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Abstract 13 

Humans are fast and accurate when they recognize familiar faces. Previous 14 

neurophysiological studies have shown enhanced representations for the dichotomy of 15 

familiar vs. unfamiliar faces. As familiarity is a spectrum, however, any neural correlate 16 

should reflect graded representations for more vs. less familiar faces along the 17 

spectrum. By systematically varying familiarity across stimuli, we show a neural 18 

familiarity spectrum using electroencephalography. We then evaluated the 19 

spatiotemporal dynamics of familiar face recognition across the brain. Specifically, we 20 

developed a novel informational connectivity method to test whether peri-frontal brain 21 

areas contribute to familiar face recognition. Results showed that feed-forward flow 22 

dominates for the most familiar faces and top-down flow was only dominant when 23 

sensory evidence was insufficient to support face recognition. These results 24 

demonstrate that perceptual difficulty and the level of familiarity influence the neural 25 

representation of familiar faces and the degree to which peri-frontal neural networks 26 

contribute to familiar face recognition. 27 
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Introduction 30 

Faces are crucial for our social interactions, allowing us to extract information 31 

about identity, gender, age, familiarity, intent and emotion. Humans categorize familiar 32 

faces more quickly and accurately than unfamiliar ones, and this advantage is more 33 

pronounced under difficult viewing conditions, where categorizing unfamiliar faces often 34 

fails (Ramon and Gobbini, 2018; Young and Burton, 2018). The neural correlates of this 35 

behavioral advantage suggest an enhanced representation of familiar over unfamiliar 36 

faces in the brain (Dobs et al., 2019; Landi and Freiwald, 2017). Here, we focus on 37 

addressing two major questions about familiar face recognition. First, whether there is a 38 

“familiarity spectrum” for faces in the brain with enhanced representations for more vs. 39 

less familiar faces along the spectrum. Second, whether higher-order frontal brain areas 40 

contribute to familiar face recognition, as they do to object recognition (Bar et al,. 2006; 41 

Summerfield et al., 2006; Goddard et al., 2016; Karimi-Rouzbahani et al., 2019), and 42 

whether levels of face familiarity and perceptual difficulty (as has been suggested 43 

previously (Woolgar et al., 2011; Woolgar et al., 2015)) impact the involvement of frontal 44 

cognitive areas in familiar face recognition. 45 

One of the main limitations of previous studies, which hinders our progress in 46 

answering our first question, is that they mostly used celebrity faces as the familiar 47 

category (Ambrus et al., 2019; Collins et al., 2018; Dobs et al., 2019). As familiar faces 48 

can range widely from celebrity faces to highly familiar ones such as family members, 49 

relatives, friends, and even one's own face (Ramon and Gobbini, 2018), these results 50 

might not reflect the full familiarity spectrum. A better understanding of familiar face 51 

recognition requires characterizing the computational steps and representations for sub-52 

categories of familiar faces, including personally familiar, visually familiar, famous, and 53 

experimentally learned faces. Such face categories do not only differ in terms of how 54 

much exposure the individual has had to them, but also the availability of personal 55 

knowledge, relationships, and emotions associated with the identities in question 56 
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(Leppänen and Nelson, 2009; Ramon and Gobbini, 2018; Kovács, 2020). However, we 57 

still expect that potentially enhanced representations for more vs. less familiar faces, as 58 

they modulate the behavior, can also be detected using neuroimaging analysis. 59 

Moreover, these categories may vary in terms of the potential for top-down influences in 60 

the process. Importantly, while a few functional magnetic resonance imaging (fMRI) 61 

studies have investigated the differences between different levels of familiar faces 62 

(Gobbini et al., 2004; Landi and Freiwald, 2017; Leibenluft et al., 2004; Ramon et al., 63 

2015; Sugiura et al., 2015; Taylor et al., 2009), there are no studies that systematically 64 

compare the temporal dynamics of information processing across this familiarity 65 

spectrum. Specifically, while event-related potential (ERP) analyses have shown 66 

amplitude modulation by levels of face familiarity (Henson et al., 2008; Kaufmann et al., 67 

2009; Schweinberger et al., 2002; Huang et al., 2017), they remain silent about whether 68 

more familiar faces are represented more distinctly than less familiar faces - amplitude 69 

modulation does not necessarily mean that information is being represented. To 70 

address this issue, we can use multivariate pattern analysis (MVPA or decoding; 71 

Ambrus et al., 2019; Karimi-Rouzbahani et al., 2017a), which provides higher sensitivity 72 

(Norman et al., 2006) than univariate (e.g., ERP) analysis, to compare the amount of 73 

information in each of the familiarity levels. 74 

In line with our second question, recent human studies have compared the 75 

neural dynamics for familiar versus unfamiliar face processing using the high temporal 76 

resolution of electroencephalography (EEG; Ambrus et al., 2019; Collins et al., 2018) 77 

and magnetoencephalography (MEG; Dobs et al., 2019). These studies have found that 78 

familiarity affects the initial time windows of face processing, which are generally 79 

attributed to the feed-forward mechanisms of the brain. In particular, they have explored 80 

the possibility that the face familiarity effect occurs because these faces have been 81 

seen repeatedly, leading to the development of low-level representations for familiar 82 

faces in the occipito-temporal visual system. This in turn facilitates the flow of familiar 83 

face information in a bottom-up feed-forward manner from the occipito-temporal to the 84 

frontal areas for recognition (di Oleggio Castello and Gobbini, 2015; Ramon et al., 2015; 85 

Ellis et al., 1979; Young and Burton, 2018). On the other hand, studies have also shown 86 

the role of frontal brain areas in facilitating the processing of visual inputs (Bar et al., 87 
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2006; Kveraga et al., 2007; Goddard et al., 2016; Karimi-Rouzbahani et al., 2019), such 88 

as faces (Kramer et al., 2018; Summerfield et al., 2006), by feeding back signals to the 89 

face-selective areas in the occipito-temporal visual areas, particularly when the visual 90 

input is ambiguous (Summerfield et al., 2006) or during face imagery (Mechelli et al., 91 

2004; Johnson et al., 2007). These top-down mechanisms, which were localized in 92 

medial prefrontal cortex (MPFC), have been suggested (but not quantitatively 93 

supported) to reflect feedback of (pre-existing) face templates, against which the input 94 

faces are compared for correct recognition (Summerfield et al., 2006) in a recollection 95 

procedure (Brown and Banks, 2015). A more recent fMRI study showed that there is 96 

significant face selectivity in the inferior frontal gyrus (IFG) over the frontal cortex and 97 

that the same area is strongly connected to the well-stablished face-selective superior 98 

temporal sulcus (STS) over the temporal cortex (Davies-Thompson and Andrews, 99 

2012), which was consistent with a previous diffusion tensor imaging study (Ethofer et 100 

al., 2011). Despite the large literature of face recognition supporting the roles of both the 101 

peri-occipital (e.g. Fusiform face area, STS) and peri-frontal1 (e.g. IFG, MPFC and 102 

posterior cingulate cortex (Ramon et al., 2015)) brain areas (i.e. feed-forward and 103 

feedback mechanisms), their potential interactions in familiar face recognition have 104 

remained ambiguous (see for reviews Ramon and Gobbini, 2018; Duchaine and Yovel, 105 

2015). We develop novel connectivity methods to track the flow of information along the 106 

feed-forward and feedback mechanisms and assess the role of these mechanisms in 107 

familiar face recognition. 108 

One critical aspect of the studies that successfully detected top-down peri-frontal 109 

to peri-occipital feedback signals (Bar et al., 2006; Summerfield et al., 2006; Goddard et 110 

al., 2016) has been the active involvement of the participant in a task. In recent E/MEG 111 

studies reporting support for a feed-forward explanation of the face familiarity effect, 112 

participants were asked to detect target faces (Ambrus et al., 2019) or find a match 113 

between faces in series of consecutively presented faces  (Dobs et al., 2019). This 114 

makes familiarity irrelevant to the task of the participant. Such indirect tasks may reduce 115 

the involvement of top-down familiarity-related feedback mechanisms, as was 116 

                                            
1 Here we use the terms “peri-occipital” and “peri-frontal” to refer broadly to groups of electrodes selected 
from posterior and anterior parts of the EEG cap, respectively (as indicated in Figure 5). 
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demonstrated by a recent study (Kay et al., 2017), which found reduced feedback 117 

signals (from intraparietal to ventro-temporal cortex) when comparing fixation versus an 118 

active task in an fMRI study. Therefore, to answer our research questions and fully test 119 

the contribution of feedback to the familiarity effect, we need active tasks that are 120 

affected by familiarity. 121 

Timing information is also crucial in evaluating the flows of feed-forward and 122 

feedback information as these processes often differ in the temporal dynamics. With the 123 

advent of informational connectivity analyses, we now have the potential to examine the 124 

interaction of information between feed-forward and feedback mechanisms to 125 

characterize their potential spatiotemporal contribution to familiar face recognition 126 

(Goddard et al., 2016; Goddard et al., 2019; Anzellotti and Coutanche, 2018; Basti et 127 

al., 2020; Karimi-Rouzbahani et al., 2020a). However, this requires novel methods to 128 

track the flow of familiarity information from a given brain area to a destination area and 129 

link this flow to the behavioral task goals to confirm its biological relevance. Such 130 

analyses can provide valuable insights for understanding the neural mechanisms 131 

underlying familiar face recognition in humans. 132 

In our study, participants performed a familiar vs. unfamiliar face categorization 133 

task on sequences of images selected from four face categories (i.e., unfamiliar, 134 

famous, self, and personally familiar faces), with dynamically updating noise patterns, 135 

while their EEG data were recorded. It was crucial to use dynamic noise in this study. If 136 

stimuli were presented statically for more than ~200ms, this would result in a dominant 137 

feed-forward flow of information simply due to the incoming information (Goddard et al., 138 

2016; Karimi-Rouzbahani, 2019; Lamme et al., 2000). On the other hand, if we present 139 

stimuli for very brief durations (e.g. < 50 ms), there may be insufficient time to evoke 140 

familiarity processing. By varying the signal-to-noise ratio of each image sequence 141 

using perceptual coherence, we were able to investigate how information for the 142 

different familiar categories gradually builds up in the electrical activity recordable by 143 

scalp electrodes, and how this relates to the amount of sensory evidence available in 144 

the stimulus (perceptual difficulty). The manipulation of sensory evidence also allowed 145 

us to investigate when, and how, feedback information flow affects familiar face 146 
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recognition. Using univariate and multivariate pattern analyses, representational 147 

similarity analysis (RSA) and a novel informational connectivity analysis method, we 148 

reveal the temporal dynamics of neural representations for different levels of face 149 

familiarity.  150 

Our results show that self and personally familiar faces lead to higher perceptual 151 

categorization accuracy and enhanced representation in the brain even when sensory 152 

information is limited while famous (visually familiar) and unfamiliar face categorization 153 

is only possible in high-coherence conditions. Importantly, our novel information flow 154 

analysis suggests that in high-coherence conditions the feed-forward sweep of face 155 

category information processing is dominant, while at lower coherence levels the 156 

exchange of face category information is consistent with feedback flow of information. 157 

The change in dominance of feedback versus feed-forward effects as a function of 158 

coherence level is consistent with a dynamic exchange of information between higher-159 

order (frontal) cognitive and visual areas depending on the amount of sensory evidence. 160 

 161 

Results 162 

We designed a paradigm to study how the stimulus- and decision-related 163 

activations for different levels of face familiarity build up during stimulus presentation 164 

and how these built-up activations relate to the amount of sensory evidence about each 165 

category. We recorded EEG data from human participants (n=18) while they 166 

categorized face images as familiar or unfamiliar. We varied the amount of sensory 167 

evidence by manipulating the phase coherence of images on different trials (Figure 1A).  168 

In each 1.2 s (max) sequence of image presentation (trial), the pattern of noise changed 169 

in each frame (16.7 ms) while the face image and the overall coherence level remained 170 

the same. Familiar face images (n=120) were selected equally from celebrity faces, 171 

photos of the participants' own face, and personally familiar faces (e.g., friends, family 172 

members, relatives of the participant) while unfamiliar face images (n=120) were 173 

completely unknown to participants before the experiment. Within each block of trials, 174 
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familiar and unfamiliar face images with different coherence levels were presented in 175 

random order.  176 

 177 

Levels of face familiarity are reflected in behavioral performance 178 

We quantified our behavioral results using accuracy and reaction times on 179 

correct trials. Specifically, accuracy was the percentage of images correctly categorized 180 

as either familiar or unfamiliar. All participants performed with high accuracy (>92%) at 181 

the highest phase coherence (55%), and their accuracy was significantly lower (~62%) 182 

at the lowest coherence (22%; F(3,272)=75.839, p<0.001; Figure 1B). The correct 183 

reaction times show that participants were significantly faster to categorize the face at 184 

high phase coherence levels than lower ones (F(3,272)=65.797, p<0.001, main effect; 185 

Figure 1C). We also calculated the accuracy and reaction times for the sub-categories 186 

of the familiar category separately (i.e. famous, personally familiar and self). The 187 

calculated accuracy here is the percentage of correct responses within each of these 188 

familiar sub-categories. The results show a gradual increase in accuracy as a function 189 

of phase coherence and familiarity (Figure 1D, two-way ANOVA. factors: coherence 190 

level and face category. Face category main effect: F(2,408)=188.708, p<0.001, 191 

coherence main effect: F(3,408)= 115.977, p<0.001, and interaction: F(6,408)=12.979, 192 

p<0.001), with the highest accuracy in categorizing their own (self), then personally 193 

familiar, and finally famous (or visually familiar) faces. The reaction time analysis also 194 

showed a similar pattern where participants were fastest to categorize self faces, then 195 

personally familiar and famous faces (Figure 1E, two-way ANOVA, factors: coherence 196 

level and face category. Face category main effect: F(2,404)=174.063, p<0.001, 197 

coherence main effect: F(3,404)= 104.861, p<0.001). We did not evaluate any potential 198 

interaction between coherence levels and familiarity levels as it does not address any 199 

hypothesis in this study. All reported p-values were corrected for multiple comparisons 200 

at p<0.05 using Bonferroni correction. 201 
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             202 

Figure 1. Experimental design and behavioral results for familiar vs. unfamiliar face 203 
categorization. (A) Upper row shows a sample face image (from the famous category) at the four 204 
different phase coherence levels (22, 30, 45, and 55%) used in this experiment, in addition to the original 205 
image (not used). Lower row shows schematic representation of the experimental paradigm. In each trial, 206 
a black fixation cross was presented for 300-600 ms (randomly selected). Then, a noisy and rapidly 207 
updating (every 16.7 ms) stimulus of a face image (unfamiliar, famous, personally familiar, or self), at one 208 
of the four possible phase coherence levels, was presented until response, for a maximum of 1.2 s. 209 
Participants had to categorize the stimulus as familiar or unfamiliar by pressing one of two buttons (button 210 
mappings swapped across the two sessions, counterbalanced across participants). There was then a 211 
variable inter-trial interval (ITI) lasting between 1-1.2 s (chosen from a uniform random distribution; see a 212 
demo of the task here https://osf.io/n7b8f/). (B) Mean behavioral accuracy for face categorization across 213 
all stimuli, as a function of coherence levels; (C) Median reaction times for correctly categorized face trials 214 
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across all conditions, as a function of coherence levels. (D) and (E) show the results for different familiar 215 
face sub-categories. Error bars in all panels are the standard error of the mean across participants 216 
(smaller for panels B and C). 217 

Is there a “familiarity spectrum” for faces in the brain? 218 

Our behavioral results showed that there is a graded increase in participants' 219 

performance as a function of familiarity level - i.e., participants achieve higher 220 

performance if the faces are more familiar to them. In this section we address the first 221 

question of this study about whether we can find a familiarity spectrum in neural 222 

activations, using both the traditional univariate and novel multi-variate analyses of 223 

EEG. 224 

 225 

Event-related potentials reflect behavioral familiarity effects  226 

As an initial, more traditional, pass at the data, we explored how the neural 227 

responses were modulated by different levels of familiarity and coherence by averaging 228 

event-related potentials (ERP) across participants for different familiarity levels and 229 

phase coherences (Figure 2B). This is important as recent work failed to capture 230 

familiar face identity information from single electrodes (Ambrus et al., 2019). At high 231 

coherence, the averaged ERPs, obtained from a representative centroparietal electrode 232 

(CP2), where previous studies have found differential activity for different familiarity 233 

levels (Henson et al., 2008; Kaufmann et al., 2009; Huang et al., 2017), demonstrated 234 

an early, evoked response, followed by an increase in the amplitude proportional to 235 

familiarity levels. This showed that self faces elicited the highest ERP amplitude, 236 

followed by personally familiar, famous, and unfamiliar faces (Figure 2B for 55% phase 237 

coherence). This observation of differentiation between familiarity levels at later time 238 

points seems to support evidence accumulation over time, which is more pronounced at 239 

higher coherence levels where the brain had access to reliable information. This repeats 240 

previous findings showing differential activity for different levels of face familiarity after 241 

200 ms in the post-stimulus onset window (Caharel et al., 2002; Wiese et al., 2019). 242 
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  243 

Figure 2. The effect of familiarity and sensory evidence on event-related potentials (ERPs). 244 
Averaged ERPs for 22% (A) and 55% (B) phase coherence levels and four face categories across all 245 
participants for an electrode at a centroparietal site (CP2). Note that the left panels show stimulus-aligned 246 
ERPs while the right panel shows response-aligned ERPs. Shaded areas show the time windows when 247 
the difference in ERPs between unfamiliar and the average of the three familiar face categories (i.e. 248 
unfamiliar-average of unfamiliar categories) were significantly (p<0.05) higher in the 55% vs. 22% 249 
coherence levels. The significance was evaluated using one-tailed independent t-test with correction for 250 
multiple comparisons across time at p<0.05. The differences were significant at later stages of stimulus 251 
processing around 400 ms post-stimulus onset and <100 ms before the response was given by the 252 
participant in the stimulus- and response-aligned analyses, respectively.  253 

 254 

We also observed a similar pattern between the ERPs of different familiarity 255 

levels at the time of decision (just before the response was made). Such systematic 256 

differentiation across familiarity levels was lacking at the lowest coherence level, where 257 

the amount of sensory evidence, and behavioral performance, were low (c.f. Figure 2A 258 

for 22% phase coherence; shading areas). We observed a gradual increase in 259 

separability between the four face categories when moving from low to high coherence 260 

levels (Supplementary Figure 1). The topographic ERP maps (Supplementary Figure 2) 261 
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show that the effects are not localized on the CP2 electrode, but rather distributed 262 

across the head. There are electrodes which seem to show even more familiarity 263 

information than the CP2 electrode. These results reveal the neural correlates of 264 

perceptual differences in categorizing different familiar face categories under 265 

perceptually difficult conditions. 266 

Dynamics of neural representation and evidence accumulation for different 267 

face familiarity levels  268 

Our results so far are consistent with previous event-related studies showing that 269 

the amplitude of ERPs is modulated by the familiarity of the face (Henson et al., 2008; 270 

Kaufmann et al., 2009; Schweinberger et al., 2002; Huang et al., 2017). However, more 271 

modulation of ERP amplitude does not necessarily mean enhanced representation. 272 

Moreover, we observed that the familiarity effects were distributed across the head 273 

rather than localized only on the individual CP2 electrode (Supplementary Figure 2). 274 

Therefore, looking at individual electrodes might overlook the true temporal dynamics of 275 

familiarity information, which may involve widespread brain networks (Ramon and 276 

Gobbini, 2018; Duchaine and Yovel, 2015). Here we used multivariate pattern and 277 

representational similarity analyses on these EEG data to quantify the time course of 278 

familiar vs. unfamiliar face processing. Compared to traditional single-channel 279 

(univariate) ERP analysis, MVPA allows us to capture the whole-brain widespread and 280 

potentially subtle differences between the activation dynamics of different familiarity 281 

levels (Ambrus et al., 2019; Dobs et al., 2019). Specifically, we asked: (1) how the 282 

representational dynamics of stimulus- and response-related activations change 283 

depending on the level of face familiarity; and (2) how manipulation of sensory evidence 284 

(phase coherence) affects neural representation and coding of different familiarity 285 

levels.  286 

To obtain the temporal evolution of familiarity information across time, at each 287 

time point we trained the classifier to discriminate between familiar and unfamiliar faces. 288 

Note that the mapping between response and fingers were swapped from the first 289 

session to the next (counterbalanced across participants) and the data were collapsed 290 
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across the two sessions for all analyses, which ensures the motor response cannot 291 

drive the classifier. We trained the classifier using 90% of the trials and tested it on the 292 

left-out 10% of trials using a standard 10-fold cross-validation procedure (see Methods). 293 

This analysis used only correct trials. Our decoding analysis shows that, up until ~200 294 

ms after stimulus onset, decoding accuracy is near chance for all coherence levels 295 

(Figure 3A). The decoding accuracy then gradually increases over time and peaks 296 

around 500 ms post-stimulus for the highest coherence level (55%) but remains around 297 

chance for the lower coherence level (22%, Figure 3A). The accuracy for intermediate 298 

coherence levels (30% and 45%) falls between these two bounds but only reaches 299 

significance above chance for the 45% coherence level. This ramping up temporal 300 

profile suggests an accumulation of sensory evidence in the brain across the time 301 

course of stimulus presentation, which has a processing time that depends on the 302 

strength of the sensory evidence (Hanks and Summerfield, 2017; Philiastides et al., 303 

2006). 304 

After verifying that we could decode the main effect of familiarity, we turned to 305 

the first main question of the study. To examine if neural decoding could reveal the 306 

spectrum of familiarity which we observed in behavior and ERPs, we separately 307 

calculated the decoding accuracy for each of the sub-categories of familiar faces 308 

(Figure 3B): unfamiliar, famous, self and personally familiar faces (on the 55% 309 

coherence level, which showed the highest decoding in Figure 3A). The decoding 310 

accuracy was highest for self faces, both for stimulus- and response-aligned analyses, 311 

followed by personally familiar, famous and unfamiliar faces. Accuracy for the response-312 

aligned analysis shows that the decoding gradually increased to peak decoding ~100 313 

ms before the response was given by participants. This temporal evolution of decoding 314 

accuracy begins after early visual perception and rises in proportion to the amount of 315 

the face familiarity.  316 

To rule out the possibility that an unbalanced number of trials in the sub-317 

categories of familiar faces could lead to the difference in decoding accuracies between 318 

the sub-categories, we also repeated the decoding analysis by classifying each familiar 319 

subcategory from the unfamiliar category (after equalizing the number of trials across 320 
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the familiar and unfamiliar categories and also across the three familiar categories), 321 

which provided similar results. We also repeated the same analysis for lower coherence 322 

levels: only the two high-coherence conditions (i.e. 45% and 55%), but not the low-323 

coherence conditions (i.e. 22% and 30%), showed significantly above-chance decoding 324 

for all familiarity conditions (Supplementary Figure 3). 325 

Low-level stimulus differences between conditions could potentially drive the 326 

differences between categories observed in both ERP and decoding analyses (e.g., 327 

familiar faces being more frontal than unfamiliar faces, leading to images with brighter 328 

centers and, therefore, separability of familiar from unfamiliar faces using central 329 

luminance of images; Dobs et al., 2019; Ambrus et al., 2019). To address such potential 330 

differences, we carried out a supplementary analysis using RSA (Supplementary Text 331 

and Supplementary Figures 4 and 5), which showed that such differences between 332 

images do not play a major role in the differentiation between categories. 333 

To determine whether the dynamics of decoding during stimulus presentation are 334 

associated with tfhe perceptual task, as captured by our participants' behavioral 335 

performance, we calculated the correlation between decoding accuracy and perceptual 336 

performance. For this, we calculated the correlation between 16 data points from 337 

decoding accuracy (4 face categories × 4 phase coherence levels) and their 338 

corresponding behavioral accuracy rates, averaged over participants. The correlation 339 

peaked ~500 ms post-stimulus (Figure 3C), which was just before the response was 340 

given. This is consistent with an evidence accumulation mechanism determining 341 

whether to press the button for 'familiar' or 'unfamiliar', which took another ~100 ms to 342 

turn into action (finger movement). 343 

 344 
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  345 

Figure 3. Decoding of face familiarity from EEG signals.  (A) Time course of decoding accuracy for 346 
familiar versus unfamiliar faces from EEG signals for four different phase coherence levels (22%, 30%, 347 
45%, and 55%). (B) Time course of decoding accuracy for four face categories (i.e., unfamiliar, famous, 348 
self and personally familiar faces) from EEG signals at the 55% coherence level. The chance accuracy is 349 
50%. Thickened lines indicate the time points when the accuracy was significantly above chance level 350 
(sign rank test, FDR corrected across time, p<0.05). (C) Correlation between behavioral performance and 351 
decoding accuracy (across all conditions) over time. Thickened lines indicate the time points when the 352 
correlation was significant. The left panels show the results for stimulus-aligned analysis while the right 353 
panels show the results for response-aligned analysis (averaged over 18 participants).   354 

 355 
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Do higher-order peri-frontal brain areas contribute to familiar face 356 

recognition? 357 

In this section we address the second question of this study about whether peri-358 

frontal brain areas contribute to the recognition of familiar faces in the human brain 359 

using a novel informational connectivity analyses on EEG.  360 

Task difficulty and familiarity level affect information flow across the brain 361 

We investigated how the dynamics of feed-forward and feedback information flow 362 

changes during the accumulation of sensory evidence and the evolution over a trial of 363 

neural representations of face images. We developed a novel connectivity method 364 

based on RSA to quantify the relationships between the evolution of information based 365 

on peri-occipital EEG electrodes and those of the peri-frontal electrodes. As an 366 

advantage to previous Granger causality methods (Goddard et al., 2016; Goddard et al., 367 

2019; Karimi-Rouzbahani et al., 2019; Kietzman et al., 2019), the connectivity method 368 

developed here allowed us to check whether the transferred signals contained specific 369 

aspects of stimulus information. Alternatively, it could be the case that the transferred 370 

signals might carry highly abstract but irrelevant information between the source and 371 

destination areas, which can be incorrectly interpreted as connectivity (Anzellotti and 372 

Coutanche, 2018; Basti et al., 2020). Briefly, feed-forward information flow is quantified 373 

as the degree to which the information from peri-occipital electrodes at present time 374 

contributes to the information recorded at peri-frontal electrodes at a later time point, 375 

which reflects moving the frontal representation closer to that required for task goals. 376 

Feedback flow is defined as the opposite: the contribution to information at peri-frontal 377 

electrodes at the present time to that recorded later at peri-occipital electrodes at a later 378 

time point (Figure 4A). 379 

The results show that at the highest coherence level (55%), information flow is 380 

dominantly in the feed-forward direction. This is illustrated by the shaded area in Figure 381 

4B where partialling out the peri-frontal from peri-occipital correlations only marginally 382 

reduces the total peri-occipital correlation (Figure 4B, black curves and shaded area), 383 
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meaning that there is limited information transfer from peri-frontal to peri-occipital. In 384 

contrast, partialling out the peri-occipital from peri-frontal correlations leads to a 385 

significant reduction in peri-frontal correlation, reflecting a feed-forward transfer of 386 

information (Figure 4B, brown curves and shaded area). This trend is also seen for 387 

response-aligned analysis. 388 

These differences are shown more clearly in Figure 4C where the peaks of feed-forward 389 

and feedback curves show that the feed-forward information is dominant earlier, 390 

followed by feedback information flow, as shown by the later peak of feedback 391 

dynamics. These results suggest that when the sensory evidence is high, feed-forward 392 

information flow may be sufficient for categorical representation and decision making 393 

while feedback only slightly enhances the representation. However, in lower coherence 394 

levels (i.e., low sensory evidence), the strength of information flow is either equivalent 395 

between feed-forward and feedback directions (30%, 45%) or dominantly feedback 396 

(22%, Figure 4D).  397 
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  398 

Figure 4. Feed-forward and feedback information flow revealed by RSA. (A) A schematic 399 
presentation of the method for calculating informational connectivity between the peri-frontal and peri-400 
occipital electrodes, termed feed-forward and feedback information flow. Feed-forward information flow is 401 
calculated as difference of the correlation between the present time peri-frontal neural RDM and the 402 
predicted model RDM and the same correlation when the earlier peri-occipital neural RDM is partialled 403 
out from it. This is shown in the Venn diagram on the right. The summation of white and yellow areas 404 
reflect the correlation between the peri-frontal and the model RDMs while the yellow area reflects the 405 
same correlation after partialling out the peri-occipital area at the earlier time point. The difference 406 
between the two (i.e. white = (white + yellow)– yellow) is considered to be feed-forward flow of 407 
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information captured by the model. Delay time (T) is 30ms.  (B) Time course of partial Spearman's 408 
correlations representing the partial correlations between the peri-occipital (black) and peri-frontal (brown) 409 
EEG electrodes and the model (familiar-unfamiliar model, see the inset in A) while including (solid) and 410 
excluding (dashed) the effect of the other area at phase coherence of 55%. The shaded area shows the 411 
decline in partial correlation of the current area with the model after excluding (partialling out) the RDM of 412 
the other area. Note that in both the dashed and solid lines, the low-level image statistics are partialled 413 
out of the correlations, so we call them partial correlations in both cases. (C) Feedforward (brown) and 414 
feedback (black) information flows obtained by calculating the value of the shaded areas in the 415 
corresponding curves in B. (D) Direction of information flow for different coherence levels, determined as 416 
the difference between feed-forward and feedback information flow showed in C. Thickened lines indicate 417 
time points at which the difference is significantly different from zero (sign permutation test and corrected 418 
significance level at p�<�0.05), and black dotted lines indicate 0 correlation. The left panels show the 419 
results for stimulus-aligned analysis while the right panels represent the results for response-aligned 420 
analysis. 421 

 422 

Here, we can see that the lower sensory evidence correlates with greater 423 

engagement of feedback mechanisms, suggesting that feedback is recruited to boost 424 

task-relevant information in sensory areas under circumstances where the input is 425 

weak. This is consistent with the dynamics and relative contribution of feedback and 426 

feed-forward mechanisms in the brain varying with the sensory evidence / perceptual 427 

difficulty of the task. 428 

Importantly, we also were interested in whether the degree of familiarity changes 429 

the direction of information flow between the peri-frontal and peri-occipital brain areas. 430 

For this analysis, we collapsed the data across all coherence levels to look specifically 431 

at the impact of face familiarity. We generated specific RDM models to evaluate how 432 

much information about unfamiliar faces vs. all unfamiliar faces as a group (Figure 5A) 433 

and each subcategory of familiar faces (i.e., famous, personally familiar and self; Figure 434 

5B) individually were transferred between the two brain areas. To avoid any bias from a 435 

different number of elements in the RDM matrices, we only compared equal-sized 436 

conditions and present the results in separate panels (i.e. familiar vs. unfamiliar (Figure 437 

5A) and subcategories of familiar faces (Figure 5B)). While the unfamiliar category 438 

showed a non-significant flow in either direction, the familiar category showed significant 439 

feed-forward flow of information in the stimulus-aligned data starting from 300 ms post-440 

stimulus onset (Figure 5A). Among the familiar sub-categories, only the self category 441 

showed significant feed-forward information flow starting to accumulate after the 442 

stimulus onset, reaching sustained significance ~500 ms. The less familiar categories of 443 
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famous and personally familiar did not reach significance. In the response-aligned 444 

analysis, again, the significant time points show the domination of feed-forward flow for 445 

the familiar category (Figure A) but not the unfamiliar category, and the self category but 446 

not the other sub-categories of familiar faces (Figure 5B). Together, these results 447 

suggest that while the information about the unfamiliar category did not evoke a 448 

particular dominance of information flow in either direction, the representations of 449 

familiar and self faces showed dominant feed-forward information flow from the peri-450 

occipital to the peri-frontal brain areas. Note that, in this analysis, we also tried to 451 

minimize the effect of the participants' decision and motor response in the models by 452 

excluding the opposing category (i.e. unfamiliar category when evaluating the familiar 453 

models and vice versa), which could have potentially contributed to the information 454 

flows in the previous analysis (c.f. Figure 4).  455 

   456 

Figure 5. Directions of information flow for familiar, unfamiliar and different levels of familiarity. 457 
The models, as depicted on the top, are constructed to measure the extent and timing by which 458 
information about unfamiliar and familiar (A), and each familiar sub-category (B) moves between the peri-459 
occipital and peri-frontal brain areas. Feed-forward information flow is calculated as difference of the 460 
correlation between the present time peri-frontal neural RDM and the predicted model RDM and the same 461 
correlation when the earlier peri-occipital neural RDM is partialled out from it. This is shown in the Venn 462 
diagram in Figure 4A. The summation of white and yellow areas reflect the correlation between the peri-463 
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frontal and the model RDMs while the yellow area reflects the same correlation after partialling out the 464 
peri-occipital area at the earlier time point. The difference between the two (i.e. white = (white + yellow)– 465 
yellow) is considered to be feed-forward flow of information captured by the model. Delay time (T) is 466 
30ms. The yellow areas in the models refer to the target category (including unfamiliar, familiar, famous, 467 
personally familiar and self faces). Thickened lines indicate time points at which the difference is 468 
significantly different from zero (sign permutation test and corrected for multiple comparisons at 469 
significance level of p�<�0.05), and black horizontal dotted lines indicate 0 correlation. The left panel 470 
shows the result for stimulus-aligned analysis while the right panels represent the result for response-471 
aligned analysis. 472 

 473 

Together, the results of the information connectivity analysis suggest that, in 474 

familiar face recognition, both top-down and bottom-up mechanisms play a role, with the 475 

amount of sensory evidence determining their relative contribution. It also suggests that 476 

the degree to which sensory information is processed feed-forward can be modulated 477 

by the familiarity level of the stimulus. 478 

Discussion 479 

This study investigated the neural mechanisms of familiar face recognition. We 480 

asked how familiarity affected the contribution of feed-forward and feedback processes 481 

in face processing. We first showed that manipulating the familiarity affected the 482 

informational content of neural responses about face category, in line with a large body 483 

of behavioral literature showing an advantage of familiar over unfamiliar face processing 484 

in the brain. Then, we developed a novel method of informational connectivity analysis 485 

to track the exchange of familiarity information between peri-occipital and peri-frontal 486 

brain areas to see if frontal brain areas contribute to familiar face recognition. Our 487 

results showed that when the perceptual difficulty was low (high sensory evidence), the 488 

flow of face familiarity information was consistent with a feed-forward account. On the 489 

other hand, when the perceptual difficulty was high (low sensory evidence), the 490 

dominant flow of face familiarity information reversed, which we interpret as reliance on 491 

feedback mechanisms. Moreover, when teasing apart the effect of task and response 492 

from neural representations, only the familiar faces, but not the unfamiliar faces, 493 

showed a dominance of feed-forward flow of information, with maximum flow for the 494 

most familiar category, the self faces. 495 
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 Our results are consistent with the literature suggesting that visual perception 496 

comprises both feed-forward and feedback neural mechanisms transferring information 497 

between the peri-occipital visual areas and the peri-frontal higher-order cognitive areas 498 

(Bar et al., 2006; Summerfield et al., 2006; Goddard et al., 2016; Karimi-Rouzbahani et 499 

al., 2017b; Karimi-Rouzbahani et al., 2017c; Karimi-Rouzbahani et al., 2019). However, 500 

previous experimental paradigms and analyses did not dissociate feedback and feed-501 

forward information flow in familiar face recognition, and argued for a dominance of 502 

feed-forward processing (Dobs et al., 2019; di Oleggio Castello and Gobbini, 2015; Ellis 503 

et al., 1979; Young and Burton, 2018). The more nuanced view we present is important 504 

because stimulus familiarity, similar to other factors including levels of categorization 505 

(superordinate vs. basic level; Besson et al., 2017; Praß et al., 2013), task difficulty 506 

(Chen et al., 2008; Woolgar et al., 2015; Kay et al., 2017) and perceptual difficulty (Fan 507 

et al., 2020; Hupe et al., 1998; Gilbert and Li, 2013; Gilbert and Sigman, 2007; Lamme 508 

and Roelfsema, 2000; Woolgar et al., 2011), may affect the complex interplay of feed-509 

forward and feedback mechanisms in the brain. 510 

Our results showed that the contribution of peri-frontal to peri-occipital feedback 511 

information was inversely proportional to the amount of sensory evidence about the 512 

stimulus. Specifically, we only observed feedback when the sensory evidence was 513 

lowest (high perceptual difficulty) in our face familiarity categorization task. Although a 514 

large literature has provided evidence for the role of top-down feedback in visual 515 

perception, especially when sensory visual information is low, they generally evaluated 516 

the feedback mechanisms within the visual system (Ress et al., 2000; Lamme and 517 

Roelfsema, 2000; Super et al., 2001; Lamme et al., 2002; Pratte et al., 2013; Fenske et 518 

al., 2006; Lee and Mumford, 2003; Felleman et al., 1991;  Delorme et al., 2004; 519 

Mohsenzadeh et al., 2018; Kietzmann et al., 2019) rather than across the fronto-occpital 520 

brain networks (Bar et al., 2006; Summerfield et al., 2006; Goddard et al., 2016; Karimi-521 

Rouzbahani et al., 2018; Karimi-Rouzbahani et al., 2019). Our findings support theories 522 

suggesting that fronto-occipital information transfer may feedback (pre-existing) face 523 

templates, against which the input faces are compared for correct recognition (Bar et 524 

al., 2006; Summerfield et al., 2006). Previous results could not determine the content of 525 

the transferred signals (Bar et al., 2006; Summerfield et al., 2006; Goddard et al., 2016; 526 
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Karimi-Rouzbahani et al., 2018; Karimi-Rouzbahani et al., 2019). Here, using our novel 527 

connectivity analyses, we showed that the transferred signal contained information 528 

which contributed to the categorization of familiar and unfamiliar faces. 529 

Despite methodological differences, our findings support previous human studies 530 

showing increased activity in lower visual areas when the cognitive and perceptual 531 

tasks were difficult relative to easy, which the authors attributed to top-down 532 

contributions (Ress et al., 2000; Kay et al., 2017). However, due to the low temporal 533 

resolution of fMRI, these studies cannot show the temporal evolution of these top-down 534 

contributions or the validity of the hypothesized direction. Importantly, the observed 535 

increase in activity in lower visual areas does not necessarily correspond to the 536 

enhancement of neural representations in those areas - increased univariate signal 537 

does not show whether there is more information that will support performance. 538 

Electrophysiological studies in animals have also shown that cortical feedback 539 

projections robustly modulate responses of early visual areas when sensory evidence is 540 

low, or the stimulus is difficult to segregate from the background figure (Hupe et al., 541 

1998). A recent study has also found cortical feedback modulated the activity of 542 

neurons in the dorsolateral geniculate nucleus (dLGN), which was less consistent when 543 

presenting simple vs. complex grating stimuli (Spacek et al., 2019). Therefore, varying 544 

perceptual difficulty seems to engage different networks and processing mechanisms, 545 

and we show here that this also pertains to faces: less difficult stimuli such as our high-546 

coherence faces seem to be predominantly processed by the feed-forward 547 

mechanisms, while more difficult stimuli such as our low-coherence faces recruit both 548 

feed-forward and feedback mechanisms. However, the exact location of the feedback in 549 

all these studies, including ours, remains to be determined with the development of 550 

more accurate modalities for neural activity recording. 551 

We observed that the direction of information flow is influenced by the familiarity 552 

of the stimulus. The models of familiar faces and self faces, evoked a dominant flow of 553 

feed-forward information. The unfamiliar category, however, did not evoke information 554 

flow in any direction, as evaluated by our connectivity method. This is consistent with 555 

enhanced representations of familiar face categories in the feed-forward pathways 556 
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(Dobs et al., 2019; di Oleggio Castello and Gobbini, 2015; Ellis et al., 1979; Young and 557 

Burton, 2018), which, in turn, requires less top-down contributions to facilitate the 558 

perception of relevant information (Bar et al., 2006; Gilbert and Sigman, 2007). Our 559 

results might initially seem inconsistent with Fan et al.'s (2020) study, which did not 560 

report significant differences between the temporal dynamics of familiar and unfamiliar 561 

face representations; however, they only used famous faces within the familiar face 562 

spectrum. In our sub-category analysis, we also did not observe differences between 563 

famous faces and unfamiliar faces; our main findings were from highly familiar self 564 

faces. Overall, then, our results suggest that processing of familiar faces, especially the 565 

most familiar (self) faces, is dominated by feed-forward information flow. 566 

One assumption in the connectivity analysis of the current work, as in many 567 

previous ones (Goddard et al., 2016; Clarke et al., 2018; Kietzman et al., 2019), is that 568 

all categories of faces used here involve neural mechanisms from both the peri-frontal 569 

and peri-occipital areas. However, this is not necessarily the case; we know from the 570 

face recognition literature that peri-frontal brain areas (as defined in this study) play role 571 

in the processing of face-relevant information such as social, dynamic and eye-572 

movement-related aspects in cooperation with superior temporal brain areas (Duchaine 573 

and Yovel, 2015; superior temporal areas are grouped here in the peri-occipital 574 

category). On the other hand, the peri-occipital brain areas have been suggested to 575 

dominantly process lower order sensory-level face features with relatively more 576 

independence from peri-frontal brain areas (Collins and Olsen, 2014). This suggests 577 

that our connectivity analysis might provide a stronger flow for one aspect of information 578 

than the other depending on the potentially distinct neural network involved for each. 579 

However, to the best of our knowledge, no studies have suggested distinct networks for 580 

the processing of the conditions which we compared (familiar vs. unfamiliar faces or 581 

familiarity levels). Thus, we cannot rule out the possibility that there might be factors 582 

attributable to a subset of categories, but not others, that involve distinct networks. For 583 

example, it could be the case that familiar faces, but not unfamiliar ones, involve 584 

emotion networks which span from the posterior to the anterior brain areas (Leppänen 585 

and Nelson, 2009). To avoid this potential influence, we selected images for both 586 

familiar and unfamiliar categories with variable emotional content, but any emotional 587 
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content associated with basic familiarity could not be avoided. At this point, we interpret 588 

our results as an interaction between feed-forward and feedback sweeps of information 589 

within a network, but acknowledge the potential contribution of additional frontal areas 590 

for one category over another. 591 

Our results suggest that processing differs considerably for highly familiar faces. 592 

This may be because expectation and prediction play a role in (Ramon and Gobbini, 593 

2018; Summerfield and Egner, 2009), and can potentially affect the contribution of 594 

feedback neural mechanisms in face detection (Summerfield et al., 2006). Specifically, 595 

familiar faces are generally more limited in number compared to unfamiliar faces, which 596 

can potentially make the former more predictable. However, according to the earlier 597 

visual recognition literature (Bar et al., 2006; Summerfield et al., 2006), if anything, this 598 

would have evoked more pronounced feedback signals for the familiar faces vs. 599 

unfamiliar faces in this study. In contrast to this prediction, our results showed dominant 600 

feed-forward flow of information for familiar faces, and no significant flow in either 601 

direction for unfamiliar faces. Therefore, it seems unlikely that the potential difference in 602 

expectation between familiar and unfamiliar categories could explain our information 603 

flow results. 604 

Results also show that, in lower coherence levels, the information about the 605 

familiarity levels was generally stronger than the information about familiarity itself (as 606 

captured by familiar-unfamiliar model RDM; Supplementary Figure 4). This suggests a 607 

lower threshold for the appearance of familiarity level compared to familiar-unfamiliar 608 

representations, which are differentially developed through life-time experience and task 609 

instructions, respectively. Specifically, development of neural representations reflecting 610 

familiarity levels could be a result of exposure to repetitive faces, which can lead to 611 

developing face-specific representations in the visual system (Dobs et al., 2019), while 612 

task instructions could temporarily enhance the processing of relevant information in the 613 

brain through top-down mechanisms (Hebart et al., 2018; Karimi-Rouzbahani et al., 614 

2019). This is probably the reason for the dominance of feedback information flow in the 615 

processing of familiarity information (Figure 5A). 616 
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The RSA-based connectivity method used in this study follows a recent shift 617 

towards informational brain connectivity methods (Anzellotti and Coutanche, 2018; Basti 618 

et al., 2020; Keitzmann et al., 2019; Goddard et al., 2016; Clarke et al., 2018; Karimi-619 

Rouzbahani, 2018; Karimi-Rouzbahani et al., 2019; Karimi-Rouzbahani et al., 2020a), 620 

and introduces a few distinct features compared to previous methods of connectivity 621 

analyses. Specifically, traditional connectivity methods examine inter-area interactions 622 

through indirect measures such as gamma-band synchronization (Gregoriou et al., 623 

2009), shifting power (Bar et al., 2006) or causality in the activity patterns (Summerfield 624 

et al., 2006; Fan et al., 2020). Such connectivity methods consider simultaneous (or 625 

time-shifted) correlated activations of different brain areas as connectivity, but they are 626 

unable to examine how (if at all) relevant information is transferred across those areas. 627 

Goddard et al. (2016) developed an RSA-based Granger connectivity method to solve 628 

this issue, which allowed us and others to track the millisecond transfer of stimulus 629 

information across peri-frontal and peri-occipital brain areas (Karimi-Rouzbahani, 2018; 630 

Karimi-Rouzbahani et al., 2019; Goddard et al., 2019). This was followed by another 631 

informational connectivity method, which was similar but used regression instead of 632 

correlation in implementation (Keitzmann et al., 2019). While informative, these 633 

methods, are silent about what aspects of the representation are transferred and 634 

modulated. In other words, we need new methods to tell how (if at all) the transferred 635 

information is contributing to the representations in the destination area. Not having 636 

access to the transferred contents could lead to incorrect interpretations of connectivity 637 

for one main reason: we would not be able to tease apart transactions of distinct types 638 

of information across areas (e.g. familiar-unfamiliar discrimination, or different levels of 639 

familiarity). To address this issue, one could simply calculate the correlation between 640 

the neural and model RDMs from the source and destination areas at every time point 641 

and then calculate the Granger causality between the two time-courses of correlations. 642 

This is exactly how Clarke et al., (2018) incorporated RDM models into their connectivity 643 

to track specific aspects of the transferred information. However, this last method loses 644 

the temporal dynamics of information flow in the calculation of Granger causality, and 645 

only provides the direction of information flow. Our method circumvents this limitation 646 

(i.e. lack of temporal information) by making use of the high-dimensional 647 
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representational space of the RDMs in the source and destination areas for the 648 

calculation of inter-area and area-model relationship leaving the time samples available 649 

for the evaluation of the temporal dynamics. Our method allows us to explicitly 650 

determine the content (using model RDMs), the direction (using delayed time samples 651 

across areas) and the temporal evolution (using temporally-resolved analysis) of the 652 

information transferred from the peri-frontal to peri-occipital areas and vice versa. The 653 

relevance of the transferred information is determined by the amount that the 654 

representations in the destination area are shifted towards our predefined predicted 655 

RDM models. In this way, we could determine the temporal dynamics of the contributory 656 

element of the transferred information. Despite the specificity that the model-based 657 

methods (including our proposed one) provide about the content of the transferred 658 

information, such model-based methods have the characteristic to ignore other model-659 

irrelevant aspects of information which might be similarly or distinctly represented in the 660 

source and destination areas. In other words, while the source and destination areas 661 

might show high levels of connectivity through the “lens” of the model used, their 662 

representational geometry (as evaluated here using RDMs) might be very distinct from 663 

one another when directly compared or vice versa. Therefore, the results of model-664 

based connectivity methods do not make any prediction about the direction and the 665 

amount of potential connectivity when using model-free connectivity methods. 666 

Despite the advantage that informational connectivity methods provide over 667 

conventional univariate connectivity methods, further investigations (using simulated 668 

datasets with known ground-truth of information flow) are needed to fully uncover their 669 

characteristics and potential limitations. As an initial step in that direction, we simulated 670 

a simplified well-controlled dataset and applied our connectivity analysis to it to check if 671 

it could detect the imposed information flow between our simulated source and 672 

destination areas (Supplementary Figure 6). Results showed that our connectivity 673 

analysis detected correct direction and temporal dynamics of the simulated information 674 

flow. Despite this successful simulation, a full mathematical and analytical investigation 675 

will need to be performed to compare the available and the proposed informational 676 

connectivity analyses in the future. 677 
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Our results specify the neural correlates for the behavioral advantage in 678 

recognizing more vs. less familiar faces in a “familiarity spectrum”. As in previous 679 

studies, our participants were better able to categorize highly familiar than famous or 680 

unfamiliar faces, especially in low-coherence conditions (Kramer et al., 2018; Young 681 

and Burton, 2018). This behavioral advantage could result from long-term exposure to 682 

variations of personally familiar faces under different lighting conditions and 683 

perspectives, which is usually not the case for famous faces. 684 

Our neural decoding results quantified a neural representational advantage for 685 

more familiar faces compared to less familiar ones (i.e. higher decoding for the former 686 

than the latter) to suggest that more familiar faces also lead to more distinguishable 687 

neural representations. Decoding accuracy was also proportional to the amount of 688 

sensory evidence: the higher the coherence levels, the higher the decoding accuracy. 689 

We observed that the decoding accuracy “ramped-up” and reached its maximum ~100 690 

ms before participants expressed their decisions using a key press. These results are 691 

suggestive of sensory evidence accumulation and decision making processes during 692 

face processing in humans, consistent with previously reported data in monkey and 693 

recent single-trial ERP studies (Kelly et al., 2013; Hanks and Summerfield, 2017; 694 

Philiastides et al., 2006; Philiastides and Sajda, 2006; Shadlen and Newsome, 2001). 695 

There was a significant correlation between MVPA accuracy and our behavioral 696 

results, showing a relationship between neural representation and behavioral outcomes. 697 

While it would be ideal to see perfect correlation between neural data and behavior, it is 698 

not usually the case (Dobs et al., 2019), which may reflect several reasons including the 699 

noise in the neural data and sub-optimal decoding of the neural codes (Karimi-700 

Rouzbahani et al., 2020b) and/or possible non-linear relationships between neural data 701 

and behavior. In our study, while there was a difference between the neural data from 702 

personally familiar and self faces (c.f. Figures 2 and 3), there was no detectable 703 

difference in behavior, potentially reflecting a ceiling effect for both categories in above-704 

chance conditions (i.e. coherence levels > 30%). Despite this, the correlation was 705 

significant across the four familiarity × four coherence level conditions overall during 706 

time windows later in the trial and immediately before the response. This suggests that 707 
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the behavioral advantages of self and familiar faces and/or having higher sensory 708 

evidence (highest coherence) could have been driven by the enhanced neural 709 

representations. 710 

Previous studies generally show face familiarity modulation during early ERP 711 

components such as N170, N250, and P300 (Dobs et al., 2019; Ambrus, 2019; Fan et 712 

al., 2020; Henson et al., 2008; Kaufmann et al., 2009; Schweinberger et al., 2002; 713 

Huang et al., 2017). In contrast, the time course of our EEG results showed their 714 

maximum effects after 400 ms post-stimulus onset. However, these studies typically use 715 

event-related paradigms, which evoke initial brain activations peaking at around 200 716 

ms, whereas our dynamic masking paradigm releases the information gradually along 717 

the time course of the trial. Moreover, the extended (>200ms) static stimulation used in 718 

previous studies has been suggested to bias towards domination of feed-forward 719 

processing (Goddard et al., 2016; Karimi-Rouzbahani, 2018), because of the co-720 

processing of the incoming sensory information and the recurrence of earlier windows of 721 

the same input (Kietzmann et al., 2019; Mohsenzadeh et al., 2018), making it hard to 722 

measure feedback. Our paradigm, while providing a delayed processing profile 723 

compared to previous studies, avoids this and also slows down the process of evidence 724 

accumulation so that it becomes more trackable in time. This does mean, however, that 725 

our time courses are not really comparable with previous ERP results. 726 

In conclusion, our study demonstrates that the processing of face information 727 

involves both feed-forward and feedback flow of information in the brain, and which 728 

predominates depends on the strength of incoming perceptual evidence and the 729 

familiarity of the face stimulus. Our novel extension of multivariate connectivity analysis 730 

methods allowed us to disentangle feed-forward and feedback contributions to 731 

familiarity representation. This connectivity method can be applied to study a wide 732 

range of cognitive processes, wherever information is represented in the brain and 733 

transferred across areas. We also showed that the behavioral advantage for familiar 734 

face processing is robustly reflected in neural representations of familiar faces in the 735 

brain and can be quantified using multivariate pattern analyses. These new findings and 736 
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methods emphasize the importance of, and open new avenues for, exploring the impact 737 

of different behavioral tasks on the dynamic exchange of information in the brain. 738 

Materials and Methods 739 

Participants 740 

We recorded from 18 participants (15 male, aged between 20-26 years, all with 741 

normal or corrected-to-normal vision). Participants were students from the Faculty of 742 

Mathematics and Computer Science at the University of Tehran, Iran. All participants 743 

voluntarily participated in the experiments and gave their written consent prior to 744 

participation. All experimental protocols were approved by the ethical committee of the 745 

University of Tehran. All experiments were carried out in accordance with the guidelines 746 

of the Declaration of Helsinki. 747 

 748 

Stimuli 749 

We presented face images of four categories, including unfamiliar, famous, self 750 

and personally familiar faces. The unfamiliar faces (n=120) were unknown to 751 

participants. The famous faces (n=40) were pictures of celebrities, politicians, and other 752 

well-known people. These faces were selected from different, publicly available face 753 

databases2. In both categories, half of the images were female, and half were male. To 754 

ensure that all participants knew the famous face identities, participants completed a 755 

screening task prior to the study. In this screening, we presented them with the names 756 

of famous people in our data set and asked if they were familiar with the person. 757 

The personally familiar faces were selected from participants' family, close 758 

relatives, and friends (n=40); self-images were photographs of participants (n=40). The 759 

images of self and personally familiar faces were selected to have varied backgrounds 760 
                                            
2
 http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html 

  https://megapixels.cc/datasets/msceleb/ 
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and appearances. On average, we collected n=45 for personally familiar and n=45 for 761 

self faces for every individual participant. All images were cropped to have 400×400 762 

pixels and were converted to greyscale (Figure 1A). We ensured that spatial frequency, 763 

luminance, and contrast were equalized across all images. The magnitude spectrum of 764 

each image was adjusted to the average magnitude spectrum of all images in our 765 

database3. 766 

The phase spectrum was manipulated to generate noisy images characterized by 767 

their percentage phase coherence (Dakin et al., 2002). We used a total of four different 768 

phase coherence values (22%, 30%, 45%, and 55%), chosen based on behavioral pilot 769 

experiments, so overall behavioral performance spanned the psychophysical dynamic 770 

range. Specifically, the participants scored 52.1%, 64.7%, 85.2% and 98.7% in the 771 

mentioned coherence levels in the piloting. At each of the four phase coherence levels, 772 

we generated multiple frames for every image: the number of frames generated 773 

depended on the reaction time of the participants, as explained below. Different sets of 774 

participants were used for the actual and pilot experiments. 775 

 776 

EEG acquisition and Apparatus 777 

We recorded EEG data from participants while they were performing the face 778 

categorization task. EEG data were acquired in an electrostatically shielded room using 779 

an ANT Neuro Amplifier (eego 64 EE-225) from 64 Ag/AgCl scalp electrodes and from 780 

three periocular electrodes placed below the left eye and at the left and right outer 781 

canthi. All channels were referenced to the left mastoid with input impedance <15k and 782 

chin ground. Data were sampled at 1000 Hz and a software-based 0.1-200 Hz 783 

bandpass filter was used to remove DC drifts, and high-frequency noise and 50 and 100 784 

Hz (harmonic) notch filters were applied to minimize line noise. These filters were 785 

applied non-causally (using MATLAB filtfilt) to avoid phase-related distortions. We used 786 

Independent Component Analysis (ICA) to remove artefactual components in the signal. 787 

                                            
3
 https://github.com/Masoud-Ghodrati/face_familiarity 
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The components which were reflecting artefactual signals (eye movements, head 788 

movements) were removed based on ADJUST's criteria (Mognon et al., 2011). Next, 789 

trials with strong eye movement or other movement artifacts were removed using visual 790 

inspection. On average, we kept 98.74%±1.5% artifact-free trials for any given 791 

condition. 792 

We presented images on LCD monitor (BenQ XL2430, 24”, 144 Hz refresh rate, 793 

resolution of 1920 ×1080 pixels) and the stimulus presentation was controlled using 794 

custom-designed MATLAB codes and Psychtoolbox 3.0 (Brainard, 1997; Pelli, 1997). 795 

We presented stimuli at a distance of 60 cm to the participant, and each image 796 

subtended 8° × 8° of visual angle.  797 

 798 

Procedure 799 

Participants performed a familiar vs. unfamiliar face categorization task by 800 

categorizing dynamically updating sequences of either familiar or unfamiliar face images 801 

in two recording sessions (Figure 1A). Image sequences were presented in rapid serial 802 

visual presentation (RSVP) fashion at a frame rate of 60 Hz frames per second (i.e. 803 

16.67 ms per frame without gaps). Each trial consisted of a single sequence of up to 1.2 804 

seconds (until response) with a series of images from the same stimulus (i.e., selection 805 

from either familiar or unfamiliar face categories) at one of the four possible phase 806 

coherence levels. Importantly, within each phase coherence level, the overall amount of 807 

noise remained unchanged, whereas the spatial distribution of the noise varied across 808 

individual frames such that different parts of the underlying image was revealed 809 

sequentially. 810 

We instructed participants to fixate at the center of the monitor and respond as 811 

accurately and quickly as possible by pressing one of two keyboard keys (left and right 812 

arrow keys) to identify the image as familiar or unfamiliar using the right index and 813 

middle fingers, respectively. The mapping between familiar-unfamiliar categories and 814 

the two fingers were swapped from the first session to the next (counterbalanced across 815 
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participants) and the data were collapsed across the two sessions before analyses. As 816 

soon as a response was given, the RSVP sequence stopped, followed by an inter-trial 817 

interval of 1–1.2 s (random with uniform distribution). The maximum time for the RSVP 818 

sequence was 1.2 secs. If participants failed to respond within the 1.2 secs period, the 819 

trial was marked as a no-choice trial and was excluded from further analysis. We had a 820 

total of 240 trials (i.e., 30 trials per perceptual category, familiar and unfamiliar, each at 821 

four phase coherence levels) during the experiment. Participants were naïve about the 822 

number and proportion of the face stimuli in categories. We presented six blocks of 36 823 

trials each, and one block of 24 trials and participants had some resting time between 824 

the blocks. Each image from the image set was presented to the participants once in 825 

each session.  826 

 827 

Analysis 828 

Decoding (MVPA) analysis 829 

We decoded the information content of our conditions using Multivariate Pattern 830 

Analysis (MVPA) methods with Support Vector Machine (SVM) classifiers (Cortes et al., 831 

1995). MVPA utilizes within-condition similarity of trials and their cross-condition 832 

dissimilarity to determine the information content of individual conditions. We trained an 833 

SVM classifier on the patterns of brain activity (from 64 EEG electrodes) from 90% of 834 

familiar (including personally familiar, famous, and self sub-categories) and 90% of 835 

unfamiliar trials, and then tested the trained classifier on the left-out 10% of trials from 836 

each category. The classification accuracy from categorization of the testing data shows 837 

whether there is information about familiarity in the neural signal. We only used the trials 838 

in which the participant correctly categorized the stimulus as familiar or unfamiliar. We 839 

repeated this procedure iteratively 10 times until all trials from the two categories were 840 

used in the testing of the classifier once (no trial was included both in the training and 841 

testing sets in a single run), hence 10-fold cross-validation, and averaged the 842 

classification accuracy across the 10 validation runs for each participant. To obtain the 843 
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decoding accuracy through time, we down-sampled the EEG signals to 100 Hz and 844 

repeated the same classification procedure for every 10 ms time point from -100 to 600 845 

ms relative to the onset of the stimulus, and from -500 to 100 ms relative to the 846 

response. This allowed us to assess the evolution of face familiarity information relative 847 

to the stimulus onset and response separately. 848 

To investigate the potential differences in the temporal evolution of the sub-849 

categories contained in the familiar category (i.e., famous, personally familiar and self), 850 

we additionally calculated the decoding accuracy for each sub-category separately. 851 

Note that the same decoding results obtained from decoding of familiar vs. unfamiliar 852 

categories were used here, only calculated separately for each sub-category of familiar 853 

faces. Finally, we averaged the decoding accuracies across participants and reported 854 

the group-level results. 855 

We used random bootstrapping testing to evaluate the significance of the 856 

decoding accuracies at every time point for the group of participants. For every time 857 

point, this involved randomizing the labels of the familiar and unfamiliar trials 10,000 858 

times and obtaining 10,000 decoding accuracies using the above procedure for each 859 

participant. Then we averaged the 10,000 decoding accuracies across (18) participants 860 

obtaining a single decoding accuracy for each of the 10,000 randomization for group-861 

level analysis. For every time point, the p-value of the true group-averaged decoding 862 

accuracy was obtained as [1- p(10,000 randomly generated decoding accuracies which 863 

were surpassed by the corresponding true group-averaged decoding value)]. Since 864 

there is a different number of trials in each familiar sub-category, in the random 865 

bootstrapping, we maintained the same proportion of trials in each sub-category to 866 

preserve the original structure and generate an appropriate null distribution. We then 867 

corrected the p values for multiple comparisons across time (using MATLAB's mafdr 868 

function at p<0.05). After the correction, the true decoding values with p < 0.05 were 869 

considered significantly above chance (e.g., 50%). 870 

 871 
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Brain-behavior correlation 872 

To investigate if the decoding results could explain the observed behavioral face 873 

categorization results, we calculated the correlation between the decoding and the 874 

behavioral results using Spearman's rank correlation. We calculated the correlation 875 

between a 16-element vector containing each participant’s behavioral accuracy for the 876 

four coherence levels of the four familiarity levels (i.e. Familiar, Famous, Self and 877 

Unfamiliar), and another vector with the same structure containing the decoding values 878 

from the same conditions (Karimi-Rouzbahani et al., 2020b). We repeated this 879 

procedure for every time point and each individual participant separately. Finally, we 880 

averaged the correlations across participants and reported the group-level results. 881 

To determine the significance of the group-averaged correlations, the same 882 

bootstrapping procedure as described above was repeated at every time point by 883 

generating 10,000 random correlations after shuffling the elements of the 16-element 884 

behavioral vector. We repeated this procedure for every time point and each individual 885 

participant separately. Then we averaged the 10,000 random correlations across (18) 886 

participants obtaining a single correlation value for each of the 10,000 randomization for 887 

group-level analysis. For every time point, the p-value of the true group-averaged 888 

correlation was obtained as [1- p(10,000 randomly generated correlations which were 889 

surpassed by the corresponding true group-averaged correlation)]. We then corrected 890 

the p values for multiple comparisons across time (using MATLAB's mafdr function at 891 

p<0.05). After the correction, the true correlation values with p < 0.05 were considered 892 

significantly above chance (i.e., 0). 893 

 894 

Representational similarity analysis 895 

Representational similarity analysis is used here for three purposes. First, to 896 

partial out the possible contributions of low-level image statistics to our decoding 897 

results, which is not directly possible in the decoding analysis (Supplementary Text). 898 

Second, to investigate possible coding strategies that the brain might have adopted 899 
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which could explain our decoding, specifically, whether the brain was coding familiar 900 

versus unfamiliar faces, the different levels of familiarity or a combination of the 901 

superordinate and subordinate categories. Third, to measure the contribution of 902 

information from other brain areas to the representations of each given area (see 903 

Information flow analysis). 904 

We constructed neural representational dissimilarity matrices (RDMs) by 905 

calculating the (Spearman's rank) correlation between every possible representation 906 

obtained from every single presented image which resulted in a correct response 907 

(leading to a 240 by 240 RDM matrix if all images were categorized correctly, which was 908 

never the case for any participant). The matrices were constructed using signals from 909 

the electrodes over the whole brain as well as from peri-occipital and peri-frontal 910 

electrodes separately as explained later (Figures 4-6). We also constructed image 911 

RDMs for which we calculated the correlations between every possible pair of images 912 

which had generated the corresponding neural representations used in the neural 913 

RDMs (i.e. only from correct trials). Finally, to evaluate how much the neural RDMs 914 

coded the familiar vs. unfamiliar faces, familiar and unfamiliar faces separately, 915 

familiarity levels and each level of familiarity, we constructed different model RDMs. For 916 

examples, in the Familiar-Unfamiliar model RDM, the elements which corresponded to 917 

the correlations of familiar with familiar, or unfamiliar with unfamiliar, representations 918 

(and not their cross-correlations) were valued as 1, and the elements which 919 

corresponded to the cross-correlations between familiar and unfamiliar faces were 920 

valued as 0. The Familiarity level model, on the other hand, was filled with 0s (instead of 921 

1s) for the representations which corresponded to the cross-correlations between 922 

different sub-categories of familiar faces (e.g. personally familiar vs. famous) with 923 

everything else being the same as the Familiar-Unfamiliar model RDM. Please note that 924 

the number of trials within all conditions of the RDM were down-sampled to the 925 

minimum number available for all conditions. This avoided potential difference across 926 

conditions as a result of unbalanced number of trials across conditions. To correlate the 927 

RDMs, we selected and reshaped the upper triangular elements of the RDMs (excluding 928 

the diagonal elements) into vector RDMs (or RDVs). To evaluate the correlation 929 

between the neural RDVs and the model RDVs, we used Spearman's partial correlation 930 
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in which we calculated the correlation between the neural and the model RDV while 931 

partialling out the image RDV as in equation (1): 932 
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�	�
��
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              (1) 933 

where � refers to Spearman correlation and ���.� refers to the Spearman correlation 934 

between the neural and model RDVs after partialling out the image RDV. �, � and � 935 

respectively refer to Neural, Model and Image RDVs. As indicated in the equation, the 936 

partial correlation was calculated for every time point of the neural data (10 ms time 937 

steps), relative to the stimulus onset and response separately using the time-invariant 938 

model and image RDVs. To evaluate the significance of the partial correlations, we 939 

used a similar bootstrapping procedure as was used in decoding. However, here we 940 

randomized the elements of the model RDV 10,000 times (while keeping the number of 941 

ones and zeros equal to the original RDV) and calculated 10,000 random partial 942 

correlations. Finally, we compared the true partial correlation at every time point with the 943 

randomly generated partial correlations for the same time point and deemed it 944 

significant if it exceeded 95% of the random correlations (p < 0.05) after correcting for 945 

multiple comparisons. 946 

 947 

Informational connectivity analysis 948 

We developed a novel model-based method of information flow analysis to 949 

investigate how earlier information content of other brain areas contributes to the 950 

present-time information content of a given area. While several recent approaches have 951 

suggested for information flow analysis in the brain (Goddard et al., 2016; Karimi-952 

Rouzbahani, 2018; Karimi-Rouzbahani et al., 2019), following the recent needs for 953 

these approaches in answering neuroscience questions (Anzellotti and Coutanche, 954 

2018), none of the previously developed methods could answer the question of whether 955 

the transferred information was improving the representation of the target area in line 956 

with the behavioral task demands. Our proposed model, however, explicitly incorporates 957 
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the specific aspects of behavioral goals or stimuli in its formulation and allows us to 958 

measure if the representations of target areas are shifted towards the behavioral/neural 959 

goals by the received information. An alternative would be that the incoming information 960 

from other areas are just epiphenomenal and are task-irrelevant. This new method can 961 

distinguish these alternatives. 962 

Accordingly, we split the EEG electrodes in two groups, each with 16 electrodes: 963 

peri-frontal and peri-occipital (Figure 4A) to see how familiarity information is (if at all) 964 

transferred between these areas that can be broadly categorized as “cognitive” and 965 

“sensory” brain areas, respectively. We calculated the neural RDMs for each area 966 

separately and calculated the correlation between the neural RDV and the model RDV, 967 

partialling out the image RDM from the correlation (as explained in equation (1)). This 968 

resulted in a curve when calculating the partial correlation at every time point in 10 ms 969 

intervals (see the solid lines in Figure 4B). Note that the partial correlation curve for the 970 

peri-frontal area could have received contributions from the present and earlier 971 

representations of the same area (i.e., the latter being imposed by our sequential 972 

stimulus presentation). It could also have received contributions from earlier peri-973 

occipital representations through information flow from peri-occipital to the peri-frontal 974 

area. To measure this potential contribution, we partialled out the earlier peri-occipital 975 

representations in calculation of the partial correlation between peri-frontal and model 976 

RDVs and calculated the difference between the former and the latter partial 977 

correlations as feed-forward information flow according to equation (2): 978 
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� ��	
�
       (2) 979 

where ���.�  refers to the partial correlation between the peri-frontal and the model RDV, 980 

���.�  the partial correlation between peri-frontal and peri-occipital RDVs and ���.� the 981 

partial correlation between the peri-occipital and model RDVs. Please note that the 982 

image RDV is partialled out from all pairwise correlations to remove its effect in the 983 

analysis, so the subscript � and the term “partial”. This determines the contribution of 984 

earlier peri-occipital representations to the present peri-frontal areas which we called 985 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2020.08.10.245241doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.245241
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

“feed-forward information flow” (as indicated by the brown shades in Figure 4). To 986 

determine the contribution of the peri-frontal representations in modulating the peri-987 

occipital representations, we used equation (3): 988 
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����.���	
�

�	�

��.�

� ��	
�
�	�
��.�

� ��	
�
                (3) 989 

with the same notations as in equation (2). Accordingly, equation (3) determines the 990 

contribution of earlier peri-frontal representations in directing the peri-occipital 991 

representations towards the model RDV, namely 'feedback information flow'. In 992 

equations (2) and (3), the delay time (T) was 30ms, which was selected based on 993 

previously reported delay times between the peri-occipital and peri-frontal areas in 994 

visual processing (Foxe and Simpson, 2002). To that end, five earlier RDVs were 995 

averaged (5 time points centered on -30ms) leading to an average delay time of 30ms. 996 

Finally, to characterize the information flow dynamics between the peri-occipital 997 

and peri-frontal areas, we calculated the difference between the feed-forward and 998 

feedback contribution of information flows. This allowed us to investigate the transaction 999 

of targeted information between the brain areas aligned to the stimulus onset and 1000 

response. We repeated the same procedure using the Familiar-Unfamiliar as well as 1001 

Familiarity level models to see if they differed. We validated the proposed informational 1002 

connectivity method using simulated well-controlled dataset (Supplementary Figure 6). 1003 

We determined the significance of the partial correlations using the above-explained 1004 

random bootstrapping procedure. We determined the significance of the differences 1005 

between partial correlations (the shaded areas in Figure 4 and the lines in panel C) and 1006 

the differences in the feed-forward and feedback contribution of information using 1007 

Wilcoxon's signed-rank test using p < 0.05 threshold for significance after correction for 1008 

multiple comparisons (using Matlab mafdr). 1009 
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Supplementary Materials 1242 

                       1243 

Supplementary Figure 1. The effect of familiarity and sensory evidence on event-related potentials 1244 
(ERPs). Averaged ERPs for 22% (A), 30% (B), 45% (C) and 55% (D) phase coherence levels and four 1245 
face categories across all participants for an electrode at a centroparietal site (CP2). Note that the left 1246 
panels show stimulus-aligned ERPs while the right panel shows response-aligned ERPs. The differences 1247 
between levels of familiarity were more pronounced at later stages of stimulus processing around 400 ms 1248 
post-stimulus onset and <100 ms before the response was given by the participant in the stimulus- and 1249 
response-aligned analyses, respectively.  1250 
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 1251 

 1252 

  1253 

Supplementary Figure 2. Familiarity information on the whole-brain event-related potentials 1254 
(ERPs). The topographic maps show the difference in ERPs between unfamiliar and the average of the 1255 
three familiar face categories (i.e. unfamiliar-average of unfamiliar categories) at specific time points 1256 
averaged across participants. The time points were chosen based on the results from Figure 2, when the 1257 
ERPs were significantly (p<0.05) higher in the 55% vs. 22% coherence levels. Note that the left panels 1258 
show stimulus-aligned ERPs while the right panel shows response-aligned ERPs.  1259 
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 1260 

Supplementary Figure 3. Decoding of face familiarity from EEG signals. Time course of decoding 1261 
accuracy for familiar versus unfamiliar faces from EEG signals for four different phase coherence levels 1262 
(22% (A), 30% (B), 45% (C), and 55% (D)). The chance accuracy is 50%. Thickened lines indicate the 1263 
time points when the accuracy was significantly above chance level (sign rank test, FDR corrected across 1264 
time, p<0.05). The left panels show the results for stimulus-aligned analysis while the right panels show 1265 
the results for response-aligned analysis (averaged over 18 participants). 1266 
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Supplementary Text: Low-level image statistics do not explain the 1267 

separation of familiar from unfamiliar faces 1268 

Although, we did equalize the frequency content, pixel intensities and contrast of 1269 

the images of our dataset (see methods), but we checked whether there are other low-1270 

level differences by creating a model representational dissimilarity matrix (RDM) for 1271 

each of the categories under different phrase coherences. Briefly, neural RDMs are 1272 

constructed by calculating the correlations (or dissimilarities) of the brain response to 1273 

different face stimuli to give an abstract representation of information encoding in the 1274 

brain. We also construct a low-level feature RDM, for which we calculate the 1275 

correlations between images corresponding to each brain response. Model RDMs 1276 

predicted representations in the brain (see Methods). The model RDMs were created 1277 

for discriminating (1) familiar from unfamiliar (Supplementary Figure 4A) and also (2) the 1278 

familiarity levels from one another (Supplementary Figure 4B). We then computed 1279 

partial Spearman's correlations between one of the models and neural RDMs for every 1280 

time point and participant, while partialling out (Supplementary Figure 4)/not partialling 1281 

out (Supplementary Figure 5) low-level feature model RDM. 1282 

This analysis revealed the emergence of familiarity representation (familiar vs. 1283 

unfamiliar faces) at around 270 ms post-stimulus for the highest coherence level (55%, 1284 

Supplementary Figure 4A). The onset of significant representation is slightly later for 1285 

lower coherence levels (e.g., 45%, Supplementary Figure 4A), which may suggest the 1286 

need for additional processing time required to evaluate the sensory evidence. 1287 

Interestingly, while the dynamics of familiarity level representations also showed gradual 1288 

accumulation of information (Supplementary Figure 4B), especially for the 45% and 1289 

55% coherence, the correlation values are generally higher for the model of familiarity 1290 

level compared to familiar-unfamiliar (c.f. Supplementary Figure 4A). This suggests that 1291 

there might be well-established neural mechanisms in the brain that discriminate levels 1292 

of familiarity so strongly that is not suppressed/dominated by the task (i.e. here familiar-1293 

unfamiliar) or the response of the participants. This could also be supported by the 1294 

observation that, as opposed to the familiar-unfamiliar representations, for which the 1295 

55% coherence provided the most information (at least in the stimulus-aligned analysis), 1296 
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the familiarity level representations provided their highest information in lower 1297 

coherence levels such as 45% (in both stimulus- and response-aligned analyses) and 1298 

30% or even 22% in the response-aligned analysis. Note that participants’ task and 1299 

response could have also potentially contributed to the analysis of face familiarity model 1300 

as those factors matched the familiar-unfamiliar model used in Supplementary Figure 1301 

4A. 1302 

   1303 

Supplementary Figure 4. Representations of face familiarity and categories revealed by RSA. Time 1304 
course of Spearman’s correlations between neural RDMs and model RDM (shown as insets) for (A) face 1305 
familiarity; and (B) face familiarity levels, famous, self and personally familiar faces, after partialling out 1306 
contributions from low-level features (see Methods). Each colored trace shows the correlations over time 1307 
for one phase coherence level. Thickened lines indicate time points where the correlation is significant 1308 
(sign permutation test, FDR-corrected significance level at p�<�0.05), and black horizontal dotted lines 1309 
indicate 0 correlation. The left panels show the results for stimulus-aligned analysis while the right panels 1310 
represent the results for response-aligned analysis. 1311 

 1312 

Apart from a small difference in absolute decoding rates, the dynamics of neural 1313 

representations were similar when not partialling out the low-level feature model RDM 1314 
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(Supplementary Figure 5), presenting the ramping up of information, with earlier and 1315 

most mounting trends for highest coherence levels (i.e. 45% and 55%). The similar 1316 

patterns of neural information decoding between the correlation patterns with and 1317 

without the low-level feature model suggest that low-level image statistics may only play 1318 

a minor role in driving the observed decoding analyses. Nonetheless, we partialled out 1319 

the low-level feature model in all the following RSA-based analyses to avoid their 1320 

potential contribution to the results. 1321 

 1322 

  1323 

Supplementary Figure 5. Representations of face familiarity and categories revealed by RSA. Time 1324 
course of Spearman’s correlations between neural RDMs and model RDM (shown as insets) for (A) face 1325 
familiarity; and (B) face familiarity levels, famous, self and personally familiar faces, before partialling out 1326 
contributions from low-level features (see Methods). Each colored trace shows the correlations over time 1327 
for one phase coherence level. Thickened lines indicate time points where the correlation is significant 1328 
(sign permutation test, FDR-corrected significance level at p�<�0.05), and black horizontal dotted lines 1329 
indicate 0 correlation. The left panels show the results for stimulus-aligned analysis while the right panels 1330 
represent the results for response-aligned analysis. Note that the correlation values are higher compared 1331 
to the results after partialling out contributions from low-level features (see Supplementary Figure 4). 1332 
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 1333 

 1334 

Supplementary Figure 6. Simulation of informational connectivity and its measurement using the 1335 
proposed connectivity analysis. Feed-forward and feedback refer to information flow from source to 1336 
destination and vice versa, respectively. For this stimulation, we initially generated three static 16*16 1337 
RDMs, one for source, one for destination and one for model, all similar to the familiar-unfamiliar RDMs 1338 
we presented throughout the manuscript (e.g. Figure 4A). Next, by adding varying levels of uniform noise, 1339 
in the range between 0 and 1, to the artificially generated source and destination static RDMs, we 1340 
generated temporally changing dynamics of information coding (i.e. measured as how much they 1341 
correlated with the desired model RDM) in those RDMs across time samples. The peak of information 1342 
coding in the destination RDM was designed to appear 300 samples after the coding in the source RDM, 1343 
so that it simulates flow of information in the feed-forward direction. Finally, we applied our connectivity 1344 
analysis to these data to check if it could detect the information flow from source to destination area. The 1345 
two top panels show the correlation between temporally varying simulated source and destination RDMs 1346 
and the model RDM. Third panel from top shows the amount of feed-forward and feedback information 1347 
and the bottom panel shows their difference as measured by our informational connectivity analysis. 1348 
Results show a clear feed-forward (from source to destination) information flow and almost zero 1349 
information flow in the feedback (from destination to source) direction, which peaks almost simultaneously 1350 
with the information peak in the destination area. This result suggests that our informational connectivity 1351 
detects the simulated connectivity in the correct direction and temporal dynamics. 1352 

 1353 

 1354 

 1355 

 1356 
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