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Abstract

Background: The high incidence of bacterial genes that confer resistance to last-resort
antibiotics, such as colistin caused by MCR genes, poses an unprecedented threat to our
civilization's health. To understand the spread, evolution, and distribution of such genes
among human populations, with the final goal of diminishing their occurrence in human
environments should be a priority. To tackle this problem, we investigated the distribution
and prevalence of potential mcr genes in the human gut microbiome we used a set of
bioinformatics tools to screen the Unified Human Gastrointestinal Genome (UHGG)
collection for the presence, synteny and phylogeny of putative mcr genes, and co-located

antibiotic resistance genes.

Results: A total of 2,079 ARGs were classified as different MCR in 2,046 Metagenome
assembled genomes (MAGs), present in 1,596 individuals from 41 countries, of which 215
MCRs were identified in plasmidial contigs. The genera that presented the largest number of
MCR-like genes were Suterella and Parasuterella, prevalent human gut bacteria of which
Suterella wadsworthensis is associated with autism. Other potential pathogens carrying
MCR genes belonged to the genus Vibrio, Escherichia and Campylobacter. Finally, we
identified a total of 22,746 ARGs belonging to 21 different classes in the same 2,046 MAGs,
suggesting multi-resistance potential in the corresponding bacterial strains, increasing the

concern of ARGs impact in the clinical settings.

Conclusion: This study uncovers the diversity of MCR-like genes in the human gut
microbiome. We showed the cosmopolitan distribution of these genes in individuals
worldwide and the co-presence of other antibiotic resistance genes, including
Extended-spectrum beta-lactamases (ESBL). Also, we described mcr-like genes fused to a
PAP2-like domain in S. wadsworthensis. Although these novel sequences increase our
knowledge about the diversity and evolution of mcr-like genes, their activity and a potential

colistin resistance in the corresponding strains has to be experimentally validated.
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Introduction

The prevalence of antibiotic resistance (AR) in clinical pathogens is a significant public
health concern, especially in low and middle-income countries (LMICs)'. The misuse of
antibiotics is the main driving factor for the rise of antibiotic-resistant bacteria. Still, its
importance is often underestimated in community infections, as hospitalized infections gain
the most attention?. Many previous studies have addressed the prevalence of AR in clinical

environments® 4 °

and, recently, to also understand AR prevalence in non-hospitalized
populations® 7. Most of these studies were conducted on cultivable clinical strains using
microbiological methods that involve cultivation and antibiogram tests. However, the

advances in high-throughput sequencing and bioinformatics enabled the study of

metagenomes and access to the so-called human resistome.

The resistome is defined as the collection of the antibiotic resistance genes (ARGs) in a
single microorganism, or in a microbial community, and has been investigated in different
environments, such as soils® or ocean®, and in host-associated microbiotas such as the
animal® or human' gut. Understanding the human resistome in hospitalized and
non-hospitalized populations are essential not only because the commensal microbiota can
host and transfer ARGs from and to pathogenic bacteria by horizontal gene transfer (HGT)"?,
e.g., during an infection. In addition, HGT can also play a role in ARG mobilization to
environmental communities by water and soil contamination' or the food we ingest' ' . The
gut microbiome is of particular interest in the investigation of ARGs in the human microbiota
since it is the largest and most diverse'® and highly exposed to and affected by the intake of
antibiotics. A potential influx of ARGs can occur via food intake and/or unhygienic conditions,
and the efflux of ARGs to wastewater plants enhances the spread to other environments. As
such, the human gut microbiome is thought to be responsible for transferring ARGs'" to the

environment to a large extent. Therefore, the search for ARGs in the human gut microbiome,
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which is mostly performed using metagenomics and culturomics approaches, is one of the
key fields to unravel the transfer of ARGs and the evolution of antibiotic resistance in
bacteria. While past metagenomic studies on ARGs relied on shorter contigs, often below 50
kilobases, new assembly methods that allow the recovery of nearly complete bacterial
genomes have been developed. Such methods have been applied to many studies
regarding the human gut microbiome and allowed the recovery of thousands of
metagenome-assembled genomes (MAGs) '*%. These datasets were recently combined
into one resource, the Human Gastrointestinal Bacteria Genome Collection (HGG)?', which
makes this human gut MAGs collection a valuable resource to screen for ARGs. The
advantage of MAGs versus traditional metagenome gene catalogs is manifold; the most
apparent is the high accuracy of phylogenetic affiliations and often complete gene clusters,
revealing gene synteny. Especially the latter is of high interest when studying ARGs since
the genetic environment often shows the genetic mobility of ARGs, e.g., their location on
genetic islands or plasmids®. Besides, it is also possible to investigate the presence of
multi-drug-resistant (MDR) bacteria by detecting more than one ARG in the same bacterial

genome or contig® when using the MAGs approach.

Recently, colistin (Polymyxin E) has gained attention as the last line of defense drug against
MDR bacteria, especially carbapenem-resistant gram-negative pathogens®. However,
reports of colistin-resistant bacteria are becoming more frequent®*, with its prevalence
reaching as high as approximately 20%—40% among Carbapenem-Resistant Klebsiella
pneumoniae (CRKP) in Italy and Greece®. In the past, the only known acquired resistance
mechanism for colistin was mediated by chromosomal mutations, mainly in genes regulating
the chemical additions of L-Ara4N and pEtN?. The first plasmid-mediated polymyxin
resistance gene, designated mobilized-colistin resistance-1 (mcr-1), was described for
Enterobacteriaceae in 2006%’. Later it was followed by the additional mcrs, mcr-22%, mcr-3%°,
mcr-4*°, mcr-5°" and, very recently, mcr-6 to mcr-10 *°¢. An intrinsic mcr-1-like homolog
from Moraxella osloensis was described, named icr-Mo®7, raising the discussion about

possible origins of MCRs in Moraxella. The spread of mcrs is of public health concern as it
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has been attributed to colistin's over-use, especially in livestock® and aquaculture®“°. To
unravel the presence of mcr-like genes we here screen the HGG for these genes and

describe co-occurrence with other ARGs.

Methods

Data retrieval

We retrieved ~171 million non-redundant protein sequences (clustered at 100%) from the
Unified Human Gastrointestinal Protein (UHGP) catalog?®' plus the according to the metadata
of the 286,997 corresponding metagenomic assembled genomes (MAGs). Also, we obtained
the redundant protein identifiers mapped to the non-redundant protein representative for
quantification. For the MAGs, including ARGs of interest, we retrieved the fasta sequences

and GFF annotation files.

Antibiotic resistance gene screening

To search for antibiotic-resistant genes in the human microbiome, we followed the
methodology used in our previous study with oceanic samples 8. In short, we used the
deepARG tool*' (model version 2), an in-depth learning approach developed to identify
ARGs at both reads or operational reading frames level, to search for ARGs in the
non-redundant proteins provided by the UHGP catalog. We then selected all proteins
classified as mobilized colistin resistance (MCR) in the deepARG results and explored the

prevalence of these putative ARGs in different countries and across diverse taxa.

Plasmid classification

To verify if the putative genes are of chromosomal or plasmid origin, we applied the
PlasFlow software** with the default threshold of 0.7. This software uses neural network
models trained on full genomes and plasmid sequences to predict the sequence origin with

96% accuracy.
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Phylogeny

Protein sequences classified as MCR present in contigs identified as plasmids were
clusterized at 97% of sequence similarity with the software cd-hit v4.7** to reduce the
number of protein sequences in the tree. The representative sequences of each cluster (and
reference sequences obtained at NCBI) were then submitted to NGPhylogeny.fr** where the
protein sequences were first aligned by Mafft*®. The informative phylogenetic regions were
selected by BMGE*, and the Maximum likelihood (ML) reconstruction was calculated by
PhyML 3.0*" with the model selection performed by SMS (AIC method)*, and 100 bootstrap

replicates to infer significance.

Data visualization

For data visualization, we used jupyter notebook and python 3, with libraries pandas and
matplotlib. For conserved domain visualization on unusual mcr-like sequences, we used

NCBI blast and CDD (https://blast.ncbi.nlm.nih.gov/Blast.cgi), running Blastp with default

parameters.

Results and Discussion

We identified a total of 2,079 ARGs classified as MCR (13 MCR-1, 1 MCR-1.2, 9 MCR-2,
634 MCR-3, 456 MCR-4, 966 MCR-5) in 2,046 genomes (166 from isolates and 1880 from
MAGs), present in 1,596 individuals (7.2% from the total 21,866 in the study) from 41
different countries. It is important to note the restricted classification of MCR in the deepARG
model 2, only assigning up to MCR-5. The highest relative number of mcr-like genes
(normalized by the total number of samples) was found in Haiti (>10%), followed by South
Korea, Norway, and India (Figure 1). However, it is important to observe that a quantitative
comparison is not possible due to the very unbalanced number of genomes from each

country, varying from less than 50 to more than 50,000.
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Figure 1: Relative prevalence of mcr-like genes (bubble area shows number of genes
divided by number of genomes from each country) in countries with at least 50 genomes in

the study.

The genus with the largest number of Mcr-like genes is Sutterella (667 genes), followed by
Parasutterella (338 genes) and the alphaproteobacterial genus CAG-495 (258 genes)
(Figure 2). The genus Sutterella is highly prevalent and, mainly represented by S.
wadsworthensis, abundant in the healthy human gut*® and not considered pathogenic in
general®®®'. However, a role in autism in children was suggested®?, and a higher prevalence
in pre diabetics was observed®, while the role of Sutterella therein remains unknown. Due to
isolations from several inflamed body parts, S. wadsworthensis might be considered an
opportunistic pathogen®. While some AR occurred in S. wadsworthensis, so far, there was
no report of Colistin resistance in the Sutterella genus. At least one study reported a S.
wadsworthensis strain as susceptible®, indicating that colistin susceptibility of Sutterella
strains from the human gut must be experimentally validated in the future. Similar to
Sutterella, Parasutterella species, while sometimes linked to diseases, appear to be ordinary
members of the human gut microbiota®, pathogenic only in rare cases. The unstudied
CAG-495 genus was reported to be abundant in patients diagnosed with
Vogt-Koyanagi-Harada disease®’.

The main potentially pathogenic species carrying Mcr-like genes belong to the genera Vibrio,
Escherichia (only a few pathogenic strains, mainly a commensal gut bacterium), and

Campylobacter. While the relative abundance of mcr-like genes in Escherichia is low (< 1%),
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that for Vibrio (>10%) and Campylobacter (>50%) is relatively high and warrants further
investigation if the human gut might contribute to spreading colistin-resistant strains of these

pathogens.

Number of ARGs
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Figure 2: Prevalence of Mcr-like genes in different genera (with 10 or more Mcr-like genes).

Many of the mcr-like gene sequences identified in this study are much larger than the
average MCR (~530 amino acids long), with some reaching up to 831 amino acids. We
found that there was an extra region encoding PAP2 and PAP2_like domains ( an example
can be found in Figure 3). In MCR-1 plasmids, PAP2 is encoded in a separated ORF

downstream mcr sequence®.
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Figure 3: Conserved domains on one MCR-4 like sequence from the Sutterella genus. This

analysis was done on CDD online from NCBI blast tool.

Regarding their genomic context, a total of 215 genes are present in contigs classified as
plasmid by PlasFlow, while 1239 were in contigs classified as chromosomes, and 625 genes

were in not classified contigs.

We also verified the existence of other ARGs detected by deepARG in genomes containing
Mcr-like sequences. We identified a total of 22,746 ARGs (from 21 ARG classes and some
unclassified) co-occurring with MCR-like sequences, being the most abundant classes the
multidrug resistance (10,008 ARGs), beta-lactam (2,271 ARGs) and glycopeptide (2,261
ARGs) (Figure 4). However, several of those sequences on the multidrug class are efflux
proteins, and as discussed in our previous study® , those are very hard to distinguish from

other transporters that are not involved in antibiotic resistance.
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Figure 4: Number of ARGs per class co-occurring in the same genome with Mcr-like genes.

Colistin is a last resource antibiotic used against MDR bacteria with extended-spectrum
beta-lactamases (ESBL), which makes the investigation of the presence of those ARGs in
genomes containing MCR-like sequences so important. Regarding the beta-lactam group,
we identified 1138 penA, a penicillin-binding protein 2 (PBP 2) associated with reduced
susceptibility to oral cephalosporins®. Besides, we also identified 673 pbp1-A and 129

pbp1-B that are also penicillin-binding proteins.
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Regarding the ESBL group, we identified 25 blaOXA (class D beta-lactamase capable of
destroying 3rd generation cephalosporins)®, 3 blaCTX-M (a plasmid-encoded ESBL found in
Enterobacteriaceae, likely acquired from the environmental bacteria Kluyvera spp. by
HGT®"), 2 blaTEM-153, 7 blaTLA-1 and 2 blaCFXA-6. The blaCTX-M enzymes have been
found associated with insertion elements (ISEcp1) and transposable elements (for example,
Tn402-like transposons). Many conjugative plasmids can transport these mobile elements,

and consequently, these enzymes became the most prevalent ESBL 2%,

The phylogenetic tree (Figure 5) shows the protein sequences classified as MCR-4 and
MCR-5 in Sutterella, Parasutterella, and CAG-521 together in a clade with support value 1,
and clinical MCR-5 sequences in an adjacent clade. The sequences used in the tree are
grouped with clinical MCRs instead of the outgroup eptA, providing additional evidence for

the annotation of those sequences.
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—l—jglP 053821788 1 MCR 5 Proteobacteria
*MvP 109545057 1 MCR 5 Escherichia coli
[GUT GENOMEQ72872 00416 MCR 5 Parasutterella plasmid
GUT GENOME099465 01262 MCR 5 Parasutterella plasmid

GUT GENOME205147 01392 MCR 5 Duodenibacillus plasmid

T GUT GENOMEO037029 01077 MCR 5 Sutterella plasmid
T |I—GUT GENOMEO035902 01453 MCR 5 Sutterella plasmid
*HGUT GENOME195540 02045 MCR 5 Sutterella plasmid

GUT GENOMEO058115 01343 MCR 5 CAG 521 plasmid
_m_|:'-—GUT GENOME?247400 01236 MCR 4 CAG 521 plasmid
GUT GENOMEO055824 01194 MCR 4 CAG 521 plasmid

0958 GUT GENOME213168 00510 MCR 4 Sutterella plasmid
GUT GENOMEQ005421 00952 MCR 3 Sutterella plasmid
GUT GENOMEO005820 00402 MCR 4 Sutterella plasmid
GUT GENOME279579 02203 MCR 4 Sutterella plasmid
GUT GENOME241557 01770 MCR 4 Sutterella plasmid

LR

Figure 5: Phylogenetic tree of MCR-like sequences. We used only sequences present in
contigs classified as plasmids and we clusterized similar sequences with CD-HIT on 97%
similarity. The phylogenetic informative regions were selected by BMGE and the Maximum
likelihood (ML) phylogenetic tree was calculated by PhyML 3.0 with the model selection
performed by SMS (AIC method) and 100 bootstrap replicates to infer significance. We

added clinical MCR sequences from NCBI to the analysis.
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Conclusions

This study uncovers the diversity of MCR-like genes in the human gut microbiome. We
showed the cosmopolitan distribution of these genes in patients worldwide and the
co-presence of other antibiotic resistance genes, including ESBLs. Also, we described
mcr-like genes encoded in the same ORF with PAP2-like in bacteria from the genus
Sutterella. Although these novel sequences increase our knowledge about the diversity and

evolution of mcr-like genes, their activity has to be experimentally validated in the future.

Data and Code availability

All the code used in this study is available at
https://github.com/rcuadrat/human_microbiome mcr and all the data is available at Zenodo
(https://doi.org/10.5281/zen0d0.4399676).
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WP 077248208 1 MCR 1 Salmonella enterica
WP 096807442 1 MCR 1 Moraxella sp MSG13 C03

0.548

GUT GENOMEO007189 02307 MCR 5 Dechloromonas plasmid
GUT GENOME095248 01378 MCR 5 Acidovorax D plasmid

WP 148044478 1 MCR 5 hospital metagenome
T IWP 053821788 1 MCR 5 Proteobacteria

*®vP 109545057 1 MCR 5 Escherichia coli

[GUT GENOMEOQ072872 00416 MCR 5 Parasutterella plasmid
GUT GENOME099465 01262 MCR 5 Parasutterella plasmid

GUT GENOMEZ205147 01392 MCR 5 Duodenibacillus plasmid

GUT GENOME037029 01077 MCR 5 Sutterella plasmid
—'—H—GUT GENOME035902 01453 MCR 5 Sutterella plasmid
“TGUT GENOME195540 02045 MCR 5 Sutterella plasmid
T GUT GENOMEO58115 01343 MCR 5 CAG 521 plasmid
—m—|:r GUT GENOME247400 01236 MCR 4 CAG 521 plasmid
GUT GENOMEO055824 01194 MCR 4 CAG 521 plasmid

GUT GENOME213168 00510 MCR 4 Sutterella plasmid

GUT GENOMEOQ05421 00952 MCR 3 Sutterella plasmid
GUT GENOMEOQ05820 00402 MCR 4 Sutterella plasmid

GUT GENOME279579 02203 MCR 4 Sutterella plasmid
GUT GENOME241557 01770 MCR 4 Sutterella plasmid
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