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Abstract

Genetic and chemical perturbations impact diverse cellular phenotypes, including multiple
indicators of cell health. These readouts reveal toxicity and antitumorigenic effects relevant to
drug discovery and personalized medicine. We developed two customized microscopy assays,
one using four targeted reagents and the other three targeted reagents, to collectively measure
70 specific cell health phenotypes including proliferation, apoptosis, reactive oxygen species
(ROS), DNA damage, and cell cycle stage. We then tested an approach to predict multiple cell
health phenotypes using Cell Painting, an inexpensive and scalable image-based morphology
assay. In matched CRISPR perturbations of three cancer cell lines, we collected both Cell
Painting and cell health data. We found that simple machine learning algorithms can predict
many cell health readouts directly from Cell Painting images, at less than half the cost. We
hypothesized that these trained models can be applied to accurately predict cell health assay
outcomes for any future or existing Cell Painting dataset. For Cell Painting images from a set of
1,500+ compound perturbations across multiple doses, we validated predictions by orthogonal
assay readouts, and by confirming mitotic arrest, ROS, and DNA damage phenotypes via PLK,

proteasome, and aurora kinase/tubulin inhibition, respectively. We provide an intuitive web app
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to browse all predictions at http://broad.io/cell-health-app. Our approach can be used to add cell

health annotations to Cell Painting perturbation datasets.

Introduction

Perturbing cells with specific genetic and chemical reagents in different environmental contexts
impacts cells in various ways (Kitano, 2002). For example, certain perturbations impact cell
health by stalling cells in specific cell cycle stages, increasing or decreasing proliferation rate, or
inducing cell death via specific pathways (Markowetz, 2010; Szalai et al., 2019). Cell health is
normally assessed by eye or measured by specifically targeted reagents, which are either
focused on a single Cell Health parameter (ATP assays) or multiple, in combination, via
FACS-based or image-based analyses, which involves a manual gating approach, complicated
staining procedures, and significant reagent cost. These traditional approaches limit the ability
to scale to large perturbation libraries such as candidate compounds in academic and

pharmaceutical screening centers.

Image-based profiling assays are increasingly being used to quantitatively study the
morphological impact of chemical and genetic perturbations in various cell contexts (Caicedo et
al., 2016; Scheeder et al., 2018). One unbiased assay, called Cell Painting, stains for various
cellular compartments and organelles using non-specific and inexpensive reagents
(Gustafsdottir et al., 2013). Cell Painting has been used to identify small-molecule mechanisms
of action (MOA), study the impact of overexpressing cancer mutations, and discover new
bioactive mechanisms, among many other applications (Caicedo et al., 2018; Christoforow et
al., 2019; Hughes et al., 2020; Pahl and Sievers, 2019; Rohban et al., 2017; Simm et al., 2018;
Wawer et al., 2014). Additionally, Cell Painting can predict overall mammalian toxicity levels for
environmental chemicals (Nyffeler et al., 2020) and some of its derived morphology
measurements are readily interpreted by cell biologists and relate to cell health (Bray et al.,
2016). However, no single, inexpensive assay enables discovery of fine-grained cell health
readouts that would provide researchers with a more complete understanding of perturbation

mechanisms.

We hypothesized that we could predict many cell health readouts directly from the Cell Painting
data, which is already available for hundreds of thousands of perturbations. This would enable

the rapid and interpretable annotation of small molecules or genetic perturbations. To do this,
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we first developed two customized microscopy assays, which collectively report on 70 different
cell health indicators via a total of seven reagents applied in two reagent panels. Collectively,

we call these assays “Cell Health”.

To demonstrate proof of concept, we collected a small pilot dataset of 119 CRISPR knockout
perturbations in three different cell lines using Cell Painting and Cell Health. We used the Cell
Painting morphology readouts to train 70 different regression models to predict each Cell Health
indicator independently. We used simple machine learning methods instead of a deep learning
approach because of our limited sample size of 119 perturbations and the inability to increase
the sample size by linking single cell measurements across assays. We predicted certain
readouts, such as the number of S phase cells, with high performance, while performance on
other readouts, such as DNA damage in G2 phase cells, was low. We applied and validated
these models on a separate set of existing Cell Painting images acquired from 1,571 compound
perturbations measured across six different doses from the Drug Repurposing Hub project
(Corsello et al.,, 2017). We provide all predictions in an intuitive web-based application at

http://broad.io/cell-health-app, so that others can extend our work and explore cell health

impacts of specific compounds.

Results and Discussion

We collected Cell Painting images and targeted Cell Health readouts in three different cell lines
(A549, ES2, HCC44), each treated with 119 CRISPR perturbations targeting 59 genes and
controls (Supplementary Table 1). We selected these genes to span multiple biological
pathways and induce different morphological states. The seven reagents we included in the two
Cell Health panels (Supplementary Table 2) include specific stains and antibodies such as

Caspase 3/7 dye to target apoptotic cells and yH2Ax antibodies to measure DNA damage.

Applying biological knowledge of cell-health related phenotypes and several manual gating
strategies, we defined 70 different Cell Health readouts (Supplementary Table 3) based on
signals from the seven reagents, plus nucleus morphology measurements from Digital Phase
Contrast (DPC) (Figure 1A, Supplementary Figure 1, Supplementary Figure 2). While these
readouts are relatively easy to interpret, running two separate assays is not ideal for large-scale

perturbation screening experiments.
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We developed and applied a bioinformatics pipeline to process features extracted from Cell
Painting images by CellProfiler software (Carpenter et al.,, 2006). The pipeline yields
image-based profiles representing gene and guide perturbation signatures (Caicedo et al.,
2017) (Figure 1B). We observed that 63% of guide profile replicates were distinguishable from
negative controls; that is, they had stronger pairwise correlations than 95% of a null distribution
defined by non-replicate correlations (Supplementary Figure 3). This rate is consistent with

previous Cell Painting studies of genetic perturbations (Rohban et al., 2017).
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Figure 1. Data processing and modeling approach. (a) Example images and workflow from the Cell
Health assays. We apply a series of manual gating strategies (see Methods) to isolate cell subpopulations
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and to generate cell health readouts for each perturbation. (top) In the “Cell Cycle” panel, in each nucleus
we measure Hoechst, EdU, PH3, and gH2AX. (bottom) In the “Cell Viability” panel, we capture digital
phase contrast images, measure Caspase 3/7, DRAQ7, and CellROX. (b) Example Cell Painting image
across five channels, plus a merged representation across channels. The image is cropped from a larger
image and shows ES2 cells. Scale bars are 20 um. Below are the steps applied in an image-based
profiling pipeline, after features have been extracted from each cell’s image. (c¢) Modeling approach where
we fit 70 different regression models using CellProfiler features derived from Cell Painting images to
predict Cell Health readouts. Model weights refer to the coefficients derived from each regression model.

We developed an approach to use the inexpensive reagents from the multiplexed,
high-throughput Cell Painting assay to predict Cell Health readouts (Figure 1C). We generated
a single, “consensus” signature for each guide perturbation across cell lines, producing 357
signatures (3 cell lines x 119 CRISPR guides) with 952 morphology measurements. We
independently optimized 70 different elastic net linear regression models using consensus
morphology profiles of Cell Painting data to predict each of the 70 Cell Health readouts
independently (Figure 1C). The actual identity of the CRISPR guides were not relevant during

training.

Predictive performance in a held-out test set (a balanced 15% of profiles not used in training)
indicates high expected generalizability for many models (Figure 2, Supplementary Figure 4).
Performance was better for nearly every model when trained with real data compared to

shuffled data, thus beating a random chance baseline (Supplementary Figure 5).

Many Cell Health readouts were predicted very well, including percentage of dead cells, number
of S-phase cells, DNA damage in G1-phase cells, and percentage of apopftotic cells
(Supplementary Figure 6A). However, other readouts such as DNA damage in polynuclear
cells, and percentage of cells in late mitosis could not be predicted better than random
(Supplementary Figure 6B). Models derived from different combinations of Cell Health
reagents had variable performance, with DRAQ7, shape, and EdU models performing the best
(Supplementary Figure 7). Performance differences might result from random technical
variation, small sample sizes for training models, different number of cells in certain Cell Health
subpopulations (e.g. mitosis or polynuclear cells), fewer cells collected in the viability panel (see
methods), or the inability of Cell Painting reagents to capture certain phenotypes. We observed
overall better predictivity in ES2 cells, which had the highest CRISPR infection efficiency
(Supplementary Figure 8), suggesting that stronger perturbations provide better information for

training and that training on additional data should provide further benefit.
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Figure 2: Test set model performance of predicting 70 Cell Health readouts with independent regression
models. Performance for each phenotype is shown, sorted by decreasing R? performance. The bars are
colored based on the primary measurement metadata (see Supplementary Table S3), and they
represent performance aggregated across the three cell lines. The points represent cell line specific
performance. Points falling below -1 are truncated to -1 on the x axis. See Supplementary Figure 3 for a
full depiction.

Furthermore, using a linear model for predictions enables interpretability. For example,

inspecting the model for the Cell Health readout Live Cell Area reveals that it relies on cell and

cytoplasm shape features from Cell Painting (Supplementary Figure 9). This is expected given

that the Live Cell Area readout is derived from cell boundary measurements from the digital

phase contrast channel.

In our approach, each regression model uses a combination of

interpretable morphology features to make Cell Health phenotype predictions, unlike so-called
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“black box” deep learning feature extractors. Therefore, the specific combination of Cell Painting
features provides a potentially interpretable morphology signature representing the underlying

cell health state.

Overall, many different feature classes were important for accurate predictions (Figure 3,
Supplementary Figure 10). Some features tended to strongly contribute across multiple Cell
Health readouts. For example, particularly informative features include the radial distribution of
the actin, golgi, and plasma membrane (AGP) channel in cells and DNA granularity in nuclei.
This demonstrates that the Cell Painting assay captures complex cell health phenotypes using a

rich variety of morphology feature types.
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Each square represents the mean absolute value of model coefficients weighted by test set R? across
every model. The features are broken down by compartment (Cells, Cytoplasm, and Nuclei), channel
(AGP, Nucleus, ER, Mito, Nucleolus/Cyto RNA), and feature group (AreaShape, Neighbors, Channel
Colocalization, Texture, Radial Distribution, Intensity, and Granularity). The number of features in each
group, across all channels, is indicated. For a complete description of all features, see the handbook:
http://cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.0.0/index.html. Dark gray squares indicate “not
applicable”, meaning either that there are no features in the class or the features did not survive an initial
preprocessing step. Note that for improved visualization we multiplied the actual model coefficient value
by 100.



http://cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.0.0/index.html
https://doi.org/10.1101/2020.07.08.193938
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193938; this version posted December 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

We performed a series of analyses to determine certain parameters and options that are likely
to improve models in the future. First, we performed a “cell line holdout” analysis, in which we
trained models on two of three cell lines and predicted cell health readouts on the held out cell
line. We observed that certain models including those based on viability, S phase, early mitotic
and death phenotypes could be moderately predicted in cell lines agnostic to training
(Supplementary Figure 11). Not surprisingly, shape-based phenotypes could not be predicted
in holdout cell lines, which emphasizes the limitations of transferring certain cell-line intrinsic
measurements across cell lines. We also performed a systematic feature removal analysis, in
which we retrained cell health models after dropping features that are measured from specific
groups, compartments, and channels. We observed that many models were robust to dropping
entire feature classes during training (Supplementary Figure 12). This result demonstrates that
many Cell Painting features are highly correlated, which might permit prediction “rescue” even if
the directly implicated morphology features are not measured. Because of this, we urge caution
when generating hypotheses regarding causal relationships between phenotypes and individual
Cell Painting features. Lastly, we performed a sample size titration analysis in which we
randomly removed a decreasing amount of samples from training. For the high and mid
performing models we observed a consistent performance drop, suggesting that increasing

sample size would result in better overall performance (Supplementary Figure 13).

Predictive models of cell health would be most useful if they could be trained once and
successfully applied to data sets collected separately from the experiment used for training.
Otherwise one could not annotate existing datasets that lack parallel Cell Health results, and
Cell Health assays would have to be run alongside each new dataset. We therefore applied our
trained models to a large, publicly-available Cell Painting dataset collected as part of the Drug
Repurposing Hub project (Corsello et al., 2017). The data derive from A549 lung cancer cells

treated with 1,571 compound perturbations measured in six doses.

We first chose a high-performing model to validate. The number of live cells model captures the
number of cells that are unstained by DRAQ7. We compared model predictions to orthogonal
viability readouts from a third dataset: Publicly available PRISM assay readouts, which count
barcoded cells after an incubation period (Yu et al., 2016). Despite measuring perturbations with

slightly different doses and being fundamentally different ways to count live cells (Figure 4A),
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the predictions correlated with the assay readout (Spearman's Rho = 0.35, p < 1 x 10%; Figure
4B).

We also chose to validate three additional models: ROS, G171 cell count, and Number of gH2AX
spots in G1 cells. We observed that the two proteasome inhibitors (bortezomib and MG-132) in
the Drug Repurposing Hub set yielded high ROS predictions (OR = 76.7; p < 1 x 107"°) (Figure
4C) Proteasome inhibitors are known to induce ROS (Han and Park, 2010; Ling et al., 2003). As
well, PLK inhibitors yielded low G171 cell counts (OR = 0.035; p = 3.9 x 10°®) (Figure 4C). The
PLK inhibitor HM-214 showed an appropriate dose response (Figure 4D). PLK inhibitors block
mitotic progression, thus reducing entry into the G1 cell cycle phase (Lee et al., 2014). Lastly,
we observed that aurora kinase and tubulin inhibitors yielded high Number of gH2AX spots in
G1 cells predictions (OR = 11.3; p <1 x 10-15) (Figure 4E). In particular, we observed a strong
dose response for the aurora kinase inhibitor barasertib (AZD1152) (Figure 4F). Aurora kinase
and tubulin inhibitors cause prolonged mitotic arrest, which can lead to mitotic slippage, G1
arrest, DNA damage, and senescence (Cheng and Crasta, 2017; Orth et al., 2011; Tsuda et al.,
2017).
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Figure 4: Validating Cell Health models to Cell Painting data from The Drug Repurposing Hub. The
models were not trained using the Drug Repurposing Hub data. (a) The results of the dose alignment
between the PRISM assay and the Drug Repurposing Hub data. This view indicates that there was not a
one-to-one matching between perturbation doses. (b) Comparing viability estimates from the PRISM
assay to the predicted number of live cells in the Drug Repurposing Hub. The PRISM assay estimates
viability by measuring barcoded A549 cells after an incubation period. (¢) Drug Repurposing Hub profiles
stratified by G171 cell count and ROS predictions. Bortezomib and MG-132 are proteasome inhibitors and
are used as positive controls in the Drug Repurposing Hub set; DMSO is a negative control. We also
highlight all PLK inhibitors in the dataset. (d) HMIN-214 is an example of a PLK inhibitor that shows strong
dose response for G71 cell count predictions. (e) Tubulin and aurora kinase inhibitors are predicted to have
high Number of gH2AX spots in G1 cells compared to other compounds and controls. (f) Barasertib
(AZD1152) is an aurora kinase inhibitor that is predicted to have a strong dose response for Number of
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gH2AX spots in G1 cells predictions.

We applied uniform manifold approximation (UMAP) to observe the underlying structure of the
samples as captured by morphology data (Mclnnes et al., 2018). We observed that the UMAP
space captures gradients in predicted G171 cell count (Supplementary Figure S14A) and in
predicted ROS (Supplementary Figure S14B). We also observed similar gradients in the
ground truth cell health readouts in the CRISPR Cell Painting profiles used for training cell
health models (Supplementary Figure S15). Gradients in our data suggest that cell health

phenotypes manifest in a continuum rather than in discrete states.

Lastly, we observed moderate technical artifacts in the Drug Repurposing Hub profiles,
indicated by high DMSO profile dispersion in the Cell Painting UMAP space (Supplementary
Figure 14C); this represents an opportunity to improve model predictions with new batch effect
correction tools. Additionally, it is important to note that the expected performance of each Cell
Health model can only be as good as the performance observed in the original test set (see

Figure 2), and that all predictions require further experimental validation.

Conclusions

We have demonstrated feasibility that information in Cell Painting images can predict many
different Cell Health indicators even when trained on a relatively small dataset. The results
motivate collecting larger datasets for training, with more perturbations and multiple cell lines.
These new datasets would enable the development of more expressive models, based on deep
learning, that can be applied to single cells. Including orthogonal imaging markers of CRISPR
infection would also enable us to isolate cells with expected morphologies. More data and better
models would improve the performance and generalizability of Cell Health models and enable
annotation of new and existing large-scale Cell Painting datasets with important mechanisms of

cell health and toxicity.

Methods

CRISPR constructs used for knockout

We performed a clustered regularly interspersed short palindromic repeats (CRISPR) and
CRISPR-associated protein 9 (Cas9) knockout experiment to perturb cells (CRISPR-Cas9). We

designed guides to target 59 different genes with an average of two guides per gene
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(Supplementary Table 1). All sgRNAs were selected from the Avana library (Doench et al.,
2016; Meyers et al., 2017) or by using CRISPick (https://broad.io/crispick) (Hanna and Doench,
2020). Nevertheless, it is important to note that the identity of the CRISPR gene target is not

used in training the machine learning models.

Cell lines

We performed CRISPR knockout in three different cell lines (A549, ES2, and HCC44). All cell
lines used were stably expressing Cas9 and were part of the Achilles project (Meyers et al
2017). Prior to data collection, we confirmed cell line identity using single nucleotide
polymorphism (SNP) profiling. We confirmed that all cell lines were mycoplasma negative by

using MycoAlert Mycoplasma detection kits (Lonza, Walkersville, MD).

Lentiviral infection and plating
Virus was prepared in 96-well plate according to the published protocol

(https://portals.broadinstitute.org/gpp/public/resources/protocols). Before initiating the screen we

optimized the number of cells per well and polybrene concentration for each Cas9-expressing
cell line. Ultimately, we plated A549, ES2, and HCC44 cells with starting densities of 350, 375,
and 150 cells per well, respectively in 384-well black-wall, clear-bottom plates (Corning Costar).
We also optimized sgRNA lentivirus volume to achieve 100% infection while maintaining low
toxicity. For the screen, we spin-infected cells with 4 ug/ML polybrene concentration at the
optimized density and virus volume (Aguirre et al., 2016). Three parallel plates were seeded per
cell line. On one plate, cells were treated with or without 2 ug/ml puromycin 24 hours
post-infection, and cell viability was determined using CellTiterGlo (Promega) after 96 hours of
selection to determine infection efficiency. The second and third plates were used for the Cell

Health assays (cell cycle and viability).

Cell Painting: Cell staining and image acquisition

We followed the traditional Cell Painting protocol to acquire the readouts (Bray et al., 2016). We
treated the cells with CRISPR guide perturbations and incubated for five days. Following the
incubation period, we fixed cells with 10 pl of 16% (wt/vol) methanol-free paraformaldehyde
(PFA) for a final concentration of 3.2% (vol/vol). We imaged cells with a PerkinElmer Opera
Phenix confocal HCI microscope at 20x magnification. We applied the standard panel of Cell

Painting dyes to mark various cellular compartments: Hoechst 33342 to mark DNA,
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Concanavalin A/Alexa 488 to mark endoplasmic reticulum (ER), SYTO 14 to mark the nucleoli
and cytoplasmic RNA, Phalloidin/Alexa 568 and wheat-germ agglutinin/Alexa 555 to mark actin
cytoskeleton, golgi, and plasma membrane (AGP), and MitoTracker Deep Red/Alexa 647 to
mark mitochondria (Bray et al., 2016). We collected nine images per well in five different
channels for these different unbiased stains. In total, we collected 138,226 pictures after quality
control filtering, which includes five channels per site, nine sites per well, across nine 384-well
plates. In total, this represents about 2 TB of images. We deposited raw and illumination
corrected images to the Image Data Resource (https://idr.openmicroscopy.org) under accession
number idr0080 (Williams et al., 2017).

Cell Painting: Image processing

The next step in a Cell Painting protocol is to extract morphology features from the images that
can be used as an unbiased systems biology measurement to describe how each perturbation
impacts various cellular compartments in the assay. We built a CellProfiler image analysis and
illumination correction pipeline (version 2.2.0) pipeline to extract these image-based features
(McQuin et al., 2018). We include the CellProfiler pipelines in our github repository. Using the
CellProfiler pipeline, we first performed several adjustments to account for potential confounding
factors such as background intensity and illumination correction. Next, we used our pipeline to
segment cells, distinguish between nuclei and cytoplasm, and then measure specific features
related to the various channels captured. We measured the fluorescence intensity, texture,
granularity, density, location, and various other measurements for each single cell (see

http://cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.0.0/index.html for more details).

Following the image-analysis pipeline, we obtain 8,964,210 cells and 1,785 feature
measurements across 9 different plates. We provide the raw output single cell profiles as

extracted from our CellProfiler pipeline on figshare (Way et al., 2019).

Cell Painting: Image-based profiling

After the image analysis pipeline, the next step is to process the single cell image-based
features that are output of the CellProfiler pipeline. We used a standard approach (Caicedo et
al., 2017) to process the single cell profiles. First, we aggregated all single cells grouped by
perturbation (effectively, by well) by computing the median value per morphology feature. This
process takes all single cells and computes a single perturbation profile that is used to compare

all perturbations against each other downstream. Next, using the median and median absolute
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deviation of feature values from empty wells as the center and scale parameters respectively,
we normalized all perturbation profiles by subtracting the center and dividing by the scale, and
did so for each plate independently. This normalization procedure transforms all features to
exist on the same scale and enables the perturbation profiles to be compared across plates and

batches.

We then applied a feature selection procedure to reduce noisy and retain the most informative
features. We removed features with missing values in any profile, features with low variance,
features with extreme outlier values, and blocklisted features. Extreme outlier features are
defined by having measurements greater than 15 standard deviations following normalization.
The blocklisted features are generally unreliable features that are known to be noisy and have
caused numerical issues in previous experiments (Way, 2020). We used pycytominer

(https://github.com/cytomining/pycytominer) to perform the profiling pipeline, which can be

reproduced at https://github.com/broadinstitute/cell-health.

Following these procedures we derived profiles for 357 perturbations representing 119 guides
measured across the three different cell lines. We also computed the perturbation consensus
signatures of the Cell Painting data (see Methods: Forming consensus signatures). Our final
Cell Painting dataset had 357 consensus profiles measured by 952 morphology features (357 x
952). These data are available on github

https://qgithub.com/broadinstitute/cell-health/tree/master/1.generate-profiles/data/profiles.

Cell Health assay: Cell staining and image acquisition

We treated all cells with a panel of specific reagents each measuring a different aspect of cell
health (see Supplementary Table S2). The seven reagents include unbiased dyes, click
chemistry, and specific antibody treatments. The reagents measure various aspects of cell
health including proliferation, mitosis, DNA damage, reactive oxygen species (ROS), and
apoptosis timing. We collected a minimum of four replicates per treatment. Because many
reagents fluoresce in different emission spectra, we applied the reagents in parallel. We applied
a series of semi-manual gating strategies to isolate specific cell health phenotypes in specific
cell subsets (Supplementary Table S3). Together, we refer to the collection of measurements

as the “Cell Health” assays.
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More specifically, we collect the Cell Health assay data in a series of two distinct panels: Cell
cycle and viability. In the first panel we measure Hoechst, EdU, PH3, and gH2AX, and use
these measurements to quantify cell cycle and DNA damage in specific cell cycle subsets. In
the second panel, we measure viability phenotypes using Caspase 3/7, DRAQ7, CellRox, and

digital phase contrast (DPC) nucleus morphology measurements.

We acquired all cell images using an Opera Phenix HCI Instrument (PerkinElmer) with a 20X
water objective (a numerical aperture (NA) of 1.0), in confocal mode. We acquired images in
four channels using default excitation / emission combinations: for the blue channel (Hoechst)
405/435-480; for the green channel (Alexa 488 and CellEvent) 488/500-550; for the orange
channel (Alexa 568 and CellRox Orange) 561/570-630 and for the far-red channel (Alexa 647
and DRAQ7) 640/650-760. We applied the Cell Health reagents for cell viability and for cell

cycle in two separate plates.

The first set of plates (n = 3 replicate plates) measures cell cycle. We added
5-ethynyl-2'-deoxyuridine (EdU) in live cells for S phase cells to integrate. We then fixed the
cells with 4% formaldehyde using standard approaches and detected EdU using Click-iT™ EdU
Alexa Fluor™ 647 HCS Assay (Thermo Fisher C10357) according to the vendor protocol. We
then performed standard immunofluorescence (IF) staining with two antibodies: one targeting
phosphohistone H3 (PH3) to measure cells undergoing mitosis and one to identify DNA damage
foci in nuclei via yH2Ax. We followed these PH3 and yH2Ax antibody treatments by secondary
antibodies conjugated with Alexa 488 and Alexa 568, respectively. We added Hoecsht 33342

dye to stain nuclear DNA. For the cell cycle plate, we acquired nine fields of view per well.

The second set of plates (n = 3 replicate plates) measures cell viability. We added CellEvent™
Caspase-3/7 Green Detection Reagent (ThermoFisher), DRAQ7, and CellROX™ Orange
Reagent (ThermoFisher) dyes to measure apoptotic cells, dead cells, and reactive oxygen
species (ROS), respectively. We acquired one field of view per well using green, orange and
far-red fluorescence channels as well as brightfield and Digital Phase Contrast (DPC) channels.

The cells were incubated at 37C.
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Cell Health assay: Image analysis

We developed and ran two distinct image analysis pipelines in Harmony software (version 4.1;
PerkinElmer) for each of the Cell Health plates. Individually for each cell line assayed, and for
both cell cycle and cell viability plates, we established a series of manual gating strategies to

identify distinct cell line subpopulations (see Figure 1A).

For the cell cycle plate, we performed nucleus segmentation using the Hoechst channel and
discarded all nuclei that were at the field border. We identified cells in specific cell cycle stages
using Hoechst, Alexa 488 (pH3) and Alexa 647 (EdU) intensities. We identified yH2AX spots
within nuclei based on the Alexa 568 channel. These strategies are standard in the field (Aguirre
et al., 2016). More specifically, we identified subpopulations based on the respective channel
intensities and morphological properties for each nucleus as specified:

e We stratified populations “polyploid”, “polynuclear (large not round nuclei)”, and “cells
selected for cell cycle” based on total intensity of the Hoechst channel (DNA content)
and nucleus “roundness” measurements as output from the PerkinElmer Harmony
software.

e We identified four subpopulations within the “cells selected for cell cycle” population as
follows:

o “G1 Cells”: selected based on low total Hoechst intensity and low green (pH3)
and far red (EdU) channels. We excluded outlier nuclei with unusually high
intensity of Hoechst max.

o “G2 Cells”: Selected based on high total Hoechst intensity and low green (pH3)
and far red (EdU) channels. We excluded outlier nuclei with unusually high
intensity of Hoechst max.

o “G2/M Cells”: Selected based on the same criteria as for G2, except we included
nuclei with high green (pH3) mean.

o “M Cells”: Selected based on high green (pH3) mean.

o “S Cells”: Selected based on high mean far red (EdU) channel intensity.

e We counted orange spots (YH2AX) representing DNA damage loci in each of the cell
cycle subpopulations. We determined high yH2AX activity if there were more than three

spots per nucleus.
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For the cell viability plate, we performed cell segmentation based on the cumulative Digital
Phase Contrast (DPC) channels. Again, we identified specific subpopulations based on the

following channel intensities:

e We separated “Dead Cells” and “Live Cells” based on max intensity far red channel
(DRAQY).
o We identified a “Dead Only Cells” subpopulation within the “Dead Cells”
population by isolating cells without green (Caspase 3/7) signal.
e We identified “Caspase Positive Cells” based on green (Caspase 3/7) channel max
intensity.
o We distinguished two subpopulations in the “Caspase Positive Cells” named
“Early Apoptotic Cells” and “Late Apoptotic Cells” based on low and high far red
(DRAQ7) max signal intensity, respectively.
e We used the mean intensity of the CellROX™ Orange signal to measure ROS.
o We excluded edge wells in the ROS analysis because of consistent poor signal

quality.

Additionally, we set these gates for each cell subpopulation using a set of random wells from
each cell line and experiment independently. We observed that the intensity measurements
used to form the gates were consistent across wells and plates, and generally formed distinct
cell subpopulation clusters. After using the random wells to set the gates, we used the Harmony

microscope software to apply the gates to the remaining wells and plates.

We also used CRISPR infection efficiency, which is measured in a separate assay for both cell
cycle and viability imaging assays, as negative control features. In total, considering both plates
and all cell subpopulations, we measured 70 different variables in the Cell Health Assay. To
standardize plate-level differences, we normalized Cell Health readouts per plate by subtracting

median values and dividing by the standard deviation.

Forming consensus signatures
After acquiring the images and processing the data, we prepared the data further before input
into our machine learning framework. We generated consensus signatures for each perturbation

using a moderated z-score (MODZ) procedure (Subramanian et al., 2017). Briefly, we calculated
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pairwise Spearman correlations between all replicates of a single perturbation and then
combined profiles by weighting their signature contribution by mean pairwise correlation to all
other replicates. We applied this transformation to both Cell Painting profiles and Cell Health
assay measurements. We collected more replicates of the Cell Painting data than the Cell
Health data. In total, we collected assay readouts from 357 common perturbations (119
CRISPR guides across three cell lines). In the Cell Painting data, we filtered and collapsed
3,456 morphology profiles to the common set of 357 consensus profiles. In the Cell Health
assays, we filtered and collapsed 2,302 well profile readouts to the common set of 357
consensus readouts. We generated consensus signatures because there is no way to match
replicate-level information across the assays. We applied UMAP (Mclnnes et al., 2018) to the

consensus profiles and visualized patterns of ground truth cell health measurements.

Machine learning framework
We randomly split 15% of the consensus signatures into a separate test set. We balanced this
stratification by cell line. We then used the remaining 85% to train all 70 cell health models. In

total, we used 303 samples as the training set and 54 as the test set.

We elected to train elastic net regression models using sklearn (version 0.20.3) (Pedregosa et
al.,, 2011; Zou and Hastie, 2005). We chose this model because it is quick to train, is easily
interpretable, and will induce sparsity in selecting model features. We also trained classification
models and binarized training and testing data by using >1.5 standard deviations away from the
mean as positive examples. However, because the classification approach was unstable and

sensitive to low sample sizes, we elected to move forward using only the regression models

(see https://github.com/broadinstitute/cell-health/issues/78). To identify optimal alpha and elastic
net mixing parameters, we performed a grid search and 5-fold cross validation using the training
set only. For each model independently, we observed cross validation performance across 9
different alpha parameters ([0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]) and 11 different elastic
net mixing parameters ([0.1, 0.12, 0.14, 0.16, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9]). Alpha controls the
regularization penalty term for all features, and the elastic net mixing parameter controls the
trade-off between L1 and L2 regression where 0 = L1 and 1 = L2. Therefore, the closer the
elastic net mixing parameter is to 0, the sparser the model. We optimized and trained 70
different elastic net regression models for each of the 70 Cell Health assay readouts

independently.
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We repeated this procedure and independently optimized 70 additional models using randomly
shuffled data. For the shuffling procedure, we randomly shuffled the Cell Painting features
independently per column before training. We use the shuffled model performance as a suitable

baseline to compare real model performance.

Machine learning evaluation

We evaluated each of the 70 Cell Health regression models independently using R squared
statistics from sklearn version 0.20.3 (Pedregosa et al., 2011). We calculated R squared for the
full training and testing partitions, in shuffled training and testing partitions, and for each cell line
independently for all 70 models. The measurement can be interpreted as how well the models
could predict the real Cell Health readout with values approaching one as perfect fits. It is best
to compare test set performance in real vs. shuffled data. The test set performance in real data
simulates how models are expected to perform in data not used for model training. The shuffled

performance indicates if there is any expected performance inflation.

Machine learning robustness: Investigating the impact of sample size

We performed an analysis in which we randomly dropped an increasing amount of samples
from the training set before model training. After dropping the predefined number of samples,
we retrained all 70 cell health models and assessed performance on the original holdout test
set. We performed this procedure ten times with ten unique random seeds to mirror a more
realistic scenario of new data collection and to reduce the impact of outlier samples on model

training.

Machine learning robustness: Systematically removing feature classes

We performed an analysis in which we systematically dropped features measured in specific
compartments (Nuclei, Cells, and Cytoplasm), specific channels (RNA, Mito, ER, DNA, AGP),
and specific feature groups (Texture, Radial Distribution, Neighbors, Intensity, Granularity,
Correlation, Area Shape) and retrained all models. We omitted one feature class and then
independently optimized all 70 cell health models as described in the Machine learning

framework results section above. We repeated this procedure once per feature class.
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Drug Repurposing Hub Cell Painting data: Imaging-based profiling
A subset of the Drug Repurposing Hub compounds (n = 1,571) (Corsello et al., 2017) were
profiled using the Cell Painting assay across about six doses per compound. We processed this

dataset using a standard image-based profiling pipeline to extract consensus profiles per

treatment. See https://github.com/broadinstitute/lincs-cell-painting for complete details and
instructions on how to reproduce. Briefly, we applied a CellProfiler image analysis pipeline to
segment cells, adjust for background intensity, and measure morphology features for three
compartments: cells, cytoplasm, and nuclei. The output of this procedure was 136 SQLite files
(one for each plate) representing unnormalized single-cell profiles. Next, we developed and
applied an image-based profiling bioinformatics pipeline to generate treatment consensus
profiles from the single-cell measurements (Caicedo et al., 2017). The same image analysis

pipeline and bioinformatics pipeline were used to process all the plates in the experiment.

In the pipeline, we first median-aggregated the single cells by feature to form well profiles, and
then, using the median and median absolute deviation of feature values from dimethyl sulfoxide
(DMSO) as the center and scale parameters respectively, we normalized all perturbation profiles

by subtracting the center and dividing by the scale, and did so for each plate independently.

The plates in this dataset have 24 DMSO-treated wells and therefore represented a good
alignment control to adjust for plate level differences. Each plate also has two positive controls
(BRD-K50691590 (Bortezomib) and BRD-K60230970 (MG-132)) at 20 millimoles per liter with
12 replicates each for all plates. We visualized positive and negative control profiles in our
UMAP space to determine the extent of technical artifacts present in our data. Following the
z-score normalization, we combined all treatment replicates (~6 per compound and dose pair)
using MODZ consensus signatures. We generated consensus profiles for control replicates by
well, across plate maps. In total, this procedure resulted in 10,752 different treatment profiles

and 1,788 normalized CellProfiler morphology features.

Drug Repurposing Hub Cell Painting data: Predicting Cell Health readouts

We applied all Cell Health models to the 10,752 Drug Repurposing Hub consensus Cell Painting
profiles. We simply applied the Cell Health trained models using the sklearn model.predict()
method. Every feature measured in the CRISPR perturbation Cell Painting profiles were also

measured in the Drug Repurposing Hub output. The result of the model application was 70 Cell
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Health readouts for all 10,752 treatments. We used these predictions for model validation with

external data, and for visualization in the web app scatter plots.

Assessing generalizability of cell health models applied to Drug Repurposing Hub data

We used our cell health webapp (https://broad.io/cell-health-app) to identify compounds with
high predictions for three models with high or intermediate performance: ROS, Number of G1
cells, and Number of gH2AX spots in G1 cells. For each model, we identified classes of
compounds with consistently high scores, then tested for statistical enrichment: for proteasome
inhibitors in the ROS model, PLK inhibitors in the Number of G1 cells model, and aurora kinase
and tubulin inhibitors in the Number of gH2AX spots in G1 cells model. We used one-sided
Fisher's exact tests to quantify differences in expected proportions between high and low model
predictions. For each case, we determined high and low predictions based on the 50% quantile

threshold for each model independently.

Drug Repurposing Hub Cell Painting data: Visualization

We also applied UMAP to the 10,752 Drug Repurposing Hub Cell Painting profiles and
extracted two lower dimensional representations. UMAP reduces the Cell Painting profiles to
two features that capture the global structure of the input data. Prior to UMAP transformation,
we applied a feature selection procedure to the Drug Repurposing Hub profiles. We removed
features with low variance, features with missing values in any consensus profile, blocklisted
features (Way, 2020), and features with extreme outlier values defined by greater than 15
standard deviations following normalization. This procedure reduced the feature dimension from
1,788 to 572. By reducing the number of features, we can be more confident that the major
sources of variation are not biased by CellProfiler feature redundancies or by technical artifacts

of sample processing.

Drug Repurposing Hub Cell Painting data: Dose-response analysis

To model dose, we fit Hill equations (4 parameter log-logistic model) to all 1,571 Drug
Repurposing compounds consensus signatures transformed into each of the 70 different Cell
Health model predictions. Before input into the model, we zero-one transformed Cell Health
predictions across doses for each compound independently. For most compounds, this
normalization procedure happens for six data points (representing six doses per compound

consensus signature) at a time. The zero-one procedure assigns a value of zero to the lowest
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value, one to the highest value, and scales each intermediate value accordingly. This procedure
results in 109,970 different model fits. We used the drc R package (version 3.0-1) to fit all
models (Ritz et al., 2015). We present all precomputed dose fit models to be explored in the

broad.io/cell-health-app.

Comparing viability predictions to an orthogonal readout

We downloaded the PRISM assay results (version 19Q4) from the Cancer Dependency Map

website at https://depmap.org/portal/download/ (Corsello et al., 2017). The PRISM assay
measures viability of multiple cell lines in a pooled format and deconvolutes results based on
barcoded readouts (Yu et al., 2016). We focused on the A549 cell line and compounds that
were measured in both the PRISM assay and Drug Repurposing collection. The PRISM assay
profiled 1,382 of the 1,571 Drug Repurposing Compounds. The PRISM assay also used slightly
different doses than the Drug Repurposing Hub collection procedure. Therefore, to align doses,
we converted doses into dose ranks, and report Spearman correlations between the two

datasets (see Figure 4A).

Code and data availability
All data and code are publicly available. Analysis software to reproduce the full paper is
available at https://github.com/broadinstitute/cell-health/tree/v2.0 (Way et al., 2020). Raw and

illumination corrected Cell Painting images are available in the Image Data Resource
(accession number idr0080). Single cell morphology profiles derived from these images are
available at NIH Figshare at https://doi.org/10.35092/yhjc.9995672.v5. Processed Cell Painting

profiles, and raw and processed Cell Health readouts are also available at

https://github.com/broadinstitute/cell-health/tree/v2.0. Processing code and data for the Cell

Painting Drug Repurposing Hub data is available at

https://github.com/broadinstitute/lincs-cell-painting/tree/v0.1. Cell Health predictions for the Drug

Repurposing Hub compounds are available to explore at https://broad.io/cell-health-app.
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Supplementary Figure S1. lllustration of the gating strategy in the Cell Health assays.
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We extract 70 different readouts from the Cell Health imaging assays. The assay consists of two
customized reagent panels, which use measurements from seven different targeted reagents and one
channel based on digital phase contrast (DPC) imaging; shown are five toy examples to demonstrate that
individual cells are isolated into subpopulations by various gating strategies to define the Cell Health

readouts.
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Supplementary Figure S2. Real data of manual gating in the Cell Health assays.

For each cell line, we apply a series of manual gating strategies defined by various stain measurements in
single cells to define cell subpopulations. (a) In the cell cycle panel, we first select cells that are useful for
cell cycle analysis based on nucleus roundness and Hoechst intensity measurements. We also identify
polyploid and “large not round” (polynuclear) cells. (b) We then subdivide the cells used for cell cycle to
G1, G2, and S cells based on total Hoechst intensity (DNA content) and EdU incorporation signal
intensity. (¢) We use Hoechst and PH3 nucleus intensity to define mitotic cells. The points are colored by
EdU intensity in the nucleus in both (b) and (c). (d) Example gating in the viability panel. We use
DRAQ?7 and CellEvent (Caspase 3/7) to distinguish alive and dead cells, and categorize early or late
apoptosis. See Methods for more details about how the Cell Health measurements are made.
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Supplementary Figure S3. Replicate correlation of CRISPR perturbations.

Median pairwise Pearson correlation of CRISPR guide replicate profiles (y axis) compared against
Median pairwise Pearson correlation of CRISPR guides targeting the same gene or construct (x axis). We
removed biological replicates when calculating the same-gene correlations. The three different cell lines
(A549, ES2, and HCC44) are shown in different colors and in different facets of the figure. We generated
the profiles by median aggregating CellProfiler measurements for all single cells within each well of a
Cell Painting experiment (see Methods for more processing details). The text labels represent the
proportion of gene and guide profiles with “strong phenotypes”. In other words, these profiles had
replicate correlations greater than 95% of non-replicate pairwise Pearson correlations in the particular cell
line. The dotted red line represents this 95% cutoff in the null distribution and the blue dotted line is y =
x, which shows a strong consistency across CRISPR guide constructs.
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Supplementary Figure S4. Performance of predicting 70 cell health variables with independent
regression models.

(a) Testing and training performance for each phenotype is shown, sorted by decreasing R* performance
on the test set, aggregated across the three cell lines and colored based on the primary measurement
metadata (see Supplementary Table S3). (b) Test set R* performance for each cell line independently,
with the same ordering as in (a). Performance is highly variable across cell lines, with ES2 having the
highest performance for most models. Note that the left and right facets of b have different x-axis scales
and that the R? values can lie below zero for the test set because the model is learned using the training
set.
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Supplementary Figure S5. Summarizing model performance compared to permuted data.
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Performance of all 70 Cell Health assay models in train and test sets using real and permuted data. Data
were permuted by randomly shuffling observed morphology features for each column independently (see
Methods). Each point represents a Cell Health model, and the color represents the specific phenotype.
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Supplementary Figure S6. Examples of six models in predicting cell health assay readouts.

(a) Four high performing models chosen to span different Cell Health assay readouts. (b) Predicting two
example low performing models. R-squared (R?) was calculated using sklearn.metrics.r2_score and is
bound by negative infinity to 1. The blue lines represent a smoothed linear model fit and the shading
represents a 95% confidence interval.
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Supplementary Figure S7. Model performance according to specific cell health reagents.

(a) Training and testing model performance based on R?. The dotted red line is the line y = x and depicts a
small amount of model overfitting. (b) Test set R? grouped by cell health reagents used to form the cell
health indicators. The cell health variables are sorted by median test set R* performance.
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Supplementary Figure S8. Exploring the relationship between CRISPR infection efficiency and

regression model performance.

Cell line specific training and testing model R? performance in real and permuted data compared against
CRISPR infection efficiency readouts. Infection efficiency is measured by comparing cell count in wells
treated with and without puromycin (see Methods). We generated infection efficiency measurements for
all individual wells and then aggregated by MODZ to form consensus measurements (see Methods). The
points represent mean values and the extended bars represent 5% and 95% of the observed cell-line
specific distributions. ES2 has the highest test set model R* and the highest CRISPR efficiency.
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Supplementary Figure S9. Regression model coefficients for predicting live cell area from digital phase
contrast (DPC) measurements.

We use the Cell Painting measurements to predict live cell area readouts from DPC measurements as a
positive control. As expected, cytoplasm and cell shape contribute to live cell area predictions. (left) The
top 15 most influential Cell Painting features by absolute value model coefficient. It is important to note
that because the machine learning procedure automatically removes many features, not all explanatory
features are selected. (right) The maximum absolute value model coefficient (weight) for compartments,
channels, and feature groups. Coefficients for a model trained with real data is contrasted with a model
trained with permuted data. For a complete description of all features, see the handbook:

http://cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.0.0/index.html
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Supplementary Figure S10. Summarizing Cell Painting feature importance scores for all 70 cell health
regression models.

Each point represents the maximum absolute value of the model coefficients weighted by test set R?
across all Cell Health models. The features are broken down by compartment (Cells, Cytoplasm, and
Nuclei), channel (AGP, Nucleus, ER, Mito, Nucleolus/Cyto RNA), and feature group (AreaShape,
Neighbors, Channel Colocalization, Texture, Radial Distribution, Intensity, and Granularity). For a
complete description of all features, see the handbook:
http://cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.0.0/index.html. Dark gray squares indicate “not
applicable”, meaning either that there are no features in the class or the features did not survive an initial
preprocessing step.
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Supplementary Figure S11. Results from a cell line holdout analysis.

We trained and evaluated all 70 cell health models in three different scenarios using each combination of
two cell lines to train, and the remaining cell line to evaluate. For example, we trained all 70 models using
data from A549 and ES2 and evaluated performance in HCC44. We bin all cell health models into 14
different categories (see Supplementary Table S3 and
https://github.com/broadinstitute/cell-health/6.ml-robustness for details about the categories and scores).
We also provide the original test set (15% of the data, distributed evenly across all cell types)
performance in the last row, as well as results after training with randomly permuted data. This
cross-cell-type analysis yields worse performance overall. Nevertheless, despite the models never
encountering certain cell lines, and having fewer training data points, many models still have predictive
power across cell line contexts. Note that we truncated the y axis to remove extreme outliers far below -1.
The raw scores are available on https://github.com/broadinstitute/cell-health.
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Supplementary Figure S12. Systematically removing classes of features has little impact on most

models’ performance.

We retrained all 70 cell health models after dropping features associated with specific (a) feature groups,

(b) channels, and (¢) compartments. Each dot is one model (predictor), and the performance difference

between the original model and the retrained model after dropping features is shown on the x axis. Any

positive change indicates that the models got worse after dropping the feature group. (d) Individual model

differences in performance after dropping features. Each dot is one class of features removed (as in a-c).
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Supplementary Figure S13. Dropping samples from training reduces test set model performance in
high, mid, and low performing models.

We determined model performance stratification by taking the top third, mid third, and bottom third of
test set performance when using all data. We performed the sample titration analysis with 10 different
random seeds and visualized the median test set performance for each model.
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Supplementary Figure S14. Applying a Uniform Manifold Approximation (UMAP) to Drug Repurposing
Hub consensus profiles of 1,571 compounds across six doses.

The models were not trained using the Drug Repurposing Hub data. (a) The point color represents the
output of the Cell Health model trained to predict the number of cells in G1 phase (GI cell count). (b) The
same UMAP dimensions, but colored by the output of the Cell Health model trained to predict reactive
oxygen species (ROS). (¢) In the UMAP space, we highlight DMSO as a negative control, and
Bortezomib and MG-132 as two positive controls (proteasome inhibitors) in the Drug Repurposing Hub
set. We observe moderate batch effects in the negative control DMSO profiles, based on their spread in
this visualization. The color represents the predicted number of live cells. The positive controls were
acquired with a very high dose and are expected to result in a very low number of predicted live cells.
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Supplementary Figure S15. Applying a Uniform Manifold Approximation (UMAP) to the Cell Painting
consensus profile data of CRISPR perturbations.

UMAP coordinates visualized by (a) cell line, (b) ground truth G1 cell counts, and (c) ground truth ROS
counts. (d) Visualizing the distribution of ground truth ROS compared against G1 cell count. The two
outlier ES2 profiles are CRISPR knockdowns of GPX4, which is known to cause high ROS.
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