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Abstract

Background: Children born extremely preterm are at heightened risk for intellectual and social
impairment, including Autism Spectrum Disorder (ASD). There is increasing evidence for a key role of the
placenta in prenatal developmental programming, suggesting that the placenta may explain origins of

neurodevelopmental outcomes.

Methods: We examined associations between placental genomic and epigenomic profiles and assessed
their ability to predict intellectual and social impairment at age 10 years in 379 children from the
Extremely Low Gestational Age Newborn (ELGAN) cohort. Assessment of intellectual ability (IQ) and
social function was completed with the Differential Ability Scales-1l (DAS-11) and Social Responsiveness
Scale (SRS), respectively. Examining 1Q and SRS allows for studying ASD risk beyond the diagnostic
criteria, as 1Q and SRS are continuous measures strongly correlated with ASD. Genome-wide mRNA,
CpG methylation and miRNA were assayed with the lllumina Hiseq 2500, HTG EdgeSeq miRNA Whole
Transcriptome Assay, and Illumina EPIC/850K array, respectively. We conducted genome-wide
differential mMRNA/mIRNA and epigenome-wide placenta analyses. These molecular features were
integrated for a predictive analysis of IQ and SRS outcomes using kernel aggregation regression. We

lastly examined associations between ASD and the genomically-predicted component of IQ and SRS.

Results: Genes with important roles in placenta angiogenesis and neural function were associated with
intellectual and social impairment. Kernel aggregations of placental multi-omics strongly predicted
intellectual and social function, explaining approximately 8% and 12% of the variance in SRS and 1Q
scores via cross-validation, respectively. Predicted in-sample SRS and 1Q showed significant positive and

negative associations with ASD case-control status.

Limitations: The ELGAN is a cohort of children born pre-term, andgeneralization may be affected by
unmeasured confounders associated with low gestational age. We conducted external validation of
predictive models, though the sample size of the out-sample dataset (N = 49) and the scope of the

available placental datasets are limited. Further validation of the models is merited.
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Conclusions: Aggregating information from biomarkers within and between molecular data types
improves prediction of complex traits like social and intellectual ability in children born extremely preterm,

suggesting that traits influenced by the placenta-brain axis may be omnigenic.

Keywords: prenatal neurodevelopmental programming, social and cognitive impairment, placental gene

regulation, epigenome-wide association, differential expression analysis, multi-omic aggregation
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Background

Despite substantial research efforts to elucidate the etiology of neurodevelopmental impairment [1], little
is known about genomic and epigenomic factors influencing trajectories of neurodevelopment, such as
those associated with preterm delivery [2]. Children born extremely preterm are at increased risk not only
for intellectual impairment but also for Autism Spectrum Disorder (ASD) [3,4], often accompanied by
intellectual disability. In addition, preterm-born children have consistently been observed to manifest
social difficulties (e.g., fewer prosocial behaviors) in childhood and adolecense that do not meet

diagnostic criteria for ASD [5].

The placenta is posited as a critical determinant of both immediate and long-lasting neurodevelopmental
outcomes in children [1]. The placenta is involved in hormone and neurotransmitter production and
transfer of nutrients to the fetus, thus having direct influence on brain development. This connection
between the placenta and the brain is termed the placenta-brain axis [6]. Epidemiological and animal
studies have linked genomic and epigenomic alterations in the placenta with neurodevelopmental
disorders and normal neurobehavioral development [7-9]. For example, the Markers of Autism Risk in
Babies: Learning Early Signs (MARBLES) study has identified differentially methylated region containing
putative fetal brain enhancer between in placentas from ASD (N = 24) and typically developing (n = 23)
children [10]. However, identifying genomic signatures of risk for neurodevelopmental disorders such as
ASD in placenta is a challenging. Further study of molecular interactions representing the placenta-brain

axis may advance our understanding of fetal mechanisms involved in aberrant neurodevelopment [6].

Most prior studies have investigated single molecular levels of the placenta genome or epigenome,
precluding analysis of possible interactions that could be linked to neurodevelopmental outcomes.
Examining only a single molecular feature, or a single type of features even at a genomic scale can still
result in much unexplained variation in phenotype due to potentially important interactions between
multiple features [11,12]. This observation is in line with Boyle et al.’s omnigenic model [13,14], which
proposes that gene regulatory networks are so highly interconnected that a large portion of the heritability

of complex traits can be explained by effects on genes outside core pathways. Molecular integration to
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87 identify pathways for fetal neurodevelopment in children has been unexplored but may prove to be
88 insightful in associations with complex diseases [15].
89
90 We conducted a genome-wide analysis of DNA methylation, miRNA, and mRNA expression in the
91 placenta, examining individual associations with social and intellectual impairment at 10 years of age in
92 children from the Extremely Low Gestational Age Newborn (ELGAN) study [16]. We then combined the
93  genomic and epigenomic data to identify correlative networks of placental genomic and epigenomic
94 biomarkers predictive of social and intellectual impairment as continuous scales, thus allowing us to study
95 neurodevelopmental difficulties beyond the ASD diagnostic categories [17]. To assess the convergent
96 validity of our behavioral findings, we also examined the association of social and intellectual impairment
97 in relation to ASD diagnoses [18]. To our knowledge, this is the first study to use multiple placental
98 molecular signatures to predict intellectual and social impairment, which may inform a framework for
99 predicting risk of adverse neurocognitive and neurobehavioral outcomes in young children.
100
101 Methods
102 ELGAN recruitment and study participants
103 From 2002-2004, women who gave birth at under 28 weeks gestation at one of 14 medical centers
104 across five U.S. states enrolled in the ELGAN study [16]. The Institutional Review Board at each
105 participating institution approved study procedures. Included were 411 of 889 children with both placental
106 molecular analysis and a 10-year follow-up assessment.
107
108 Social and cognitive function and ASD at 10 years of age
109  Trained child psychologist examiner [5,19] evaluated general cognitive ability (IQ) with the School-Age
110  Differential Ability Scales-11 (DAS-I) Verbal and Nonverbal Reasoning subscales [20]. The Social
111 Responsiveness Scale (SRS) was used to assess severity of ASD-related social deficits in 5 subdomains:
112 social awareness, social cognition, social communication, social motivation, and autistic mannerisms [21].
113 We used the gender-normed T-score (SRS-T; intended to correct gender differences observed in

114 normative samples) as continuous measure of social deficit [22]. All participants were assessed for ASD
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115 [18]. Diagnostic assessment of ASD was conducted with three well-validated measures, administered
116  sequentially. First, the Social Communication Questionnaire (SCQ) was administered to screen for

117 potential ASD, using a score = 11 to increase sensitivity relative to the standard criterion score of = 15
118 [18,23]. For children who screened positive on the SCQ criterion, we conducted the Autism Diagnostic
119 Interview—Revised (ADI-R) with the primary caregiver [24]. All children who met ADI-R criteria for ASD, or
120  who had a prior clinical diagnosis of ASD and/or exhibited symptoms of ASD during cognitive testing

121  according to the site psychologist) were then assessed with the Autism Diagnostic Observation Schedule,
122 Second Version (ADOS-2), which served as the criterion measure of ASD in this study [25]. All ADOS-2
123 administrations were independently scored by a second rater with autism diagnostic and ADOS-2

124 expertise. In cases of scoring disagreements, consensus was reached via discussion between raters.
125 Item-by-item inter-rater agreement for the 14 ADOS-2 diagnostic algorithm scores was on average 0.93
126 (SD = 0.12). These developmental assessment procedures and all relevant test scores for ASD and

127 intellectual function are reported in a prior publication [19].

128

129 Placental DNA and RNA extraction

130  After delivery, placentas were biopsied under sterile conditions. We collected a piece of the chorion,

131 representing the fetal side of the placenta [26]. More specifically, placentas were placed in a sterilized
132 basin and biopsied by pulling back the amnion to expose the chorion at the midpoint of the longest

133 distance between the cord insertion and edge of the placental disk. A sample from the fetal side of the
134 placenta was removed by applying traction to the chorion and underlying trophoblast tissue. The

135 specimen was placed in a cryogenic vial and immersed in liquid nitrogen. To preserve DNA and RNA
136 integrity, specimens were stored at -80°C until processed. For processing, a 0.2g subsection of the

137 placental tissue was cut from the frozen biopsy and washed with sterile 1x phosphate-buffered saline to
138 remove any remaining blood. Samples were homogenized using a lysis buffer, and the homogenate was
139  separated into aliquots. This process was detailed in a prior publication [27]. Nucleic acids were extracted
140  from the homogenate using AllPrep DNA/RNA/mIRNA Universal kit (Qiagen, Germany). The quantity and
141 quality of DNA and RNA were analyzed using the NanoDrop 1000 spectrophotometer and its integrity

142 verified by the Agilent 2100 BioAnalyzer.
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143

144 Epigenome-wide placental DNA methylation

145 Extracted DNA sequences were bisulfate-converted using the EZ DNA methylation kit (Zymo Research,
146 Irvine, CA) and followed by quantification using the Infinium MethylationEPIC BeadChip (lllumina, San
147 Diego, CA), which measures CpG loci at a single nucleotide resolution, as previously described [26—29].
148  Quality control and normalization were performed resulting in 856,832 CpG probes from downstream
149 analysis, with methylation represented as the average methylation level at a single CpG site (B-value)
150 [27,30-32]. DNA methylation data was imported into R for pre-processing using the minfi package [30].
151 Quiality control was performed at the sample level, excluding samples that failed and technical duplicates;
152 411 samples were retained for subsequent analyses. Functional normalization was performed with a

153 preliminary step of normal-exponential out-of band (noob) correction method [33] for background

154  subtraction and dye normalization, followed by the typical functional normalization method with the top
155 two principal components of the control matrix [31,34]. Quality control was performed on individual probes
156 by computing a detection P value and excluded 806 (0.09%) probes with non-significant detection (P >
157 0.01) for 5% or more of the samples. A total of 856,832 CpG sites were included in the final analyses.
158 Lastly, the ComBat function was used from the sva package to adjust for batch effects from sample plate
159 [83]. The data were visualized using density distributions at all processing steps. Each probe measured
160 the average methylation level at a single CpG site. Methylation levels were calculated and expressed as
161 B values (B = intensity of the methylated allele (M))/(intensity of the unmethylated allele (U) + intensity of
162 the methylated allele (M) + 100). 8 values were logit transformed to M values for statistical analyses [35].
163

164 Genome-wide placental mRNA and miRNA expression

165 MRNA expression was determined using the Illumina QuantSeq 3' mRNA-Seq Library Prep Kit, a method
166  with high strand specificity. mMRNA-sequencing libraries were pooled and sequenced (single-end 50 bp)
167 on one lane of the lllumina Hiseq 2500. mMRNA were quantified through pseudo-alignment with Salmon
168  v.14.0 [36] mapped to the GENCODE Release 31 (GRCh37) reference transcriptome. miRNA expression
169 profiles were assessed using the HTG EdgeSeq miRNA Whole Transcriptome Assay (HTG Molecular

170 Diagnostics, Tucson, AZ). miRNA were aligned to probe sequences and quantified using the HTG
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171 EdgeSeq System [37]. Genes and miRNAs with less than 5 counts for each sample were filtered,

172 resulting in 11,224 genes and 2,047 miRNAs for downstream analysis. Distributional differences between
173 lanes were first upper-quartile normalized [38]. Unwanted technical and biological variation (e.g. tissue
174 heterogeneity) was then estimated using RUVSeq [39], where we empirically defined transcripts not

175 associated with outcomes of interest as negative control housekeeping probes [40]. One dimension of
176 unwanted variation was removed from the variance-stabilized transformation of the gene expression data
177 using the limma package [40—43]

178

179 Statistical Analysis

180 All code and functions used in the statistical analysis can be found at https://github.com/bhattacharya-a-

181 bt/multiomics ELGAN.

182

183 Correlative analyses between SRS, 1Q, and ASD

184  Associations among SRS scores, IQ and ASD were assessed using Pearson correlations with estimated
185 95% confidence intervals, and the difference in distributions of SRS and 1Q across ASD case-control was
186 assessed using Wilcoxon rank-sum tests. Associations between demographic variables (race, sex,

187 maternal age, number of gestational days, maternal smoking status, placental inflammation, birth weight
188 Z-score and mother’s insurance) with SRS and 1Q were assessed using multivariable regression,

189 assessing the significance of regression parameters using Wald tests of significance and adjusting for
190 multiple testing with the Benjamini-Hochberg procedure [44].

191

192 Genome-wide molecular associations with SRS and 1Q

193 Once associations between SRS and IQ and ASD were confirmed, we utilized continuous SRS and 1Q
194  measures as the main outcomes of interest. Associations between mRNA expression or miRNA

195 expression with SRS and 1Q were estimated through a negative binomial linear model using DESeq2 [43].
196 Epigenome-wide associations (EWAS) of CpG methylation sites with outcomes were assessed using
197 robust linear regression [45] with test statistic modification through an empirical Bayes procedure [42],

198 described previously [27]. Both the differential mMRNA and miRNA expression and EWAS models
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199 controlled for the following covariates: race, age, sex, number of gestational age days, birth weight Z-
200 score, and education level of the mother. Multiple testing was adjusted for using the Benjamini-Hochberg
201 procedure [44].

202

203 Placental multi-molecular prediction of SRS and 1Q

204  We next assessed how well an aggregate of one or more of the molecular datasets (CpG methylation,
205 MRNA expression, and miRNA expression) predicted continuous SRS and IQ scores. The analytical

206 scheme is summarized in Figure 1, using 379 samples with data for all three molecular datasets (DNA
207 methylation, miRNA, and mRNA). Briefly, we first adjusted the outcome variables and molecular datasets
208 for above noted demographic and clinical covariates using limma [46] to account for associations

209 between the outcomes and these coviarates in the eventual predictive models. Next, to model the

210 covariance between samples within a single molecular profile, we aggregated the molecular datasets with
211 thousands of biomarkers each into a molecular kernel matrix. A molecular kernel matrix represents the
212 inter-sample similarities in a given molecular profile (Supplementary Methods). A linear or non-linear
213 kernel aggregation may aid in prediction of complex traits by capturing non-additive effects [47-50], which
214 represents a sizable portion of phenotypic variation [51,52]. Using all individual, pairwise, and triplet-wise
215 combinations of molecular kernel matrices, we fitted predictive models of SRS and 1Q based on linear
216 mixed modeling [50] or kernel regression least squares (KRLS) [53] and assessed predictive performance
217 with McNemar’s adjusted R? via Monte Carlo cross validation [54]. We also optimized predictive models
218 for the number of included biomarkers per molecular profile. Extensive model details, as well as

219 alternative models considered, are detailed in Supplemental Methods.

220

221  Validation in external dataset

222 Lack of studies that consider placental mMRNA, CpG methylation and miRNA data with long-term child
223 neurodevelopment limit the ability to extablish external validation. We obtained one external placental
224  CpG methylation dataset from the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES)
225 cohort [10]. To assess out-of-sample performance of kernel models for methylation, we downloaded

226  MethylC-seq data for 47 placenta samples, 24 of which identified as ASD cases (NCBI Gene Expression
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227 Omnibus accession numbers GSE67615) [10]. B-values for DNA methylation were extracted from BED
228 files and transformed into M-values with an offset of 1 [35], and used the best methylation-only predictive
229 model to predict SRS and IQ in these 47 samples, as detailed in Supplemental Methods.

230

231 Correlative networks

232 In the final KRLS predictive models for both 1Q and SRS including all three molecular profiles, we

233 extracted the top 50 most predictive (largest point-wise effect sizes) CpGs, miRNAs, and mRNAs of SRS
234  and IQ. A sparse correlative network was inferred among these biomarkers that links biomarkers based
235 on the strength of correlative signals using graphical lasso in qgraph [55,56].

236

237  Results

238 SRS and IQ are well associated with ASD

239  Although the sample is enriched for ASD cases (N = 35 cases, 9.3% of the sample) relative to non-

240 preterm cohorts, there is still a relatively low case-control ratio for a genome-wide study of this sample
241  size (descriptive statistics for relevant covariates in Table 1). Therefore, we considered continuous

242 measures of social impairment (SRS) and cognitive development (IQ) at age 10 for both associative and
243 predictive analyses. Using continuous variables for SRS and 1Q allow us to to study complexities beyond
244 the ASD diagnostic categories [15,17]. Figure 2A-B shows the relationship between SRS, 1Q, and ASD.
245 The mean SRS is significantly higher in ASD cases compared to controls (mean difference of 1.74,

246 95% CI: (1.41,2.07)). Mean 1Q is significantly lower in ASD cases versus controls (mean difference of -
247 2.23,95% CI (—2.46,—1.96)). Furthermore, SRS and 1Q are negatively correlated (Pearson p =

248 —0.47,95% CI: (—0.55,—0.39)). We also measured associations between demographic characteristics
249 with SRS and IQ (Figure 2C) using multivariable regression. Male sex is associated with lower 1Q, while
250  public health insurance is associated with both lower 1Q and increased social impairment. Demographic
251 variables included in the multivariable regression explain approximately 12% and 15% of the total

252 variance explained in IQ and SRS, as measured by adjusted R?, with a summary of regression

253 parameters in Table 2. Based on the associations identified here and the value of inclusion of continuous

254 measures, subsequent genomic and epigenomic analyses control for demographic covariates.

10
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Table 1: Descriptive statistics for demographi and clinical covariates

Continuous Variable

Mean, SD, Median

Maternal age
Gestational days

Categorical Variable

29.6, 6.61, 29.5
182.5, 9.17, 184.0

Number (Proportion)

ASD
Case
Control

Race
White
Black
Other
Sex of baby
Female
Male
Mother’s smoking status
Non-smoker
Smoker
Mother’s insurance status
Private
Medicaid

35 (9.3%)
344 (90.7%)

233 (61.5%)
112 (29.5%)
34 (9.0%)

180 (47.5%)
199 (52.5%)

340 (89.7%)
39 (10.3%)

251 (66.2%)
128 (33.8%)

Table 2: Summary of regressions of SRS and 1Q against clinical covariates.

SRS

IQ

Parameter

Race
Black
Other
Sex
Male
Maternal age
Smoking status
Yes
Mother’s insurance
Medicaid
Gestational days
Birthweight Z-score
Placental inflammation

Estimate (SE)

FDR-adjusted

Estimate (SE)

P-value
(Raw P-value)

0.219 (0.13) 0.165 (0.091) -0.369 (0.13)
0.375 (0.19) 0.087 (0.043) -0.113 (0.18)
0.119 (0.10) 0.342 (0.243) -0.288 (0.10)
-0.002 (0.01) 0.800 (0.800) -0.003 (0.01)
0.215 (0.17) 0.334 (0.204) 0.337 (0.17)
0.454 (0.13) 0.002 (0.001) -0.453 (0.13)
-0.017 (0.01) 0.012 (0.002) 0.012 (0.01)
-0.060 (0.05) 0.342 (0.247) 0.179 (0.05)
-0.042 (0.11) 0.793 (0.705) -0.046 (0.11)

Genome-wide associations of mMRNA, miRNA, and CpGs with SRS and IQ

FDR-adjusted

P-value

(Raw P-value)

0.012 (0.004)
0.684 (0.533)

0.012 (0.004)
0.792 (0.748)

0.087 (0.043)

0.003 (0.001)
0.087 (0.043)
0.003 (0.001)
0.793 (0.677)

Genome-wide association tests between each of the individual placental molecular datasets (e.g. the

placental mMRNA data, the CpG methylation, or the miRNA datasets) in relation to SRS and IQ (see

11
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264  Methods) identified two genes with mRNA expression significantly associated with SRS at FDR-adjusted
265 P < 0.01 (Hdc Homolog, Cell Cycle Regulator [HECA], LIM Domain Only 4 [LMO4]). We did not find CpG
266 sites or miRNAs associated with SRS (Table 3). Associations between IQ and the mRNA expression, at
267 FDR-adjusted P < 0.01, were observed at four genes, namely Ras-Related Protein Rab-5A (RAB5A),
268  Transmembrane Protein 167A (TMEM167A), Signal Transducer and Activator of Transcription 2 (STAT2),
269 ITPRIP Like 2 (ITPRIPL2). One CpG site (cg09418354 located in the gene Carbohydrate

270 Sulfotransferase 11 (CHST11) displayed an association with 1Q, and no miRNAs were associated with 1Q
271 (Table 3). Manhattan plots (Supplemental Figure 1) show the strength of associations of all biomarkers
272 by genomic position. Summary statistics for these associations are provided in Supplemental Materials.
273 No mRNAs, CpG sites, or miRNAs were significantly associated with both SRS and IQ, though effect
274  sizes for associations with the same features were in opposite directions (see Supplemental Materials).
275

276 Table 3: Summary of genome-wide associations of molecular profiles with SRS and 1Q at FDR-adjusted
277 P <0.01.

SRS
Biomarker Effect size FDR-adjusted
P-value
MRNA expression
HECA 0.571 0.001
LMO4 0.467 0.001
IQ
Biomarker
MRNA expression
RABS5A -0.516 0.002
TMEM167A -0.632 0.004
ITPRIPL2 -0.557 0.004
STAT2 -0.584 0.004
CpG methylation site
€g09418354 -0.005 0.002
278
279

280 Kernel regression shows predictive utility in aggregating multiple molecular datasets
281 Because the genome wide association analyses revealed few mRNAs, CpG sites or miRNAs that were
282 associated with SRS or 1Q with large effect sizes, we next assessed the impact of aggregating these

283 molecular datasets on prediction of SRS and 1Q. This was done to account for the considerable number

12
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284  of biomarkers that have moderate effect sizes on outcome. To find the most parsimonious model with the
285 greatest predictive performance, we first selected the optimal number of biomarkers per molecular profile
286  for each outcome that gave the largest mean adjusted R? in predictive models with only one of the three
287 molecular datasets (see Supplemental Methods). Figure 3A shows the relationship between the

288 number of biomarkers from the mRNA expression, CpG level, miRNA expression datasets and their

289 predictive performance. In general, predictive performance steadily increased as the number of biomarker
290 features increased until reaching a tipping point where predictive performance decreased (Figure 3A).
291 Overall, for CpG methylation, the top (lowest P-values of association) 5,000 CpG features showed the
292 greatest predictive performance, and for the mRNA and miRNA expression datasets, the top 1,000

293 features showed the greatest predictive performance.

294

295 Using the fully-tuned 7,000 biomarkers (5,000 for CpG methylation and 1,000 for both mRNA and miRNA
296  expression) per molecular dataset with feature selection done in the training set, we trained predictive
297 models (both linear and Gaussian kernel models) using all individual, pair-wise, and triplet-wise

298 combinations of the three molecular datasets. Figure 3B shows that whereas the mRNA had the lowest
299 predicted performance to both IQ (R? = 0.025) and SRS (R? = 0.025), aggregating the mRNA expression,
300 CpG methylation and miRNA expression datasets tends to increase the predictive performance.

301 Specifically, in relation to both outcomes (SRS and 1Q), the model using all three integrated datasets

302 shows the greatest predictive performance (mean adjusted R? = 0.11 in IQ and R? = 0.08 in SRS).

303

304 Correlative networks of placental biomarkers

305 To gain further understanding of the associations among the identified mRNA, CpG and miRNA

306 biomarkers in the context of IQ and SRS, we extracted (n = 50) MRNA, CpGs, and miRNAs that have the
307 largest effect sizes on IQ and SRS in the kernel regression models and inferred sparse correlative

308 networks using the graphical lasso [55,56] (see Methods). In the networks (Supplemental Figure 2),
309 each molecular dataset clusters by itself, with minimal nodes extending between molecular datasets, and
310 more interconnection is observed between miRNAs and CpG methylation versus mRNAs. These

311 networks point to genes that play important roles in placental angiogenesis and neural function, such as
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312 SMARCA2 (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A,
313 Member 2), SLIT3 (Slit Guidance Ligand 3), and LZTS2 (Leucine Zipper Tumor Suppressor 2) that have
314 been previously associated with neurodevelopmental disorders, including intellectual disability, social

315 impairment, mood disorders, and ASD [57-62].

316

317  Validation of in-sample and out-sample SRS and IQ prediction with ASD case and control

318  To contextualize our predictions, we tested whether the predicted SRS and IQ scores generated by our
319 kernel models are associated with ASD case-control status; these predicted SRS and 1Q scores

320 represent the portion of the observed SRS and IQ values that our models can predict from placental

321 genomic features. We used the optimal 7,000 biomarker features identified with a 10-fold cross-validation
322 process, splitting samples into 10 hold-out sets and using the remaining samples as a training set to

323 predict SRS and 1Q for all 379 samples. After accounting for covariates, the predicted SRS and 1Q values
324  from the biomarker data were well-correlated with the observed clinical SRS and 1Q values, explaining
325 approximately 8% (approximate Spearman p = 0.29, cross-validatation R? P-value P = 7.5 x 10~°) and
326 12% (Spearman p = 0.35,P = 3.6 X 10712) of the variance in the observed SRS and IQ variables,

327 respectively. In addition, we found strong association between the predicted SRS and IQ with ASD case
328 and controls, mean difference of —0.56 (test statistc W = 8121, P = 6.6 x 10~%) for IQ, and mean

329 difference of 0.33 (W = 4717,P = 0.03) for SRS (Figure 4).

330

331 Because we lacked an external dataset with all three molecular data (mMRNA, CpG methylation, and

332 miRNA) and cognitive, social impairment and ASD data, we assessed the out-of-sample predictive

333 performance of the CpG methylation-only models using MethylC-seq data from the MARBLES cohort
334 (GEO GSE67615) [10]. We computed predicted 1Q and SRS values for 47 placental samples (24 cases of
335 ASD) and assessed differences in mean predicted IQ and SRS across ASD case and control groups. The
336 direction of the association is similar to our data for 1Q yet the differences in mean predicted 1Q

337 (—0.22,P = 0.37) and SRS (—0.42,P = 0.12) across ASD groups in MARBLES is not significant (Figure
338  4). This external validation provides some evidence of the portability of our models and merits further

339  future validation of these models, as more placental multi-omic datasets are collected.
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340

341 Discussion

342  We evaluated the predictive capability of three types of genomic and epigenomic molecular biomarkers
343 (mRNA, CpG methylation, and miRNA) in the placenta on cognitive and social impairment in relation to
344  ASD at 10 years of age. Genes that play important roles in placenta angiogenesis and neural function
345  were associated with SRS and Q. The multi-omic predictions of SRS and IQ are strong and explain up to
346 8% and 12% of the variance in the observed SRS and 1Q variables in 5-fold cross-validation, respectively.
347 This study supports the utility of aggregating information from biomarkers within and between molecular
348 datasets to improve prediction of complex neurodevelopmental outcomes like social and intellectual

349 ability, suggesting that traits on the placenta-brain axis may be omnigenic.

350

351 Several genes with known ties to neurodevelopmental disorders distinguished individuals with and

352  without intellectual and social impairmenats. For example, CpG methylation in SLIT3 was associated with
353 intellectual (1Q) disability. SLIT3 is highly expressed in trophoblastic endothelial cells [63] and plays a
354 critical role in placental angiogenesis and in the development of neuronal connectivity. Human and animal
355 genetic studies support that SLIT3 is associated with mood disorders, 1Q, and ASD [61,64-66]. LZTS2,
356  another gene we found to be associated with 1Q, is involved in regulating embryonic development by the
357  Wnt signaling pathway [67,68]. Genetic and miRNA expression studies have linked LZTS2 to social

358 impairment and ASD [69-71]. Furthermore, LZTS2 is bound by the Chromodomain Helicase DNA Binding
359 Protein 8 gene (CHDS8), which is associated with brain development in mice and neurodevelopmental

360 disorders in humans [72—74]. In relation to social impairment, ADAMTS6 was found to be associated with
361 SRS.The ADAMTS6 gene is a member of the ADAMTS protein family and is regulated by the cytokine
362  TNF-alpha [75]. In previous studies, ADAMTS6 has been implicated in intellectual disability and growth
363  development and with socially affected traits in pigs [76,77].

364

365 Looking into the individual molecular datasets, DNA methylation effects showed the strongest prediction
366 of both SRS and 1Q impairment. There is strong evidence suggesting inverse correlation between DNA

367 methylation of the first intron and gene expression across tissues and species [78]. We found that many
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368 of the CpG loci with the largest effect sizes on SRS and 1Q identified in our analysis are located near

369 DNAase hyperactivity or active regulatory elements for the placenta [79,80], suggesting that these loci
370 likely play regulatory functions. Experimental studies have demonstrated regions of the genome in which
371 DNA methylation is causally important for gene regulation and those in which it is effectively silent [81].
372  We found that aggregating biomarkers within and between molecular datasets improves prediction of
373  social and cognitive impairment. Specifially, this observation suggests new possibilities to the discovery of
374  candidate genes in the placenta that convey neurodevelopmental risk, improving the understanding of the
375 placenta-brain axis. Recent work in transcriptome-wide association studies (TWAS) are a promising tool
376 that aggregates genetics and transcriptomics to identify candidate trait-associated genes [82,83].

377 Incorporating information from regulatory biomarkers, like transcription factors and miRNAs, into TWAS
378 increases study power to generate hypotheses about regulation [84,85]. Given our observations in this
379 analysis and the number of the integrated molecular datasets, we believe that the ELGAN study can be
380 used to train predictive models for placental transcriptomics from genetics, enriched for regulatory

381 elements [85]. These transcriptomic models can then be applied to genome-wide association study

382 cohorts to study the regulation of gene-trait associations in the placenta.

383

384  Limitations

385  When interpreting the results of this study, some factors should be considered. Extremely preterm birth is
386  strongly associated with increased risk for neurodevelopmental disorders [18]. This association may lead
387 to bias in estimated associations between the molecular biomarkers and outcomes, especially when

388 unmeasured confounders are linked to both pre-term birth and autism [86]. Still, to our knowledge the
389 ELGAN cohort is currently the largest available placental repository with both multiple molecular datasets
390 and long-term neurodevelopmental assessment of the children. Second, as the placenta is comprised of
391 several heterogeneous cell types, tissue-specific molecular patterns in the placenta should be taken into
392 consideration when interpreting these findings in relation to other tissue samples; future comparison

393 between tissues will not be straightforward. Lastly, to test the reproducibility and robustness of our kernel
394 models, we believe further out-of-sample validation is required, using datasets with larger sample sizes

395 and similar molecular datasets. Though in-sample predictive performance is strong, platform differences
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between the ELGAN training set (assayed with EPIC BeadChip) and validation set (MethylC-seq) may
lead to loss of predictive power. As our optimal models all aggregate various datasets, the dearth of data
for the placenta, in the context of social and intellectual impairment, makes out-of-sample validation
especially challenging. Lack of external validation may render our analysis exploratory in nature, but we
provide evidence of a link between molecular features within the fetal placenta and social and cognitive

outcomes in children that merits future investigation.

Conclusions

Our analysis underscores the importance of synthesizing data representing various levels of biological
data to understand distinct genomic and epigenomc underpinnings of complex developmental deficits,
like intellectual and social impairment. This study provides novel evidence for the omnigenicity of the

placenta-brain axis in the context of social and intellectual impairment.
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Figure Captions

Figure 1: Scheme for kernel aggregation and prediction models. (1) Design matrices for CpG sites,
MRNAs, and miRNAs are aggregated to form a linear or Gaussian kernel matrix that measures the
similarity of samples. (2) Clinical variables are regressed out of the outcomes IQ and SRS and from the
omic kernels to limit influence from these variables. (3) Using 50-fold Monte Carlo cross-validation on
75%-25% training-test splits, we train prediction models with the kernel matrices for IQ and SRS in the
training set and predict in the test sets. Prediction is assessed in every fold with adjusted R? and

averaged for an overall prediction metric.

Figure 2: Associations between SRS, 1Q, and ASD and with clinical variables. (A) Scatter plot of SRS
(X-axis) and IQ (Y-axis) colored by ASD case (orange) and control (blue) status. (B) Boxplots of SRS and
IQ across ASD case-control status. P-value from a two-sample Mann-Whitney test is provided. (C)
Caterpillar plot of multivariable linear regression parameters of IQ and SRS using clinical variables. Points
give the regression parameter estimates with error bars showing the 95% FDR-adjusted confidence

intervals [44]. The null value of O is provided for reference with the dotted line.

Figure 3: In-sample predictive performance of kernel models. (A) Adjusted mean R? (Y-axis) of best
kernel models over various numbers of the top biomarkers (X-axis) in the CpG (dark blue), miRNA
(orange), and mRNA (light blue) omics over 50 Monte Carlo folds. The X-axis scale is logarithmic. (B) Bar
plots of adjusted mean R? (Y-axis) for optimally tuned kernel predictive models using all combinations of
omics (X-axis) over 50 Monte Carlo folds. The error bar gives a spread of one standard deviation around

the mean adjusted R?.

Figure 4: Association of ASD case/control status with predicted SRS and 1Q. (A) Box-plots of in-
sample predicted 1Q (left) and SRS (right) over ASD case/control in ELGAN over 10-fold cross-validation.
(B) Box-plots of out-sample predicted 1Q (left) and SRS (right) over ASD case/control in MARBLES
external validation dataset. P-values presented as from a Mann-Whitney test of differences across the

ASD case/control groups.
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Genome-wide molecular associations with 1Q and SRS

Objective: Find biomarkers associated with outcomes
Methods: DEG analysis for mMRNA/miRNA, EWAS for CpG sites

Clinical/demographic associations with 1Q and SRS

Objective: Find clinical/demographic variables associated
with 1Q and SRS
Methods: Multivariable linear regression with least squares

Kernel aggregation of molecular profiles

Objective: Combine molecular profiles based on
inter-sample similarities
Methods: Linear or Gaussian kernel functions with

full width

Feature selection of molecular kernels

Objective: Find the optimal number of CpGs, mRNAs, and
miRNAs for prediction

Methods: Monte Carlo cross-validation across various
numbers of top biomarkers

Predictive modeling using molecular kernels
Objective: Assess predictive power of combinations of molecular
profiles on outcome using Monte Carlo cross-validation
Methods: Linear mixed modeling or kernel-based least squares

Correlative sparse networks of biomarkers

Objective: Identify inter-biomarker correlations
Methods: Graphical lasso using the top 50 most predictive CpGs,

Out-of-sample validation
mRNAs, and miRNAs from the final predictive models

Objective: Assess portability of models in external data
Methods: Prediction in MethylC-seq data from MARBLES
using the optimal methylation-only kernel model
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