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Abstract

Characterization of genetic regulatory variants acting on the transcriptome of livestock is
essential for interpreting the molecular mechanisms underlying traits of economic value and
for increasing the rate of genetic gain through artificial selection. Here, we build a cattle

Genotype-Tissue Expression atlas (cattle GTEX, http://cgtex.roslin.ed.ac.uk/) as part of the

pilot phase of Farm animal GTEx (FarmGTEXx) project for the research community based on
publicly available 11,642 RNA-Seq datasets. We describe the landscape of the transcriptome
across over 100 tissues and report hundreds of thousands of genetic associations with gene
expression and alternative splicing for 24 major tissues. We evaluate the tissue-sharing
patterns of these genetic regulatory effects, and functionally annotate them using multi-omics
data. Finally, we link gene expression in different tissues to 43 economically important traits
using both transcriptome-wide association study (TWAS) and colocalization analyses to

decipher the molecular regulatory mechanisms underpinning such agronomic traits in cattle.
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Introduction

Genome-wide association studies (GWAS) have identified thousands of genetic
variants associated with complex traits in human and livestock populations'=. As the
majority of these variants are non-coding, the characterization of the molecular mechanisms
by which such variants affect complex traits has been extremely challenging. Indeed, in
human genetics, it would have been impossible without projects such as the Genotype-Tissue
Expression (GTEx) project that has characterized genetic effects on the human transcriptome
and paved the way to understanding the molecular mechanisms of human variation’.

However, livestock genomic resources lag behind human genomic resources, and to
date, no study has systematically explored the regulatory landscape of the transcriptome
across a wide range of tissues. GWAS signals of agronomic traits are significantly enriched
in regulatory regions of genes expressed in trait-relevant tissues in cattle*®, but experiments
to dissect genetic variation in gene expression have generally been small, both in terms of the
number of individuals and tissues. For instance, a few of studies have explored the
expression/splicing quantitative trait loci (e/sQTL) in blood’, milk cells’, muscle® and
mammary gland in cattle’. Here, we describe the largest and most comprehensive study of
the regulatory landscape of any livestock species by analyzing 11,642 publicly available
cattle RNA-Seq datasets, representing over 100 different tissues and cell types. We combined
all of these data and make the results freely and easily accessible to the research community

through a web portal (http://cgtex.roslin.ed.ac.uk/).

There has been a recent exponential growth in the number of RNA-Seq samples
made publicly available in cattle (Fig. S1a), but these data have never been gathered in one
collection and processed uniformly before. Here, we present a pipeline to uniformly integrate
11,642 public RNA-Seq datasets and identify eQTLs and sQTLs for 24 important cattle
tissues with sufficient sample sizes (n > 40). The latter is facilitated by calling variants
directly from the RNA-Seq reads and imputing to sequence level using a large multi-breed
reference panel'’, in a similar process to that used with human data'!. Next, we conducted in

silico analyses to annotate eQTLs and sQTLs with a variety of publicly available omics data
5
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in cattle, including DNA methylation, chromatin states, and chromatin conformation
characteristics. Finally, we integrated gene expression with a large GWAS of 27,214 dairy
bulls and 43 cattle traits via both transcriptome-wide association study (TWAS) and
colocalization analyses to detect genes and variants associated with these economically
important traits. The cattle Genotype-Tissue Expression (cattle GTEX) atlas will serve as a
primary source of reference for cattle genomics, breeding, adaptive evolution, veterinary
medicine, and comparative genomics.

Results
Data summary

We analyzed 11,642 public RNA-Seq datasets from 8,653 samples, yielding ~200
billion clean reads (Table S1). Summary distributions of sequencing platform, read type
(single/paired reads), clean read number, read length, sex, age, and mapping rate across
samples show that the quality of these publicly available data is acceptable for the following
analyses (Fig. S1b-h)!!. We kept 7,180 samples with clean read > 500,000 and mapping
rate > 60% for subsequent analyses, representing 114 tissues from 46 breeds and breed
combinations (Fig. S1i, Table S1). Holstein was the most represented breed (35.5% of all
samples), reflecting its global economic value. A total of 1,831 samples (21%) had no breed
records, but that information could be predicted from the genotypes called from RNA-Seq
data. We grouped the 114 tissues into 13 categories based on known biology and the 46
breeds into six sub-species, with Bos faurus representing 87% of all samples (Table S1). To
investigate the tissue-specificity of DNA methylation and to functionally annotate QTLs, we
also analyzed 18 newly generated and 126 existing whole-genome bisulfite sequence
(WGBS) samples from 21 cattle tissues, producing ~73 billion clean reads with an average

mapping rate of 71% (Table S2).
General characteristics of transcriptome across samples

As expected, the number of expressed genes (Transcripts per Kilobase Million, TPM >
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125 0.1) increased with the number of clean reads across samples. However, we observed a

126 plateau at 50 million clean reads (Fig. S2a) where we only detected ~60% of 27,607

127 Ensembl annotated genes. Only 61 genes were not expressed in any of the samples, and 33 of
128  them (54.10%) were located in unplaced scaffolds, with significantly (P < 0.05) shorter gene
129  length, fewer exons, higher CG density, and lower sequence constraints than expressed genes
130 (Fig. S2b-f). Similarly, we detected more alternative splicing events with increasing numbers
131 of clean reads across samples (Fig. S2g). However, we did not detect splicing events for 874
132 genes in any sample, which also exhibited significantly shorter gene length, fewer exons,

133 lower expression, and lower sequence constraints than spliced genes (Fig. S2h-k).

134 Furthermore, 27% of them were snRNAs, snoRNAs and rRNAs that play important roles in
135  RNA splicing'? (Fig. S21). Genes without splicing events were significantly enriched in the
136 integral component of membrane and G-protein coupled receptor signaling pathways (Fig.
137 S2m). We found that ~25% of CpG sites in the entire genome were not covered at 5% in any
138 of the WGBS samples, even if these had more than 300 million clean reads, partially due to
139 bisulfite treatment and PCR amplification bias (Fig. S3a). These CpG sites were enriched in
140  gene deserts (e.g., telomeres) with significantly higher CG density than the CpG sites

141  captured by the WGBS (Fig. S3b-d).

142 We called a median of 21,623 SNPs from all RNA-Seq samples (Fig. S4a), and then

143 imputed each sample up to 3,824,444 SNPs using a multi-breed reference population of

144 3,310 animals'®. We validated the imputation accuracy by comparing SNPs derived from

145  RNA-Seq with those called from whole-genome sequence (WGS) in the same individuals,
146  including Holstein, Limousin and Angus, and the concordance rates were over 99% (Fig.

147 S4b, c, and Table S3). We also compared the imputed genotypes from RNA-Seq data with
148 those imputed using SOK SNP array genotypes in a subset of 109 Holstein animals. Although
149 there was a depletion of high-quality (DR? > 0.80) imputed intergenic variants amongst

150  SNPs imputed from RNA-Seq data (Fig. S4d), the DR? values of SNPs imputed from RNA-

151 Seq were similar to those imputed from SNP-array along 1Mb up-/down- stream of gene

7
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body (covering genomic regions for cis-QTL mapping) (Fig. S4e). In addition, the
correlation of genotype counts between imputed SNPs from RNA-Seq data and those from
SNP array was around 0.80 (Fig. S4f). For the subsequent cis-QTL mapping, we focused on
24 tissues with greater than 40 individuals, and this encompassed 5,911 samples. After

removing duplicated samples within each tissue (Fig. S4g), we retained 4,889 individuals.

We found that clusters of samples derived from both gene expression and alternative
splicing in the uniformly analyzed data accurately recapitulated tissue types (Fig. 1a, b),
reinforcing the quality and therefore their utility for our follow-up analysis. For instance, all
the muscle samples from over 40 projects clustered together. Similar to expression and
splicing, DNA methylation profiles also recapitulated tissue types (Fig. 1¢). However, when
clustering based on imputed genotypes, as expected, samples clustered by sub-species (Fig.

1d).
Tissue specificity of transcriptome and methylome

Tissue-specificity of gene expression was significantly conserved between cattle and
humans (Fig. 2a), and the function of genes with tissue-specific expression accurately
reflected the known biology of the tissues. For instance, brain-specific genes were
significantly enriched for synapse and neuron function, and testis-specific genes for
spermatogenesis and reproduction (Fig. S5a). We also calculated tissue-specificity of
promoter DNA methylation and gene alternative splicing. Similarly, the function of genes
with tissue-specific promoter hypomethylation and splicing reflected the known biology of
the tissues (Fig. S5b-c). We found that, based on tissue-specificity, the gene expression level
was significantly and negatively correlated with DNA methylation level in promoters (Fig.
2b), and positively correlated with splicing ratios of introns (Fig. 2c). For example, CELF2, a
brain-related gene, had a significantly higher expression, lower promoter DNA methylation,
and higher splicing ratio of first intron in brain than in other tissues considered (Fig. 2d).
Tissue-specific genes exhibited distinct patterns of sequence constraints (Fig. S5d),

supporting the hypothesis of tissue-driven genome evolution*. We found that while brain-
8
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specific genes evolve slowly, blood or testis-specific ones evolve rapidly. This trend was also

observed within tissue-specific hypomethylated regions (Fig. S5e-f).
Discovery of expression and splicing QTLs

We identified cis-e/sQTLs for 24 tissues with 40 or more individuals, while accounting
for relevant confounding factors and multiple testing (Fig. S6a-b). The number of eGenes
(genes with significant cis-eQTLs) discovered ranged from 172 in ileum to 10,157 in blood,
with 19,559 (83% of all 23,523 tested genes) classed as eGenes in at least one tissue (Table
S4). The number of sGenes (genes with significant cis-sQTLs) discovered ranged from four
in the salivary gland to 7,913 in macrophages, with 15,376 (70.8%) classed as sGenes in at
least one tissue. Genes with no cis-eQTLs or -sQTLs (non-e/sGenes) in any of the tissues
were significantly enriched in hormone activity, regulation of receptor activity, neuropeptide
signaling pathway, and reproduction (Table S5). In general, the larger the number of samples
for the tissue, the larger the number of cis-e/sGenes detected (Fig. 3a-b). As expected, with a
larger sample size, we had more power to detect cis-eQTLs with smaller effect sizes (Fig.
S7a-b). Consistent with findings in humans'3, significant variants (eVariants) centered
around the transcript start sites (TSS) of the measured genes (Fig. S7c-d). Across 24 tissues,
an average of 46% (range 25.5 - 76.6%) of eVariants were found within 100 kb of the TSS of
the target genes. In non-eGenes, there was also an enrichment of SNPs with the smallest P-
values (but not statistically significant at FDR of 0.05) around TSS, suggesting a lack of
power to detect such associations for those genes (Fig. S7c). Furthermore, we fine-mapped
eGenes to assess whether the identified signals could be attributed to one or more causal
SNPs. We found that an average of 46% (range 14.5 - 73.9%) of eGenes across 24 tissues
had more than one independent cis-eQTLs (Fig. 3¢), indicating the complex genetic control
of gene expression. SNPs with the larger effects within a locus tended to be closer to the TSS
(Fig. 3d). To complement and validate the cis-eQTL analysis within individuals, we
conducted an allele-specific expression (ASE) analysis, and found that cis-eQTLs were

significantly overrepresented in loci with significant (FDR < 0.05) ASE (Fig. 3e), and the

9
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effect sizes of cis-eQTLs was significantly correlated with those of ASEs (Fig. 3f, Fig. S7e-
f).

To investigate whether eQTLs are conserved among sub-species, we conducted cis-
eQTL mapping for muscle samples from Bos indicus (n = 51 and 160), Bos taurus (n = 505),
and their hybrids (n = 108) separately, yielding 86 (3,521), 2,766, and 800 eGenes,
respectively. We observed that cis-eQTLs were more conserved across sub-species than
across tissues (Fig. 3g). For example, the expression of NMRALI in muscle was consistently
and significantly regulated by a cis-eQTL (rs208377990) among Bos indicus, Bos taurus,
and their hybrids (Fig. 3h). Combining the summary statistics of each sub-species in a meta-
analysis showed that eGene-eVariant associations identified in one sub-species are
potentially transferable to other sub-species (Fig. S7g-h). Combining samples from different
sub-species and breeds will increase statistical power for detecting shared eQTLs, and enable
more accurate mapping of the causal variants via reducing the linkage disequilibrium (LD)
patterns. In total, 131 out of 437 eGene-eVariant pairs that were specifically discovered in
Bos indicus showed significant (FDR < 0.05) genotype X subspecies interactions (Table S6).
For instance, the expression of an immune-related gene, SSNA 1, was regulated by a cis-
eQTL (rs110492559) in Bos indicus but not in Bos taurus or the hybrids, showing a
significant (p < 5.61x107%) genotype x subspecies interaction (Fig. 3i). In addition, we found
that subspecies-specific eQTLs had lower minor allele frequency (MAF) than subspecies-
common eQTLs, consistent in both Bos indicus and Bos taurus (Fig. S8). This may indicate
that the difference in eQTLs between subspecies could be partially due to their difference in
the frequency of the segregating variants, provided that there are no

epistatic/environmental/developmental effects.

The tissue-sharing patterns of cis-QTLs could provide novel insights into molecular
regulatory mechanisms underlying complex phenotypes®. We applied the ; statistics to
measure the sharing patterns of cis-e/sQTLs between tissues (Fig. 4a and Fig. S9a). In

general, we observed that both cis-eQTLs and cis-sQTLs tended to be tissue-specific or

10
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ubiquitous across tissues (Fig. 4b). We also calculated the tissue-sharing patterns of gene
expression and alternative splicing (Fig. S9b-c), and found that the tissue-sharing patterns of
the four core data types (i.e., gene expression, alternative splicing and cis-e/sQTLs) were
significantly correlated (Fig. 4c). This result suggests that tissues with similar transcriptional
profiles shared the genetic regulatory mechanisms of transcription. Further analysis on the
expression of eGenes across tissues revealed that effect sizes of eVariants decreased with the
increasing number of tissues where target eGenes were expressed (Pearson’s » =-0.27, P <
2.2x1071%), indicating that, on average, tissue-specific genes might be regulated by SNPs with
larger genetic regulatory effects than widely-expressed genes (Fig. 4d). Due to limitations
and challenges of trans-eQTLs analysis in this study which include: insufficient statistical
power, the relatively lower imputation accuracy of distant intergenic SNPs, and complex
inter-chromosomal LD in cattle (which could lead to increased type I error rates)'*, we only
conducted an exploratory trans-e/sQTL mapping for 15 tissues with over 100 individuals.
We detected an average of 1,058 and 84 trans-eGenes and trans-sGenes (FDR < 0.05) across
tissues, respectively (Table S7). We summarized the details of trans-eQTL mapping,
including LD patterns of trans-eQTLs and cis-eQTL, tissue-sharing patterns of trans-eQTLs

and their validations, in Fig. S10-11.
Functional annotation of QTLs

We employed multiple layers of biological data to better define the molecular
mechanisms of genetic regulatory effects. As expected, cis-e/sQTLs were significantly
enriched in functional elements, such as 3’'UTR and open chromatin regions (defined by
ATAC-Seq data in cattle rumen epithelial primary cells)' (Fig. 5a-b). Similarly, cis-sQTLs
had a higher enrichment in splice donors/acceptors than cis-eQTLs. The cis-eQTLs
associated with stop gains had larger effect sizes than other cis-eQTLs (Fig. 5¢). The cis-
e/sQTLs were enriched in hypomethylated regions of the matching tissues across 13 tissues
(Fig. 5d-e). For instance, the liver exhibited the highest enrichment of cis-e/sQTL in liver-

specific hypomethylated regions. Consistent with the brain having distinct abundance of

11
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alternative splicing, related to the development of the nervous system'?, cis-sQTLs in the
hypothalamus and pituitary had the highest enrichments in their specific hypomethylated
regions (Fig. 5e).

Topologically associated domains (TADs) enable chromatin interactions between
distant regulatory regions and target promoters'¢. By examining Hi-C data of lung tissue in
cattle'®, we obtained TADs and significant Hi-C contacts, which were likely to be conserved
across tissues as proposed previously'®. By comparing with random eGene-SNP pairs with
matched distances, we observed significantly (FDR < 0.01, 5,000 bootstrapping test) higher
percentages of eGene-eVariant pairs within TADs across the majority of tissues, except for
ileum and skin fibroblast (Fig. 5f). For instance, APCS and its cis-eQTL peak (144kb
upstream of the TSS) were encompassed by an TAD and linked by a significant Hi-C

contact, which allowed the regulation of its expression by a distant eVariant (rs136092944)

(Fig. 5g).
e¢QTLs and complex trait associations

The primary goal of this study is to provide a resource for elucidating the genetic and
biological mechanisms involved in cattle. We thus evaluated e/sQTLs detected in each tissue
for associations with four distinct agronomic traits, i.e., ketosis, somatic cell score in milk
(SCS), age at first calving (AFC), and milk yield (MY). The top SNPs associated with
ketosis from GWAS were significantly (P < 0.05, 1,000 permutation test) enriched within
liver cis-e/sQTLs (Fig. 6a). Similarly, MY-associated SNPs were significantly
overrepresented in mammary gland cis-e/sQTLs (Fig. 6b). Compared to other tissues,
mammary gland, milk cells and liver were the tissues with highest enrichment of MY-
associated SNPs amongst cis-eQTLs (Fig. 6¢). Additionally, AFC-associated SNPs were

significantly enriched for monocytes cis-eQTLs, and SCS for mammary gland (Fig. S12a-b).

We detected 854 significant gene-trait pairs for 43 agronomic traits in cattle via single-

tissue TWAS, representing 337 unique genes (Table S8). Out of 319 previously fine-mapped
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genes 17,18

, we validated 54, including linking expression of DGAT! in liver and mammary
gland, and expression of MGST1 in milk cells, as well as expression of CLN3 in liver to MY
(Fig. 6d). The expression of ZNF613 in hypothalamus was the most significant association
for many reproduction and body conformation traits, including daughter-still-birth and
stature (Table S8), supporting our previous finding that ZNF613 is significantly associated
with gestation length possibly through its influence on embryonic development'’.
Furthermore, we conducted a colocalization analysis of cis-eQTLs and GWAS loci, and
detected 115 unique eGenes that were colocalized (regional colocalization probability, rcp >
0.5) within 260 GWAS loci associated to 25 out of the 43 complex traits analysed. These
represent 235 significant gene-trait pairs (some eGenes were associated with 2 or more traits)
(Fig. 6e; Table S9). For instance, TIGAR, a muscle cis-eGene, playing roles in cellular
metabolism and oxidative stress, was colocalized (rcp = 0.529) with a GWAS locus
associated with strength on chromosome 5 (Fig. S12¢-d). We also took sire calving ease,
which GWAS loci were colocalized with 21 eGenes in at least one tissue, as an example in
Fig. S12e. By comparing results from single/multi-tissue TWAS and colocalization, we
found an overlap of 66 gene-trait pairs (Table S10; Fig. S12f). Overall, TWAS and
colocalization analyses enhanced our ability to detect candidate causal genes and to better

understand the biological underpinnings of complex traits in cattle.
Discussion

The cattle GTEx atlas represents the most comprehensive reference resource of the
cattle transcriptome to date. It provides a detailed characterization of genetic control of gene
expression and splicing across 24 tissues in cattle. This study demonstrates that it is possible
to discover genetic regulatory variants of transcriptome by deriving and imputing genetic
variants from RNA-Seq data only in livestock. We established a in silico protocol to deliver a
livestock GTEXx atlas in a timely manner and at a fraction of the cost of the human GTEx

project, or an equivalent project in livestock generating RNA-Seq data from scratch.
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Although we have successfully uncovered large numbers of tissue-specific e/sQTLs and
provided a comprehensive view of the control of gene regulation in cattle and an
accompanying public database that is a valuable resource for the community, we are also
mindful that this resource can be further improved with the inclusion of more
individuals/breeds and more varied data types. The imputation accuracy for breeds that are
very under-represented in the reference panel might be relatively low. Additionally,
generating SNP array genotypes or WGS for individuals with RNA-Seq data can provide
additional information for distant intergenic variants as compared to RNA-Seq data only,
potentially enhancing the detection of distant intergenic QTLs. The Farm animal GTEx
(FarmGTEXx) consortium was recently launched and is currently extending the bioinformatics
pipeline developed here to other livestock species (e.g., pigs, small ruminants and chicken)

to add value to the publicly available sequencing data for the research community.

The cattle GTEx provides a resource to explore tissue-sharing patterns of the
transcriptome and its genetic regulation (i.e., ¢/sQTLs) in cattle. In contrast to the human
GTEx*, where RNA-Seq samples across tissues were collected from the same individuals,
the cattle GTEx used publicly available data, where individuals or even breeds were different
from tissue to tissue. This might explain why there is a lower proportion of cis-eQTLs and
cis-sQTLs shared across tissues compared to the human GTEx. In addition, the difference in
the cell type composition of tissues can also affect the tissue-sharing patterns of QTLs*.
When single-cell RNA-Seq data is available for multiple tissues in cattle in the near future®”,
it would be of interest to computationally estimate the cell type proportions in the bulk tissue

samples to uncover the cellular specificity of genetic regulatory effects'.

This cattle GTEXx atlas systematically links SNPs, genes, and tissues for the first time in
cattle, and provides an important tool for new discoveries using these three datasets to study
the mechanisms underlying complex traits. The e/sQTLs detected here provide a rich set of

functional variants for agronomic traits in cattle, as we found that top GWAS associations of
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traits were significantly enriched for regulatory QTLs in their relevant tissues. Our TWAS
and colocalization analyses further provide a list of promising candidate genes/variants for
functional follow-up. We noted the relatively small overlap of results from TWAS and
colocalization. This might because the two methods use the information differently, with the
TWAS or co-localization method being more or less powerful depending on the genetic
architecture of both the trait of interest and the tissue gene expression.

Further integration of these QTLs with functional annotations of a range of tissues from
the on-going Functional Annotation of Animal Genomes (FAANG) project will provide
valuable opportunities to understand transcriptional/post-transcriptional regulatory
mechanisms underpinning GWAS hits for agronomic traits*?. The multi-tissue e¢/sQTLs
generated here will also enable the exploration of molecular mechanisms underlying the
extensive pleiotropic effects identified in livestock?’. This information will allow the
understanding of mechanisms of response to intended selection as well as disentangling
unintended and unfavorable correlated responses to this same selection (e.g. increasing
mastitis or deteriorating fertility when selection for increased milk production). Furthermore,
this resource will assist in the development of genomic selection methods and tools to
improve animal health and wellbeing. For instance, a better understanding of the genetic
architecture underpinning agronomic traits will benefit genetic improvement programs by
incorporating biological knowledge into genomic prediction models'?, which has been
shown to improve prediction accuracy across generations, populations and breeds?.

Online Methods
Quantification of gene expression

We downloaded 11,642 RNA-Seq datasets (by July, 2019) from SRA (n = 11,513,

https://www.ncbi.nlm.nih.gov/sra/) and BIGD databases (n = 129,

https://bigd.big.ac.cn/bioproject/). We merged multiple datasets from single samples,
yielding 8,536 unique RNA-Seq samples. We applied a stringent and uniform pipeline to

filter and analyze all the data. Briefly, we first removed adaptors and low quality reads using
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Trimmomatic (v0.39)** with parameters: adapters/TruSeq3-SE.fa:2:30:10 LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. We filtered out samples with clean
read counts < 500K, resulting in 7,680 samples, and mapped clean reads to the ARS-UCDI1.2
cattle reference genome? using single or paired mapping modules of STAR (v2.7.0) with
parameters of outFilterMismatchNmax 3, outFilterMultimapNmax 10 and
outFilterScoreMinOverLread 0.66. We kept 7,264 samples with uniquely mapping rates >
60% (mean, 91.07%; range, 60.44%-100%; mapping details in Table S1). We then obtained
normalized expression (TPM) of 27,608 Ensembl (v96) annotated genes using Stringtie
(v2.1.1)%%, and extracted raw read counts of them with featureCounts (v1.5.2)?’. We finally
clustered 7,264 samples based on logz(TPM +1) using a hierarchical clustering method,
implemented in R package dendextend, with distance = (1-r), where r is the Pearson
correlation coefficient. We excluded samples with obvious clustering errors (e.g., samples
labeled as liver that were not clustered with other liver samples), resulting in 7,180 samples

for subsequent analysis.
Quantification of alternative splicing

We used Leafcutter (v0.2.9)?® to identify and quantify variable alternative splicing events
of genes by leveraging information of junction reads (i.e., reads spanning introns) that were
obtained from the STAR alignment. The Leafcutter enables the identification of splicing
events without relying on existing annotations that are typically incomplete, especially in the
setting of large genes or individual- and/or population-specific isoforms?®. We first converted
bam files from STAR alignment into junction files using the script “bam2junc.sh”, and then
performed intron clustering using the script “leafcutter cluster.py” with default settings of 50
reads per cluster and a maximum intron length of 500 kb. We employed the
“prepare_genotype table.py” script in Leafcutter to calculate intron excision ratios and to
remove introns used in less than 40% of individuals or with no variation. Ultimately, we
standardized and quantile normalized intron excision ratios as Percent Spliced-In (PSI)

values across samples. We clustered 7,180 samples based on PSI using the same method as
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used in gene expression.
Genotyping and imputation

We called genotypes of known genomic variants in the 1000 Bull Genomes Projects'’ for
7,180 high-quality RNA-Seq samples individually, following the recommended best
practices pipeline in Genome Analysis Toolkit (GATK) (v4.0.8.1)?° with default settings. We
filtered out low quality SNPs using --filter-expression “FS > 30.0 & QD < 2.0”. We then
imputed the filtered SNPs on autosomes to sequence level using Beagle (v5.1)** based on a
multiple-breed reference population consisted of 3,103 individuals from run7 of the 1000
Bull Genomes Project!® and 207 public individuals from Bos taurus (n = 101), Bos indicus
(zebu, n = 20), and Bos grunniens (yak, n = 86) (Table S11). Finally, we obtained 6,123
samples that were genotyped and imputed successfully. We filtered out variants with MAF <
0.05 and dosage R-squared (DR?) < 0.8, resulting in 3,824,444 SNPs used for QTL mapping.
To evaluate the accuracy of imputation, we called genotypes (~6 M SNPs) from WGS
(average read depth > 10 X)) of Holstein (n = 4), Limousin (n = 3) and Angus (n = 5) animals,
which had RNA-Seq data as well. We then measured the genotype concordance rates
between WGS-SNPs and RNA-Seq/imputed SNPs. We extracted 153,913 LD-independent
SNPs using plink (v1.90)*! (--indep-pairwise 1000 5 0.2), and conducted PCA analysis for all
6,123 samples using these SNPs in EIGENSOFT (v7.2.1)*. We calculated the identity-by-
state (IBS) distance among samples by using these independent SNPs to remove duplicate
individuals. IBS distance = (IBS2 + 0.5*IBS1) / (IBSO + IBS1 + IBS2), where IBSO is the
number of IBS 0 non-missing variants, IBS1 is the number of IBS 1 non-missing variants
and IBS2 is the number of IBS 2 non-missing variants. We set an IBS distance cutoff of 0.85
to deem two samples as duplicates and kept one of them. When conducting QTL mapping,

we removed an average of 43 duplicate samples within each tested tissue (ranging from one

in salivary gland and leukocyte to 132 in muscle), resulting in 4,889 samples.

Allele specific expression (ASE)
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We conducted ASE analysis using the GATK ASEReadCounter tool (v4.0.8.1) with the
following settings: --U ALLOW_N CIGAR READS -minDepth 10 —-minMappingQuality
255 --minBaseQuality 10. SNPs for ASE detection fulfilled the following criteria:
heterozygous in at least five samples, at least 10 reads per allele, and at least 2% of all reads
supporting the minor allele. We then calculated a binominal P-value by comparing to the
expected ratio under the null hypothesis, followed by multiple-test correction with the
Benjamini—Hochberg approach (FDR). SNPs with FDR < 0.05 were considered as
significant ASE. We estimated the effect size (allele fold change, aFC) of regulatory variants

at ASE loci using a haplotype-based approach implemented in phASER?*.
Bioinformatics analysis of WGBS data

For WGBS data analysis, we first used FastQC (v0.11.2) and Trim Galore v0.4.0 (--
max_n 15 --quality 20 --length 20 -e 0.1) to determine read quality and to filter reads with
low quality, respectively. We then mapped clean reads to the same reference genome (ARS-
UCD1.2) using Bismark software (v0.14.5)** with default parameters. After deduplication of
reads, we extracted methylation levels of cytosines using the bismark methylation_extractor
(--ignore 12 6) function. The coverages of all WGBS data were calculated using clean reads
with an average of 27.6-fold coverage (range: 5—47 x). Ultimately, we kept CpG sites that
were represented by at least five reads for subsequent analyses. We visualized sample

clusters based on DNA methylation levels of shared CpGs using #-SNE approaches.
Identification of TAD and significant Hi-C contacts

To find potential chromatin interactions between distant eVariants and target eGenes, we
identified TADs and Hi-C contacts from Hi-C data from lung tissue in cattle that was
retrieved from NCBI Sequence Read Archive (SRA) under accessions: SRR5753600,
SRR5753603, and SRR5753606. We used Trim Galore (v0.4.0) to trim adapter sequences
and low-quality reads (--max_n 15 --quality 20 --length 20 -e 0.1), resulting in ~820 million

clean reads. We then mapped clean reads to the reference genome (ARS-UCD1.2) using
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BWA?™. We applied HiCExplorer v3.4.13¢ to build a Hi-C contact matrix with 10kb
resolution and identified TAD with hicFindTAD. We kept TADs with FDR less than 0.01 to
link eQTLs to eGenes. We further employed HiC-Pro (v2.11.4)* to call Hi-C contacts with
10 kb resolution from Hi-C data. Briefly, HiC-Pro aligned clean reads to the reference
genome with Bowtie2 (v2.3.5)%. After building a contact matrix, HiC-Pro generated intra-
and inter-chromosomal maps and normalized them using the ICE normalization algorithm.

We considered Hi-C contacts with FDR < 0.05 as significant.
Tissue-specificity analysis of gene expression, alternative splicing and DNA methylation

To quantify tissue-specific expression of genes, we computed a #-statistics for each gene
in each of the 114 tissues. We grouped 114 tissues into 13 categories (Table S1). We scaled
the logo-transformed expression (i.e., log2TPM) of genes to have a mean of zero and variance
of one within each tissue. We then fitted a linear model as described in'” for each gene in
each tissue using the least squares method. When constructing the matrix of dummy
variables (i.e., design matrix) for tissues, we denoted samples of the target tissue/cell type
(e.g., CD4 cells) as ‘1°, while samples outside the target category (e.g., non-blood/immune
tissues) as ‘-1°. We excluded samples within the same category (e.g., CDS cells and
lymphocytes) to detect genes with specific expression in each particular category, even if
they were not specific to the target tissue within this category. We obtained #-statistics for
each gene to measure its expression specificity in a given tissue. We considered the top 5%
of genes ranked by largest z-statistics as genes with high tissue-specific expression. In order
to explore the conservation of tissue-specific expression between cattle and humans, we
employed the same method to quantify the tissue-specific expression of all orthologous

genes in each of 55 human tissues using GTEx (v8) data>.

To detect tissue-specific alternative splicing, we used leafcutter to analyze the differential
intron excision by comparing the samples from the target tissue to the remaining tissues®,
while excluding samples from tissues of the same category as the target tissue. We used the

Benjamini-Hochberg method (FDR) to control multiple testing.
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For DNA methylation, we focused on gene promoters (from upstream 1500bp to
downstream 500bp of TSS), the methylation levels of which were calculated with a weighted
methylation method using the roimethstat function in MethPipe (v3.4.3)*. We computed a ¢-
statistic for the promoter of each gene using the same method as in tissue-specific expression
analysis. We considered the bottom 5% of genes ranked by #-statistics as genes with tissue-
specific promoter hypomethylation. We also detected tissue-specific methylation regions in a
genome-wide mode using SMART23? with parameters of -t DeNovoDMR -MR 0.5 -AG 1.0
-MS 0.5 -ED 0.2 -SM 0.6 -CD 500 -CN 5 -SL 20 -PD 0.05 -PM 0.05.

Covariate analysis for QTL discovery

To account for hidden batch effects and other technical/biological sources of
transcriptome-wide variation in gene expression, we estimated latent covariates in each
tissue using the Probabilistic Estimation of Expression Residuals (PEER) method*’. In each
tissue, we estimated 75 PEER factors first. The posterior variances of factor weights
dramatically decreased and reached or nearly reached plains when 10 PEER factors were
included (Fig. S6a). Therefore, we used 10 PEER covariates to account for the effects of
confounding variables on gene expression in all following QTL analyses. For instance, the
variance of gene expression among samples in adipose captured by 9 out of 10 PEER factors
were significantly (FDR < 0.05) correlated with known technical and biological covariates
like clean data size, mapping rate, project, breeds, sub-species, sex and age (Fig. S6b). To
further control the effect of population structure on the discovery of QTLs, we included
genotype PCs based on sample size bins: three PCs for tissues with < 150 samples, five PCs

for tissues with > 150 and < 250 samples, and ten PCs for tissues with > 250 samples.
cis-eQTL mapping

We conducted cis-eQTL mapping for 24 tissues with at least 40 individuals each, while
adjusting for corresponding PEER factors and genotype PCs. Detailed information about

these 24 tissues is in Table S4. As the majority of cis-eQTLs are shared across sub-
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species/breeds (Fig. 3g), we combined, adjusting for species/breed, all of the datasets from
the same tissue to perform cis-eQTL mapping in order to increase the statistical power. We
kept genes with TPM > 0.1 in > 20% samples in each tissue. Gene expression values of all
samples in a given tissue were quantile normalized to the average empirical distribution and
expression values for each gene then inverse normal transformed (INT) across samples. The
cis-eQTL mapping was done using a linear regression model, implemented in FastQTL*!, to
test associations of the normalized expression level of genes with genetic variants in 1Mb of
TSS of target genes. We only considered imputed variants with MAF > 0.05 and at least four
minor alleles across samples within the target tissue. We first conducted cis-eQTL mapping
in a permutation mode with the setting --permute 1000 10000, to identify genes with at least
one significant cis-eQTL (eGene). We considered FDR < 0.05 as significant, which was
calculated with the Benjamini-Hochberg method based on the beta distribution-extrapolated
empirical P-values from FastQTL. To identify a list of significant eGene-eVariant pairs, we
applied the nominal mode in FastQTL. A genome-wide empirical P-value threshold p, was
defined as the empirical P-value of the gene closest to the 0.05 FDR threshold?. We then
calculated the nominal threshold as F~*(p,), where F~! is the binominal inverse
cumulative distribution, of which parameters for genes were obtained from the above
permutation mode of FastQTL analysis. We considered variants with nominal P-values
below the nominal threshold as significant, and included them into the list of eGene-eVariant
pairs. We calculated the aFC, defined as the ratio of the expression level of the haplotype
carrying the alternative allele over the one carrying the reference allele, to measure effect
sizes of cis-eQTLs using the aFC (v0.3) tools*?. We further applied the statistical fine-
mapping method, dap-g**, to infer multiple independent casual cis-eQTLs of a gene in a
tissue. The dap-g approach employed a Bayesian variable selection model, using a signal-
level posterior inclusion probability (SPIP) to measure the strength of each association signal
(SNPs in LD). We set a cutoff of 0.1 (i.e., SPIP > 0.9) as the inclusion threshold to detect

representative/independent eQTLs for the target eGene. To analyze pairwise tissue similarity
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524 in QTLs, we calculated m; statistics, defined as the proportion of true positive QTLs
525  identified in first tissue (Discovery tissue) amongst all tested gene-variant pairs in second

526  tissue (Validation tissue), using the Storey and Tibshirani qvalue approach, as described in'>.
527  Meta-analysis of cis-eQTLs of muscle samples from three sub-species

528 Data from muscle samples were available from three sub-species: Bos indicus (n = 51),
529  Bos taurus (n = 505), and their crosses (n = 108). To explore the similarity and variability of
530  cis-eQTLs among sub-species, we conducted cis-eQTL mapping using muscle samples from
531  each of the sub-species separately. We then conducted a meta-analysis to integrate cis-eQTL
532 results from three sub-species using the METAL tool**. We obtained Z-scores (the sum of
533  weighted effect sizes) of SNPs from the meta-analysis. Weights were proportional to the

534  square-root of the number of individuals in each sub-species**. We employed plink>!

535  (http://pngu.mgh.harvard.edu/purcell/plink/) to test the SNP x subspecies interaction in

536  muscle samples, and adjusted the p-values to FDR using Benjamini-Hochberg procedure. We

537  took FDR < 0.05 as the significant threshold.
538  cis-sQTL mapping and tissue-sharing patterns

539 In each of the 24 tissues, we applied a linear regression model, implemented in

540  FastQTL*, to test for associations of genotypes within 1 Mb up- and down-stream of target
541  intron clusters and their corresponding intron excision ratios. We used the first five genotype
542 PCs to account for the effect of ancestry, and 10 PEER factors to adjust for the effect of

543  unknown confounding variables. We applied the permutation pass mode (--permute 1000

544 10000) in FastQTL*! to obtain beta approximated permutation p values, followed by multiple
545  test correction with the FDR method. We considered sQTL-intron pairs with FDR < 0.05 as
546  significant, and defined sGene as genes containing a significant sQTL in any introns. We

547  employed MashR* to analyze tissue-sharing patterns of QTLs as described previously in

548  human GTEx?, and considered the local false sign rate (LFSR) < 0.05 as significant.

549  trans-QTL mapping
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We conducted trans-eQTLs for 15 tissues with at least 100 samples each. We filtered
genomic variants using a more stringent threshold than cis-eQTL mapping to partially
account for the reduction in statistical power. We obtained mappability of variants based on
k-mer lengths of 36 and 75 following the procedure described in

https://wiki.bits.vib.be/index.php/Create_a_mappability track. We excluded any variants

within repeats (Repeatmasker and simple repeats), and further removed variants with
mappability < 1, based on k-mer length of 75. After filtering, we kept SNPs with MAF >

0.05 and at least 10 minor alleles within each tissue for association testing.

We applied two methods to detect trans-eQTLs for protein-coding genes with an average
mappability > 0.8 based on k-mer length of 36. Firstly, we associated the normalized
expression of target genes with genotypes on other autosomal chromosomes using a linear
regression model in MatrixQTL*, while adjusting for the same covariates as in cis-eQTL
analysis. Secondly, we employed a linear mixed model (by fitting a polygenic effect with the
genetic relationship matrix to further account for the complex relatedness among individuals)
in the GCTA software*’ for trans-eQTL and trans-sQTL mapping. For both methods, we
adjusted P-values for multiple testing using the Benjamini-Hochberg method to obtain FDR.
We considered gene-variant pairs with FDR < 0.05 as significant. To conduct an internal
validation of trans-eQTL mapping, we randomly and evenly divided blood and muscle
samples into two groups. We first conducted trans-eQTL mapping in the first group using the
linear mixed model to detect significant trans-eQTL-gene pairs, and then repeated in the
second group.

TWAS and Colocalization of cis-eQTLs and GWAS loci

To associate gene expression in a tissue with complex traits, we conducted a single-
tissue TWAS analysis using S-PrediXcan*® by prioritizing GWAS summary statistics for 43
agronomic traits of economic importance in cattle, including reproduction (n = 11),
production (milk-relevant; n = 6), body type (n = 17), and health (immune/metabolic-

relevant; n = 9). For body conformation (type), reproduction, and production traits, we
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conducted a single-marker GWAS by fitting a linear mixed model in 27,214 U.S. Holstein
bulls as described previously'”. For health traits, we conducted GWAS using the same
method in a subset (ranging from 11,880 for hypocalcemia to 24,699 for livability) of the
27,214 available bulls'®. We constructed a Nested Cross Validated Elastic Net prediction
model using genotype and expression data. We included sub-species, 10 PEER factors and
corresponding genotype PCs in the model to adjust for unknown confounding variables and
underlying population structure. For each trait, we conducted TWAS in each of the same 24
tissues as in cis-eQTL mapping. We considered genes with Bonferroni-corrected P < 0.05 as
significant. We visualized the Manhattan plots of P-values of all tested genes using ggplot2
(v3.3.2) in R (v3.4.1). In addition, we further employed S-MultiXcan*’ to conduct multi-
tissue TWAS analysis, and considered gene-trait pairs with Bonferroni threshold p < 4x10°¢

(0.05/number of tested genes) significant.

To detect the shared causal variants of gene expression and complex traits, we conducted a
colocalization analysis of cis-eQTLs from 24 tissues and GWAS loci of 43 agronomic traits
using fastENLOC v1.0°°. Briefly, we split the imputed GWAS summary statistics into
approximately LD-independent regions, and each region was considered as a GWAS locus.
The LD-independent regions were generated from genotypes of 886 Holstein animals from
run7 of 1000 bull Genomes project, as the GWAS summary statistics were from the U.S.
Holstein population. In each GWAS locus of a trait with suggestive significant SNPs (P < 10

%), we considered a gene with regional colocalization probability (rcp) > 0.5 as significant.

Other downstream bioinformatics analysis

We used Genomic Association Tester (GATv1.3.4)°! 1,000 permutations to estimate the
functional enrichment of QTLs in particular genomic regions, e.g., chromatin states and
methylation elements. We considered enrichments with FDR < 0.05 as significant. We used
the R package, ClusterProfiler>?, to annotate the function of genes based on the Gene

Ontology database from Bioconductor (org.Bt.eg.db v3.11.4). We considered GO terms with
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FDR < 0.05 as significant.
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782  Fig. 1. Hierarchical clustering and principal component analysis of samples. (a) Sample
783  (n = 7,180) hierarchical clustering based on expression levels of all transcribed genes
784  (Transcripts Per Million, TPM > 0.1). (b) Sample (7,180) hierarchical clustering based on
785  alternative splicing value (Percent Spliced-In, PSI) of spliced introns. (¢) Sample (n = 144)
786  clustering using ¢-distributed SNE coordinates based on DNA methylation levels of CpG sites
787  (coverage > 5x). (d) Principal component analysis of samples (n = 7,180) based on imputed
788  genotypes.
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790  Fig. 2. Tissue-specificity of gene expression, alternative splicing and DNA methylation.
791  (a) Pearson correlation of tissue-specificity (measured as ¢-statistics) of 22,752 orthologous
792 genes between cattle and humans tissues (GTEx v8)*. The multiple testing is corrected for
793  using FDR. (b) Pearson correlation of tissue-specificity between gene expression (x-axis)
794  and promoter DNA methylation levels (y-axis). WBC is for white blood cells. The color code
795  of tissues in x-axis is the same as that in (a). (¢) Pearson correlation of tissue-specificity

796  between gene expression (Transcripts Per Million, TPM, x-axis) and alternative splicing

797  (Percent Spliced-In, PSI, y-axis). The color code of tissues is the same as that in (a). (d)
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798  CELF?2 shows higher expression, lower DNA methylation levels in splice sites and higher
799  PSI value of spliced introns (chr13:13034717—-13197300) in brain tissue compared to the rest
800  of'tissues. TSM is for tissue-specific methylation.
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802  Fig. 3. Discovery and characterization of cis-eQTLs and cis-sQTLs. (a) Relationship
803  between the percentage of eGenes over all tested genes and sample size (Pearson » = 0.85; P
804  =1.30x1077) across 24 tissues. (b) Relationship between the percentage of sGenes over all
805  tested genes and sample size (Pearson » = 0.63; P = 1.06x107%). (¢) Distribution and average
806  number of conditionally independent eQTLs per gene across tissues. Tissues are ordered by
807  sample size. (d) The distance to transcription start site (TSS) increases from the 1% to 4™
808  independent eQTLs. * indicates P < (.05 based on the Student #-test. (e) cis-eQTLs are
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809  significantly (P < 1x107'%, denoted as *, Fisher Exact test) overrepresented in the loci with
810  allelic specific expression (ASE). The y-axis indicates the percentage of cis-eQTLs that are
811  also ASEs over all tested SNPs in the ASE analysis. (f) Correlation of effect sizes (FastQTL
812  slope) of cis-eQTLs and allelic fold change (aFC) of ASEs (Spearman’s rho = 0.74, P <

813  2.2x107'%) in liver. (g) Pairwise cis-eQTL sharing patterns (m value) of muscle tissue across
814  three subspecies (Bos indicus, Bos taurus and their crosses) and other tissues. Rows are

815  discovery tissues, while columns are validation tissues. Muscle (Cesar et al.) is for 160

816  skeletal muscle samples of Bos indicus downloaded from Cesar et al. 2018°. (h) A cis-eQTL
817  (rs208377990) of NMRALI in muscle is shared across Bos indicus, Bos taurus and their

818  crosses. (i) A cis-eQTL (rs110492559) of SSNA I in muscle is specific in Bos indicus (MAF =
819  0.25 and 0.37 in Bos taurus and Bos indicus, respectively), and has a significant (p <

820  5.61x107%) genotype x subspecies interaction.
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822  Fig. 4. Tissue-sharing patterns of cis-QTLs. (a) Pairwise cis-eQTL sharing patterns (m; value)
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823  across 24 tissues. (b) Tissue activity of cis-eQTLs and cis-sQTLs, where a cis-QTL is
824  considered active in a tissue if it has a mashr local false sign rate (LFSR, equivalent to FDR)
825  of < 5%. (c¢) The similarity of tissue clustering across four data types (cis-eQTL, cis-sQTL,
826  gene expression and splicing)’. The k-means clustering, implemented in the fossil v0.4.0 R
827  package’?, is performed based on 2-22 clusters with 100,000 iterations. For each pairwise data
828  types, we report the median Pairwise Rand index across all clusters. (d) Median (line) and
829  interquartile range (shading) of cis-eQTL effect size (y-axis, measured as the absolute log
830  transformed allele Fold Change, |aFC(log2)|), as a function of the number of tissues in which
831  the eGene is expressed (x-axis; TPM > 0.1). Pearson correlation between |aFC(log2)| and
832  number of tissues with eGene expression is —0.27, with p value < 2.2x107'6,
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834  Fig. 5. Functional annotation of cis-QTLs. (a) Enrichment of cis-eQTLs and cis-sQTLs of
835 24 tissues in sequence ontology. (b) Enrichment of cis-eQTLs and cis-sQTLs of 24 tissues in
836 15 chromatin states predicted from cattle rumen epithelial primary cells in Holstein

837  animals'?. (¢) Effect sizes (measured as [aFC(log|) of cis-eQTLs of 24 tissues across

838  sequence ontology. (d) and (e) Enrichment of cis-eQTLs and cis-sQTLs of 13 tissues in

839  tissue-specific hypomethylated regions, respectively. These 13 tissues have both DNA

840  methylation and cis-QTL data. Higher fold enrichments are observed for matched tissues

841  (highlighted dots) compared to other tissues. The numbers are p-values for enrichments of
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842  matched tissues based on the permutation test (times = 1,000). (f) Percentages of eGene-
843  eVariant pairs that are located within topologically associating domains (TADs) are

844  significantly (FDR < 0.01) higher than those of random eGene-SNP pairs with matched

845  distance, except for ileum, macrophage and skin fibroblast. The TADs are obtained from the
846  lung Hi-C data. The null distributions of percentages of eGene-SNP pairs within TADs are
847  obtained by doing 5,000 bootstraps. (g) An eGene (4PCS) and its eVariant (rs136092944)
848  are located within a TAD, and linked by a significant Hi-C contact in cattle lung tissue. The
849  Manhattan plot shows the P-values of all tested SNPs in the cis-eQTL mapping analysis of
850  APCS. The boxplot (right) shows the PEER-corrected expression levels of APCS across the
851  three genotypes of eVariant (rs136092944), i.e., AA, AG, and GG, respectively.
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852

853  Fig. 6. Relationship between complex traits and cis-QTLs. (a) cis-eQTLs (P=10.001, 1,000
854  permutations) and cis-sQTLs (P = 0.02) in liver show significantly higher enrichments for top
855  SNPs associated with ketosis compared to genome-wide SNPs (shown in grey). (b) cis-eQTLs
856 (P =0.001) and cis-sQTLs (P = 0.03) in mammary gland show higher enrichments for top
857  SNPs associated with milk yield compared to genome-wide SNPs (shown in grey). (c)
858  Enrichment of cis-eQTLs for genetic associations with milk yield is tissue-dependent. The cis-
859  eQTLs in mammary gland, milk cells and liver exhibit higher enrichments for genetic
860  associations with milk yield compared to those in other tissues. (d) Manhattan plots of
861  transcriptome-wide association study (TWAS) for milk yield across all 24 tissues. (e) The
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number of genes that were colocalized (regional colocalization probability, rcp > 0.5 in
fastENLOC) between GWAS significant loci of complex traits and cis-eQTLs across tissues.

The size of point indicates the number of genes, while the color of point indicates the average
rep of each trait-tissue pair.
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