordinate” table (pos2coor). A “position to mutant name”
table (pos2orf_name) was used to store information on which colony position was occupied by

465  which mutant. The colony size estimations, along with the pos2coor table, were used to store the
colony sizes in a spatially cognizant manner. Supplementary Figure S10 is a visual
representation of the plate maps made using the pos2coor and pos2orf_name tables. The
colonies’ spatial layout and identity are an input to the LI Detector framework (Fig. 1B) and should
be provided in this format by users. The format, along with the data collected for this manuscript,

470 is available at https://github.com/sauriiiin/lidetector.

LI Detector analytical pipeline
The LI Detector analytical pipeline (Fig. 1B,

https://github.com/sauriiiin/lidetector/blob/master/lid.m) is designed to make fitness assessments

475  using local reference colony information.

Border colony removal

Border colonies tend to grow larger because of increased access to nutrients4123, To remove

this artifact, we ignore colony size estimations of one, two, and four border rows and columns
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from 384, 1536, and 6144-density plates, respectively. Doing this resulted in 4864 colonies for
480 304 mock references and 14576 colonies for 911 mock mutants across four 6144-density plates.

All further analysis is done using this set.

Local artifact correction (AC)

Local artifact correction is inspired by the “competition correction” feature present in existing

485  tools'™'®. An “artifact score” is assigned to every colony on a plate as a ratio of its colony size
compared to its current and past neighbors. The current neighbors are a colony’s eightimmediate
neighbor colonies, and the past neighbors are eight neighboring colonies that were pinned from
the same source plate. The reference population’s artifact scores are used to determine outliers,
defined as two median adjusted deviations or more from the median. Outliers are defined as

490 colonies growing disproportionately big or small as compared to their neighboring colonies.
Outliers that occur as a localized group of three or more neighbors of both big and small colonies
are considered for correction. The less abundant outlier in the group is expected to have driven
the phenotype. For example, a single small or dead colony would increase the relative access to
nutrients for all its neighbors, which would all be expected to grow bigger than usual and vice-

495  versa. Raw colony sizes of all the driver’'s immediate neighbors are median normalized using the
median reference population colony size for the plate. Users have the option to skip this
correction.

Source normalization (SN)

LI Detector uses a source-based computational deconstruction of high-density plates into their
500 four lower-density sources to correct the source-related colony size differences introduced during
the upscaling process (Supplementary Fig. S2). This correction is a reimplementation of MCAT’s
interleave filter'*. Each source-deconstruct is individually normalized in the later steps, making it

necessary for the penultimate density plates to have a reference population grid. Users have the
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option to skip this correction, although we strongly recommend against skipping if upscales are
505 performed.

Reference-based normalization

A two-dimensional linear interpolant is applied to the reference population grid to estimate
expected colony sizes on the entire colony grid. This reference colony based estimated colony
size is referred to as the “background colony size.” The background colony sizes represent the
510 predicted reference colony growth on every position of the grid conditioned upon the spatial
context. Relative fithess is estimated as the ratio of the local artifact corrected colony size to the

background colony size, thus controlling for spatial context.

Different strategies for fitness estimation
515 The LI Detector analytical pipeline is applied to colony size estimates to control for spatial bias
and measure relative fitness as described above. The analytical pipeline is used as-is (LID),
without local artifact correction (LID-AC), and without source-normalization (LID-SN) to measure
the impact of these components on the downstream analysis. Raw observed colony size
estimates were also used as “fitness” measurements without performing any normalization (NO-
520 NORM). Fitness estimates were also made using the MCAT’s* SpatialMedian normalization with

window size nine along with the Interleave filter (https://github.com/sauriiiin/sau-matlab-

toolkit/blob/master/image2resBEAN.m).

Measuring spatial bias and the accuracy of background colony size

525  The coefficient of variance of fithness and colony size estimations was used to measure the impact
of spatial bias in colony sizes of an isogenic population (Supplementary Fig. S5A). Ten random
observations were picked, with replacement, 2000 times to measure the coefficient of variance
as a percentage of the mean (CV%). CV% distributions for LID, LID-AC, LID-SN, MCAT*, and

NO-NORM were compared using the Wilcoxon rank-sum test.
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530 The accuracy of background colony size was measured using root mean square error (RMSE)
estimation as a percentage of the average observed colony size (Supplementary Fig. S5B). A
random colony size predictor (RND) was used as a null model for background colony size
prediction. The RND generated random colony sizes from a normal distribution, with the rnorm
function in R*° using the mean and standard deviation of observed colony sizes. The Wilcoxon

535  rank-sum test was used to compare RMSE results from LID, LID-AC, LID-SN, MCAT?!4, and RND.

Calculating significant fitness changes and assigning phenotypes

The relative fitness of each strain was measured as the mean of estimated relative fithess among

its replicates. This measurement was done after removing the outlier observations based on three
540 median adjusted deviations. The reference strain relative fithess distribution was used as a null

distribution for hypothesis testing, as the reference strains are isogenic, and no real fitness

differences are expected. An empirical p-value was estimated for all mutant strains based on

where they fall relative to this null distribution

(https://github.com/sauriiiin/lidetector/blob/master/lid.m). For example, an empirical p-value of

545  0.05 or below would mean that the mutant’s relative fitness is in the top or the bottom 2.5™
percentile of the reference fitness distribution. The phenotype of mutant strains significantly
different from the reference population is classified as “beneficial” or “deleterious,” depending on
whether its estimated relative fithess is above or below 1. The remaining mutant strains that do
not have a significant change in fitness are classified as having a “neutral” phenotype.

550
Empirical strategy for performance evaluation
An empirical strategy was devised to thoroughly examine the LI Detector’'s performance. A
condition negative and positive dataset were created to estimate specificity and sensitivity,

respectively (Table 1, Fig. 2A).
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555  The condition negative dataset consisted of data where the mock mutants and references have
similar colony size distribution. To this end, colony size data taken from any time point represents
a unique condition negative dataset (Fig. 2B). We tested 44 such plates, four plates for the 11
time points that images were taken. The proportion of mock mutant strains that are successfully
called neutral by the LI Detector represents the true negative rate or specificity.

560 The condition positive dataset consisted of colony size data where mutant strains can be
deleterious or beneficial. Two sets of virtual plates were created to generate such a condition
positive dataset. The first set of virtual plates contained a bimodal distribution of colony sizes
(Supplementary Fig. S4, S11) where colony size estimations for reference and mutant colony
positions came from two different time points while maintaining their topological context

565 (https://github.com/sauriiiin/paris/blob/master/techPowA.m). The fithess effect between the

reference and mutant colony size distribution is the difference of their mean colony sizes as a
percentage of the mean reference colony size (Fig. 2C). We tested 440 virtual plates with bimodal
colony size distribution resulting from combining reference colony size data from 11 time points
(tr) with mutant colony size data taken from 10 time points (tw) and having four plates for each tr
570 - twcombination.
The second set of virtual plates contained a random distribution of colony sizes were reference
colony size data from a particular time point was combined with mutant colony size data randomly
selected from all time points (Fig. 2D). Colony size estimates for replicates of the same mutant
were all selected from the same time point

575 (https://github.com/sauriiiin/adaptivefitness/blob/master/scripts/4CX/4C MESSUP.R). We tested

44 virtual plates with random colony size distribution by having 4 plates for the 11 time points that
reference colony size data (tr) can be taken from (Fig. 2D).

Mutants that are successfully called beneficial or deleterious in these virtual plates are used to
estimate the true positive rate or sensitivity of the LI Detector

580 (https://github.com/sauriiiin/adaptivefitness/blob/master/scripts/4ACX/AC POWDY.R). For the
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virtual plates, an empirical p-value cut off that controls the false positive rate at 5% was used to
make the examination of sensitivity comparable between LID, LID-AC, LID-SN, MCAT*, and NO-
NORM. The results from this analysis are represented in Fig. 3, Fig. 4, Supplementary Fig. S6,
and Supplementary Fig. S9.
585
Measuring the impact of the number of references and replicates
The reference colony proportion was sequentially reduced from 25% to 18.75% to 12.5% to 6.25%
by masking 1/4™ of the existing reference grid each time. This reduction was achieved by masking
colonies on the 384-density mock reference plate and then propagating those masked colonies
590 through the other densities. The number of replicates per strain was reduced in parallel by
masking the n" replicate of every mock strain. Replicates were reduced from 16 to 2 in increments
of 2. This process was repeated ten times to mask a variety of replicate combinations

(https://github.com/sauriiiin/paris/blob/master/techPowA.m). Results from the analysis of the

resultant plates are represented in Figure 5 and Supplementary Figure S7A-B.

595
Data availability
All data generated/analyzed in this study is available in the main text, in the Supplementary
Figures and Tables, and as Supplementary Data files. All supplementary data are also on GitHub:
https://github.com/sauriiiin/lidetector.

600

Code availability

The code is available to download at https://github.com/sauriiiin/lidetector, along with instructions

on how to use it. Image processing, relative fithess estimations, and analyses presented in the

result section are available at https://github.com/sauriiiin/sau-matlab-toolkit. All images within the

605 main article and supplementary data were generated using code available at

https://github.com/sauriiiin/adaptivefitness/tree/master/scripts/paper.
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LI Detector: a framework for sensitive colony-based screens
regardless of the distribution of fithess effects
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Experimental o . Reference
Tool Design User Input Normalization Options Output #
Synthetic genetic | 96 to 1536 density | Plate middle mean (PMM) 2
HT Colony | arrays (SGA), | plate images normalization Averaged S Scores
Grid Epistatic
Analyzer miniarray profile | Assign top left colony | Filter strain based on noise
(E-MAP) position and linkage
Spatial lighting gradient Raw colony size 1
Median background intensity | Integrated optical
correction density (IOD)
Colonyzer 48 to 1536 density in Col |
Any rectangular | rectangular or circular olony color
array format petri dish Colony granularity
Plate median correction Raw colony size 16
Row/Column Normalized colony size
Bal Spatial correction for media | Genetic interaction
alony thickness results
Competition
Any plate-based | Single or composite | Filter strain based on linkage
array images (for SGA)
19
) Artifact removal Raw colony size
ScreenMill 384 to 1536 single or Growth ratio, z-value, p-
SGA composite image Plate median correction value, position data
Spotsizer Any plate-based 50
P array Plate images Raw colony size
. Any plate-based st
Gitter . .
array Plate images Raw colony size
Plate middle mean (PMM) 15
normalization Raw colony size
Row/Column Normalized colony size
Spatial correction for media | Genetic interaction
SGAtools thickness results
Competition GO enrichment
Batch
Any plate-based | 96 to 1536 density | Filter for large colonies and
array plate images linkage (for SGA)
23
Light/color correction Raw colony size
Population size
Scan-o- Population size estimation estimates
matic Growth curve smoothing Growth parameters
Composite time-
Time lapsed | lapsed images from | Reference  surface-based
plate-based array | custom setup doubling time normalization
Plate mode correction Raw colony size "
MATLAB Edge correction Normalized colony size
Colony
Analyzer o
Toolkit Any plate-based | 96 to 24576 density Source-based normalization | Colony color
array plate images Local median filter Pixel intensity
Local artifact corrected | Current
Local artifact colony size study
LI Detector o Reference-based )
Source-based normalization | background colony size
Any plate-based | 96 to 24576 density | Local reference-based
array plate images normalization Relative fithess

Table S1. Existing bioinformatics tools for colony-based screen image analysis and normalization.
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SETTINGS 384 Glycerol to 384 Plate | 384 Plate to 384 Plate | 384 Plate to 1536 Plate | 1536 Plate to 1536 Plate | 1536 Plate to 6144 Plate
Source 384 MTP 384 Agar 384 Agar 1536 Agar 1536 Agar
Target 384 Agar 384 Agar 1536 Agar 1536 Agar 6144 Agar
Pads 384 Long Pin 384 Short 384 Short 1536 Short 1536 Short
| Program Spot Replicate 1:4 Aray Replicate 1:4 Array
General
Quantity N/A N/A N/A N/A N/A
Recycle None None None None None
Plate Protectiol Uncheck Uncheck Uncheck Uncheck Uncheck
Pairs
Start Pair
Source
Offset No Offset Automatic No Offset Automatic
Max Radius 0.4mm 0.3mm
Offsets...
Pinning
Pin Pressure 32% 32% 58% 58%
Speed 19 mm per sec 19 mm per sec 19 mm per sec 19 mm per sec 19 mm per sec
Backoff 0.5mm 2mm 2mm 2.5mm 2mm
Repeat Pin 1times 1times 1times 1times 1times
Dry Mix
Clearance 0.5mm 0.5mm 0.5mm 0.5mm
Diameter 1mm 1mm 1mm 1mm
Cycles 1 rotations 1 rotations 1 rotations 1 rotations
Wet Mix
Diameter 1mm
Speed 25 mm per sec
Cycles 3 rotations
Travel 3
2D/3D 3D
Permanent Off
Target
Pinning
Pin Pressure 32% 32% 32% 58% 58%%
Speed 19 mm per sec 19 mm per sec 19 mm per sec 19 mm per sec 19 mm per sec
Backoff
Overshoot 2mm 2mm 2mm 2.5mm 2mm
Repeat Pin 1times 1times 1times 1times 1times
Dry Mix
Clearance 0.5mm 0.5mm 0.5 mm 0.4mm 0.5mm
Diameter 1mm 1mm 1mm 1mm 1mm
Cycles 1 rotations 1 rotations 1 rotations 1 rotations 1 rotations
Wet Mix
Diameter
Speed
Cycles
Travel
2D/3D
Pads
Pressure
Ejject Time
Selected Optio
Recycle off off off off off
Revist off off off off off
Protect Source off off off Off off
Offset Auto Auto off off
Source Mix On On off off off
Target Mix On Off off Off off

Table S2. Singer RoToR settings used for the experimental pipeline.
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Figure S1. Spatial bias on a 6144-density plate. The image on the top left is a 6144-density plate having an

755  isogenic population. The top right shows a heatmap of the same plate where each tile represents a colony
and is colored according to its colony size estimation (pixel counts), going from brown (low) to black (high).
On the bottom is an illustration of the types of spatial biases expected on a high-density plate.
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760  Figure S2. Source normalization step of the LI Detector. The target plate on the right represents a high-
density plate made by experimentally condensing four lower density sources on the top left. A different color
represents each source, and tiles represent colonies. This step introduces a systematic source-based bias
in colony sizes that needs to be corrected. LI Detector implements a source normalization (SN) step, where
it computationally downscales the colony size estimations of the higher density plate into its four-

765  corresponding source-deconstructs shown on the bottom left. These source-deconstructs are individually
normalized during the downstream analysis.
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Images of four 6144-
density plates taken at
11 time points

MATLAB Colony Analyzer Toolkit (MCAT)

Raw colony size Virtual Plates

estimations (pixel |
counts) for the 11 time With bimodal colony With random colony
points size distribution size distribution
Condition Condition
Negative Positive
Dataset Dataset

| |

Spatial Bias Correction

Interleaving 1. Local artefact correction (AC)
+ 2. BSource-based normalization (SN)
Spatial Median Normalization (window size = 3. Reference-based Z2-dimentional linear
9) interpolant
MCAT LID

! ‘

Empirical p-value calculation

Phenotype:

- Beneficial Evaluation of sensitivity and
- Neutral specificity

- Deleterious

Figure S3. Workflow of the methodology adopted for analyzing LI Detector’s performance.
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Figure S4. Colony size distributions of all virtual plates with a bimodal distribution. Composite density plot
with each panel representing an individual plate. In each panel, the colony sizes of the reference population
are represented by the grey density plot and that of the mutant by the purple density plot. The reference
colony time point (tr) increases as we go from the top to bottom, and the mutant colony time point (tm)
increases from left to right. The diagonal represents the real plate data where both the references and
mutants are at the same time point - condition negative dataset. Everything to the left of the diagonal is
condition positive deleterious data, and everything to the left is condition positive beneficial. Figure 2C is
the fitness effect matrix of this composite plot.
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785  Figure S5. Accuracy of background colony sizes and source normalization. A. Coefficient of variance
percentage (CV%) as a measure of spatial bias. The box plots show the CV% results for the raw colony
size data (NO-NORM) and fitness estimated using a random colony size predictor (RND), Matlab Colony
Analyzer Toolkit (MCAT)', LI Detector without source normalization (LID-SN), LI Detector without local
artifact correction (LID-AC) and LI Detector (LID). Wilcoxon rank-sum test was used to compare results

790 between NO-NORM and the rest. B. Root mean square error (RMSE) of the background colony sizes
compared to the observed colony size as a percentage of mean observed colony size per time point. Colors
represent different strategies for fitness estimation. C. Source-plate-wise violin plot of raw colony sizes and
LID, LID-SN, LID-AC, and MCAT™ normalized fitness at saturation (time = 11.0 hours). Solid black vertical
lines indicate lower, middle, and upper quartile. The source-wise distributions are compared using a non-

795  parametric (Kruskal-Wallis) test.
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Figure S6. Sensitivity and different strategies for fitness estimation. Phenotype classification results from
800 the virtual plates with bimodal distributions at a false positive rate of 5% are arranged according to
increasing fitness effects. The dotted red line indicates a 5% fitness effect. Individual panels represent
distinct strategies for fithess estimation (see Materials and Methods) - LI Detector (LID, top left), LI Detector
without local artifact correction (LID-AC, top right), LI Detector without source normalization (LID-SN, bottom
left), and no normalization (NO-NORM, bottom right).
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Figure S7. Sensitivity is directly related to the number of references and replicates. A. Sensitivity for

observing 7% fitness effects, as a function of the varying proportion of references per plate (individual
810 panels) and the number of replicates per strain (x-axis) was estimated for virtual plates with bimodal (purple)

and random (orange) colony size distribution. Error bars represent a single standard deviation. B.

Phenotype classification results from the virtual plates with random colony size distributions at a false

positive rate of 5% are arranged according to increasing fitness effects. The dotted red line indicates a 5%

fitness effect. Panels are arranged according to the increasing proportion of references per plate (top to
815  bottom) and replicates per strain (left to right).
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Figure S8. Effect on RMSE due to the proportion of references. The root mean square error percentage

820 (RMSE%) for different proportions of references (colors) per time point was used as a measure of the
accuracy of LI Detector's reference-based background colony size. RMSE% decreases as colonies reach
saturation and with an increasing proportion of references.
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Figure S9. Specificity of different ways of using the LI Detector. Condition negative dataset used to
measure the change in specificity with A. different strategies for fithess estimation (see Materials and
Methods) consisting of LI Detector (LID), LI Detector without local artifact correction (LID-AC), LI Detector
830  without source normalization (LID-SN), and no normalization (NO-NORM), where boxplots show pooled
specificity results from all time points; and B. number of replicates for mutant and proportion of references

per plate.

835

46


https://doi.org/10.1101/2020.06.27.175216
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.27.175216; this version posted October 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Glycerol Stocks

Row

Row

"
®
*
I
.
"
o
I
=
"
"

o
e
»
»
*
*
"
»
=
*
*
"
®
ol
o

EEEEREEEE

&
b

1 T
100 0
Column

Colony Type @ Reference @ Mutant

Figure S10. Visual representation of the plate maps. Spatial layout of colonies across the plates of the
experiment. Each row represents a different stage/density of the validation experiment. These maps are
840 made using information like plate number, column number, row number, strain identifier number, mutant
name, and unique numeric identifier for the position on the plate stored as the pos2coor and pos2orf_name
tables. For simplicity, the mock mutants are given a binary color classification of either reference or mutant.
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845

Figure S11. Making of a virtual plate with a bimodal distribution. The time-lapse images of the final screen
plates can be used to create virtual plates where reference and mutant colony sizes come from different
time points. The above three panels are a zoom-in version of the same region of a 6144-density plate.
Colony type is represented by colors, and colony size by point size. A. Shows the colony layout and colony

850  size estimations at 2.9 hours, B. shows the same region at 11.0 hours, and C. is an example of the virtual
plate that can be created when the reference colony size data is taken from B. and mutant colony sizes
from A. This plate still maintains the overall topological relationships of the colonies. In this example, all
mutant colonies on the virtual plate are true positive deleterious by design.
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