

1 The wild grape genome sequence provides insights into the transition from
2 dioecy to hermaphroditism during grape domestication

3 Hélène Badouin^{1*#}, Amandine Velt^{2*}, François Gindraud¹, Timothée Flutre³, Vincent
4 Dumas², Sonia Vautrin⁴, William Marande⁴, Jonathan Corbi¹, Erika Sallet⁵, Jérémie
5 Ganofsky¹, Sylvain Santoni⁶, Dominique Guyot⁷, Eugenia Ricciardelli⁸, Kristen Jepsen⁸, Jos
6 Käfer¹, Hélène Berges⁴, Eric Duchêne², Franck Picard¹, Philippe Hugueney², Raquel Tavares¹,
7 Roberto Bacillieri^{6**#}, Camille Rustenholz^{2**#}, Gabriel Marais^{1**#}

8

9 Authors affiliations

10 ¹ Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie
11 Evolutive UMR 5558, F-69622 Villeurbanne, France

12 ² SVQV, Université de Strasbourg, INRA, Colmar, France

13 ³ GQE–Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Univ. Paris-Saclay,
14 91190 Gif-sur-Yvette, France

15 ⁴ INRA, Centre National de Ressources Génomiques Végétales, F-31326 Castanet-Tolosan,
16 France

17 ⁵ LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France

18 ⁶ AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France

19 ⁷ PRABI, Université Lyon 1, F-69622 Villeurbanne, France

20 ⁸ IGM Genomics Center, University of California, San Diego, La Jolla, CA.

21

22 * equivalent contribution as first authors

23 ** equivalent contribution as senior authors

24 # corresponding authors: roberto.bacillieri@inra.fr, helene.badouin@univ-lyon1.fr,
25 gabriel.marais@univ-lyon1.fr, camille.rustenholz@inra.fr

26

26

27 **Grapevine has a major economical and cultural importance since antiquity. A key step**
28 **in domestication was the transition from separate sexes (dioecy) in wild *Vitis vinifera* ssp.**
29 ***sylvestris* (*V. sylvestris*) to hermaphroditism in cultivated *Vitis vinifera* ssp. *vinifera*.**
30 **While the grapevine sex locus is known to be small, its precise boundaries, gene content**
31 **and the sex-determining genes are unknown. Here we obtained a high-quality *de novo***
32 **reference genome for *V. sylvestris* and whole-genome resequencing data of a cross.**
33 **Studying SNP segregation patterns, gene content and expression in wild and cultivated**
34 **accessions allowed us to build a model for sex determination in grapevine. In this model,**
35 **up- and down-regulation of a cytokinin regulator is sufficient to cause female sterility**
36 **and reversal to hermaphroditism, respectively. This study highlights the importance of**
37 **neo-functionalization of Y alleles in sex determination and provides a resource for**
38 **studying genetic diversity in *V. sylvestris* and the genomic processes of grapevine**
39 **domestication.**

40

41 Dioecy is rare in flowering plants (~6%) but over-represented among crops (~20%)¹. In some
42 cases, both wild and cultivated plants are dioecious (e.g. date palm, asparagus, persimmons).
43 Other crops, such as grapevine, papaya, and strawberry, derive from dioecious progenitors
44 and switched to hermaphroditism during domestication. The genes underlying this switch are
45 currently not known in any crop. In *Vitis sylvestris*, wild females produce morphologically
46 bisexual flowers, with retracted anthers that produce few and infertile pollen², while male
47 flowers undergo early ovule abortion³. Genetic analyses identified a 143-kb haplotype
48 responsible for sex-determination in the grapevine reference genome^{4,5}. Two candidate genes
49 for female sterility have been proposed, in particular *APRT3*⁶, a putative cytokinin regulator.

50 However, the sequence of the sex locus was not available in *V. sylvestris* and no causative
51 mutations have been identified. A genetic and evolutionary model to explain sex
52 determination and switch to hermaphroditism in grapevine is currently lacking.

53 We sequenced a female individual of *V. sylvestris* using SMRT-sequencing (120X). Contigs
54 were assembled with falcon-unzip⁷ and the grapevine reference genome⁸ (PN40024 – version
55 12X.2) was used to build pseudomolecules. We obtained a high-quality diploid assembly of
56 469 Mb with a contig N50 of 1.7 Mb, 98% of the gene content anchored on chromosomes and
57 a BUSCO evaluation of 95% (Supplementary Table 1, Supplementary Figure 1), comparing
58 favorably to other recently published plant genomes^{9,10}. We annotated 39,031 protein-coding
59 genes on primary contigs.

60 To study sex determination, we localized the sex locus, which was fully included in the 5th
61 largest contig of the assembly. We also sequenced and assembled bacterial artificial
62 chromosomes (BACs) covering the sex locus in a male of another *V. sylvestris* population and
63 in *Vitis vinifera* cv. Cabernet-Sauvignon. To identify sex-linked polymorphisms in *V.*
64 *sylvestris*, we produced a cross and resequenced in paired-end Illumina short reads the whole
65 genomes of the parents and 10 offspring, yielding 43-74 millions of read pairs per individual
66 (Supplementary Table 2). To overcome issues due to X-Y divergence, we used an iterative
67 SNP-tolerant mapping procedure¹¹, eventually mapping 98.2% of reads in average (mapping
68 coverage by individual 14x-28x, Supplementary Table 3-6). Single nucleotide polymorphisms
69 (SNPs) that segregate with sex in our cross were identified with an empirical approach and
70 with SEX-DETector⁺⁺, a new version of the probabilistic method SEX-DETector that
71 identifies sex-linked genes from patterns of segregation in a cross from RNA-seq data¹²,
72 which we developed here to analyse genomic data. As SNPs close to the sex locus might be
73 genetically linked to the locus in a particular cross, we used public whole-genome
74 resequencing data¹³ (Figure 1a-b, Supplementary Tables 7-8) to determine the boundaries of

75 the sex locus. We searched for SNPs that were sex-linked in our cross and that were always
76 heterozygous in males and homozygous in females in the validation dataset. We found that
77 the X haplotype of the sex-locus spanned 111 kb on chromosome 2 (4,810,929 to 4,921,949
78 bp, Figure 1b-c, Supplementary Figures 2-5) and we obtained a final dataset of 1,865 XY
79 SNPs (Supplementary Data File 1). To investigate changes associated with transition to
80 hermaphroditism, we investigated the genotypes at the sex locus in publicly available DNA-
81 seq data of 13 grapevine cultivars¹⁴ (Supplementary Table 9). Out of 13 cultivars, six
82 harbored recombinant genotypes. The 5' part of the sex locus was always either XH or HH
83 and spanned 93 kb (4.810-4.903 Mb), H indicating the hermaphrodite haplotype, derived from
84 the Y haplotype⁵. The remaining part of the sex locus (4.903-4.922Mb) was either XX or XH,
85 but never HH (Figure 1b, Supplementary Table 10). The genes essential for the male
86 phenotype should therefore be located in the 93 kb region of the sex locus.

87 Next, we investigated the age of the sex locus, and the presence of deletions and insertions of
88 transposable elements in the Y haplotype that may indicate degeneration. We calculated the
89 synonymous divergence (dS) between X and Y coding DNA sequences (CDS) of XY gene
90 pairs (Figure 1c) as a proxy of the age of the system (Figure 1d). The two genes at the
91 opposite limits of the non-recombining region had a dS of 0.03, suggesting that suppression of
92 recombination occurred very recently and in a single step in *V. sylvestris*. The maximum dS
93 was 0.0424, which is to our knowledge lower than any of the other systems dated in plants
94 (*Mercurialis annuua* has a maximum dS of 0.05¹⁵). To identify deletions in the Y haplotype,
95 we compared the X haplotype and two BAC contigs covering the Y haplotype
96 (Supplementary Figures 2-5). We also measured the mean mapping coverage in our
97 resequencing dataset, searching for two-fold reductions in males. This revealed eight regions
98 spanning 500 to 5,500 bp and affecting one predicted gene (Supplementary Figure 5). We also
99 detected insertions of transposable elements in the Y haplotype (Supplementary Figures 2-5,

100 Supplementary Data File 2). This suggests that the Y haplotype of *V. sylvestris* is already
101 degenerating despite recombination suppression being very recent.

102 Theoretical work predicts that XY sex chromosomes should combine a recessive male-
103 sterility mutation (X) and a dominant female-sterility mutation¹⁶ (Y). To identify candidates,
104 we compared the gene content of X, Y and H haplotypes (Figure 2a) and searched for
105 presence/absence patterns and loss-of-function mutations (Figure 2b). We also mapped a
106 public RNA-seq dataset of males, females and hermaphrodites flower buds of *V. sylvestris* at
107 four developmental stages¹³ (Supplementary Table 11), measuring the total (Figure 3a) and
108 the allele-specific (X, Y and H, Figure 3b) expression of transcripts.

109 First, we investigated the presence of X recessive mutations possibly to causing male sterility.
110 We found that the gene at one limit of the sex locus, annotated as *INAPERTURATE (INPI)*¹⁷,
111 showed a 8-bp deletion in exon2 in all female haplotypes, resulting in a premature stop codon
112 and a truncated protein (Figure 2b). *INPI* loss-of-function mutant in *A. thaliana* lacks pollen
113 apertures¹⁸, similarly to the pollen of female *V. sylvestris*². We found that *INPI* was highly
114 specific of mature flower buds of *V. vinifera*, consistent with a role in late pollen
115 development¹⁹. It remains to be shown that the absence of apertures in grapevine female
116 pollen is sufficient to cause sterility, as inaperturate sterile pollen evolved independently at
117 least six times in Eudicots in association with dioecy²⁰, but the *A. thaliana* *INPI* knock-out
118 mutant is fertile¹⁹. We also found that four genes were absent from the X haplotype (Figures
119 1a-2b Supplementary Figure 2). They included a gene previously annotated⁵ as a short
120 homologue of Ethylene-overproducer-like-1 (*ETOL1*), but also showing homology to *NPG1*.
121 *NPG1* is essential to pollen germination in *A. thaliana*²¹, and the ethylene pathway has been
122 shown to be determinant in floral morph determination in *Cucumis melo*²². Three other genes
123 were also absent from the X haplotype, namely a gene encoding a short peptide of unknown
124 function, *NAPI* and *UAP56A*. *NAPI* encodes a nucleosome assembly protein in *A. thaliana*.

125 Two homologues of *UAP56A*, a DEAD-box ATP-dependent RNA helicase, have been shown
126 to regulate programmed cell death during tapetum development in *Oryza sativa*²³, and
127 disrupting them led to male sterility. None of these three genes were significantly expressed in
128 the early developmental stages of the RNA-seq dataset that were produced to study ovule
129 development (Supplementary Figure 6), likely because male sterility occurs later than female
130 sterility in *V. sylvestris* flowers¹³. *INPI* and the four X-deleted genes were all present in at
131 least one haplotype in cultivars. These results suggest that several recessive deletion
132 mutations affecting genes involved in tapetum and pollen development may cause the male
133 sterility syndrome (Figure 4).

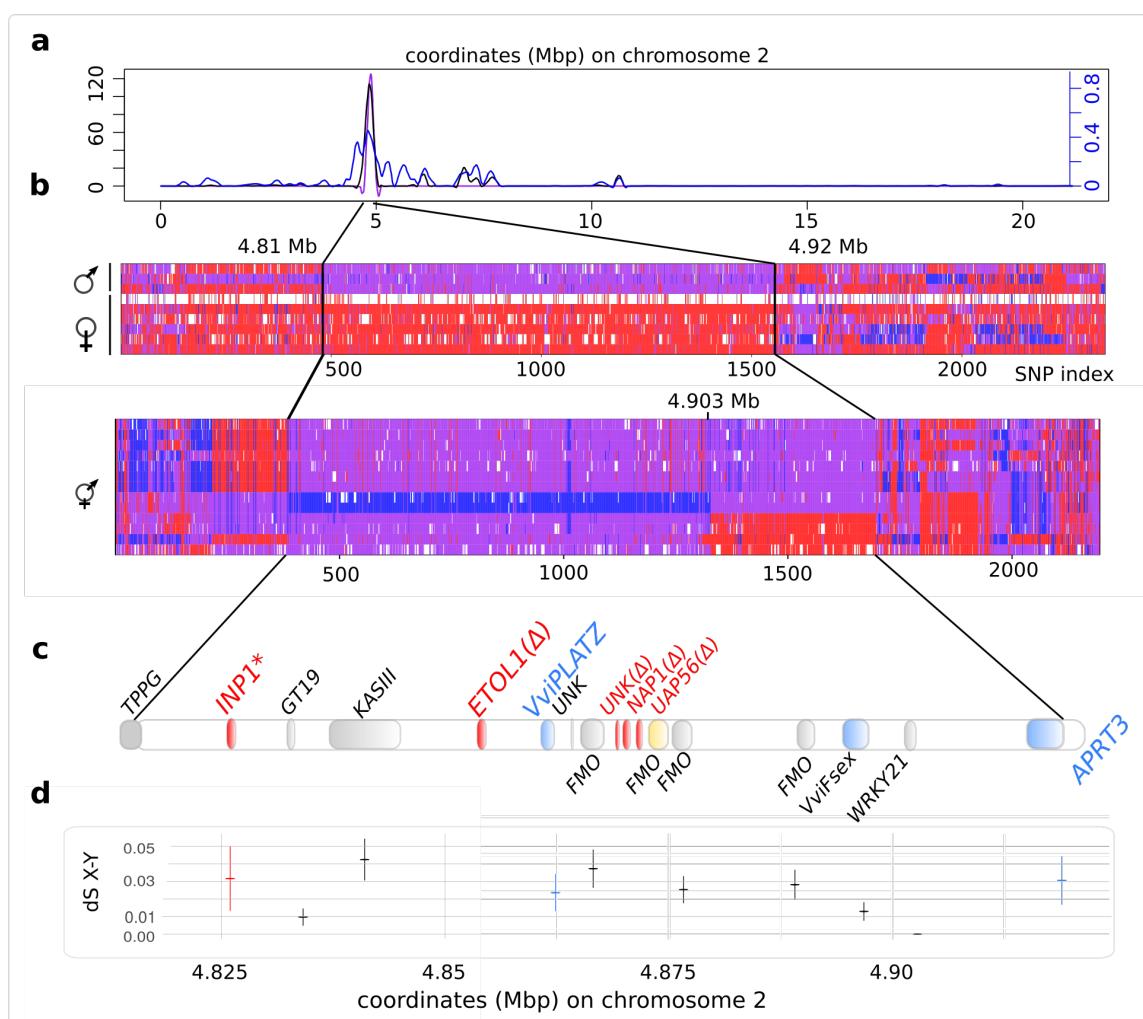
134 Second, we searched for dominant mutations causing female sterility in the Y haplotype and
135 for possible mechanisms of reversion to hermaphroditism. So far, sex-determining genes that
136 have been identified in plants were Y-specific genes that arose through duplication^{24–26}. The
137 Y-specific genes described above (*INPI*, *ETOL1*, *UNK* and *UAP56*) are not expressed at the
138 stage where ovule abortion occurs and are unlikely candidates for female sterility
139 (Supplementary Figure 6). Therefore, we searched for differential expression of X and Y
140 alleles in XY gene pairs. Three genes showed higher total expression in males than in females
141 in the sex locus: *VviPLATZ*, *VviFSEX* and *APRT3* (Figure 3a). *VviPLATZ* and *APRT3* showed
142 a similar expression pattern in males, with a two-fold induction during bud development.
143 However, *APRT3* was also expressed in female while *VviPLATZ* expression was male-
144 specific. Interestingly, only the Y alleles of *VviPLATZ* and *APRT3* (*VviPLATZy* and *APRT3y*)
145 were induced in male buds (Figure 3b, Supplementary Figure 7). *VviFSEX* showed a
146 decreasing versus stable expression in female and males, respectively, with equal expression
147 of its X and Y alleles. The promoters of *APRT3x* and *APRT3y* were structurally similar, but a
148 Y-specific transposable element may be present upstream of *VviPLATZy* (Supplementary
149 Text), which could explain its up-regulation. *APRT3* is the ortholog of a gene encoding an

150 enzyme of cytokinin elimination. Exogenous application of cytokinin is sufficient to restore
151 female fertility in male *V. sylvestris*²⁷. Previous *In situ* hybridisation work suggested that
152 APRT3 was induced during male bud development and absent in female buds⁶. Here we
153 found that *APRT3x* is expressed both in female and male buds, and is an ubiquitously
154 expressed gene in *V. vinifera* (Supplementary Figure 8, Supplementary Table 12). Since all
155 analysed cultivars possessed at least one *APRT3x* allele (recombinant *APRT3x/APRT3x*
156 genotypes were observed but no *APRT3y/APRT3y*, Figure 1b), we hypothesize that *APRT3x*
157 performs essential functions in *V. sylvestris* and in grapevine. *VviPLATZ* is a transcription
158 factor of the PLATZ family. Interestingly, in the RNA-seq dataset, we found that *VviPLATZy*
159 was expressed at a lower level in hermaphrodites than in males and that *APRT3* was not
160 induced as in males (since it is RNA-seq data, the hermaphrodite genotype at *APRT3* is
161 however unknown, Figure 3a). A tentative scenario for female sterility would be that
162 *VviPLATZy* specifically activates *APRT3y*, leading to a decrease in cytokinin concentration in
163 ovule and causing its abortion (Figure 4). Interestingly, a 10 kb repeated element is present
164 1.2 kb upstream of *APRT3* in all H haplotypes but absent from X haplotypes (Figure 2a), and
165 might influence the expression of *APRT3*. From an evolutionary perspective, female sterility
166 in grapevine would originate from neo-functionalization of the Y allele of an ubiquitous gene,
167 the X allele conserving the ancestral function. Down-regulation of *VviPLATZy* and/or
168 *APRT3y* may be sufficient to cause reversal to hermaphroditism (Figure 4, Supplementary
169 Text). In addition (but not in a mutually exclusive way), transition to hermaphroditism may be
170 caused by recombination upstream of the *APRT3* promoter leading to the *APRT3x/APRT3x*
171 genotype that is observed in several cultivars (Figure 1b).

172 Following an extensive analysis of the *V. sylvestris* sex locus, we have proposed a model for
173 sex determination in grapevine, based on a combination of deletion of X alleles and neo-
174 functionalisation of Y alleles. In our model, the switch from dioecy to hermaphroditism was

175 easy, as a single genomic change (possibly two) was needed. This is in agreement with recent
176 studies²⁸ suggesting that dioecy is rare in flowering plants because it has a high reversion rate
177 to hermaphroditism. Future genetic and functional studies will allow dissecting the role of the
178 pinpointed genes in different aspects of the male sterility syndrome, female sterility and
179 reversal to female fertility in hermaphrodites.

180

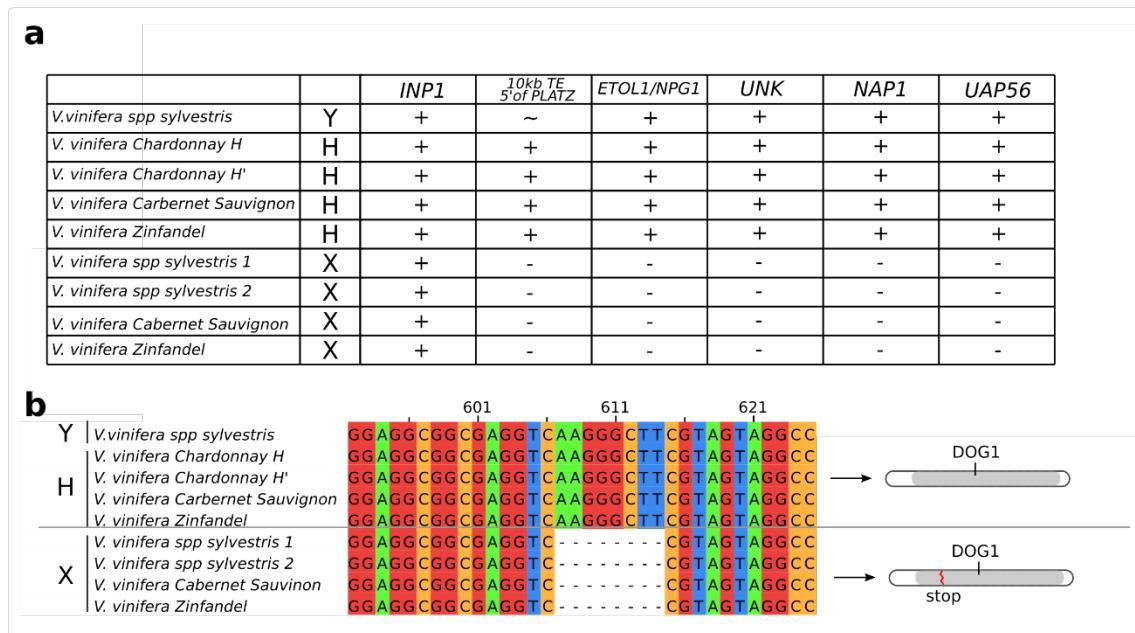

180

181 **References**

- 182 1. Renner, S. S. The relative and absolute frequencies of angiosperm sexual systems:
183 Dioecy, monoecy, gynodioecy, and an updated online database. *Am. J. Bot.* **101**, 1588–
184 1596 (2014).
- 185 2. Gallardo, A., Ocete, R., López, M. Á., Lara, M. & Rivera, D. Assessment of pollen
186 dimorphism in populations of *Vitis vinifera* L. subsp. *sylvestris* (Gmelin) Hegi in Spain.
187 4.
- 188 3. Caporali, E., Spada, A., Marziani, G., Failla, O. & Scienza, A. The arrest of development
189 of abortive reproductive organs in the unisexual flower of *Vitis vinifera* ssp. *silvestris*.
190 *Sex. Plant Reprod.* **15**, 291–300 (2003).
- 191 4. Fechter, I. *et al.* Candidate genes within a 143 kb region of the flower sex locus in *Vitis*.
192 *Mol. Genet. Genomics* **287**, 247–259 (2012).
- 193 5. Picq, S. *et al.* A small XY chromosomal region explains sex determination in wild
194 dioecious *V. vinifera* and the reversal to hermaphroditism in domesticated grapevines.
195 *BMC Plant Biol.* **14**, 229 (2014).
- 196 6. Coito, J. L. *et al.* VviAPRT3 and VviFSEX: Two Genes Involved in Sex Specification
197 Able to Distinguish Different Flower Types in *Vitis*. *Front. Plant Sci.* **8**, (2017).
- 198 7. Chin, C.-S. *et al.* Phased diploid genome assembly with single-molecule real-time
199 sequencing. *Nat. Methods* **13**, 1050–1054 (2016).
- 200 8. Canaguier, A. *et al.* A new version of the grapevine reference genome assembly (12X.v2)
201 and of its annotation (VCost.v3). *Genomics Data* **14**, 56–62 (2017).
- 202 9. Raymond, O. *et al.* The Rosa genome provides new insights into the domestication of
203 modern roses. *Nat. Genet.* **50**, 772–777 (2018).
- 204 10. Badouin, H. *et al.* The sunflower genome provides insights into oil metabolism, flowering
205 and Asterid evolution. *Nature* **546**, 148–152 (2017).
- 206 11. Prentout, D. *et al.* A high-throughput segregation analysis identifies the sex chromosomes
207 of *Cannabis sativa*. *bioRxiv* 721324 (2019) doi:10.1101/721324.
- 208 12. Muyle, A. *et al.* SEX-DETector: A Probabilistic Approach to Study Sex Chromosomes in
209 Non-Model Organisms. *Genome Biol. Evol.* **8**, 2530–2543 (2016).
- 210 13. Ramos, M. J. N. *et al.* Flower development and sex specification in wild grapevine. *BMC*
211 *Genomics* **15**, 1095 (2014).
- 212 14. Zhou, Y., Massonnet, M., Sanjak, J. S., Cantu, D. & Gaut, B. S. Evolutionary genomics of
213 grape (*Vitis vinifera* ssp. *vinifera*) domestication. *Proc. Natl. Acad. Sci.* **114**, 11715–
214 11720 (2017).
- 215 15. Veltsos, P. *et al.* Size and Content of the Sex-Determining Region of the Y Chromosome
216 in Dioecious *Mercurialis annua*, a Plant with Homomorphic Sex Chromosomes. *Genes* **9**,
217 (2018).
- 218 16. Charlesworth, B. The evolution of sex chromosomes. *Science* **251**, 1030–1033 (1991).
- 219 17. Zhou, Y. *et al.* The population genetics of structural variants in grapevine domestication.
220 *Nat. Plants* **5**, 965–979 (2019).
- 221 18. Dobritsa, A. A. & Coerper, D. The novel plant protein INAPERTURATE POLLEN1
222 marks distinct cellular domains and controls formation of apertures in the *Arabidopsis*
223 pollen exine. *Plant Cell* **24**, 4452–4464 (2012).
- 224 19. Dobritsa, A. A., Kirkpatrick, A. B., Reeder, S. H., Li, P. & Owen, H. A. Pollen Aperture
225 Factor INP1 Acts Late in Aperture Formation by Excluding Specific Membrane Domains
226 from Exine Deposition. *Plant Physiol.* **176**, 326–339 (2018).

- 227 20. Furness, C. A. Why does some pollen lack apertures? A review of inaperturate pollen in
228 eudicots. *Bot. J. Linn. Soc.* **155**, 29–48 (2007).
- 229 21. Golovkin, M. & Reddy, A. S. N. A calmodulin-binding protein from *Arabidopsis* has an
230 essential role in pollen germination. *Proc. Natl. Acad. Sci.* **100**, 10558–10563 (2003).
- 231 22. Boualem, A. *et al.* A Conserved Ethylene Biosynthesis Enzyme Leads to Andromonoecy
232 in Two *Cucumis* Species. *PLOS ONE* **4**, e6144 (2009).
- 233 23. Li, X. *et al.* Rice APOPTOSIS INHIBITOR5 Coupled with Two DEAD-Box Adenosine
234 5'-Triphosphate-Dependent RNA Helicases Regulates Tapetum Degeneration. *Plant Cell*
235 **23**, 1416–1434 (2011).
- 236 24. Akagi, T. *et al.* A Y-Encoded Suppressor of Feminization Arose via Lineage-Specific
237 Duplication of a Cytokinin Response Regulator in Kiwifruit. *Plant Cell* **30**, 780–795
238 (2018).
- 239 25. Akagi, T. *et al.* Two Y-chromosome-encoded genes determine sex in kiwifruit. *Nat.*
240 *Plants* **5**, 801–809 (2019).
- 241 26. Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts
242 as a sex determinant in persimmons. *Science* **346**, 646–650 (2014).
- 243 27. Negi, S. S. & Olmo, H. P. Sex Conversion in a Male *Vitis vinifera* L. by a Kinin. *Science*
244 **152**, 1624–1624 (1966).
- 245 28. Käfer, J., Marais, G. A. B. & Pannell, J. R. On the rarity of dioecy in flowering plants.
246 *Mol. Ecol.* **26**, 1225–1241 (2017).
- 247

248

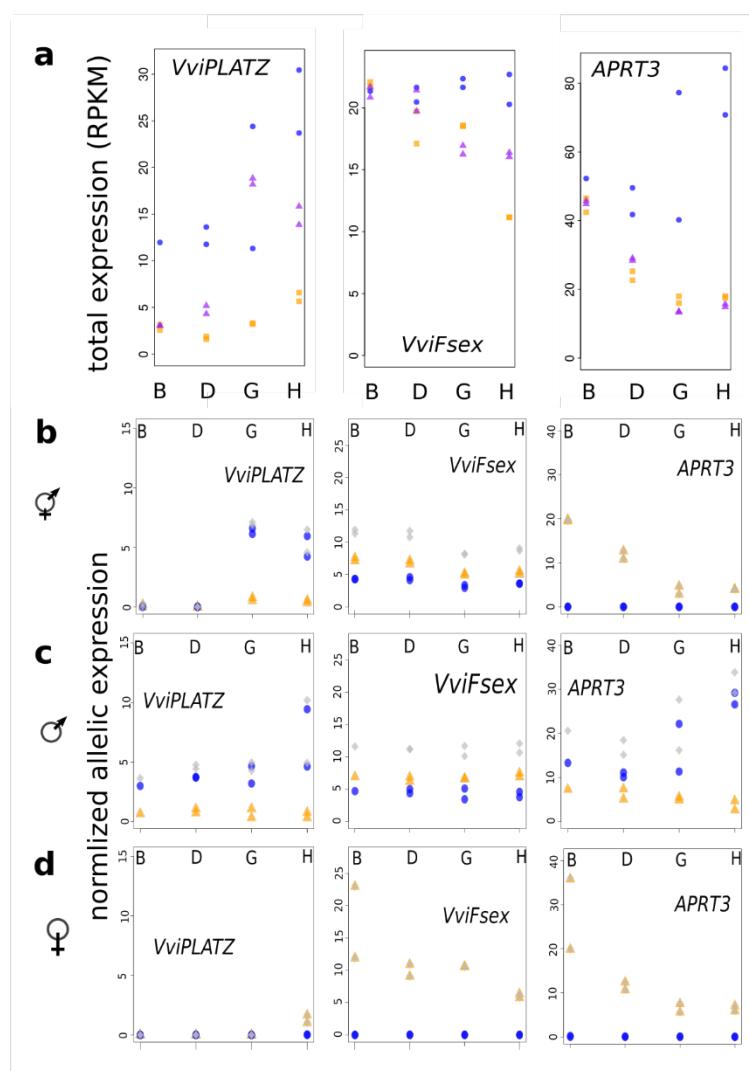

248

249 **Figure 1: Limit, gene content and synonymous divergence in the sex locus of *V. sylvestris***
250 **and *V. vinifera*.** **a**, Detection of sex-linked SNPs on chromosome 2. left y axis: adjusted SNP
251 number in 10kb windows, black curve: XY single nucleotide polymorphisms detected by
252 SEX-DETector++ in a cross of *V. sylvestris*. Purple curve: candidate XY SNPs that show
253 heterozygosity in males and homozygosity in females in a validation dataset of public whole-
254 genome resequencing is drawn in purple; right y-axis (blue curve): adjusted mean posterior
255 probability of being XY for SNPs in 10kb windows. **b**, Genotype of nine *V. sylvestris*
256 individuals (top) and thirteen grapevine cultivars (bottom) in a validation dataset of public
257 whole-genome resequencing, at locations of candidates XY SNPs. Red, purple and blue, and
258 white traits represent XX, XY, YY and missing genotypes, respectively. The black lines
259 highlight the limits of shared XY SNPs between the cross resequenced in the present study
260 and the validation dataset. **c**, Gene content and annotation and in the sex locus (approximate
261 position). Genes highlighted in red are absent (Δ) or possess a frameshift deletion in the X
262 haplotype. Genes highlighted in blue are induced in males. The yellow gene is absent in the Y
263 haplotype. **d**, synonymous divergence between X and Y allele in the sex locus (+/- standard
264 error), reflecting the age of recombination suppression. dS was only computed for genes
265 present in both haplotypes.

266

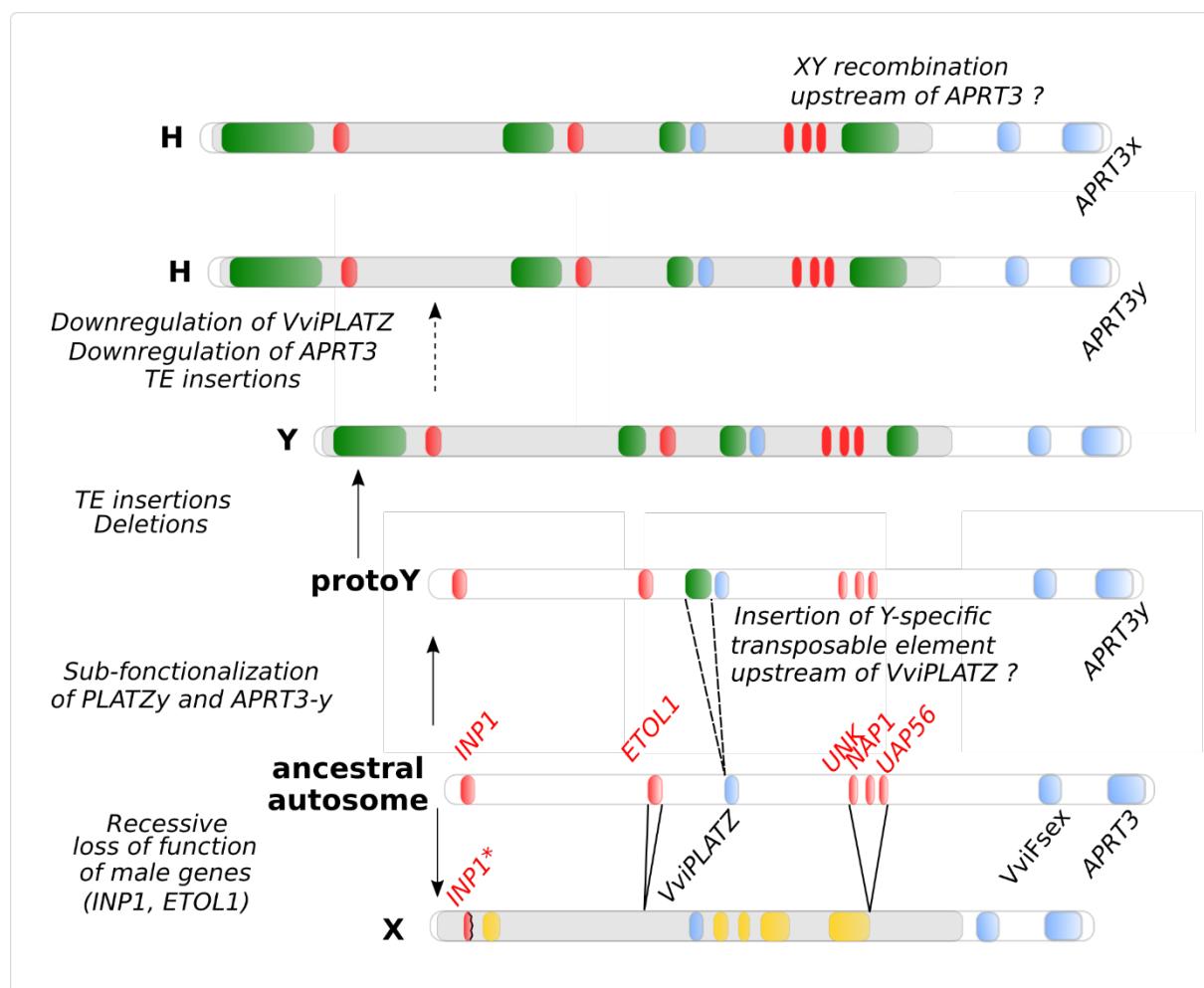
266

267


268

269 **Figure 2: Presence-absence patterns and frameshifts mutations in X, Y and H**

270 **haplotypes. a,** Presence-absence patterns of five genes absent or truncated in the X haplotype
271 of *V. sylvestris*, and of a 10kb repeated element 1.2 kb upstream of a gene of the PLATZ
272 family of transcription factors. The tild indicates that the estimated length of the gap in the Y
273 haplotype inferred is consistent with the presence of the element, but it has not been sequenced
274 yet. **b,** An 8-bp deletion in exon 2 of the *INP1* gene is shared by X haplotypes and absent in Y
275 or H haplotypes. It results in a premature stop codon, leading to a shorter protein. The DOG1
276 protein domain, involved in DNA binding, is truncated.


277

278

279

280 **Figure 3: Total and allele-specific expression of female-sterility candidates during flower**
281 **bud development.** B, D, G and H represent early development stages of flower development
282 sequenced in RNA-seq in Ramos et al¹³. **a**, total normalized expression (RPKM) of
283 *VviPLATZ*, *VviFsex* and *APRT3* in males (blue circles), females (orange squares) and
284 spontaneous hermaphrodites (purple triangles) of *V. sylvestris*. Each point represents a
285 biological replicate. **b**, allele-specific normalized expression. Blue dots, orange triangles, and
286 grey diamonds represent Y-specific, X-specific and summed expression, respectively. RNA-
287 seq data were genotyped and the coverage of X and Y variants was extracted from vcf file and
288 averaged by gene. Read counts were normalized by library.

290 **Figure 4: Evolutionary genomic scenario of the formation of the X and Y haplotypes and**
 291 **reversal to hermaphroditism.** Red: genes partially or completely deleted in the X haplotype.
 292 Blue: genes differentially expressed between male, female and hermaphrodite during early
 293 flower bud development. On the schematic sex locus, yellow highlights represent X-
 294 hemizygote regions (*i.e.*, absent from the Y), green highlights represent transposable
 295 elements, red highlights male-sterility candidates and blue highlights female-sterility
 296 candidates. Grey highlight represents the part of the sex locus where homology between X
 297 and Y is reduced due to deletions or insertions.

298

298 **Data Availability**

299 All raw reads, genome assembly and gene annotation are currently under submission.

300 **Code Availability**

301 The source code of SEX-DETector++ is available at the url <https://gitlab.in2p3.fr/sex-det-family/sex-detector-plusplus>.

303 **Acknowledgements**

304 This work was supported by ANR grants ANR-13-BSV6-0010 to PH and ANR-14-CE19-
305 0021-01 to GABM., an INRA starter grant BAP2014_44-SELVI to TF and UMT Géno-
306 vigne® grant to RB. This work benefitted from the computing facilities of the CC
307 LBBE/PRABI. Whole genome PacBio was conducted at the IGM Genomics Center,
308 University of California, San Diego, La Jolla, CA. RNA-seq and cross resequencing was
309 performed by the GenomEast platform, a member of the “France Génomique” consortium
310 (ANR-10-INBS-0009). Sylvestris C1-2 illumina resequencing was performed by the Etude du
311 Polymorphisme des Génomes Végétaux (EPGV, INRA, Evry) facility. We thank Jérôme
312 Gouzy for help with curation of the trinity dataset used for gene annotation and Aline Muyle
313 for providing information on the code of SEX-DETector perl, Gisèle Butterlin and Angélique
314 Ardiller for technical assistance and the SEAV experimental platform (Service
315 d’expérimentation Agronomique et Viticole) for plant material maintenance at INRA Colmar.
316 The authors would like to acknowledge support of GeT-PlaGe Genomic Platform (INRA-
317 Toulouse, France, <https://get.genotoul.fr>) for providing PacBio BAC sequence data.

318 **Contributions**

319 GABM, PH, CR, ED, RT and RB conceived the research. VD and ED obtained plant material
320 and DNA for cross resequencing and genome sequencing. WM obtained DNA for whole
321 genome PacBio sequencing. TF and RB obtained plant material and DNA for BAC
322 sequencing, and with SS defined probes for BAC screening. SV and HBe performed BAC
323 library production and screening, BAC sequencing and assembly. AV, CR and JC assembled
324 the genome. RB and TF analysed BAC sequences and assigned them to sex haplotypes. SS
325 sequenced the gaps between BAC contigs. WM, HBe, ER, KJ and CR coordinated the
326 sequencing of the genome. ED and CR coordinated the sequencing of the transcriptome.
327 GABM coordinated the sequencing of the cross. AV, CR and JC assembled the genome. JG
328 and RT assembled the transcriptome. AV, CR and ES annotated the genome and the BAC
329 sequences. FG, FP, DG, JK and GABM developed SEX-DETector++. HBa, AV and CR
330 analysed RNA-seq data. HBa analysed WGS data and performed structural and molecular
331 evolution analysis of the sex locus. HBa, CR and RB performed integrative analysis of sex
332 determination. PH, RT, GABM and RB funded the study. CR, GABM and RB coordinated
333 the project. HBa and GABM wrote the manuscript, with contributions from all authors.

Guide to Supplementary Material

Material and Methods:

- Statistical analyses and data visualisation.
- Sequencing data
- Genome assembly, cleaning, polishing, anchoring and ordering.
- BAC generation and sequencing.
- Genome and BAC annotation.
- Development of SEX-DETector++.
- Characterization of the sex-linked region in the *V. sylvestris* genome.
- Integrative search for sex-determining genes in the sex locus.
- Supplementary References

Supplementary figures:

- Supplementary Figure 1: BUSCO analysis of the genome annotation.
- Supplementary Figure 2-4: Structural comparisons of X and Y, X and H and Y and H haplotypes, respectively.
- Supplementary Figure 5: Density of sex-linked SNPs in a cross between two *V. sylvestris* parents.
- Supplementary Figure 6: Total normalized gene expression in males, females and hermaphrodites of *V. sylvestris* for genes in the sex locus during flower bud development.
- Supplementary Figure 7: Allele-specific expression of X and Y alleles of XY genes pairs of *Vitis sylvestris* during the development of flower buds.
- Supplementary Figure 8: Distribution of organ-specificity expression of genes in *Vitis sylvestris*.

Supplementary tables:

- Supplementary Table 1: Genome assembly and anchoring statistics
- Supplementary Table 2: Summary statistics of resequencing data of a cross between two *V. sylvestris* parents
- Supplementary Table 3: Mode of the gaussian distribution of mapping coverage for each sample for the dataset of whole genome resequencing of a cross in *V. sylvestris*.
- Supplementary Table 4: Summary statistics of iterative SNP-tolerant mapping for the resequencing dataset of a cross in *V. sylvestris*.

- Supplementary Table 5: Summary statistics of missingness per sample for each iteration of SNP-calling in the dataset of whole-genome resequencing of a cross in *V. sylvestris*.
- Supplementary Table 6: Number of homozygous and heterozygous SNPs called at each iteration in the dataset of whole-genome resequencing of a cross in *V. sylvestris*.
- Supplementary Table 7: Whole-genome resequencing dataset of the ncbi short read archive that were mapped to the *Vitis sylvestris* genome.
- Supplementary Table 8: Statistics of mapping and SNP-calling of a public whole-genome resequencing dataset of the ncbi that was mapped to the *Vitis sylvestris* genome.
- Supplementary Table 9: Summary of the genotype of 13 cultivars in the sex locus on chromosome 2 inferred from whole-genome resequencing data.
- Supplementary Table 10: Predicted genes in the sex locus of *V. sylvestris*. Coordinates and geneID are indicated for the *V. sylvestris* reference genome.
- Supplementary Table 11: Mapping statistics of public RNAseq libraries of flower buds of female, male and hermaphrodite *V. sylvestris* against the *V. sylvestris* genome.
- Supplementary Table 12: Public RNAseq dataset of *V. vinifera* and *V. sylvestris* mapped to the *Vitis sylvestris* genome.

Supplementary text:

This text describes the results of BAC assembly and the attempts to characterize and to cover the 13kb gap on the male haplotypes.

Supplementary data files:

- Supplementary_DataFile1.xlsx: genomic location of sex-linked single nucleotide polymorphisms in the genome of *Vitis sylvestris*.
- Supplementary_DataFile2.xlsx: genomic location of repeated elements in the genome of *Vitis sylvestris*.
- egnep.Vvi.for_Sylvestris.cfg: configuration file of Eugene annotation.

1

Supplementary Information

2

3 Table of contents

4	Material and Methods	2
5	Supplementary Figures.....	10
6	Supplementary Tables.....	19
7	Supplementary Text	33

8

9

9 Material and Methods

10

11 **Statistical analyses and data visualisation.** Unless stated otherwise, statistical analyses were
12 carried out in R v3.4.4 (2018-03-15)²⁹. Data visualisation were performed with R or with
13 circos v0.69-6³⁰. Adeneger³¹ was used to visualize SNP data in R.

14 Sequencing data

15 *Whole genome sequencing (PacBio – long reads) of Sylvestris C1-2.* The accession of
16 Sylvestris C1-2 with plant code 8500.Col.C1-2, origin of the geographic location Sainte-
17 Croix-en-Plaine, Haut-Rhin (68), France, was used for extraction of high-molecular-weight
18 genomic DNA. The extraction was performed by the CNRGV (Centre National de Ressources
19 Génomiques Végétales) – INRA Toulouse. They started with 1G of frozen material (-80°C),
20 crushed it with liquid nitrogen and used the Genomic-tip 100/G kit (Qiagen) for the
21 extraction. The SMRT library preparation and sequencing on PacBio RSII platform (P6-C4
22 chemistry) was done by the IGM Genomics Center at the University of California, San Diego,
23 following the standard PacBio protocols. A total of 129X coverage was obtained in order to
24 perform *de novo* genome assembly.

25 *Whole genome sequencing (Illumina – short reads) of Sylvestris C1-2.* DNA libraries with
26 two different library size from leaves of Sylvestris C1-2 were prepared in order to perform
27 2*151 paired-end short reads sequencing (Illumina). One library had a library size of 740bp
28 (860 bp with adapters) and the other library had a library size of 392bp (512bp with adapters).
29 The two libraries were sequenced on the same flowcell lane. The libraries preparation and
30 Illumina sequencing was performed by the EPGV (Etude du Polymorphisme des Génomes
31 Végétaux) – INRA. A total of 338,109,086 reads was obtained (~100X coverage) for all
32 samples together, used to polish the Sylvestris C1-2 PacBio assembly.

33 *RNA-sequencing of Sylvestris C1-2.* RNA-sequencing was performed on six samples of the
34 Sylvestris C1-2 accession. Three biological replicates of whole green berries and three
35 biological replicates of whole mid-ripening berries were sequenced. The RNA-seq library
36 preparation was performed with the TruSeq Stranded mRNA Library Prep Kit (Illumina) and
37 was sequenced in paired-end (2*100b) on HiSeq4000 platform (Illumina technology). Library
38 preparation and sequencing was performed by the GenomEast platform – Strasbourg. A total
39 of 1,113,531,260 reads was obtained for all samples together, used to assemble a Sylvestris
40 transcriptome and perform genes annotation.

41 *Whole genome resequencing of a cross between C1-5 (Female Vitis sylvestris) and
42 Martigny_2 (Male Vitis sylvestris).* These two accessions were crossed in the Inra Colmar
43 ampelographic collection. The accession C1-5 female *Vitis sylvestris* (plant accession number
44 at Inra Colmar 8500.Col.C1-5) originated from the geographic location Sainte-Croix-en-
45 Plaine, Haut-Rhin (68), France, and the male accession Martigny_2 (plant accession number
46 at Inra Colmar 8500.Col.1), was an accession originating from the geographic location
47 Martigny, Swiss. The progeny was grown at Inra Colmar greenhouses. The DNA samples of
48 both parents, of five male descendants (44613.Col.5026T, 44613.Col.5028T,
49 44613.Col.5029T, 44613.Col.5033T and 44613.Col.5053T) and five female descendants
50 (44613.Col.5035T, 44613.Col.5040T, 44613.Col.5046T, 44613.Col.5050T and
51 44613.Col.5057T) were sequenced. The quantity and quality of the DNA extracted from

52 leaves (DNeasy plant mini kit, Qiagen) of 12 individuals from the cross (2 parents and 10
53 offspring) was checked prior to sequencing. Nanodrop analysis indicated that concentrations
54 were always above $110 \text{ ng} \cdot \mu\text{l}^{-1}$, and that more than 5 μg DNA was available for all samples.
55 Quality (fragment size) was checked using capillary electrophoresis (Fragment Analyzer) and
56 was satisfactory. Based on quality check, we adapted sonication (using Covaris E220) in order
57 to get mostly fragments of 250 bp. Twelve Illumina libraries were constructed and were
58 pooled for two lanes of sequencing on an Illumina Hiseq 4000 machine in 2x100bp paired-
59 end mode. This yielded between 85 and 149 millions reads per individual (Supplementary
60 Table 2), which roughly corresponded to 17X to 30X coverage of re-seq data per individual.
61

62 **Genome assembly, cleaning, polishing, anchoring and ordering.**

63 Shortly, the *Sylvestris* C1-2 *de novo* genome assembly was performed with Falcon-integrate
64 (Falcon + Falcon-unzip), in order to obtain a diploid assembly (the two haplotypes). With
65 Falcon, PacBio reads were self-corrected, assembly was performed, haplotypes were
66 generated, assembly was polished with Arrow and finally we obtained a phased diploid
67 assembly of *Sylvestris* C1-2.

68 *Genome assembly and phasing.* The FALCON-integrate 1.8.4 tool used is available on github:
69 <https://github.com/PacificBiosciences/FALCON-integrate/tree/1.8.4>. The FALCON
70 parameters used for the *Vitis sylvestris* genome assembly are taken from the genome assembly
71 of *Vitis vinifera* cv Cabernet Sauvignon paper⁷ (pa_HPCdaligner_option = -v -dal128 -e0.75 -
72 M60 -l2500 -k18 -h1250 -s100 -w8; ovlp_HPCdaligner_option = -v -dal128 -M60 -e.96 -
73 l1500 -s100 -k24 -h1250; pa_DBsplit_option = -a -x500 -s200; ovlp_DBsplit_option = -s200;
74 falcon_sense_option = --output_multi --min_idt 0.70 --min_cov 4 --max_n_read 400 --n_core
75 8; falcon_sense_skip_contained = False; overlap_filtering_setting = --max_diff 120 --
76 max_cov 120 --min_cov 4 --bestn 10 --n_core 8). The phasing and haplotypes creation was
77 performed with Falcon-unzip, with default parameters. The assembly was polished with
78 FALCON and PacBio reads using Arrow (available in Falcon-integrate).

79 *Assembly polishing and finishing.* After the FALCON run, we performed additional polishing
80 with Illumina reads. First, illumina reads were aligned with bwa³² mem and -M option on
81 FALCON's genome assembly. Then, alignments were filtered with samtools to keep only
82 primary alignments and concordant pairs. Finally, alignments were filtered with bamtools to
83 keep alignments with an edit distance ≤ 5 . These filtered aligned reads are used to polish the
84 assembly with the pacbio-util (version 0.2) from pacbio-utilities tool
85 (<https://github.com/douglasgscofield/PacBio-utilities>). Then, the same alignment was
86 performed on the genome polished with pacbio-utils and this genome was polished with
87 Illumina reads and PILON (v1.22 - <https://github.com/broadinstitute/pilon>). A few haplotigs
88 may have remained in the primary contigs file. A tool is available, purge_haplots, to find
89 these false primary contigs in order to move them to the haplotigs file. We used this tool to
90 correct this and to finish our genome asssembly (v1.0.4 - commit 6414f68 -
91 https://bitbucket.org/mroachawri/purge_haplots/src/master/).

92 *Quality control of the assembly.* Assembly statistics such as number of contigs, N50 and L50
93 were calculated with a home-made script. Genome assembly completeness was assessed with
94 BUSCO³³ with the genome mode, the embryophyta_odb9 lineage and the *Arabidopsis* species

95 options (version 2.0 - <https://gitlab.com/ezlab/busco>). Nucmer tool (from MUMmer tool:
96 <https://sourceforge.net/projects/mummer/> - nucmer (version 3.1) parameters: -maxmatch -l
97 100 -c 500) and the grapevine reference genome⁸ (PN40024, version 12X.2 -
98 <https://urgi.versailles.inra.fr/Species/Vitis/Data-Sequences/Genome-sequences>) were used to
99 align the *Sylvestris* assembly to the PN40024 reference assembly in order to see completeness
100 of this *Sylvestris* assembly. Nucmer and grapevine reference genome were also used to
101 anchor and order *Sylvestris* contigs into chromosomes (with additional parameters -r -q), as it
102 was done in the Chardonnay genome assembly paper³⁴.

103

104 **BAC generation and sequencing.**

105 *Generation of BAC library of a Vitis sylvestris male sequence.* To obtain the DNA sequence
106 of the Y allele in the sex region, we proceeded as follows. We chose a *Vitis vinifera* ssp.
107 *sylvestris* male from a wild population spontaneously growing on a hill forest near
108 Montpellier (France), on the Northern slope of the Pic Saint Loup mountain. Its male
109 phenotype was confirmed over five years of observation of the flowers, both on the forest
110 plant and on 5 of its clones planted in the INRA Vassal Grape Collection in Marseillan,
111 France (introduction name: Lambrusque PSL10; introduction number: 8500Mtp107). High
112 Molecular Weight DNA was isolated from 40 g of PSL10 young leaves following the cell
113 nuclei extraction method described in Peterson *et al.*³⁵ (2000) with slight modifications³⁶. The
114 long DNA fragments were partially digested with EcoRI restriction enzyme, and fragments
115 from 100 to 250 kb were selected. Sized and eluted DNA was then ligated into a pAGIBAC-
116 EcoRI cloning vector and cloned into DH10B T1R *Escherichia coli* strain (Invitrogen). The
117 resulting BAC clones were plated on a solid selective medium and organised in barcoded
118 microplates using a robotic workstation QPix2 XT (Molecular Devices). The BAC library was
119 named Vsy-B-Lamb. It consists of 27,648 clones of 113kb size in average, representing a 6.4x
120 genome equivalent coverage. The library was replicated for security reason and the two
121 copies were stored in separate freezers at -80°C (resource available at
122 <https://cnrgv.toulouse.inra.fr/fr>).

123 *BAC library screening.* The bacterial clones were deposited on a macroarray nylon membrane
124 (22x22 cm), following a 6x6 grid pattern. Three copies of this gridded macroarray were
125 created. To select BAC clones carrying the DNA fragments from the sex locus, we used
126 specifically designed radio-labelled probes. These probes were defined using the sequences
127 published in Picq *et al* (2014)⁵: VSVV006, VSVV007, VSVV009, VSVV010, VSVV011
128 (GeneID GSVIVT01001275001, GSVIVT01001277001, GSVIVT01001286001,
129 GSVIVT00007310001, GSVIVT00007312001 respectively). The hybridisation of 3 separate
130 pools of probes allowed to spot around 200 putatively positive BAC clones in total; the 30
131 clones showing the most intense spots were individually tested via Real-Time PCR using the
132 same sequences used for probe design and 9 clones were validated. The same clustering of the
133 9 positive clones into two groups of alleles was obtained using two approaches: the first
134 assignation based on their melting temperature curves similarities; and the second based on
135 Sanger sequencing of internal and BAC-end sequences. These two groups correspond to the
136 two alternate alleles expected in a “XY-like” sex region. Internal and BAC-ends sequences
137 were also used to map the BACs on each other, for each allele, with the objective to sequence

138 the minimal number of clones with an optimised overlapping to cover the whole region
139 (minimum tilling paths composed of 3 and 4 clones respectively).

140 *BAC sequencing and assembly of X and Y haplotypes.* The sequences of the 7 sex-region
141 BACs of *V. sylvestris* were obtained via a PacBio RSII sequencer (P6C4 chemistry).
142 Sequencing was done in a pool of 20 individually tagged BAC clones. We used 2 µg of each
143 individual BAC clone DNA to prepare the PacBio SMRT® 10kb library. GeT-PlaGe
144 Genomic Platform (INRA-Toulouse, France) handled the sample loading on the RSII device
145 and the data retrieval. We performed the detection and removal of residual *E. coli* sequences
146 on raw reads. After a second cleaning step consisting in detecting and removing the vector
147 sequences, individually-tagged BAC sequences were assembled with the HGAP workflow
148 (<https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/HGAP>).

149 For each of the two groups of BACs identified as above, the BAC sequences were joined
150 using their overlapping, so to form a long “haplotig”. One haplotig was then assigned to the
151 “male haplotype” and the other to the “female haplotype” using the sex-discriminating
152 polymorphisms described by Picq et al⁵ (2014), namely 10 SNPs for VSVV006, 7 SNPs for
153 VSVV007 and 6 SNPs for VSVV009. These SNPs were found to be 100% associated with
154 sex, in a worldwide collection of 22 males, 23 hermaphrodites and 91 females (Picq et al⁵
155 2014), and we confirmed that the two haplotigs had either all male SNPs or all female SNPs.

156

157 **Genome and BAC annotation.**

158 *Genome annotation.* RNA Illumina paired-end reads obtained from grape berries of *Sylvestris*
159 C1-2 (see above) were used to assemble a transcriptome in order to annotate the genome.
160 Prinseq-lite³⁷, Ribopicker³⁸ and STAR³⁹ were used to clean the data, and the assembly was
161 made using Trinity⁴⁰. We assembled 398,189 putative transcripts (422,652,106 bp), with a
162 N50 of 2,217 bp, which roughly corresponds to the average size of Pinot noir transcripts
163 (2,056 bp). TransDecoder⁴⁰ detected 187,734 CDS with an average size of 832 bp (of which
164 60,985 CDS are larger than 832 bp). A BUSCO analysis detected 1,237 genes, of which 1,166
165 (94%) are complete. EuGene-EP⁴¹ (Eukaryote Pipeline - v1.4 - <http://eugene.toulouse.inra.fr/>)
166 was used to perform genes annotation on the *Sylvestris* assembly. The protein databases used
167 for the genes annotation were the TAIR10, swissprot and uniprot plants databases. The
168 transcriptomes used for the genes annotation were our *Sylvestris* transcriptome, 812 manual
169 annotated genes, and transcript sequences of *Vitis vinifera* from NCBI - 2017-11-08. The
170 configuration file with all the parameters used is available as supplementary data
171 (egnep.Vvi.for_Sylvestris.cfg). Primary contigs and haplotigs were annotated separately, with
172 the same parameters. Finally, we obtained two genes annotations, one for primary contigs and
173 one for haplotigs, with different files: genes annotation in a gff3 file,
174 gene/mrna/cds/ncrna/protein sequences in separate fasta files and some statistics per gene.

175 *BAC annotation.* The BAC sequences (*V. sylvestris* Male haplotype P2, *V. sylvestris* Male
176 haplotype P1, *V. sylvestris* Female haplotype, *V. vinifera* Cabernet Sauvignon Hermaphrodite
177 genome sequences and the annotation with EuGene⁴¹ (Eukaryote Pipeline - v1.4 -
178 <http://eugene.toulouse.inra.fr/>) was started, with same parameters and reference files than for
179 the genome annotation. The protein databases used for the genes annotation were the TAIR10,
180 swissprot and uniprot plants databases. The transcriptomes used for the genes annotation were
181 our *Sylvestris* transcriptome, 812 manual annotated genes, and transcript sequences of *Vitis*

182 *vinifera* from NCBI - 2017-11-08. The configuration file with all the parameters used is
183 available as supplementary data (egnep.Vvi.for_Sylvestris.cfg). Then the annotations specific
184 to BACs were extracted and used as final BACs annotation. We did not run Eugene on the 5
185 BAC sequences alone because EuGene learns from data and we did not want to introduce a
186 bias due to the low number of BAC sequences.

187
188 **Development of SEX-DETector++.**

189 We developed a new version of the SEX-DETector software, that implements a probabilistic
190 method to study SNPs segregation in a family, taking into account genotyping errors. SEX-
191 DETector++ is coded in C++ and uses additional algorithmic optimisation to reduce the
192 running time and memory usage by about two orders of magnitude compared to the original
193 code. SEX-DETector++ thus allows convenient usage on large, genome-wide genotyping
194 datasets for which the original code would require prohibitively large running times and
195 memory. The underlying model is the same as in the original code, but new functionalities
196 were added to deal with genomic data as an input of the method (in the vcf format). The code
197 is publicly available at <https://gitlab.in2p3.fr/sex-det-family/sex-detector-plusplus>, where
198 technical and installation details can also be found.

199
200 **Characterization of the sex-linked region in the *V. sylvestris* genome.**

201 *SNP-tolerant mapping and SNP discovery from whole-genome resequencing data.*
202 Divergence between X and Y alleles can prevent SNP discovery. To avoid this issue, we
203 carried out an iterative SNP-tolerant mapping similarly to the procedure described in Prentout
204 *et al.*¹¹. Raw reads of twelve individuals of the same family (2 parents and 5 descendants of
205 each sex) were first mapped against the *V. sylvestris* genome with gsnap⁴² v2018-07-04 (-m
206 0.1) in standard mode. At each iteration step, SNP calling was performed: variants were called
207 with samtools mpileup v1.3.1⁴³ followed with Varscan v2.4.3⁴⁴ mpileup2snp (Min coverage
208 8, Min reads2 2, Min var freq 0.2, Min avg qual 15, P-value thresh 0.01). Additional filters
209 were applied: minimum frequency of variants reads between 0.25 and 0.75 for heterozygote
210 genotypes in individual samples; maximum coverage of twice mode of the gaussian
211 distribution for each sample, only bi-allelic SNPs, minor frequency variant higher than 0.05,
212 maximum rate of missing data 0.2. A SNP database was build with gsnap utilities to perform
213 a SNP-tolerant mapping at the next iteration. We carried out two iterations of SNP-tolerant
214 mapping until the rate of discovery of new XY SNPs (see below) became low. Finally, a 4th
215 step of SNP-tolerant mapping with more stringent parameters (-m 0.05, primary alignments
216 only) was performed in order to reduce the rate of false-positive SNPs.

217 *Detection and validation of sex-linked single nucleotide polymorphisms.* In order to detect
218 SNPs linked to the sex-determining region, we run SEX-DETector++. This yielded 4,113 sex-
219 linked SNPs (with a posterior probability high than 0.6), 90.5% of them on chromosome 2. As
220 the sex-determining regions is assumed to be small⁵ and the low number of offspring in our
221 cross gives us access to few recombination events, the sex-linked region in our analysis may
222 be larger than the actual sex-determining region (SNP close to the sex locus tend to be linked
223 to sex in a particular cross). To determine the boundaries of the sex-determining region,
224 independent public data were analyzed in order to identify shared XY SNPs between different

225 populations. WG-reseq and RNA-seq data from wild and cultivated grapevines were mapped
226 against the *V. sylvestris* genome with gsnap v2018-07-04, SNPs were called with varscan
227 v2.4.3. We searched for candidate XY-SNPs that were heterozygote in all male samples and
228 homozygote in all female samples of the validation dataset. Validated XY-SNPs spanned 111-
229 kb on chromosome 2 (from 4,810,929 to 4,921,949 bp), which indicated the limits of the sex-
230 determining region. In order to complement SEX-DETector++ analysis, we also performed an
231 empirical one. We searched for SNPs that overlapped the sex-determining region, were
232 homozygote in female individuals of the cross, and heterozygote in male individuals, allowing
233 two missing alleles. This empirical analysis retrieved all 1,406 XY SNPs identified by SEX-
234 DETector++ plus 459 additional ones (+ 32.6%). This final dataset of 1,865 XY SNPs was
235 used for downstream analyses.

236 *Determination of the synonymous divergence between X and Y alleles in the sex-linked*
237 *region.* The dataset of XY SNPs was used to build X and Y allelic pseudosequences in coding
238 regions, using a custom python script to substitute reference positions by X or Y SNPs
239 respectively in the genome in respect with strand, and to extract and concatenate coding DNA
240 sequences for each gene of the sex locus. The yn00 program of the PAML suite⁴⁵ was used to
241 estimate synonymous divergence (dS) with standard error estimation.

242 *Structural characterization of the sex-linked region in the *V. sylvestris* genome.*

243 Structural gene annotations in the sex-linked regions were extracted from Eugene (See
244 annotation Section). Predicted proteins were mapped against the ncbi nr database with blastp
245 and functional annotations were manually analyzed. The best hit in *Arabidopsis thaliana* was
246 used to name the genes. Transposable elements were detected with Red⁴⁶.

247
248 **Integrative search for sex-determining genes in the sex locus.**

249 *Comparison of gene and TE content in X, Y and H haplotypes.* In addition to the female whole
250 genome of *V. sylvestris*, we obtained assemblies for BACs of X and Y haplotypes of *V.*
251 *sylvestris* and H and F haplotypes of Cabernet-Sauvignon (cf. BAC sequencing and assembly
252 Section), H designating modified Y haplotypes found in hermaphrodites. Blastn (ncbi-blast
253 v2.2.3) were carried out between pairs of haplotypes (X-Y, X-H, Y-H, X from whole-genome
254 and X from BACs). Whole-haplotype comparisons were visualized with circos to identify
255 presence/absence patterns. Genic sequences were extracted in all haplotypes using Eugene
256 annotations and blastn, and aligned with mafft v7 online service⁴⁷ to identify structural
257 differences and mutations. The sequences of the putative sex-determining candidates were
258 blasted against assemblies of other cultivated grapevine genomes (Chardonnay, Cabernet-
259 Sauvignon and Zinfandel) to assess their presence or absence.

260 *Total and allele-specific expression of sex-linked genes.* We retrieved raw reads from 23
261 public libraries of female, male and hermaphrodite bud flowers samples from *V. sylvestris* at
262 four developmental stages¹³. Reads were mapped on the *V. sylvestris* genome with gsnap
263 v2018-07-04 (-m 0.1), with a mode tolerant to XY SNPs. Read counts were obtained with
264 htseq-count v0.10.0⁴⁸ and normalized by computing the RPKM (reads per count per millions
265 of reads mapped). To specifically measure the expression of X and Y alleles, we performed
266 SNP calling (gsnap -m 0.05, varscan max missing data 0.4 and minor allele frequency 0.05),

267 and extracted the positions corresponding to XY SNPs located in CDS from the vcf file. For
268 each gene and library, we read the number of reads mapping on reference and variant alleles
269 (corresponding to X and Y alleles respectively) with bedtools intersect⁴⁹. Reads numbers
270 were summed by gene and normalized by the total number of reads in the variant file for the
271 library and the length of transcripts.

272 *Organ-specific expression of sex-linked genes in V. vinifera.* We retrieved and mapped
273 transcriptomic data of *V. sylvestris* and *V. vinifera* in several organs and conditions against the
274 genome of *V. sylvestris* (berries, developing seeds, leaves under normal, drought and
275 pathogenic conditions, stem, early and mature flower buds, Supplementary Table 12). We
276 measured the gene expression levels in the different conditions, and computed an index of
277 organ-specificity (Tau⁵⁰) on normalized expression levels (log(read count per kilobase per
278 millions of mapped reads)). The Tau specificity index ranges between 0 and 1 and typically
279 display two modes near 0 and 1 indicating ubiquitous and organ-specific genes respectively.

280

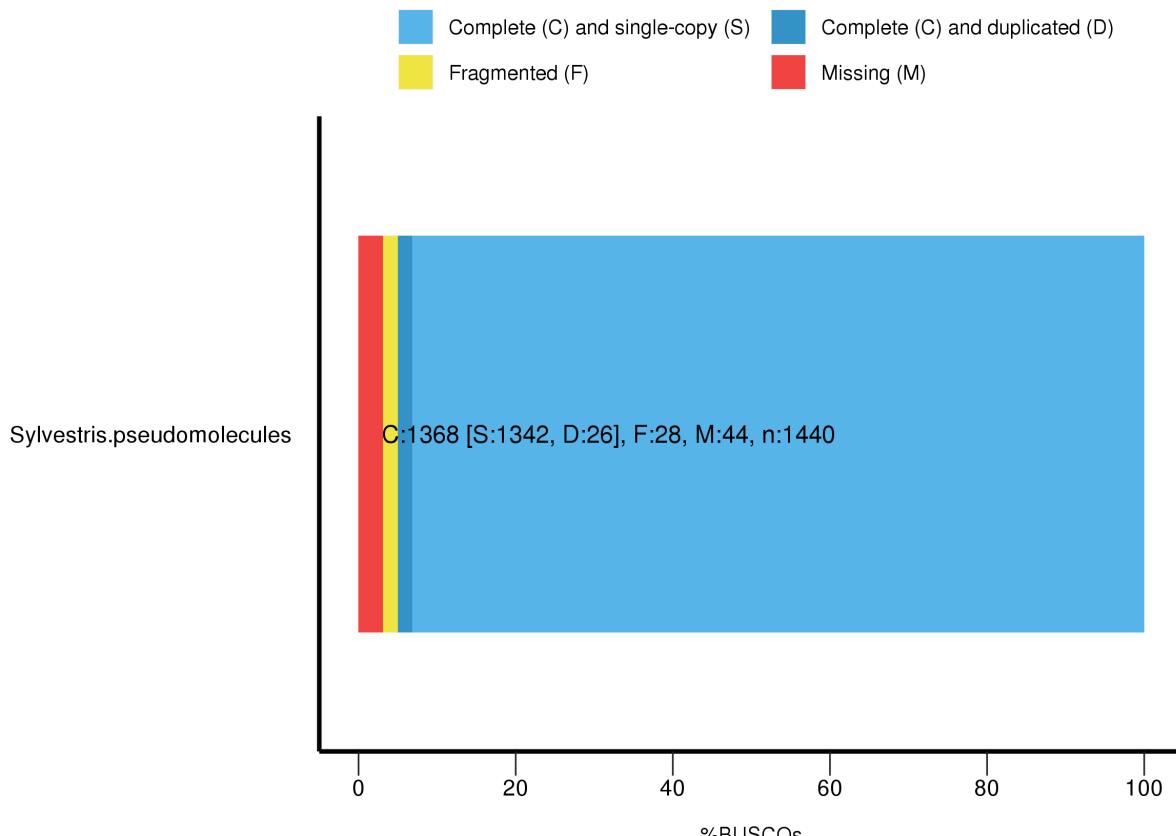
281 **Supplementary References**

- 282 29. R Core Team. *R: A Language and Environment for Statistical Computing*. (R Foundation
283 for Statistical Computing, 2014).
- 284 30. Krzywinski, M. *et al.* Circos: An information aesthetic for comparative genomics.
285 *Genome Res.* **19**, 1639–1645 (2009).
- 286 31. Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers.
287 *Bioinformatics* **24**, 1403–1405 (2008).
- 288 32. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler
289 transform. *Bioinformatics* **26**, 589–595 (2010).
- 290 33. Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M.
291 BUSCO: Assessing genome assembly and annotation completeness with single-copy
292 orthologs. *Bioinformatics* **31**, 3210–3212 (2015).
- 293 34. Roach, M. J. *et al.* Population sequencing reveals clonal diversity and ancestral
294 inbreeding in the grapevine cultivar Chardonnay. *PLOS Genet.* **14**, e1007807 (2018).
- 295 35. Peterson, D. G., Tomkins, J. P., Frisch, D. A., Wing, A. & Paterson, A. H. Construction of
296 Plant Bacterial Artificial Chromosome (BAC) Libraries: An Illustrated Guide. 2nd
297 Edition. *J. Agric. Genomics* **5**, (2000).
- 298 36. Schweiger, W. *et al.* Suppressed recombination and unique candidate genes in the
299 divergent haplotype encoding Fhb1, a major Fusarium head blight resistance locus in
300 wheat. *Theor. Appl. Genet.* **129**, 1607–1623 (2016).
- 301 37. Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets.
302 *Bioinformatics* **27**, 863–864 (2011).
- 303 38. Schmieder, R., Lim, Y. W. & Edwards, R. Identification and removal of ribosomal RNA
304 sequences from metatranscriptomes. *Bioinformatics* **28**, 433–435 (2012).
- 305 39. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21
306 (2013).
- 307 40. Grabherr, M. G. *et al.* Full-length transcriptome assembly from RNA-Seq data without a
308 reference genome. *Nat. Biotechnol.* **29**, 644–52 (2011).
- 309 41. Sallet, E., Gouzy, J. & Schiex, T. EuGene: An Automated Integrative Gene Finder for
310 Eukaryotes and Prokaryotes. *Methods Mol. Biol. Clifton NJ* **1962**, 97–120 (2019).
- 311 42. Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for
312 mRNA and EST sequences. *Bioinformatics* **21**, 1859–1875 (2005).

- 313 43. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
314 2078–2079 (2009).
- 315 44. Koboldt, D. C. *et al.* VarScan 2: Somatic mutation and copy number alteration discovery
316 in cancer by exome sequencing. *Genome Res.* **22**, 568–576 (2012).
- 317 45. Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. *Mol. Biol. Evol.* **24**,
318 1586–1591 (2007).
- 319 46. Girgis, H. Z. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the
320 genomic scale. *BMC Bioinformatics* **16**, 227 (2015).
- 321 47. Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence
322 alignment, interactive sequence choice and visualization. *Brief. Bioinform.* **20**, 1160–1166
323 (2019).
- 324 48. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-
325 throughput sequencing data. *Bioinformatics* **31**, 166–169 (2015).
- 326 49. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
327 genomic features. *Bioinformatics* **26**, 841–842 (2010).
- 328 50. Yanai, I. *et al.* Genome-wide midrange transcription profiles reveal expression level
329 relationships in human tissue specification. *Bioinformatics* **21**, 650–659 (2005).
- 330

330

331

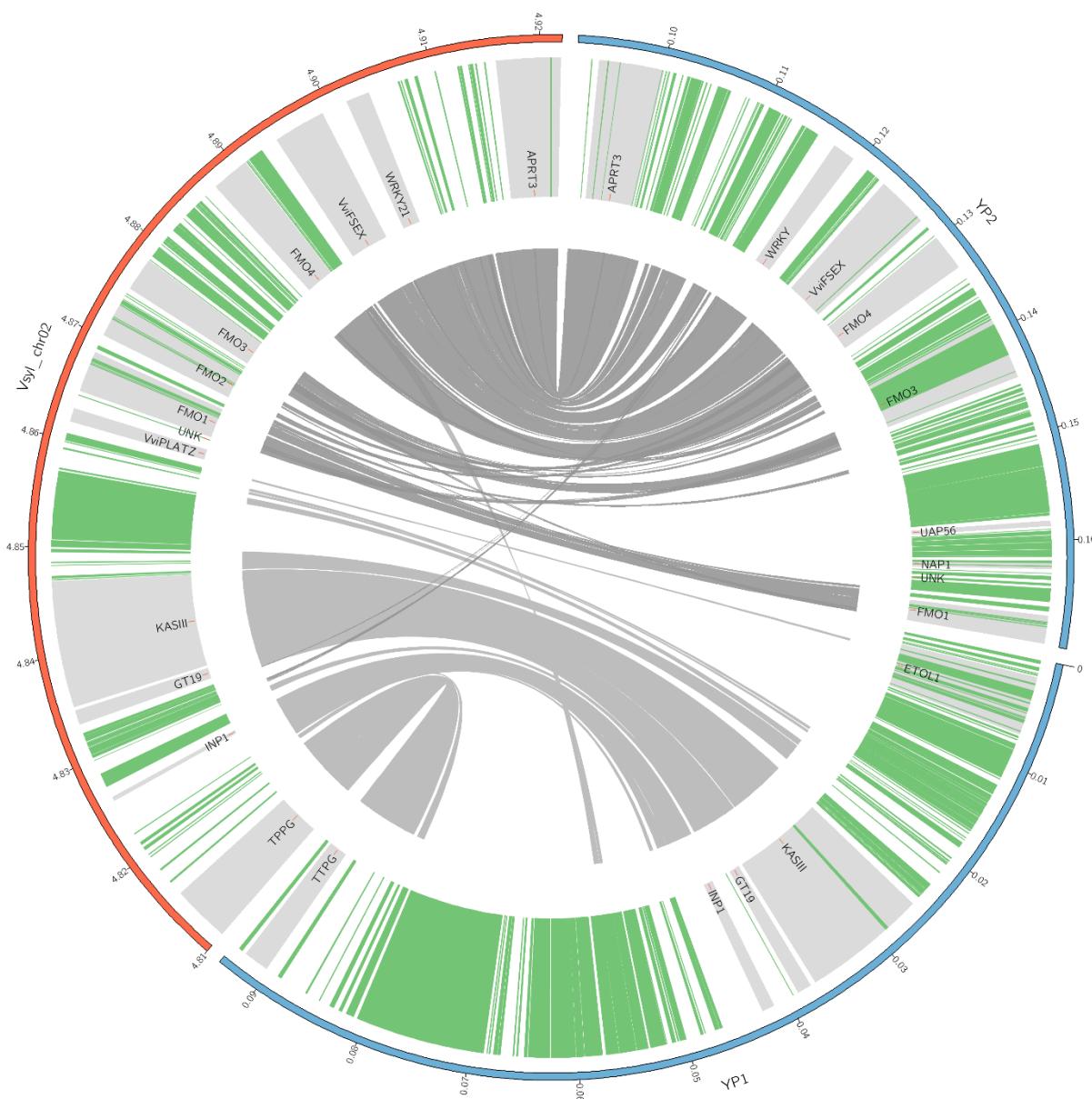

Supplementary Figures

332

Supplementary Figure 1: BUSCO results on *V. sylvestris* pseudomolecules. Out of 1440 genes in the BUSCO dataset, 95% are complete.

335

BUSCO Assessment Results

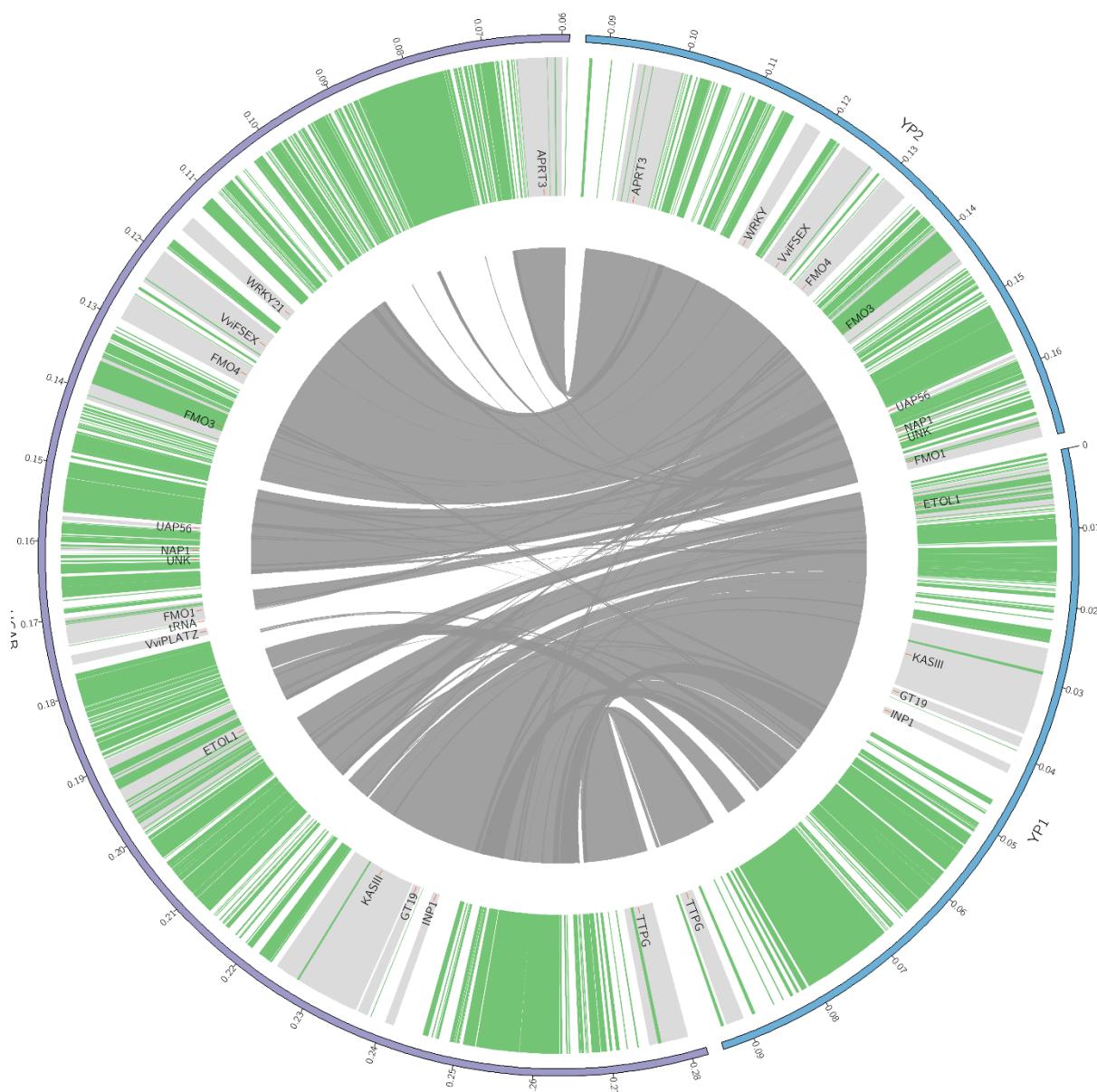

336

337

337

338

339 **Supplementary Figure 2:** Structural comparison of X and Y haplotypes of the sex locus of *V. sylvestris*. Outer to inner track: circular representation of pseudomolecules; limits of genes (obtained
340 from Eugene and verified with blastn) in grey and repeats in green; synteny relationships (blastn hits
341 with an e-value lower than 0.01. YP1 and YP2 are two BAC contigs covering the Y locus, with a gap
342 of an estimated size of 13kb, in which presence of the *PLATZy* allele has been confirmed by PCR (see
343 Supplementary Text). Coordinates are indicated in Mbp.
344

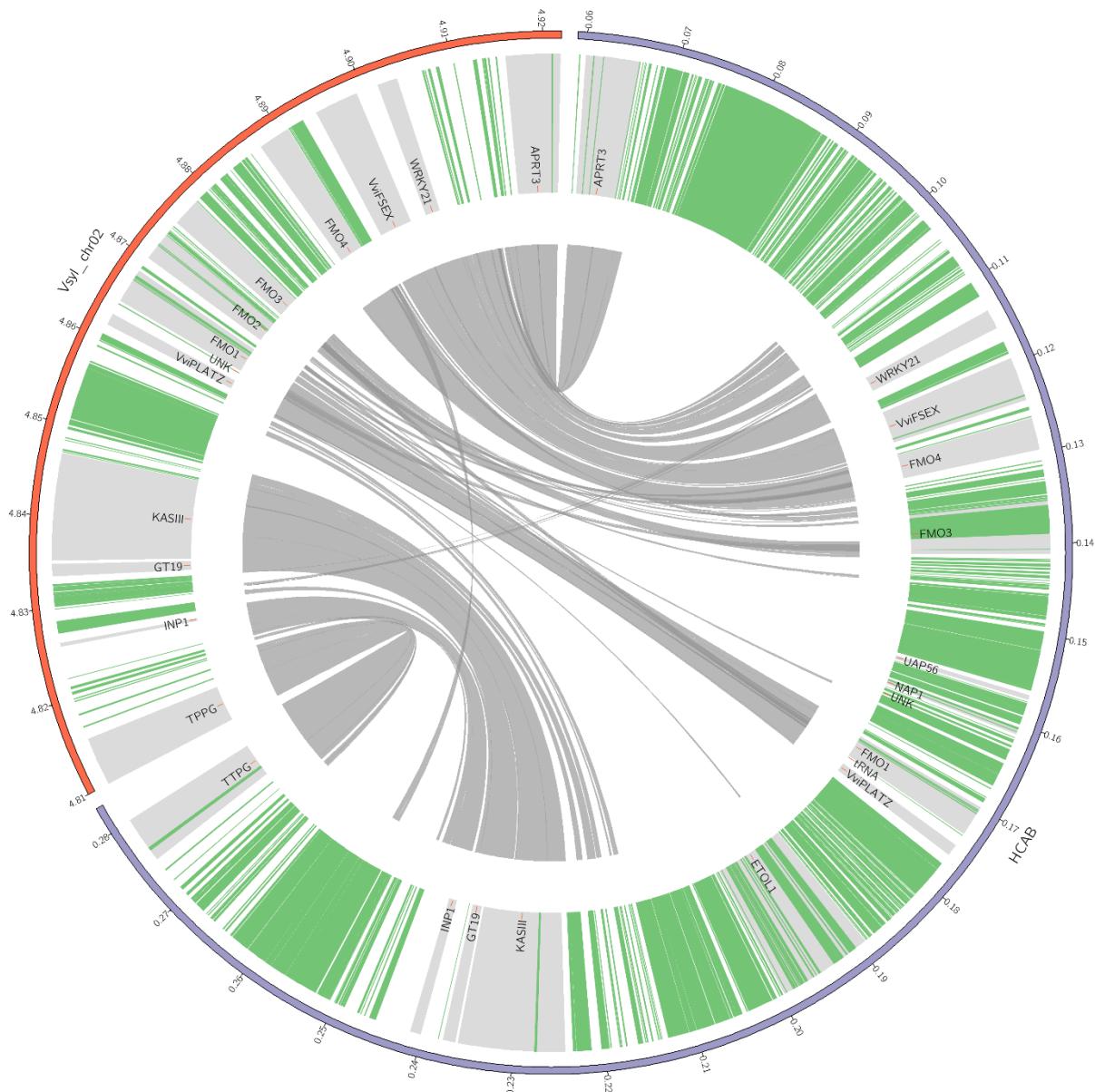


345

346

346

347 **Supplementary Figure 3:** Structural comparison of a Y haplotype of *V. sylvestris* and a H haplotype
348 of *V. vinifera* cv. Cabernet Sauvignon, H referring to the modified Y haplotype found in
349 hermaphrodites. Outer to inner track: circular representation of pseudomolecules; limits of genes
350 (obtained from Eugene and verified with blastn) in grey and repeats in green; synteny relationships
351 (blastn hits with e-values lower than 0.001). YP1 and YP2 are two BAC contigs covering the Y locus,
352 with a gap of an estimated size of 13kb, in which presence of the *PLATZy* allele has been confirmed
353 by PCR (see Supplementary Text). The purple ideogram represents the H haplotype. A large insertion
354 between *WRKY* and *APRT3* is present in the H haplotype of Cabernet Sauvignon, but is not shared by
355 all H haplotypes (e.g. only of the two H haplotypes of Chardonnay, not shown). Coordinates are
356 indicated in Mbp.



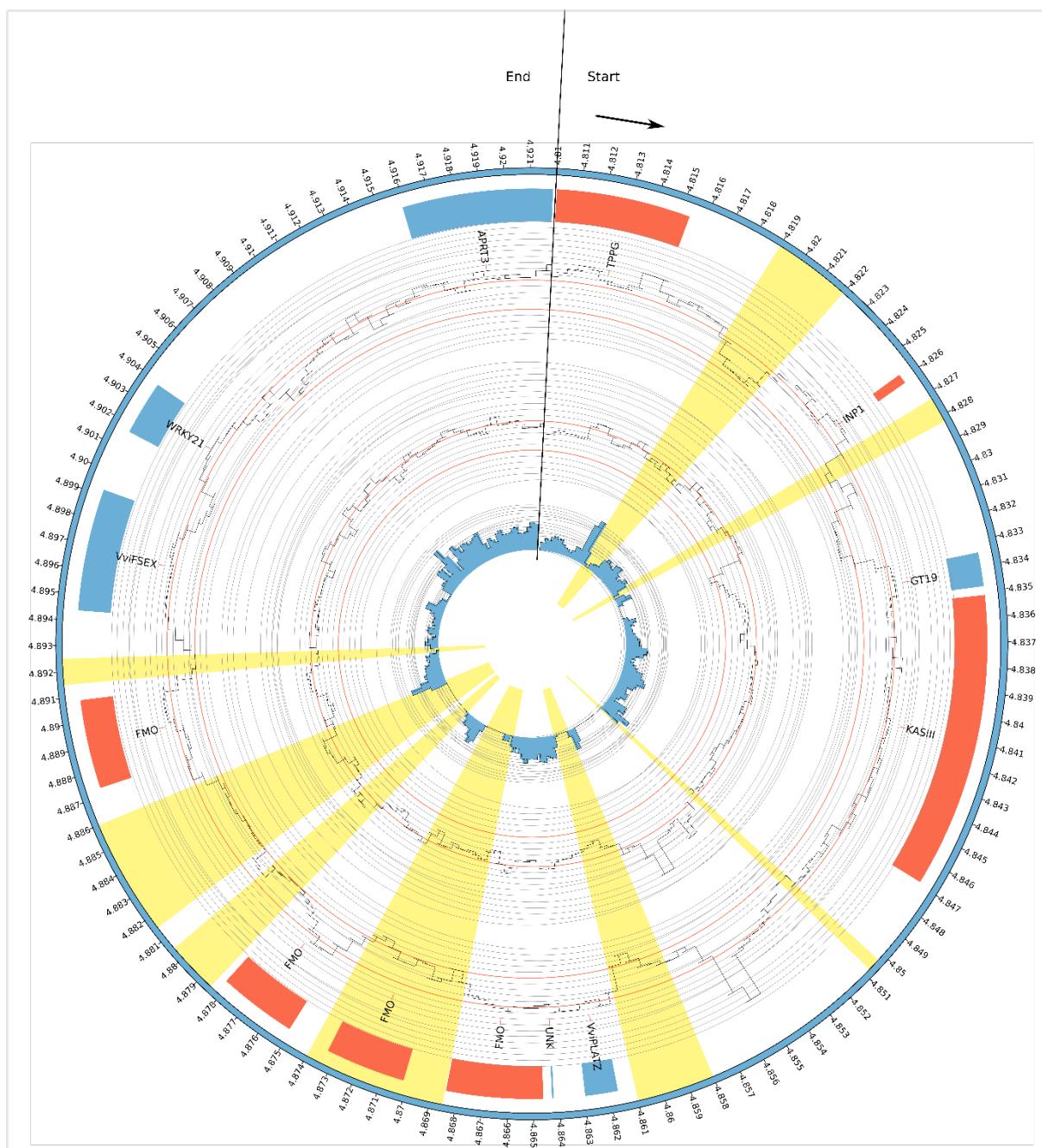
357

358

358

359 **Supplementary Figure 4:** Structural comparison of X haplotype of *V. sylvestris* and a H haplotype of
360 *V. vinifera* cv. Cabernet Sauvignon. Outer to inner track: circular representation of pseudomolecules;
361 Outer to inner track: circular representation of pseudomolecules; limits of genes (obtained from
362 Eugene and verified with blastn) in grey and repeats in green; synteny relationships; synteny
363 relationships (blastn hits with e-values lower than 0.001). Coordinates are indicated in Mbp.

364

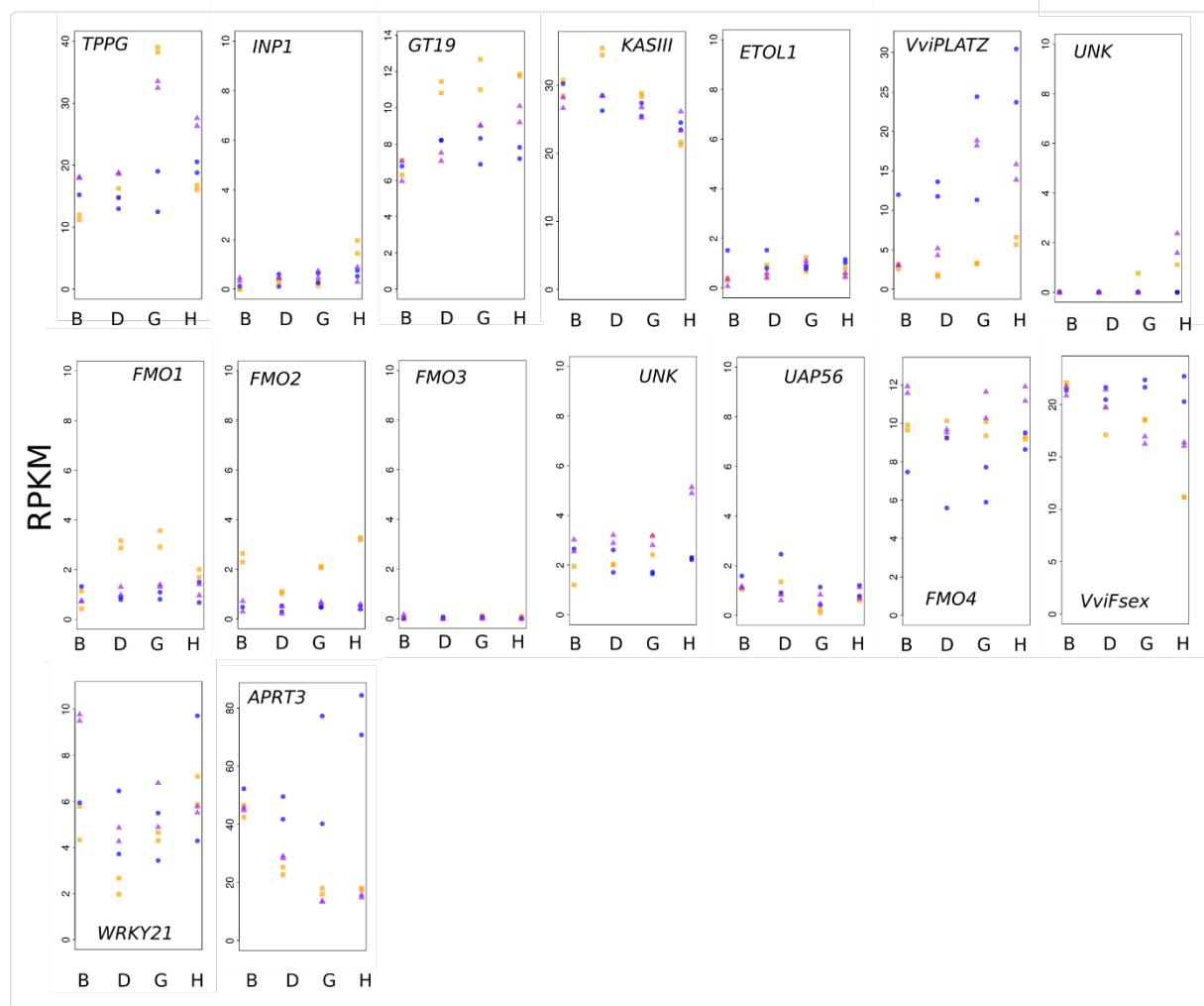

365

366

366

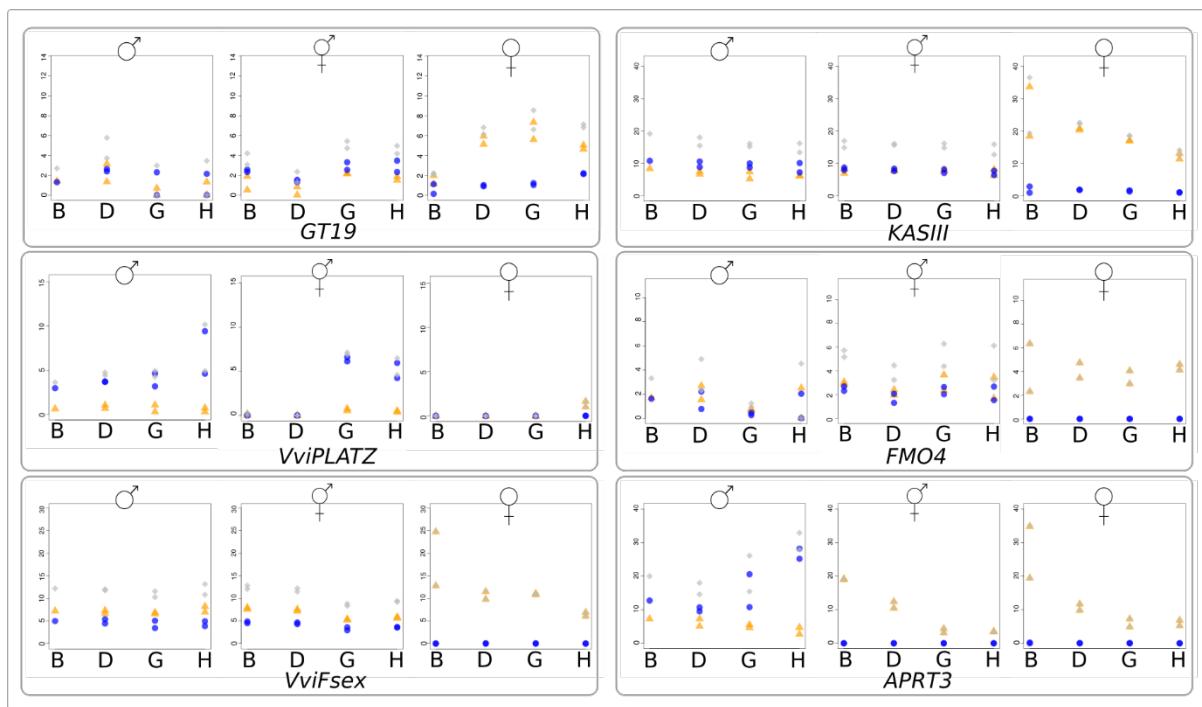
367 **Supplementary Figure 5:** Density of XY-SNPs and location of X-hemizygote regions in a cross in *V. sylvestris*. Track, from outer to inner track: genomic coordinates on chromosome 2 (from 4.810 to 368 4.922 Mb), location and name of genes (blue = direct strand, red = reverse strand), Depth of mapping 369 coverage in a male individual (RCDN9), from 0 to 50, Depth of mapping coverage in a female 370 individual (RCDN16), number of XY SNPs (from 0 to 64). All values were computed by 1-kb 371 overlapping windows. The number of XY SNP was not normalized in order to reflect the proportion of 372 informative sites in each window. Yellow highlights represent the approximate limits of X- 373 hemizygote regions inferred from a two-fold reduction of mapping coverage in males. 374

375


376

377

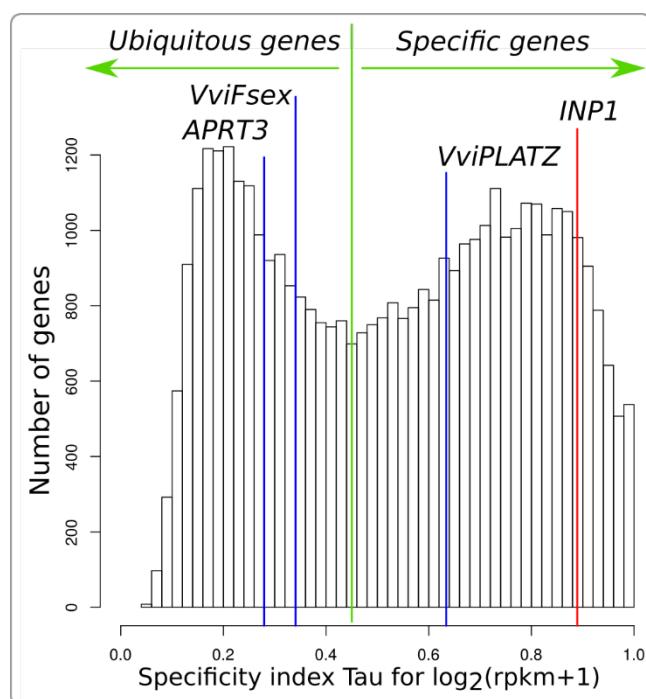
378


379

379 **Supplementary Figure 6:** Total normalized gene expression in males, females and hermaphrodites of
380 *V. sylvestris* for genes in the sex locus during flower bud development. Letters B to H reffer to
381 successive developmental stages. Expression in females, males and hermaphrodites are represented by
382 orange, purple and blue colors, respectively.

385

386 **Supplementary Figure 7:** Allele-specific expression of X and Y alleles of XY genes pairs of *Vitis sylvestris* during the development of flower buds. The X and Y allelic expression from B to H-stages
387 flower buds is shown for females, males and hermaphrodites. Orange triangles, blue dots and grey
388 losanges represent X, Y and total allelic expression respectively. Allele-specific expression was
389 computed only for genes with sufficient mapping coverage on at least 5 XY SNPs. The y scale is
390 different for each gene but shared for a given gene between females, males and hermaphrodites. Two
391 replicates are represented for each condition, except for the male B stage for which there was no
392 replicate.


394

395

396

396

397 **Supplementary Figure 8:** Distribution of organ-specificity expression in *Vitis sylvestris* genes. The
398 value of the specificity index Tau for four genes of the sex locus is indicated by vertical lines.

399

400

400

401

Supplementary Tables

402

402

403

404 **Supplementary Table 1:** Assembly and anchoring statistics of the *V. sylvestris* genome.

405

	Primary contigs	Anchored primary contigs	Haplotigs
Number of contigs	591	476	3,781
Mean length (b)	792,724	947,992	83,879
Median length (b)	421,056	584,494.5	36,553
Max length (b)	6,865,695	6,865,695	2,541,772
L50	82	77	483
N50 (b)	1,711,677	1,773,898	173,606
Assembly size (b)	468,500,071	451,244,463	317,149,633

406

407

408 **Supplementary Table 2:** Summary statistics of resequencing data of a cross between two *V. sylvestris* parents.

Sample ID	Genotype	Type	Sex	Concentraton ADN ng/µl	Number of Reads	Number of Pairs
RCDN8	C1-5	mother	Female	158	91,689,312	45,844,656
RCDN9	Martigny 2	father	Male	113	140,875,256	70,437,628
RCDN10	5026T	offspring	Male	150	149,542,818	74,771,409
RCDN11	5028T	offspring	Male	145	128,590,900	64,295,450
RCDN12	5029T	offspring	Male	145	85,976,170	42,988,085
RCDN13	5033T	offspring	Male	145	130,071,908	65,035,954
RCDN14	5053T	offspring	Male	155	123,960,284	61,980,142
RCDN15	5035T	offspring	female	110	109,564,824	54,782,412
RCDN16	5040T	offspring	female	110	132,609,212	66,304,606
RCDN17	5046T	offspring	female	130	111,932,706	55,966,353
RCDN18	5050T	offspring	female	110	106,023,554	53,011,777
RCDN19	5057T	offspring	female	120	125,195,484	62,597,742

410

411

412 **Supplementary Table 3:** Mode of the gaussian distribution of mapping coverage for each sample for
413 the dataset of whole genome resequencing of a cross in *V. sylvestris*. The values are identical for each
414 iteration of mapping and therefore indicated only once. The maximum coverage allowed corresponds
415 to the maximum coverage that was allowed when filtering SNP, in order to remove repeated positions.

416

Sample ID	Mode of gaussian distribution	Maximum coverage allowed
RCDN8	16	32
RCDN9	25	50
RCDN10	26	52
RCDN11	22	44
RCDN12	14	28
RCDN13	22	44
RCDN14	21	42
RCDN15	19	38
RCDN16	23	46
RCDN17	19	38
RCDN18	18	36
RCDN19	22	44

417

418

418

419 **Supplementary Table 4:** Summary statistics of iterative SNP-tolerant mapping for the resequencing
420 dataset of a cross in *V. sylvestris*.

Sample ID	Sex	Iteration 1			Iteration 2		
		Number of mapped reads	fraction of mapped reads	fraction of paired reads	Number of mapped reads	fraction of mapped reads	fraction of paired reads
RCDN8	F	89,951,765	0.981	0.969	90,089,021	0.983	0.971
RCDN9	M	138,338,630	0.982	0.971	138,544,634	0.983	0.973
RCDN10	M	146,671,291	0.981	0.968	146,904,980	0.982	0.971
RCDN11	M	125,913,524	0.979	0.966	126,122,927	0.981	0.969
RCDN12	M	84,214,280	0.98	0.967	84,352,679	0.981	0.969
RCDN13	M	127,437,731	0.98	0.967	127,645,009	0.981	0.969
RCDN14	M	121,369,732	0.979	0.966	121,578,081	0.981	0.968
RCDN15	F	107,360,998	0.98	0.967	107,538,009	0.982	0.97
RCDN16	F	130,211,584	0.982	0.971	130,408,313	0.983	0.973
RCDN17	F	109,719,948	0.98	0.968	109,900,170	0.982	0.97
RCDN18	F	104,161,079	0.982	0.971	104,315,801	0.984	0.973
RCDN19	F	122,729,069	0.98	0.967	122,927,332	0.982	0.97

421

Sample ID	Iteration 3			Iteration 4		
	Number of mapped reads	fraction of mapped reads	fraction of paired reads	Number of mapped reads	fraction of mapped reads	fraction of paired reads
RCDN8	90,095,720	0.983	0.972	90,029,816	0.982	0.97
RCDN9	138,552,746	0.984	0.973	138,452,568	0.983	0.972
RCDN10	146,916,364	0.982	0.971	146,801,740	0.982	0.969
RCDN11	126,131,254	0.981	0.969	126,036,403	0.98	0.968
RCDN12	84,358,053	0.981	0.969	84,294,600	0.98	0.968
RCDN13	127,653,125	0.981	0.969	127,558,702	0.981	0.968
RCDN14	121,585,814	0.981	0.968	121,490,591	0.98	0.967
RCDN15	107,545,495	0.982	0.97	107,458,696	0.981	0.968
RCDN16	130,416,024	0.983	0.973	130,319,644	0.983	0.972
RCDN17	109,907,858	0.982	0.97	109,819,091	0.981	0.969
RCDN18	104,322,423	0.984	0.973	104,244,590	0.983	0.972
RCDN19	122,935,210	0.982	0.97	122,840,655	0.981	0.969

422

423

423 **Supplementary Table 5:** Summary statistics of missingness per sample for each iteration of SNP-
424 calling in the dataset of whole-genome resequencing of a cross in *V. sylvestris*. Statistics were
425 obtained with vcftools version 0.1.15. N_MISS is the number of missing sites, F_MISS is the
426 frequency of missing sites.

Sample ID	Iteration 1		Iteration 2		Iteration 3		Iteration 4	
	N_MISS	F_MISS	N_MISS	F_MISS	N_MISS	F_MISS	N_MISS	F_MISS
RCDN8	280,469	0.0685	257,255	0.0576	260,910	0.0557	259,983	0.0556
RCDN9	80,415	0.0196	78,141	0.0175	82,728	0.0177	82,577	0.0177
RCDN10	34,051	0.00831	45,378	0.0102	55,432	0.0118	57,368	0.0123
RCDN11	72,953	0.0178	79,836	0.0179	91,745	0.0196	90,777	0.0194
RCDN12	418,876	0.102	385,349	0.0863	397,437	0.0848	395,665	0.0847
RCDN13	59,795	0.0146	67,214	0.0151	77,745	0.0166	78,511	0.0168
RCDN14	81,071	0.0198	75,386	0.0169	80,678	0.0172	79,763	0.0171
RCDN15	112,434	0.0274	103,972	0.0233	110,945	0.0237	110,066	0.0236
RCDN16	51,669	0.0126	58,007	0.0130	66,040	0.0141	66,795	0.0143
RCDN17	112,887	0.0276	106,827	0.0239	114,224	0.0244	112,998	0.0242
RCDN18	138,484	0.0338	133,571	0.0299	143,660	0.0307	142,622	0.0305
RCDN19	54,255	0.0132	53,412	0.0120	58,227	0.0124	57,799	0.0124

427

428

428

429 **Supplementary Table 6:** Number of homozygous and heterozygous SNPs called at each iteration in
 430 the dataset of whole-genome resequencing of a cross in *V. sylvestris*. "% increase het step4/step1"
 431 indicates the percentage of increase in the number heterozygous SNPs detected between the first and
 432 fourth step of iterative mapping.

Sample ID	Category	Iteration 1		Iteration 2	
		Number of homozygous SNPs	Number of heterozygous SNPs	Number of homozygous SNPs	Number of heterozygous SNPs
RCDN8	M	380,285	1,674,962	428,741	1,915,267
RCDN9	F	763,168	1,868,596	813,700	2,079,174
RCDN10	S	419,471	2,336,345	449,943	2,581,917
RCDN11	S	447,082	2,129,876	481,153	2,359,784
RCDN12	S	376,336	1,784,861	429,508	2,032,012
RCDN13	S	411,888	2,172,007	443,658	2,407,092
RCDN14	S	446,637	2,141,363	486,468	2,390,231
RCDN15	D	411,587	2,004,887	451,048	2,242,332
RCDN16	D	441,713	2,240,436	475,968	2,482,939
RCDN17	D	388,490	2,099,888	426,892	2,352,568
RCDN18	D	394,402	2,152,081	434,417	2,406,320
RCDN19	D	397,321	2,055,753	429,151	2,293,760

433

Sample ID	Iteration 3		Iteration 4		% increase hom step4/step1	% increase het step4/step1
	Number of homozygous SNPs	Number of heterozygous SNPs	Number of homozygous SNPs	Number of heterozygous SNPs		
RCDN8	442,840	2,061,120	442,698	2,062,008	16.41	23.11
RCDN9	832,308	2,241,277	830,372	2,242,601	8.81	20.02
RCDN10	460,069	2,756,124	459,710	2,757,158	9.59	18.01
RCDN11	494,110	2,522,773	491,744	2,524,116	9.99	18.51
RCDN12	443,293	2,175,229	442,599	2,174,875	17.61	21.85
RCDN13	454,834	2,569,706	453,889	2,569,619	10.20	18.31
RCDN14	499,287	2,557,644	498,176	2,559,111	11.54	19.51
RCDN15	463,449	2,400,577	462,964	2,400,871	12.48	19.75
RCDN16	487,714	2,654,078	486,224	2,655,479	10.08	18.53

RCDN17	438,941	2,512,766	439,365	2,516,241	13.10	19.83
RCDN18	447,979	2,565,013	447,227	2,567,305	13.39	19.29
RCDN19	438,548	2,459,524	438,145	2,460,816	10.27	19.70

434

434

435 **Supplementary Table 7:** Whole-genome resequencing dataset of the ncbi short read archive (SRA)
436 that were mapped to the *Vitis sylvestris* genome. All samples were part of study SRP108271. Sample
437 SRS2238702 had a lower mapping coverage than other samples, resulting in a high rate of missing
438 data.

SRA run ID	Sample Accession	Domestication status	Organism Name	Origin / cultivar	Sex
SRR5627780	SRS2238707	cultivated	<i>Vitis vinifera</i>	Thompson RLK	Hermaphrodite
SRR5627781	SRS2238705	cultivated	<i>Vitis vinifera</i>	Muscat of Alexandria	Hermaphrodite
SRR5627782	SRS2238704	cultivated	<i>Vitis vinifera</i>	Thopson 2A	Hermaphrodite
SRR5627783	SRS2238703	wild	<i>Vitis vinifera subsp. sylvestris</i>	Turkmenistan1	Male
SRR5627784	SRS2238702	wild	<i>Vitis vinifera subsp. sylvestris</i>	Armenia	Female
SRR5627785	SRS2238701	wild	<i>Vitis vinifera subsp. sylvestris</i>	Pakistan1	Female
SRR5627786	SRS2238700	wild	<i>Vitis vinifera subsp. sylvestris</i>	Turkmenistan2	Male
SRR5627787	SRS2238699	wild	<i>Vitis vinifera subsp. sylvestris</i>	Azerbaijan1	Female
SRR5627789	SRS2238698	wild	<i>Vitis vinifera subsp. sylvestris</i>	Georgia	Female
SRR5627790	SRS2238696	wild	<i>Vitis vinifera subsp. sylvestris</i>	Azerbaijan2	Female
SRR5627791	SRS2238695	wild	<i>Vitis vinifera subsp. sylvestris</i>	Pakistan3	Female
SRR5627792	SRS2238694	wild	<i>Vitis vinifera subsp. sylvestris</i>	Pakistan2	Male
SRR5627793	SRS2238693	cultivated	<i>Vitis vinifera</i>	Semillion	Hermaphrodite
SRR5627794	SRS2238692	cultivated	<i>Vitis vinifera</i>	Riesling	Hermaphrodite
SRR5627795	SRS2238691	cultivated	<i>Vitis vinifera</i>	Cabernet Sauvignon	Hermaphrodite
SRR5627796	SRS2238690	cultivated	<i>Vitis vinifera</i>	Primitivo	Hermaphrodite
SRR5627797	SRS2238689	cultivated	<i>Vitis vinifera</i>	Pinot Noir	Hermaphrodite
SRR5627798	SRS2238688	cultivated	<i>Vitis vinifera</i>	Gamay Noir	Hermaphrodite
SRR5627799	SRS2238687	cultivated	<i>Vitis vinifera</i>	Chardonnay	Hermaphrodite
SRR5627800	SRS2238686	cultivated	<i>Vitis vinifera</i>	Aramon	Hermaphrodite
SRR5627801	SRS2238684	cultivated	<i>Vitis vinifera</i>	Zinfandel	Hermaphrodite
SRR5627802	SRS2238685	cultivated	<i>Vitis vinifera</i>	Traminer	Hermaphrodite

439

440

440

441 **Supplementary Table 8:** Statistics of mapping and SNP-calling of a public whole-genome
442 resequencing dataset of the ncbi that was mapped to the *Vitis sylvestris* genome.

443

SRA run ID	Status	Number of reads	Proportion of mapped reads	Proportion of paired reads
SRR5627780	cultivated	70,284,983	0.989	0.975
SRR5627781	cultivated	76,803,804	0.991	0.98
SRR5627782	cultivated	80,937,324	0.992	0.981
SRR5627783	wild	80,232,477	0.986	0.974
SRR5627784	wild	35,879,048	0.954	0.92
SRR5627785	wild	105,896,803	0.991	0.978
SRR5627786	wild	80,948,588	0.99	0.979
SRR5627787	wild	76,824,067	0.985	0.97
SRR5627789	wild	80,107,055	0.989	0.977
SRR5627790	wild	79,079,895	0.965	0.938
SRR5627791	wild	105,783,610	0.991	0.979
SRR5627792	wild	115,956,970	0.991	0.976
SRR5627793	cultivated	77,221,117	0.992	0.98
SRR5627794	cultivated	77,644,996	0.992	0.98
SRR5627795	cultivated	71,775,105	0.992	0.98
SRR5627796	cultivated	169,763,362	0.972	0.942
SRR5627797	cultivated	90,757,557	0.993	0.981
SRR5627798	cultivated	66,283,833	0.992	0.983
SRR5627799	cultivated	454,053,065	0.982	0.956
SRR5627800	cultivated	96,530,135	0.992	0.98
SRR5627801	cultivated	223,282,216	0.992	0.978
SRR5627802	cultivated	60,767,595	0.99	0.974

444

445 **Supplementary Table 9:** Summary of the genotype of 13 cultivars in the sex locus on chromosome 2
446 inferred from whole-genome resequencing data. Cultivars were genotyped at XY SNPs. H refers to
447 the modified Y haplotypes in hermaphrodites. Raw SNP data are shown in Figure 1a.

SRA run ID	Origin / cultivar	Genotype 4.810-4.903 Mb	Genotype 4.903-4.21Mb
SRR5627780	Thompson RLK	XH	XH
SRR5627781	Muscat of Alexandria	XH	XH
SRR5627782	Thompson 2A	XH	XH
SRR5627793	Semillion	XH	XH
SRR5627794	Riesling	HH	XH
SRR5627795	Cabernet Sauvignon	XH	XH
SRR5627796	Primitivo	XH	XH
SRR5627797	Pinot Noir	XH	XX
SRR5627798	Gamay Noir	XH	XX
SRR5627799	Chardonnay	HH	XH
SRR5627800	Aramon	XH	XX
SRR5627801	Zinfandel	XH	XH
SRR5627802	Traminer	XH	XX

448

449

449

450

451 **Supplementary Table 10:** Predicted genes in the sex locus of *V. sylvestris*. Coordinates and geneID
452 are indicated for the *V. sylvestris* reference genome, therefore the absolute position of X-deleted genes
453 is not shown.

Gene ID	Start	End	Strand	Functional annotation	Genotype in hermaphrodites
000003Fg0028711	4,810,035	4,815,364	-	trehalose phosphate phosphatase	from exon 9, XH or HH
000003Fg0028721	4,825,791	4,826,183	-	Protein INAPERTURATE POLLEN1 (INP1)	XH or HH
000003Fg0028731	4,833,463	4,834,804	+	xyloglucan galactosyltransferase (GT19)	XH or HH
000003Fg0028741	4,835,150	4,846,883	-	3-oxoacyl-[acyl-carrier-protein] synthase (KASIII)	XH or HH
NA				Ethylene-overproducer-like1 / No Pollen Germination 1 (ETOL1)	XH or HH
000003Fg0028751	4,861,687	4,862,981	+	transcription of the PLATZ family (VviPLATZ)	XH or HH
000003Fg0028761	4,864,219	4,864,291	+	tRNA-gly	XH or HH
000003Fg0028771	4,864,636	4,868,462	-	flavin mono-oxygenase (FMO)	XH or HH
000003Fg0028781	4,870,175	4,873,359	-	flavin mono-oxygenase (FMO)	XH or HH
NA				ATP-dependent DEAD BOX helicase (UAP56)	XH or HH
NA				NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1)	XH or HH
NA				Uncharacterized protein (UNK)	
000003Fg0028791	4,875,086	4,878,202	-	flavin mono-oxygenase (FMO)	XH or HH
000003Fg0028801	4,887,323	4,890,854	-	flavin mono-oxygenase (FMO)	XH or HH
000003Fg0028811	4,894,375	4,899,225	+	Uncharacterized protein (VviFSEX)	XH or HH
000003Fg0028821	4,901,701	4,903,864	+	WRKY transcription factor 21 (WRKY21)	XH or HH
000003Fg0028831	4,915,923	4,921,889	+	adenine phospho-ribosyltransferase (VviAPRT3)	XH or HH

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468 **Supplementary Table 11:** Mapping statistics of public RNA-seq libraries of flower buds of female,
469 male and hermaphrodite *V. sylvestris* (Ramos et al. 2013) against the *V. sylvestris* genome. B to D
470 represent successive developmental stages.

SRA ID	Sex	Stage	Number of reads	% of reads mapped	% of reads assigned to a gene
SRR1239522	Female	B	13,571,346	95	84.2
SRR1239524	Female	D	14,596,473	95.5	84.9
SRR1239526	Female	G	14,111,102	95.4	84.3
SRR1239528	Female	H	18,464,325	94.7	82.9
SRR1239530	Male	B	17,247,932	95	84.1
SRR1239532	Male	D	17,244,273	94.7	83.7
SRR1239534	Male	G	7,711,531	95.3	84.1
SRR1239536	Male	H	17,830,620	94.5	83.6
SRR1239537	Hermaphrodite	B	19,832,905	94.2	83.4
SRR1239539	Hermaphrodite	D	13,814,366	94.9	83.7
SRR1239541	Hermaphrodite	G	14,239,068	95	83.1
SRR1239543	Hermaphrodite	H	15,564,147	96	83.9

471

472

472

473

474 **Supplementary Table 12:** Public RNA-seq dataset of *V. vinifera* and *V. sylvestris* mapped to the *Vitis*
475 *sylvestris* genome.

SRA ID	Description	Cultivar	Data
SRR1709065	BERRY2.WD1	Pinot Noir	Illumina Single
SRR1709064	BERRY2.WD2	Pinot Noir	Illumina Single
SRR1709063	BERRY2.WD3	Pinot Noir	Illumina Single
SRR1709068	BERRY2.WW1	Pinot Noir	Illumina Single
SRR1709067	BERRY2.WW2	Pinot Noir	Illumina Single
SRR1709066	BERRY2.WW3	Pinot Noir	Illumina Single
SRR5989171	BERRY3.EL35.S1	Riesling	Illumina Single
SRR5989170	BERRY3.EL35.S2	Riesling	Illumina Single
SRR5989174	BERRY3.EL36.S1	Riesling	Illumina Single
SRR5989175	BERRY3.EL36.S2	Riesling	Illumina Single
SRR5989178	BERRY3.EL38.S1	Riesling	Illumina Single
SRR5989177	BERRY3.EL38.S2	Riesling	Illumina Single
SRR3056887	BUD2.Efs1	Prieto Picudo	Illumina Paired
SRR3056888	BUD2.Efs2	Prieto Picudo	Illumina Paired
SRR3056889	BUD2.Efs3	Prieto Picudo	Illumina Paired
SRR3056884	BUD2.Nfs1	Prieto Picudo	Illumina Paired
SRR3056885	BUD2.Nfs1	Prieto Picudo	Illumina Paired
SRR3056886	BUD2.Nfs1	Prieto Picudo	Illumina Paired
SRR2043187	BUD3.PC1	Corinto Bianco	Illumina Paired
SRR2043218	BUD3.PC2	Corinto Bianco	Illumina Paired
SRR2043221	BUD3.PC3	Corinto Bianco	Illumina Paired
SRR2043222	BUD3.SD1	Pedro Ximenes	Illumina Paired
SRR2043223	BUD3.SD2	Pedro Ximenes	Illumina Paired
SRR2043224	BUD3.SD3	Pedro Ximenes	Illumina Paired
SRR1553992	FLO.CK.1h.12DBB	Labruscan grape	Illumina Single
SRR1553993	FLO.CK.1h.12DBB	Labruscan grape	Illumina Single
SRR1554086	FLO.CK.24h.11DBB1	Labruscan grape	Illumina Single
SRR1554085	FLO.CK.24h.11DBB2	Labruscan grape	Illumina Single
SRR1553990	FLO.GA3.1h.12DBB	Labruscan grape	Illumina Single
SRR1553991	FLO.GA3.1h.12DBB	Labruscan grape	Illumina Single
SRR1553996	FLO.GA3.24h.11DBB1	Labruscan grape	Illumina Single
SRR1554080	FLO.GA3.24h.11DBB2	Labruscan grape	Illumina Single
SRR1302044	FLO2.SDL	Not specified	Illumina Paired

SRR1302041	FLO2.WT	Not specified	Illumina Paired
SRR519455	LEAF1.1DPI	Pinot Noir	Illumina Paired
SRR519456	LEAF1.2DPI	Pinot Noir	Illumina Paired
SRR519449	LEAF1.ctl1	Pinot Noir	Illumina Paired
SRR519450	LEAF1.ctl2	Pinot Noir	Illumina Paired
SRR519452	LEAF1.ctl3	Pinot Noir	Illumina Paired
SRR6706487	LEAF2.4DD1	Pinot Noir	Illumina Paired
SRR6706486	LEAF2.4DD2	Pinot Noir	Illumina Paired
SRR3056876	LEAF4.MtLS	Chasselat Cioutat	Illumina Paired
SRR3056875	LEAF4.MtLS	Chasselat Cioutat	Illumina Paired
SRR1926309	Mix.Wild.Ctl.1DPI1	Wild	Illumina Single
SRR1926307	Mix.Wild.Ctl.1DPI2	Wild	Illumina Single
SRR1926305	Mix.Wild.Ctl.1DPI3	Wild	Illumina Single
SRR1926310	Mix.Wild.Ctl.5DPI1	Wild	Illumina Single
SRR1926308	Mix.Wild.Ctl.5DPI2	Wild	Illumina Single
SRR1926306	Mix.Wild.Ctl.5DPI3	Wild	Illumina Single
SRR1926303	Mix.Wild.In.1DPI1	Wild	Illumina Single
SRR1926300	Mix.Wild.In.2DPI1	Wild	Illumina Single
SRR1926299	Mix.Wild.In.3DPI1	Wild	Illumina Single
SRR1926304	Mix.Wild.In.5DPI1	Wild	Illumina Single
SRR1926302	Mix.Wild.In.5DPI2	Wild	Illumina Single
SRR1926301	Mix.Wild.In.5DPI3	Wild	Illumina Single
SRR6300212	SEED.noSD.1	Red Globe X Crimson Seedless F1 hybrid	Illumina Paired
SRR6300211	SEED.noSD.2	Red Globe X Crimson Seedless F1 hybrid	Illumina Paired
SRR6300209	SEED.SD.1	Red Globe X Crimson Seedless F1 hybrid	Illumina Paired
SRR6300208	SEED.SD.2	Red Globe X Crimson Seedless F1 hybrid	Illumina Paired
DRR093297	STEM1.1	Pinot Noir	Illumina Single
DRR093298	STEM1.2	Pinot Noir	Illumina Single

476

477

477

478 Supplementary Text

479

480 Results of BAC sequencing and assembly

481 The final results were: 1) a female haplotype composed of the overlapping of 08J18 and
482 20H04 BAC sequences, of a total 204,082 bp length. This haplotype maps correctly between
483 position 4,866,319 and 5,119,669 of the chromosome 2 of the *Vitis vinifera* reference genome
484 (cultivar PN40024, 12X.V0, NCBI), which is known to correspond to the female haplotype
485 of the Pinot Noir cultivar (Fechter et al 2012, Picq et al 2014); and 2) a male haplotype
486 composed of two non-overlapping contigs, contig1: BACs 27H5 and 65K18 (171,096bp) and
487 contig2: BACs 9D16, 15F19 and 71N3 (169,751bp). The male haplotype does not map well
488 on the grape genome reference, as the hermaphrodite haplotype of the PN40024 was not
489 assembled on the chromosome 2 but its differing sequences were left unassigned
490 (chromosome unknown). On the reference genome 12X.V0, the borders of the contig1 map at
491 positions chr2:4,856,490 and chrUn:16,079,507; the borders of contig2 map at chr2:4,953,113
492 and chr:5,142,793. Based on the closest blast hits of the male contigs on the female and
493 hermaphrodite haplotypes of the reference genome, as well as on the other available long-
494 reads PacBio genomes (the Chardonnay sequences of Zhou et al 2019¹⁹; the Cabernet
495 Sauvignon sequences of Chin et al 2016⁹; as well as the *Vitis sylvestris* female sequences of
496 this work), we estimated the length of the gap between contig1 and contig2 at around 13kb.

497

498 Covering the 13kb gap on the male haplotype

499 Further efforts were attempted to cover the gap between the two non-overlapping male
500 contigs. As a gap of 13kb is too long to be covered by long-range PCR even when using high-
501 quality TAQ, we made the hypothesis that the *PLATZ* gene, for which we have positional
502 evidence in several female and hermaphrodite genotypes, is positioned within this gap in the
503 male haplotype too, and can be used to split the 13kb in two shorter parts, easier to amplify by
504 long-range PCR. The positions of *PLATZ* on H and F haplotypes were obtained from: the
505 reference genome of PN40024, on which the *PLATZ* female allele maps at
506 chr2:4949289..4950582 and its hermaphrodite allele at chrUn16091133..16092418; the
507 Chardonnay PacBio sequences (Zhou et al 2019); the Cabernet Sauvignon PacBio sequences
508 (Chin et al 2016); as well as the *Vitis sylvestris* female PacBio sequences (this work). In
509 addition, the *PLATZ* male allele was also found by microassembly of reads carrying Y alleles
510 detecting in this work from the males of the *Vitis sylvestris* cross (this work); for facility we
511 call this male version *PLATZy*.

512 Based on this hypothetical construct (contig1-gap1-*PLATZy*-gap2-contig2), we defined
513 several pairs of primers based on the contig1- and contig2 ends and on *PLATZy*. The primers
514 were defined exploiting polymorphisms between the F and M haplotype, so to be sure to
515 amplify only the M haplotype. Starting from primers based on *PLATZy* and contig2 (forward:
516 ACTCCCCTGTTCTCTCCGA and reverse: TCATGTTGCGTCTAGATCGGT), we were
517 able to obtain a single band of 3.2kb, corresponding to gap2, by long-range PCR on the *Vitis*
518 *sylvestris* PSL10 male. DNAs from one female *V. sylvestris* and the hermaphrodite Pinot noir

519 (respectively with introduction codes 8500Mtp110 and 193Mtp81, INRA Vassal Grape
520 Collection) did not provide any amplification, as expected. The forward and reverse Sanger
521 sequences of this PCR product were obtained through an AB1 sequencer, and have 93-99%
522 identity with the same region on 3' of *PLATZ*, of the reference genome PN40024, and the
523 Cabernet Sauvignon, the Chardonnay and the *Vitis sylvestris* female PacBio sequences. We
524 can thus confirm that in the male haplotype, *PLATZy* is located in the expected region
525 between *ETOL1* and the first *FMO*.

526 On the other hand, we did not succeed to sequence gap1, as PCR amplifications using several
527 combinations of primers defined in contig1 and *PLATZ* always provided multiple bands,
528 confirming that gap1 is highly likely to correspond to a repeated element, as observed in the
529 reference genome PN40024, Cabernet Sauvignon, Chardonnay and *Vitis sylvestris* female.

530