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Abstract 58 

Characterization of genetic regulatory variants acting on the transcriptome of livestock is 59 

essential for interpreting the molecular mechanisms underlying traits of economic value and 60 

for increasing the rate of genetic gain through artificial selection. Here, we build a cattle 61 

Genotype-Tissue Expression atlas (cattle GTEx, http://cgtex.roslin.ed.ac.uk/) as part of the 62 

pilot phase of Farm animal GTEx (FarmGTEx) project for the research community based on 63 

publicly available 11,642 RNA-Seq datasets. We describe the landscape of the transcriptome 64 

across over 100 tissues and report hundreds of thousands of genetic associations with gene 65 

expression and alternative splicing for 24 major tissues. We evaluate the tissue-sharing 66 

patterns of these genetic regulatory effects, and functionally annotate them using multi-omics 67 

data. Finally, we link gene expression in different tissues to 43 economically important traits 68 

using both transcriptome-wide association study (TWAS) and colocalization analyses to 69 

decipher the molecular regulatory mechanisms underpinning such agronomic traits in cattle.   70 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2021. ; https://doi.org/10.1101/2020.12.01.406280doi: bioRxiv preprint 

http://cgtex.roslin.ed.ac.uk/
https://doi.org/10.1101/2020.12.01.406280
http://creativecommons.org/licenses/by/4.0/


5 

 

Introduction 71 

Genome-wide association studies (GWAS) have identified thousands of genetic 72 

variants associated with complex traits in human and livestock populations1,2. As the 73 

majority of these variants are non-coding, the characterization of the molecular mechanisms 74 

by which such variants affect complex traits has been extremely challenging. Indeed, in 75 

human genetics, it would have been impossible without projects such as the Genotype-Tissue 76 

Expression (GTEx) project that has characterized genetic effects on the human transcriptome 77 

and paved the way to understanding the molecular mechanisms of human variation3.  78 

However, livestock genomic resources lag behind human genomic resources, and to 79 

date, no study has systematically explored the regulatory landscape of the transcriptome 80 

across a wide range of tissues. GWAS signals of agronomic traits are significantly enriched 81 

in regulatory regions of genes expressed in trait-relevant tissues in cattle4-6, but experiments 82 

to dissect genetic variation in gene expression have generally been small, both in terms of the 83 

number of individuals and tissues. For instance, a few of studies have explored the 84 

expression/splicing quantitative trait loci (e/sQTL) in blood7, milk cells7, muscle8 and 85 

mammary gland in cattle9. Here, we describe the largest and most comprehensive study of 86 

the regulatory landscape of any livestock species by analyzing 11,642 publicly available 87 

cattle RNA-Seq datasets, representing over 100 different tissues and cell types. We combined 88 

all of these data and make the results freely and easily accessible to the research community 89 

through a web portal (http://cgtex.roslin.ed.ac.uk/).  90 

There has been a recent exponential growth in the number of RNA-Seq samples 91 

made publicly available in cattle (Fig. S1a), but these data have never been gathered in one 92 

collection and processed uniformly before. Here, we present a pipeline to uniformly integrate 93 

11,642 public RNA-Seq datasets and identify eQTLs and sQTLs for 24 important cattle 94 

tissues with sufficient sample sizes (n > 40). The latter is facilitated by calling variants 95 

directly from the RNA-Seq reads and imputing to sequence level using a large multi-breed 96 

reference panel10, in a similar process to that used with human data11. Next, we conducted in 97 

silico analyses to annotate eQTLs and sQTLs with a variety of publicly available omics data 98 
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in cattle, including DNA methylation, chromatin states, and chromatin conformation 99 

characteristics. Finally, we integrated gene expression with a large GWAS of 27,214 dairy 100 

bulls and 43 cattle traits via both transcriptome-wide association study (TWAS) and 101 

colocalization analyses to detect genes and variants associated with these economically 102 

important traits. The cattle Genotype-Tissue Expression (cattle GTEx) atlas will serve as a 103 

primary source of reference for cattle genomics, breeding, adaptive evolution, veterinary 104 

medicine, and comparative genomics.  105 

Results  106 

Data summary 107 

We analyzed 11,642 public RNA-Seq datasets from 8,653 samples, yielding ~200 108 

billion clean reads (Table S1). Summary distributions of sequencing platform, read type 109 

(single/paired reads), clean read number, read length, sex, age, and mapping rate across 110 

samples show that the quality of these publicly available data is acceptable for the following 111 

analyses (Fig. S1b-h)11. We kept 7,180 samples with clean read > 500,000 and mapping 112 

rate > 60% for subsequent analyses, representing 114 tissues from 46 breeds and breed 113 

combinations (Fig. S1i, Table S1). Holstein was the most represented breed (35.5% of all 114 

samples), reflecting its global economic value. A total of 1,831 samples (21%) had no breed 115 

records, but that information could be predicted from the genotypes called from RNA-Seq 116 

data. We grouped the 114 tissues into 13 categories based on known biology and the 46 117 

breeds into six sub-species, with Bos taurus representing 87% of all samples (Table S1). To 118 

investigate the tissue-specificity of DNA methylation and to functionally annotate QTLs, we 119 

also analyzed 18 newly generated and 126 existing whole-genome bisulfite sequence 120 

(WGBS) samples from 21 cattle tissues, producing ~73 billion clean reads with an average 121 

mapping rate of 71% (Table S2).  122 

General characteristics of transcriptome across samples 123 

As expected, the number of expressed genes (Transcripts per Kilobase Million, TPM > 124 
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0.1) increased with the number of clean reads across samples. However, we observed a 125 

plateau at 50 million clean reads (Fig. S2a) where we only detected ~60% of 27,607 126 

Ensembl annotated genes. Only 61 genes were not expressed in any of the samples, and 33 of 127 

them (54.10%) were located in unplaced scaffolds, with significantly (P < 0.05) shorter gene 128 

length, fewer exons, higher CG density, and lower sequence constraints than expressed genes 129 

(Fig. S2b-f). Similarly, we detected more alternative splicing events with increasing numbers 130 

of clean reads across samples (Fig. S2g). However, we did not detect splicing events for 874 131 

genes in any sample, which also exhibited significantly shorter gene length, fewer exons, 132 

lower expression, and lower sequence constraints than spliced genes (Fig. S2h-k). 133 

Furthermore, 27% of them were snRNAs, snoRNAs and rRNAs that play important roles in 134 

RNA splicing12 (Fig. S2l). Genes without splicing events were significantly enriched in the 135 

integral component of membrane and G-protein coupled receptor signaling pathways (Fig. 136 

S2m). We found that ~25% of CpG sites in the entire genome were not covered at 5× in any 137 

of the WGBS samples, even if these had more than 300 million clean reads, partially due to 138 

bisulfite treatment and PCR amplification bias (Fig. S3a). These CpG sites were enriched in 139 

gene deserts (e.g., telomeres) with significantly higher CG density than the CpG sites 140 

captured by the WGBS (Fig. S3b-d). 141 

We called a median of 21,623 SNPs from all RNA-Seq samples (Fig. S4a), and then 142 

imputed each sample up to 3,824,444 SNPs using a multi-breed reference population of 143 

3,310 animals10. We validated the imputation accuracy by comparing SNPs derived from 144 

RNA-Seq with those called from whole-genome sequence (WGS) in the same individuals, 145 

including Holstein, Limousin and Angus, and the concordance rates were over 99% (Fig. 146 

S4b, c, and Table S3). We also compared the imputed genotypes from RNA-Seq data with 147 

those imputed using 50K SNP array genotypes in a subset of 109 Holstein animals. Although 148 

there was a depletion of high-quality (DR2 > 0.80) imputed intergenic variants amongst 149 

SNPs imputed from RNA-Seq data (Fig. S4d), the DR2 values of SNPs imputed from RNA-150 

Seq were similar to those imputed from SNP-array along 1Mb up-/down- stream of gene 151 
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body (covering genomic regions for cis-QTL mapping) (Fig. S4e). In addition, the 152 

correlation of genotype counts between imputed SNPs from RNA-Seq data and those from 153 

SNP array was around 0.80 (Fig. S4f). For the subsequent cis-QTL mapping, we focused on 154 

24 tissues with greater than 40 individuals, and this encompassed 5,911 samples. After 155 

removing duplicated samples within each tissue (Fig. S4g), we retained 4,889 individuals.  156 

We found that clusters of samples derived from both gene expression and alternative 157 

splicing in the uniformly analyzed data accurately recapitulated tissue types (Fig. 1a, b), 158 

reinforcing the quality and therefore their utility for our follow-up analysis. For instance, all 159 

the muscle samples from over 40 projects clustered together. Similar to expression and 160 

splicing, DNA methylation profiles also recapitulated tissue types (Fig. 1c). However, when 161 

clustering based on imputed genotypes, as expected, samples clustered by sub-species (Fig. 162 

1d).  163 

Tissue specificity of transcriptome and methylome  164 

Tissue-specificity of gene expression was significantly conserved between cattle and 165 

humans (Fig. 2a), and the function of genes with tissue-specific expression accurately 166 

reflected the known biology of the tissues. For instance, brain-specific genes were 167 

significantly enriched for synapse and neuron function, and testis-specific genes for 168 

spermatogenesis and reproduction (Fig. S5a). We also calculated tissue-specificity of 169 

promoter DNA methylation and gene alternative splicing. Similarly, the function of genes 170 

with tissue-specific promoter hypomethylation and splicing reflected the known biology of 171 

the tissues (Fig. S5b-c). We found that, based on tissue-specificity, the gene expression level 172 

was significantly and negatively correlated with DNA methylation level in promoters (Fig. 173 

2b), and positively correlated with splicing ratios of introns (Fig. 2c). For example, CELF2, a 174 

brain-related gene, had a significantly higher expression, lower promoter DNA methylation, 175 

and higher splicing ratio of first intron in brain than in other tissues considered (Fig. 2d). 176 

Tissue-specific genes exhibited distinct patterns of sequence constraints (Fig. S5d), 177 

supporting the hypothesis of tissue-driven genome evolution4. We found that while brain-178 
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specific genes evolve slowly, blood or testis-specific ones evolve rapidly. This trend was also 179 

observed within tissue-specific hypomethylated regions (Fig. S5e-f).  180 

Discovery of expression and splicing QTLs 181 

We identified cis-e/sQTLs for 24 tissues with 40 or more individuals, while accounting 182 

for relevant confounding factors and multiple testing (Fig. S6a-b). The number of eGenes 183 

(genes with significant cis-eQTLs) discovered ranged from 172 in ileum to 10,157 in blood, 184 

with 19,559 (83% of all 23,523 tested genes) classed as eGenes in at least one tissue (Table 185 

S4). The number of sGenes (genes with significant cis-sQTLs) discovered ranged from four 186 

in the salivary gland to 7,913 in macrophages, with 15,376 (70.8%) classed as sGenes in at 187 

least one tissue. Genes with no cis-eQTLs or -sQTLs (non-e/sGenes) in any of the tissues 188 

were significantly enriched in hormone activity, regulation of receptor activity, neuropeptide 189 

signaling pathway, and reproduction (Table S5). In general, the larger the number of samples 190 

for the tissue, the larger the number of cis-e/sGenes detected (Fig. 3a-b). As expected, with a 191 

larger sample size, we had more power to detect cis-eQTLs with smaller effect sizes (Fig. 192 

S7a-b). Consistent with findings in humans13, significant variants (eVariants) centered 193 

around the transcript start sites (TSS) of the measured genes (Fig. S7c-d). Across 24 tissues, 194 

an average of 46% (range 25.5 - 76.6%) of eVariants were found within 100 kb of the TSS of 195 

the target genes. In non-eGenes, there was also an enrichment of SNPs with the smallest P-196 

values (but not statistically significant at FDR of 0.05) around TSS, suggesting a lack of 197 

power to detect such associations for those genes (Fig. S7c). Furthermore, we fine-mapped 198 

eGenes to assess whether the identified signals could be attributed to one or more causal 199 

SNPs. We found that an average of 46% (range 14.5 - 73.9%) of eGenes across 24 tissues 200 

had more than one independent cis-eQTLs (Fig. 3c), indicating the complex genetic control 201 

of gene expression. SNPs with the larger effects within a locus tended to be closer to the TSS 202 

(Fig. 3d). To complement and validate the cis-eQTL analysis within individuals, we 203 

conducted an allele-specific expression (ASE) analysis, and found that cis-eQTLs were 204 

significantly overrepresented in loci with significant (FDR < 0.05) ASE (Fig. 3e), and the 205 
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effect sizes of cis-eQTLs was significantly correlated with those of ASEs (Fig. 3f, Fig. S7e-206 

f).  207 

To investigate whether eQTLs are conserved among sub-species, we conducted cis-208 

eQTL mapping for muscle samples from Bos indicus (n = 51 and 160), Bos taurus (n = 505), 209 

and their hybrids (n = 108) separately, yielding 86 (3,521), 2,766, and 800 eGenes, 210 

respectively. We observed that cis-eQTLs were more conserved across sub-species than 211 

across tissues (Fig. 3g). For example, the expression of NMRAL1 in muscle was consistently 212 

and significantly regulated by a cis-eQTL (rs208377990) among Bos indicus, Bos taurus, 213 

and their hybrids (Fig. 3h). Combining the summary statistics of each sub-species in a meta-214 

analysis showed that eGene-eVariant associations identified in one sub-species are 215 

potentially transferable to other sub-species (Fig. S7g-h). Combining samples from different 216 

sub-species and breeds will increase statistical power for detecting shared eQTLs, and enable 217 

more accurate mapping of the causal variants via reducing the linkage disequilibrium (LD) 218 

patterns. In total, 131 out of 437 eGene-eVariant pairs that were specifically discovered in 219 

Bos indicus showed significant (FDR < 0.05) genotype × subspecies interactions (Table S6). 220 

For instance, the expression of an immune-related gene, SSNA1, was regulated by a cis-221 

eQTL (rs110492559) in Bos indicus but not in Bos taurus or the hybrids, showing a 222 

significant (p < 5.61×10-3) genotype × subspecies interaction (Fig. 3i). In addition, we found 223 

that subspecies-specific eQTLs had lower minor allele frequency (MAF) than subspecies-224 

common eQTLs, consistent in both Bos indicus and Bos taurus (Fig. S8). This may indicate 225 

that the difference in eQTLs between subspecies could be partially due to their difference in 226 

the frequency of the segregating variants, provided that there are no 227 

epistatic/environmental/developmental effects. 228 

The tissue-sharing patterns of cis-QTLs could provide novel insights into molecular 229 

regulatory mechanisms underlying complex phenotypes3. We applied the π1 statistics to 230 

measure the sharing patterns of cis-e/sQTLs between tissues (Fig. 4a and Fig. S9a). In 231 

general, we observed that both cis-eQTLs and cis-sQTLs tended to be tissue-specific or 232 
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ubiquitous across tissues (Fig. 4b). We also calculated the tissue-sharing patterns of gene 233 

expression and alternative splicing (Fig. S9b-c), and found that the tissue-sharing patterns of 234 

the four core data types (i.e., gene expression, alternative splicing and cis-e/sQTLs) were 235 

significantly correlated (Fig. 4c). This result suggests that tissues with similar transcriptional 236 

profiles shared the genetic regulatory mechanisms of transcription. Further analysis on the 237 

expression of eGenes across tissues revealed that effect sizes of eVariants decreased with the 238 

increasing number of tissues where target eGenes were expressed (Pearson’s r = -0.27, P < 239 

2.210-16), indicating that, on average, tissue-specific genes might be regulated by SNPs with 240 

larger genetic regulatory effects than widely-expressed genes (Fig. 4d). Due to limitations 241 

and challenges of trans-eQTLs analysis in this study which include: insufficient statistical 242 

power, the relatively lower imputation accuracy of distant intergenic SNPs, and complex 243 

inter-chromosomal LD in cattle (which could lead to increased type I error rates)14, we only 244 

conducted an exploratory trans-e/sQTL mapping for 15 tissues with over 100 individuals. 245 

We detected an average of 1,058 and 84 trans-eGenes and trans-sGenes (FDR < 0.05) across 246 

tissues, respectively (Table S7). We summarized the details of trans-eQTL mapping, 247 

including LD patterns of trans-eQTLs and cis-eQTL, tissue-sharing patterns of trans-eQTLs 248 

and their validations, in Fig. S10-11.  249 

Functional annotation of QTLs 250 

We employed multiple layers of biological data to better define the molecular 251 

mechanisms of genetic regulatory effects. As expected, cis-e/sQTLs were significantly 252 

enriched in functional elements, such as 3’UTR and open chromatin regions (defined by 253 

ATAC-Seq data in cattle rumen epithelial primary cells)15 (Fig. 5a-b). Similarly, cis-sQTLs 254 

had a higher enrichment in splice donors/acceptors than cis-eQTLs. The cis-eQTLs 255 

associated with stop gains had larger effect sizes than other cis-eQTLs (Fig. 5c). The cis-256 

e/sQTLs were enriched in hypomethylated regions of the matching tissues across 13 tissues 257 

(Fig. 5d-e). For instance, the liver exhibited the highest enrichment of cis-e/sQTL in liver-258 

specific hypomethylated regions. Consistent with the brain having distinct abundance of 259 
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alternative splicing, related to the development of the nervous system13, cis-sQTLs in the 260 

hypothalamus and pituitary had the highest enrichments in their specific hypomethylated 261 

regions (Fig. 5e).  262 

Topologically associated domains (TADs) enable chromatin interactions between 263 

distant regulatory regions and target promoters16. By examining Hi-C data of lung tissue in 264 

cattle15, we obtained TADs and significant Hi-C contacts, which were likely to be conserved 265 

across tissues as proposed previously16. By comparing with random eGene-SNP pairs with 266 

matched distances, we observed significantly (FDR < 0.01, 5,000 bootstrapping test) higher 267 

percentages of eGene-eVariant pairs within TADs across the majority of tissues, except for 268 

ileum and skin fibroblast (Fig. 5f). For instance, APCS and its cis-eQTL peak (144kb 269 

upstream of the TSS) were encompassed by an TAD and linked by a significant Hi-C 270 

contact, which allowed the regulation of its expression by a distant eVariant (rs136092944) 271 

(Fig. 5g).  272 

eQTLs and complex trait associations 273 

The primary goal of this study is to provide a resource for elucidating the genetic and 274 

biological mechanisms involved in cattle. We thus evaluated e/sQTLs detected in each tissue 275 

for associations with four distinct agronomic traits, i.e., ketosis, somatic cell score in milk 276 

(SCS), age at first calving (AFC), and milk yield (MY). The top SNPs associated with 277 

ketosis from GWAS were significantly (P < 0.05, 1,000 permutation test) enriched within 278 

liver cis-e/sQTLs (Fig. 6a). Similarly, MY-associated SNPs were significantly 279 

overrepresented in mammary gland cis-e/sQTLs (Fig. 6b). Compared to other tissues, 280 

mammary gland, milk cells and liver were the tissues with highest enrichment of MY-281 

associated SNPs amongst cis-eQTLs (Fig. 6c). Additionally, AFC-associated SNPs were 282 

significantly enriched for monocytes cis-eQTLs, and SCS for mammary gland (Fig. S12a-b). 283 

We detected 854 significant gene-trait pairs for 43 agronomic traits in cattle via single-284 

tissue TWAS, representing 337 unique genes (Table S8). Out of 319 previously fine-mapped 285 
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genes17,18, we validated 54, including linking expression of DGAT1 in liver and mammary 286 

gland, and expression of MGST1 in milk cells, as well as expression of CLN3 in liver to MY 287 

(Fig. 6d). The expression of ZNF613 in hypothalamus was the most significant association 288 

for many reproduction and body conformation traits, including daughter-still-birth and 289 

stature (Table S8), supporting our previous finding that ZNF613 is significantly associated 290 

with gestation length possibly through its influence on embryonic development19. 291 

Furthermore, we conducted a colocalization analysis of cis-eQTLs and GWAS loci, and 292 

detected 115 unique eGenes that were colocalized (regional colocalization probability, rcp > 293 

0.5) within 260 GWAS loci associated to 25 out of the 43 complex traits analysed. These 294 

represent 235 significant gene-trait pairs (some eGenes were associated with 2 or more traits) 295 

(Fig. 6e; Table S9). For instance, TIGAR, a muscle cis-eGene, playing roles in cellular 296 

metabolism and oxidative stress, was colocalized (rcp = 0.529) with a GWAS locus 297 

associated with strength on chromosome 5 (Fig. S12c-d). We also took sire calving ease, 298 

which GWAS loci were colocalized with 21 eGenes in at least one tissue, as an example in 299 

Fig. S12e. By comparing results from single/multi-tissue TWAS and colocalization, we 300 

found an overlap of 66 gene-trait pairs (Table S10; Fig. S12f). Overall, TWAS and 301 

colocalization analyses enhanced our ability to detect candidate causal genes and to better 302 

understand the biological underpinnings of complex traits in cattle.  303 

Discussion 304 

The cattle GTEx atlas represents the most comprehensive reference resource of the 305 

cattle transcriptome to date. It provides a detailed characterization of genetic control of gene 306 

expression and splicing across 24 tissues in cattle. This study demonstrates that it is possible 307 

to discover genetic regulatory variants of transcriptome by deriving and imputing genetic 308 

variants from RNA-Seq data only in livestock. We established a in silico protocol to deliver a 309 

livestock GTEx atlas in a timely manner and at a fraction of the cost of the human GTEx 310 

project, or an equivalent project in livestock generating RNA-Seq data from scratch. 311 
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Although we have successfully uncovered large numbers of tissue-specific e/sQTLs and 312 

provided a comprehensive view of the control of gene regulation in cattle and an 313 

accompanying public database that is a valuable resource for the community, we are also 314 

mindful that this resource can be further improved with the inclusion of more 315 

individuals/breeds and more varied data types. The imputation accuracy for breeds that are 316 

very under-represented in the reference panel might be relatively low. Additionally, 317 

generating SNP array genotypes or WGS for individuals with RNA-Seq data can provide 318 

additional information for distant intergenic variants as compared to RNA-Seq data only, 319 

potentially enhancing the detection of distant intergenic QTLs. The Farm animal GTEx 320 

(FarmGTEx) consortium was recently launched and is currently extending the bioinformatics 321 

pipeline developed here to other livestock species (e.g., pigs, small ruminants and chicken) 322 

to add value to the publicly available sequencing data for the research community.  323 

 The cattle GTEx provides a resource to explore tissue-sharing patterns of the 324 

transcriptome and its genetic regulation (i.e., e/sQTLs) in cattle. In contrast to the human 325 

GTEx4, where RNA-Seq samples across tissues were collected from the same individuals, 326 

the cattle GTEx used publicly available data, where individuals or even breeds were different 327 

from tissue to tissue. This might explain why there is a lower proportion of cis-eQTLs and 328 

cis-sQTLs shared across tissues compared to the human GTEx. In addition, the difference in 329 

the cell type composition of tissues can also affect the tissue-sharing patterns of QTLs4. 330 

When single-cell RNA-Seq data is available for multiple tissues in cattle in the near future20, 331 

it would be of interest to computationally estimate the cell type proportions in the bulk tissue 332 

samples to uncover the cellular specificity of genetic regulatory effects21.  333 

This cattle GTEx atlas systematically links SNPs, genes, and tissues for the first time in 334 

cattle, and provides an important tool for new discoveries using these three datasets to study 335 

the mechanisms underlying complex traits. The e/sQTLs detected here provide a rich set of 336 

functional variants for agronomic traits in cattle, as we found that top GWAS associations of 337 
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traits were significantly enriched for regulatory QTLs in their relevant tissues. Our TWAS 338 

and colocalization analyses further provide a list of promising candidate genes/variants for 339 

functional follow-up. We noted the relatively small overlap of results from TWAS and 340 

colocalization. This might because the two methods use the information differently, with the 341 

TWAS or co-localization method being more or less powerful depending on the genetic 342 

architecture of both the trait of interest and the tissue gene expression. 343 

Further integration of these QTLs with functional annotations of a range of tissues from 344 

the on-going Functional Annotation of Animal Genomes (FAANG) project will provide 345 

valuable opportunities to understand transcriptional/post-transcriptional regulatory 346 

mechanisms underpinning GWAS hits for agronomic traits22. The multi-tissue e/sQTLs 347 

generated here will also enable the exploration of molecular mechanisms underlying the 348 

extensive pleiotropic effects identified in livestock23. This information will allow the 349 

understanding of mechanisms of response to intended selection as well as disentangling 350 

unintended and unfavorable correlated responses to this same selection (e.g. increasing 351 

mastitis or deteriorating fertility when selection for increased milk production). Furthermore, 352 

this resource will assist in the development of genomic selection methods and tools to 353 

improve animal health and wellbeing. For instance, a better understanding of the genetic 354 

architecture underpinning agronomic traits will benefit genetic improvement programs by 355 

incorporating biological knowledge into genomic prediction models10, which has been 356 

shown to improve prediction accuracy across generations, populations and breeds23. 357 

Online Methods 358 

Quantification of gene expression  359 

We downloaded 11,642 RNA-Seq datasets (by July, 2019) from SRA (n = 11,513, 360 

https://www.ncbi.nlm.nih.gov/sra/) and BIGD databases (n = 129, 361 

https://bigd.big.ac.cn/bioproject/). We merged multiple datasets from single samples, 362 

yielding 8,536 unique RNA-Seq samples. We applied a stringent and uniform pipeline to 363 

filter and analyze all the data. Briefly, we first removed adaptors and low quality reads using 364 
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Trimmomatic (v0.39)24 with parameters: adapters/TruSeq3-SE.fa:2:30:10 LEADING:3 365 

TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. We filtered out samples with clean 366 

read counts ≤ 500K, resulting in 7,680 samples, and mapped clean reads to the ARS-UCD1.2 367 

cattle reference genome25 using single or paired mapping modules of STAR (v2.7.0) with 368 

parameters of outFilterMismatchNmax 3, outFilterMultimapNmax 10 and 369 

outFilterScoreMinOverLread 0.66. We kept 7,264 samples with uniquely mapping rates ≥ 370 

60% (mean, 91.07%; range, 60.44%-100%; mapping details in Table S1). We then obtained 371 

normalized expression (TPM) of 27,608 Ensembl (v96) annotated genes using Stringtie 372 

(v2.1.1)26, and extracted raw read counts of them with featureCounts (v1.5.2)27. We finally 373 

clustered 7,264 samples based on log2(TPM +1) using a hierarchical clustering method, 374 

implemented in R package dendextend, with distance = (1-r), where r is the Pearson 375 

correlation coefficient. We excluded samples with obvious clustering errors (e.g., samples 376 

labeled as liver that were not clustered with other liver samples), resulting in 7,180 samples 377 

for subsequent analysis.  378 

Quantification of alternative splicing  379 

We used Leafcutter (v0.2.9)28 to identify and quantify variable alternative splicing events 380 

of genes by leveraging information of junction reads (i.e., reads spanning introns) that were 381 

obtained from the STAR alignment. The Leafcutter enables the identification of splicing 382 

events without relying on existing annotations that are typically incomplete, especially in the 383 

setting of large genes or individual- and/or population-specific isoforms28. We first converted 384 

bam files from STAR alignment into junction files using the script “bam2junc.sh”, and then 385 

performed intron clustering using the script “leafcutter_cluster.py” with default settings of 50 386 

reads per cluster and a maximum intron length of 500 kb. We employed the 387 

“prepare_genotype_table.py” script in Leafcutter to calculate intron excision ratios and to 388 

remove introns used in less than 40% of individuals or with no variation. Ultimately, we 389 

standardized and quantile normalized intron excision ratios as Percent Spliced-In (PSI) 390 

values across samples. We clustered 7,180 samples based on PSI using the same method as 391 
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used in gene expression. 392 

Genotyping and imputation 393 

We called genotypes of known genomic variants in the 1000 Bull Genomes Projects10 for 394 

7,180 high-quality RNA-Seq samples individually, following the recommended best 395 

practices pipeline in Genome Analysis Toolkit (GATK) (v4.0.8.1)29 with default settings. We 396 

filtered out low quality SNPs using --filter-expression “FS > 30.0 & QD < 2.0”. We then 397 

imputed the filtered SNPs on autosomes to sequence level using Beagle (v5.1)30 based on a 398 

multiple-breed reference population consisted of 3,103 individuals from run7 of the 1000 399 

Bull Genomes Project10 and 207 public individuals from Bos taurus (n = 101), Bos indicus 400 

(zebu, n = 20), and Bos grunniens (yak, n = 86) (Table S11). Finally, we obtained 6,123 401 

samples that were genotyped and imputed successfully. We filtered out variants with MAF < 402 

0.05 and dosage R-squared (DR2) < 0.8, resulting in 3,824,444 SNPs used for QTL mapping. 403 

To evaluate the accuracy of imputation, we called genotypes (~6 M SNPs) from WGS 404 

(average read depth > 10×) of Holstein (n = 4), Limousin (n = 3) and Angus (n = 5) animals, 405 

which had RNA-Seq data as well. We then measured the genotype concordance rates 406 

between WGS-SNPs and RNA-Seq/imputed SNPs. We extracted 153,913 LD-independent 407 

SNPs using plink (v1.90)31 (--indep-pairwise 1000 5 0.2), and conducted PCA analysis for all 408 

6,123 samples using these SNPs in EIGENSOFT (v7.2.1)32. We calculated the identity-by-409 

state (IBS) distance among samples by using these independent SNPs to remove duplicate 410 

individuals. IBS distance = (IBS2 + 0.5*IBS1) / (IBS0 + IBS1 + IBS2), where IBS0 is the 411 

number of IBS 0 non-missing variants, IBS1 is the number of IBS 1 non-missing variants 412 

and IBS2 is the number of IBS 2 non-missing variants. We set an IBS distance cutoff of 0.85 413 

to deem two samples as duplicates and kept one of them. When conducting QTL mapping, 414 

we removed an average of 43 duplicate samples within each tested tissue (ranging from one 415 

in salivary gland and leukocyte to 132 in muscle), resulting in 4,889 samples. 416 

Allele specific expression (ASE) 417 
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We conducted ASE analysis using the GATK ASEReadCounter tool (v4.0.8.1) with the 418 

following settings: --U ALLOW_N_CIGAR_READS -minDepth 10 –minMappingQuality 419 

255 --minBaseQuality 10. SNPs for ASE detection fulfilled the following criteria: 420 

heterozygous in at least five samples, at least 10 reads per allele, and at least 2% of all reads 421 

supporting the minor allele. We then calculated a binominal P-value by comparing to the 422 

expected ratio under the null hypothesis, followed by multiple-test correction with the 423 

Benjamini–Hochberg approach (FDR). SNPs with FDR < 0.05 were considered as 424 

significant ASE. We estimated the effect size (allele fold change, aFC) of regulatory variants 425 

at ASE loci using a haplotype-based approach implemented in phASER33.  426 

Bioinformatics analysis of WGBS data 427 

For WGBS data analysis, we first used FastQC (v0.11.2) and Trim Galore v0.4.0 (--428 

max_n 15 --quality 20 --length 20 -e 0.1) to determine read quality and to filter reads with 429 

low quality, respectively. We then mapped clean reads to the same reference genome (ARS-430 

UCD1.2) using Bismark software (v0.14.5)34 with default parameters. After deduplication of 431 

reads, we extracted methylation levels of cytosines using the bismark_methylation_extractor 432 

(--ignore_r2 6) function. The coverages of all WGBS data were calculated using clean reads 433 

with an average of 27.6-fold coverage (range: 5-47 ×). Ultimately, we kept CpG sites that 434 

were represented by at least five reads for subsequent analyses. We visualized sample 435 

clusters based on DNA methylation levels of shared CpGs using t-SNE approaches. 436 

Identification of TAD and significant Hi-C contacts 437 

To find potential chromatin interactions between distant eVariants and target eGenes, we 438 

identified TADs and Hi-C contacts from Hi-C data from lung tissue in cattle that was 439 

retrieved from NCBI Sequence Read Archive (SRA) under accessions: SRR5753600, 440 

SRR5753603, and SRR5753606. We used Trim Galore (v0.4.0) to trim adapter sequences 441 

and low-quality reads (--max_n 15 --quality 20 --length 20 -e 0.1), resulting in ~820 million 442 

clean reads. We then mapped clean reads to the reference genome (ARS-UCD1.2) using 443 
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BWA35. We applied HiCExplorer v3.4.136 to build a Hi-C contact matrix with 10kb 444 

resolution and identified TAD with hicFindTAD. We kept TADs with FDR less than 0.01 to 445 

link eQTLs to eGenes. We further employed HiC-Pro (v2.11.4)37 to call Hi-C contacts with 446 

10 kb resolution from Hi-C data. Briefly, HiC-Pro aligned clean reads to the reference 447 

genome with Bowtie2 (v2.3.5)35. After building a contact matrix, HiC-Pro generated intra- 448 

and inter-chromosomal maps and normalized them using the ICE normalization algorithm. 449 

We considered Hi-C contacts with FDR < 0.05 as significant.  450 

Tissue-specificity analysis of gene expression, alternative splicing and DNA methylation 451 

To quantify tissue-specific expression of genes, we computed a t-statistics for each gene 452 

in each of the 114 tissues. We grouped 114 tissues into 13 categories (Table S1). We scaled 453 

the log2-transformed expression (i.e., log2TPM) of genes to have a mean of zero and variance 454 

of one within each tissue. We then fitted a linear model as described in15 for each gene in 455 

each tissue using the least squares method. When constructing the matrix of dummy 456 

variables (i.e., design matrix) for tissues, we denoted samples of the target tissue/cell type 457 

(e.g., CD4 cells) as ‘1’, while samples outside the target category (e.g., non-blood/immune 458 

tissues) as ‘-1’. We excluded samples within the same category (e.g., CD8 cells and 459 

lymphocytes) to detect genes with specific expression in each particular category, even if 460 

they were not specific to the target tissue within this category. We obtained t-statistics for 461 

each gene to measure its expression specificity in a given tissue. We considered the top 5% 462 

of genes ranked by largest t-statistics as genes with high tissue-specific expression. In order 463 

to explore the conservation of tissue-specific expression between cattle and humans, we 464 

employed the same method to quantify the tissue-specific expression of all orthologous 465 

genes in each of 55 human tissues using GTEx (v8) data3. 466 

To detect tissue-specific alternative splicing, we used leafcutter to analyze the differential 467 

intron excision by comparing the samples from the target tissue to the remaining tissues28, 468 

while excluding samples from tissues of the same category as the target tissue. We used the 469 

Benjamini-Hochberg method (FDR) to control multiple testing. 470 
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For DNA methylation, we focused on gene promoters (from upstream 1500bp to 471 

downstream 500bp of TSS), the methylation levels of which were calculated with a weighted 472 

methylation method using the roimethstat function in MethPipe (v3.4.3)38. We computed a t-473 

statistic for the promoter of each gene using the same method as in tissue-specific expression 474 

analysis. We considered the bottom 5% of genes ranked by t-statistics as genes with tissue-475 

specific promoter hypomethylation. We also detected tissue-specific methylation regions in a 476 

genome-wide mode using SMART239 with parameters of -t DeNovoDMR -MR 0.5 -AG 1.0 477 

-MS 0.5 -ED 0.2 -SM 0.6 -CD 500 -CN 5 -SL 20 -PD 0.05 -PM 0.05. 478 

Covariate analysis for QTL discovery 479 

To account for hidden batch effects and other technical/biological sources of 480 

transcriptome-wide variation in gene expression, we estimated latent covariates in each 481 

tissue using the Probabilistic Estimation of Expression Residuals (PEER) method40. In each 482 

tissue, we estimated 75 PEER factors first. The posterior variances of factor weights 483 

dramatically decreased and reached or nearly reached plains when 10 PEER factors were 484 

included (Fig. S6a). Therefore, we used 10 PEER covariates to account for the effects of 485 

confounding variables on gene expression in all following QTL analyses. For instance, the 486 

variance of gene expression among samples in adipose captured by 9 out of 10 PEER factors 487 

were significantly (FDR < 0.05) correlated with known technical and biological covariates 488 

like clean data size, mapping rate, project, breeds, sub-species, sex and age (Fig. S6b). To 489 

further control the effect of population structure on the discovery of QTLs, we included 490 

genotype PCs based on sample size bins: three PCs for tissues with < 150 samples, five PCs 491 

for tissues with ≥ 150 and < 250 samples, and ten PCs for tissues with ≥ 250 samples.  492 

cis-eQTL mapping 493 

We conducted cis-eQTL mapping for 24 tissues with at least 40 individuals each, while 494 

adjusting for corresponding PEER factors and genotype PCs. Detailed information about 495 

these 24 tissues is in Table S4. As the majority of cis-eQTLs are shared across sub-496 
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species/breeds (Fig. 3g), we combined, adjusting for species/breed, all of the datasets from 497 

the same tissue to perform cis-eQTL mapping in order to increase the statistical power. We 498 

kept genes with TPM > 0.1 in ≥ 20% samples in each tissue. Gene expression values of all 499 

samples in a given tissue were quantile normalized to the average empirical distribution and 500 

expression values for each gene then inverse normal transformed (INT) across samples. The 501 

cis-eQTL mapping was done using a linear regression model, implemented in FastQTL41, to 502 

test associations of the normalized expression level of genes with genetic variants in 1Mb of 503 

TSS of target genes. We only considered imputed variants with MAF > 0.05 and at least four 504 

minor alleles across samples within the target tissue. We first conducted cis-eQTL mapping 505 

in a permutation mode with the setting --permute 1000 10000, to identify genes with at least 506 

one significant cis-eQTL (eGene). We considered FDR ≤ 0.05 as significant, which was 507 

calculated with the Benjamini-Hochberg method based on the beta distribution-extrapolated 508 

empirical P-values from FastQTL. To identify a list of significant eGene-eVariant pairs, we 509 

applied the nominal mode in FastQTL. A genome-wide empirical P-value threshold 𝑝𝑡 was 510 

defined as the empirical P-value of the gene closest to the 0.05 FDR threshold3. We then 511 

calculated the nominal threshold as 𝐹−1(𝑝𝑡), where 𝐹−1 is the binominal inverse 512 

cumulative distribution, of which parameters for genes were obtained from the above 513 

permutation mode of FastQTL analysis. We considered variants with nominal P-values 514 

below the nominal threshold as significant, and included them into the list of eGene-eVariant 515 

pairs. We calculated the aFC, defined as the ratio of the expression level of the haplotype 516 

carrying the alternative allele over the one carrying the reference allele, to measure effect 517 

sizes of cis-eQTLs using the aFC (v0.3) tools42. We further applied the statistical fine-518 

mapping method, dap-g43, to infer multiple independent casual cis-eQTLs of a gene in a 519 

tissue. The dap-g approach employed a Bayesian variable selection model, using a signal-520 

level posterior inclusion probability (SPIP) to measure the strength of each association signal 521 

(SNPs in LD). We set a cutoff of 0.1 (i.e., SPIP > 0.9) as the inclusion threshold to detect 522 

representative/independent eQTLs for the target eGene. To analyze pairwise tissue similarity 523 
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in QTLs, we calculated π1 statistics, defined as the proportion of true positive QTLs 524 

identified in first tissue (Discovery tissue) amongst all tested gene-variant pairs in second 525 

tissue (Validation tissue), using the Storey and Tibshirani qvalue approach, as described in13. 526 

Meta-analysis of cis-eQTLs of muscle samples from three sub-species 527 

Data from muscle samples were available from three sub-species: Bos indicus (n = 51), 528 

Bos taurus (n = 505), and their crosses (n = 108). To explore the similarity and variability of 529 

cis-eQTLs among sub-species, we conducted cis-eQTL mapping using muscle samples from 530 

each of the sub-species separately. We then conducted a meta-analysis to integrate cis-eQTL 531 

results from three sub-species using the METAL tool44. We obtained Z-scores (the sum of 532 

weighted effect sizes) of SNPs from the meta-analysis. Weights were proportional to the 533 

square-root of the number of individuals in each sub-species44. We employed plink31 534 

(http://pngu.mgh.harvard.edu/purcell/plink/) to test the SNP  subspecies interaction in 535 

muscle samples, and adjusted the p-values to FDR using Benjamini-Hochberg procedure. We 536 

took FDR < 0.05 as the significant threshold.  537 

cis-sQTL mapping and tissue-sharing patterns 538 

In each of the 24 tissues, we applied a linear regression model, implemented in 539 

FastQTL41, to test for associations of genotypes within 1 Mb up- and down-stream of target 540 

intron clusters and their corresponding intron excision ratios. We used the first five genotype 541 

PCs to account for the effect of ancestry, and 10 PEER factors to adjust for the effect of 542 

unknown confounding variables. We applied the permutation pass mode (--permute 1000 543 

10000) in FastQTL41 to obtain beta approximated permutation p values, followed by multiple 544 

test correction with the FDR method. We considered sQTL-intron pairs with FDR < 0.05 as 545 

significant, and defined sGene as genes containing a significant sQTL in any introns. We 546 

employed MashR45 to analyze tissue-sharing patterns of QTLs as described previously in 547 

human GTEx3, and considered the local false sign rate (LFSR) < 0.05 as significant.  548 

trans-QTL mapping 549 
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We conducted trans-eQTLs for 15 tissues with at least 100 samples each. We filtered 550 

genomic variants using a more stringent threshold than cis-eQTL mapping to partially 551 

account for the reduction in statistical power. We obtained mappability of variants based on 552 

k-mer lengths of 36 and 75 following the procedure described in 553 

https://wiki.bits.vib.be/index.php/Create_a_mappability_track. We excluded any variants 554 

within repeats (Repeatmasker and simple repeats), and further removed variants with 555 

mappability < 1, based on k-mer length of 75. After filtering, we kept SNPs with MAF > 556 

0.05 and at least 10 minor alleles within each tissue for association testing.  557 

We applied two methods to detect trans-eQTLs for protein-coding genes with an average 558 

mappability  0.8 based on k-mer length of 36. Firstly, we associated the normalized 559 

expression of target genes with genotypes on other autosomal chromosomes using a linear 560 

regression model in MatrixQTL46, while adjusting for the same covariates as in cis-eQTL 561 

analysis. Secondly, we employed a linear mixed model (by fitting a polygenic effect with the 562 

genetic relationship matrix to further account for the complex relatedness among individuals) 563 

in the GCTA software47 for trans-eQTL and trans-sQTL mapping. For both methods, we 564 

adjusted P-values for multiple testing using the Benjamini-Hochberg method to obtain FDR. 565 

We considered gene-variant pairs with FDR < 0.05 as significant. To conduct an internal 566 

validation of trans-eQTL mapping, we randomly and evenly divided blood and muscle 567 

samples into two groups. We first conducted trans-eQTL mapping in the first group using the 568 

linear mixed model to detect significant trans-eQTL-gene pairs, and then repeated in the 569 

second group.  570 

TWAS and Colocalization of cis-eQTLs and GWAS loci 571 

To associate gene expression in a tissue with complex traits, we conducted a single-572 

tissue TWAS analysis using S-PrediXcan48 by prioritizing GWAS summary statistics for 43 573 

agronomic traits of economic importance in cattle, including reproduction (n = 11), 574 

production (milk-relevant; n = 6), body type (n = 17), and health (immune/metabolic-575 

relevant; n = 9). For body conformation (type), reproduction, and production traits, we 576 
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conducted a single-marker GWAS by fitting a linear mixed model in 27,214 U.S. Holstein 577 

bulls as described previously17. For health traits, we conducted GWAS using the same 578 

method in a subset (ranging from 11,880 for hypocalcemia to 24,699 for livability) of the 579 

27,214 available bulls18. We constructed a Nested Cross Validated Elastic Net prediction 580 

model using genotype and expression data. We included sub-species, 10 PEER factors and 581 

corresponding genotype PCs in the model to adjust for unknown confounding variables and 582 

underlying population structure. For each trait, we conducted TWAS in each of the same 24 583 

tissues as in cis-eQTL mapping. We considered genes with Bonferroni-corrected P < 0.05 as 584 

significant. We visualized the Manhattan plots of P-values of all tested genes using ggplot2 585 

(v3.3.2) in R (v3.4.1). In addition, we further employed S-MultiXcan49 to conduct multi-586 

tissue TWAS analysis, and considered gene-trait pairs with Bonferroni threshold p < 4×10-6 587 

(0.05/number of tested genes) significant.  588 

 589 

To detect the shared causal variants of gene expression and complex traits, we conducted a 590 

colocalization analysis of cis-eQTLs from 24 tissues and GWAS loci of 43 agronomic traits 591 

using fastENLOC v1.050. Briefly, we split the imputed GWAS summary statistics into 592 

approximately LD-independent regions, and each region was considered as a GWAS locus. 593 

The LD-independent regions were generated from genotypes of 886 Holstein animals from 594 

run7 of 1000 bull Genomes project, as the GWAS summary statistics were from the U.S. 595 

Holstein population. In each GWAS locus of a trait with suggestive significant SNPs (P < 10-596 

5), we considered a gene with regional colocalization probability (rcp) > 0.5 as significant. 597 

Other downstream bioinformatics analysis 598 

We used Genomic Association Tester (GATv1.3.4)51 1,000 permutations to estimate the 599 

functional enrichment of QTLs in particular genomic regions, e.g., chromatin states and 600 

methylation elements. We considered enrichments with FDR < 0.05 as significant. We used 601 

the R package, ClusterProfiler52, to annotate the function of genes based on the Gene 602 

Ontology database from Bioconductor (org.Bt.eg.db v3.11.4). We considered GO terms with 603 
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FDR < 0.05 as significant.  604 
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Figure legend 780 

 781 

Fig. 1. Hierarchical clustering and principal component analysis of samples. (a) Sample 782 

(n = 7,180) hierarchical clustering based on expression levels of all transcribed genes 783 

(Transcripts Per Million, TPM > 0.1). (b) Sample (7,180) hierarchical clustering based on 784 

alternative splicing value (Percent Spliced-In, PSI) of spliced introns. (c) Sample (n = 144) 785 

clustering using t-distributed SNE coordinates based on DNA methylation levels of CpG sites 786 

(coverage ≥ 5×). (d) Principal component analysis of samples (n = 7,180) based on imputed 787 

genotypes.  788 
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 789 

Fig. 2. Tissue-specificity of gene expression, alternative splicing and DNA methylation. 790 

(a) Pearson correlation of tissue-specificity (measured as t-statistics) of 22,752 orthologous 791 

genes between cattle and humans tissues (GTEx v8)3. The multiple testing is corrected for 792 

using FDR. (b) Pearson correlation of tissue-specificity between gene expression (x-axis) 793 

and promoter DNA methylation levels (y-axis). WBC is for white blood cells. The color code 794 

of tissues in x-axis is the same as that in (a). (c) Pearson correlation of tissue-specificity 795 

between gene expression (Transcripts Per Million, TPM, x-axis) and alternative splicing 796 

(Percent Spliced-In, PSI, y-axis). The color code of tissues is the same as that in (a). (d) 797 
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CELF2 shows higher expression, lower DNA methylation levels in splice sites and higher 798 

PSI value of spliced introns (chr13:1303471713197300) in brain tissue compared to the rest 799 

of tissues. TSM is for tissue-specific methylation.  800 

 801 

Fig. 3. Discovery and characterization of cis-eQTLs and cis-sQTLs. (a) Relationship 802 

between the percentage of eGenes over all tested genes and sample size (Pearson r = 0.85; P 803 

= 1.30107) across 24 tissues. (b) Relationship between the percentage of sGenes over all 804 

tested genes and sample size (Pearson r = 0.63; P = 1.06103). (c) Distribution and average 805 

number of conditionally independent eQTLs per gene across tissues. Tissues are ordered by 806 

sample size. (d) The distance to transcription start site (TSS) increases from the 1st to 4th 807 

independent eQTLs. * indicates P < 0.05 based on the Student t-test. (e) cis-eQTLs are 808 
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significantly (P < 11014, denoted as *, Fisher Exact test) overrepresented in the loci with 809 

allelic specific expression (ASE). The y-axis indicates the percentage of cis-eQTLs that are 810 

also ASEs over all tested SNPs in the ASE analysis. (f) Correlation of effect sizes (FastQTL 811 

slope) of cis-eQTLs and allelic fold change (aFC) of ASEs (Spearman’s rho = 0.74, P < 812 

2.21016) in liver. (g) Pairwise cis-eQTL sharing patterns (π1 value) of muscle tissue across 813 

three subspecies (Bos indicus, Bos taurus and their crosses) and other tissues. Rows are 814 

discovery tissues, while columns are validation tissues. Muscle (Cesar et al.) is for 160 815 

skeletal muscle samples of Bos indicus downloaded from Cesar et al. 20189. (h) A cis-eQTL 816 

(rs208377990) of NMRAL1 in muscle is shared across Bos indicus, Bos taurus and their 817 

crosses. (i) A cis-eQTL (rs110492559) of SSNA1 in muscle is specific in Bos indicus (MAF = 818 

0.25 and 0.37 in Bos taurus and Bos indicus, respectively), and has a significant (p < 819 

5.61×10-3) genotype × subspecies interaction.  820 

 821 

Fig. 4. Tissue-sharing patterns of cis-QTLs. (a) Pairwise cis-eQTL sharing patterns (π1 value) 822 
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across 24 tissues. (b) Tissue activity of cis-eQTLs and cis-sQTLs, where a cis-QTL is 823 

considered active in a tissue if it has a mashr local false sign rate (LFSR, equivalent to FDR) 824 

of < 5%. (c) The similarity of tissue clustering across four data types (cis-eQTL, cis-sQTL, 825 

gene expression and splicing)3. The k-means clustering, implemented in the fossil v0.4.0 R 826 

package53, is performed based on 2-22 clusters with 100,000 iterations. For each pairwise data 827 

types, we report the median Pairwise Rand index across all clusters. (d) Median (line) and 828 

interquartile range (shading) of cis-eQTL effect size (y-axis, measured as the absolute log2 829 

transformed allele Fold Change, |aFC(log2)|), as a function of the number of tissues in which 830 

the eGene is expressed (x-axis; TPM > 0.1). Pearson correlation between |aFC(log2)| and 831 

number of tissues with eGene expression is 0.27, with p value < 2.21016.  832 
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 833 

Fig. 5. Functional annotation of cis-QTLs. (a) Enrichment of cis-eQTLs and cis-sQTLs of 834 

24 tissues in sequence ontology. (b) Enrichment of cis-eQTLs and cis-sQTLs of 24 tissues in 835 

15 chromatin states predicted from cattle rumen epithelial primary cells in Holstein 836 

animals14. (c) Effect sizes (measured as |aFC(log2|) of cis-eQTLs of 24 tissues across 837 

sequence ontology. (d) and (e) Enrichment of cis-eQTLs and cis-sQTLs of 13 tissues in 838 

tissue-specific hypomethylated regions, respectively. These 13 tissues have both DNA 839 

methylation and cis-QTL data. Higher fold enrichments are observed for matched tissues 840 

(highlighted dots) compared to other tissues. The numbers are p-values for enrichments of 841 
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matched tissues based on the permutation test (times = 1,000). (f) Percentages of eGene-842 

eVariant pairs that are located within topologically associating domains (TADs) are 843 

significantly (FDR < 0.01) higher than those of random eGene-SNP pairs with matched 844 

distance, except for ileum, macrophage and skin fibroblast. The TADs are obtained from the 845 

lung Hi-C data. The null distributions of percentages of eGene-SNP pairs within TADs are 846 

obtained by doing 5,000 bootstraps. (g) An eGene (APCS) and its eVariant (rs136092944) 847 

are located within a TAD, and linked by a significant Hi-C contact in cattle lung tissue. The 848 

Manhattan plot shows the P-values of all tested SNPs in the cis-eQTL mapping analysis of 849 

APCS. The boxplot (right) shows the PEER-corrected expression levels of APCS across the 850 

three genotypes of eVariant (rs136092944), i.e., AA, AG, and GG, respectively.  851 

 852 

Fig. 6. Relationship between complex traits and cis-QTLs. (a) cis-eQTLs (P = 0.001, 1,000 853 

permutations) and cis-sQTLs (P = 0.02) in liver show significantly higher enrichments for top 854 

SNPs associated with ketosis compared to genome-wide SNPs (shown in grey). (b) cis-eQTLs 855 

(P = 0.001) and cis-sQTLs (P = 0.03) in mammary gland show higher enrichments for top 856 

SNPs associated with milk yield compared to genome-wide SNPs (shown in grey). (c) 857 

Enrichment of cis-eQTLs for genetic associations with milk yield is tissue-dependent. The cis-858 

eQTLs in mammary gland, milk cells and liver exhibit higher enrichments for genetic 859 

associations with milk yield compared to those in other tissues. (d) Manhattan plots of 860 

transcriptome-wide association study (TWAS) for milk yield across all 24 tissues. (e) The 861 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2021. ; https://doi.org/10.1101/2020.12.01.406280doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.406280
http://creativecommons.org/licenses/by/4.0/


38 

 

number of genes that were colocalized (regional colocalization probability, rcp > 0.5 in 862 

fastENLOC) between GWAS significant loci of complex traits and cis-eQTLs across tissues. 863 

The size of point indicates the number of genes, while the color of point indicates the average 864 

rcp of each trait-tissue pair.  865 
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