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Abstract

The cell is compartmentalised into complex micro-environments allowing an ar-

ray of specialised biological processes to be carried out in synchrony. Determining a

protein's sub-cellular localisation to one or more of these compartments can therefore

be a �rst step in determining its function. High-throughput and high-accuracy mass

spectrometry-based sub-cellular proteomic methods can now shed light on the localisa-

tion of thousands of proteins at once. Machine learning algorithms are then typically

employed to make protein-organelle assignments. However, these algorithms are lim-

ited by insu�cient and incomplete annotation. We propose a semi-supervised Bayesian

approach to novelty detection, allowing the discovery of additional, previously unanno-

tated sub-cellular niches. Inference in our model is performed in a Bayesian framework,

allowing us to quantify uncertainty in the allocation of proteins to new sub-cellular

niches, as well as in the number of newly discovered compartments. We apply our

approach across 10 mass spectrometry based spatial proteomic datasets, representing a
diverse range of experimental protocols. Application of our approach to hyperLOPIT

datasets validates its utility by recovering enrichment with chromatin-associated pro-

teins without annotation and uncovers sub-nuclear compartmentalisation which was

not identi�ed in the original analysis. Moreover, using sub-cellular proteomics data

from Saccharomyces cerevisiae, we uncover a novel group of proteins tra�cking from

the ER to the early Golgi apparatus. Overall, we demonstrate the potential for novelty

detection to yield biologically relevant niches that are missed by current approaches.
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1 Introduction

Aberrant protein sub-cellular localisation has been implicated in numerous diseases, includ-
ing cancers (Kau et al., 2004), obesity (Siljee et al., 2018), and multiple others (Laurila and
Vihinen, 2009). Furthermore, recent estimates suggest that up to 50% of proteins reside
in multiple locations with potentially di�erent functions in each sub-cellular niche (Christo-
forou et al., 2016; Thul et al., 2017). Characterising the sub-cellular localisation of proteins is
therefore of critical importance in order to understand the pathobiological mechanisms and
aetiology of many diseases. Proteins are compartmentalised into sub-cellular niches, includ-
ing organelles, sub-cellular structures, liquid phase droplets and protein complexes. These
compartments ensure that the biochemical conditions for proteins to function correctly are
met, and that they are in the proximity of interaction partners (Gibson, 2009). A common
approach to map the global sub-cellular localisation of proteins is to couple gentle cell lysis
with high-accuracy mass spectrometry (MS) (Christoforou et al., 2016; Mulvey et al., 2017;
Geladaki et al., 2019; Orre et al., 2019). These methods are designed to yield fractions di�er-
entially enriched in the sub-cellular compartments rather than purifying the compartments
into individual fractions. As such, these spatial proteomics approaches aim to interrogate
the greatest number of sub-cellular niches possible by relying upon rigorous data analysis
and interpretation (Gatto et al., 2010, 2014a).

Current computational approaches in MS-based spatial proteomics utilise machine learn-
ing algorithms to make protein-organelle assignments (see Gatto et al. (2014a) for an overview).
Within this framework, novelty detection, the process of identifying di�erences between
testing and training data, has multiple bene�ts. For model organisms with well annotated
proteomes, novelty detection can potentially uncover groups of proteins with shared sub-
cellular niches not described by the training data. Novelty detection can also prove useful
in validating experimental design, either by demonstrating that contaminants have been
removed or that increased resolution of organelle classes has been achieved by the experi-
mental approach. For most non-model organisms, we have little a priori knowledge of their
sub-cellular proteome organisation, making it challenging to curate the marker set (training
dataset) from the literature (Barylyuk et al., 2020). In these cases, novelty detection can
assist in annotating the spatial proteome. Crucially, if a dataset is insu�ciently annotated,
i.e sub-cellular niches detectable in the experimental data are missing from the marker set,
then this leads to the classi�er making erroneous assignments, resulting in in�ated false dis-
covery rate (FDR) and uncertainty estimates (where available). Thus, novelty detection is
a useful feature for any classi�er, even if novel niche detection is not a primary aim.

Previous e�orts to discover novel niches within existing sub-cellular proteomics datasets
have proved valuable. Breckels et al. (2013) presented a phenotype discovery algorithm
called phenoDisco to detect novel sub-cellular niches and alleviate the issue of undiscovered
phenotypes. The algorithm uses an iterative procedure and the Bayesian Information Cri-
terion (BIC) (Schwarz et al., 1978) is employed to determine the number of newly detected
phenotypes. Afterwards, the dataset can be re-annotated and a classi�er employed to assign
proteins to organelles, including those that have been newly detected. Breckels et al. (2013)
applied their method on several datasets and discovered new organelle classes in Arabidopsis
(Dunkley et al., 2006) and Drosophila (Tan et al., 2009). This approach later successfully
identi�ed the trans-Golgi network (TGN) in Arabidopsis roots (Groen et al., 2014).
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Recent work has demonstrated the importance of uncertainty quanti�cation in spatial
proteomics (Crook et al., 2018, 2019a,b). Crook et al. (2018) proposed a generative classi�-
cation model and took a Bayesian approach to spatial proteomics data analysis by computing
probability distributions of protein-organelle assignments using Markov-chain Monte-Carlo
(MCMC). These probabilities were then used as the basis for organelle allocations, as well as
to quantify the uncertainty in these allocations. On the basis that some proteins cannot be
well described by any of the annotated sub-cellular niches, a multivariate Student's T distri-
bution was included in the model to enable outlier detection. The proposed T-Augmented
Gaussian Mixture (TAGM) model was shown to achieve state-of-the-art predictive perfor-
mance against other commonly used machine learning algorithms (Crook et al., 2018). Fur-
thermore, the model has been successfully applied to reveal unrivalled insight into the spatial
organisation of Toxoplasma gondii (Barylyuk et al., 2020) and identify cargo of the Golgins
of the trans-Golgi network (Shin et al., 2019).

Here, we propose an extension to TAGM to allow simultaneous protein-organelle assign-
ments and novelty detection. One assumption of the existing TAGM model is that the
number of sub-cellular niches is known. Here, we design a novelty detection algorithm based
on allowing an unknown number of additional sub-cellular niches, as well as quantifying
uncertainty in this number.

Quantifying uncertainty in the number of clusters in a Bayesian mixture model is chal-
lenging and many approaches have been proposed in the literature (see for example Ferguson
(1974); Antoniak (1974); Richardson and Green (1997) and the appendix for further details).
Here, we make use of asymptotic results in Bayesian analysis of mixture models (Rousseau
and Mengersen, 2011). The principle of over�tted mixtures allows us to specify a (possibly
large) maximum number of clusters. As shown in Rousseau and Mengersen (2011) these
components empty if they are not supported by the data, allowing the number of clusters
to be inferred. Kirk et al. (2012) previously made use of this approach in the Bayesian in-
tegrative modelling of multiple genomic datasets. In our application, some of the organelles
may be annotated with known marker proteins and this places a lower bound on the number
of sub-cellular niches. Bringing these ideas together results in a semi-supervised Bayesian
approach, which we refer to as Novelty TAGM. Table 1 summarises the di�erences between
the current available machine-learning methods for spatial proteomics.

We apply Novelty TAGM to 10 spatial proteomic datasets across a diverse range of
protocols, including hyperLOPIT (Christoforou et al., 2016; Mulvey et al., 2017), LOPIT-
DC (Geladaki et al., 2019), Dynamic Organellar Maps (DOM) (Itzhak et al., 2016) and
spatial-temporal methods (Beltran et al., 2016). Application of Novelty TAGM to each
dataset reveals additional biologically relevant compartments. Notably, we detect 4 sub-
nuclear compartments in the the U-2 OS hyperLOPIT dataset: the nucleolus, nucleoplasm,
chromatin-associated, and the nuclear membrane. In addition, an endosomal compartment
is robustly identi�ed across hyperLOPIT and LOPIT-DC datasets. Finally, we also uncover
collections of proteins with previously uncharacterised localisation patterns; for example,
vesicle proteins tra�cking from the ER to the early Golgi in Saccharomyces cerevisiae.
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Figure 1: An overview of novelty detection in subcellular proteomics.

2 Methods

2.1 Datasets

We provide a brief description of the datasets used in this manuscript. We analyse hy-
perLOPIT data, in which sub-cellular fractionation is performed using density-gradient
centrifugation (Dunkley et al., 2004, 2006; Mulvey et al., 2017), on pluripotent mESCs
(E14TG2a) (Christoforou et al., 2016), human bone osteosarcoma (U-2 OS) cells (Thul
et al., 2017; Geladaki et al., 2019), and S. cerevisiae (bakers' yeast) cells (Nightingale et al.,
2019). The mESC dataset combines two 10-plex biological replicates and quantitative infor-
mation on 5032 proteins. The U-2 OS dataset combines three 20-plex biological replicates
and provides information on 4883 proteins. The yeast dataset represents four 10-plex bio-
logical replicate experiments performed on S. cerevisiae cultured to early-mid exponential
phase. This dataset contains quantitative information for 2846 proteins that were common
across all replicates. Tandem Mass Tag (TMT) (Thompson et al., 2003) labelling was used
in all hyperLOPIT experiments with LC-SPS-MS3 used for high accuracy quantitation (Ting
et al., 2011; McAlister et al., 2014). Beltran et al. (2016) integrated a temporal component
to the LOPIT protocol. They analysed HCMV-infected primary �broblast cells over 5 days,
producing control and infected maps every 24 hours. We analyse the control and infected
maps 24 hours post-infection, providing information on 2220 and 2196 proteins respectively.
In a comparison with phenoDisco, we apply Novelty TAGM to a dataset acquired using
LOPIT-based fractionation and 8-plex iTRAQ labelling on the HEK-293 human embryonic
kidney cell line, quantifying 1371 proteins (Breckels et al., 2013).

Our approach is not limited to spatial proteomics data where the sub-cellular fraction-
ation is performed using density gradients. We demonstrate this through the analysis of
DOM datasets on HeLa cells and mouse primary neurons (Itzhak et al., 2016, 2017), which
quantify 3766 and 8985 proteins respectively. These approaches used SILAC quantitation
with di�erential centrifugation-based fractionation. We analyse 6 replicates from the HeLa
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MS-based Spatial Proteomics Computational Methods for Prediction and Novelty Detection

Method Localisation
prediction

Uncertainty
in protein
localisation

Outlier
detection

Novelty de-
tection

Uncertainty
in number
of novel
phenotypes

Uncertainty
in alloca-
tion to new
phenotypes

Integrative

Supervised Ma-
chine Learning
(as reviewed
in Gatto et al.

(2014a))

X 7 7 7 7 7 7

Correlation
Pro�ling (Foster
et al., 2006;
Krahmer et al.,
2018)

X 7 7 7 7 7 7

Transfer Learn-
ing (Breckels
et al., 2016)

X 7 7 7 7 7 X

Mclust (as used
in Orre et al.

(2019))

7 7 X X 7 7 7

PhenoDisco

(Breckels et al.,
2013)

7 7 X X 7 7 7

TAGM (Crook
et al., 2018)

X X X 7 7 7 7

Novelty
TAGM (This
manuscript)

X X X X X X 7

Table 1: Examples of computational methods for spatial proteomics datasets for prediction
and novelty detection.

cell line analyses in Itzhak et al. (2016) and 3 replicates from the mouse primary neuron
experiments in Itzhak et al. (2017). Hirst et al. (2018) also used the DOM protocol coupled
with CRISPR-CAS9 knockouts in order to explore the functional role of AP-5. We analyse
the control map from this experiment. Finally, we consider the U-2 OS data which were
acquired using the LOPIT-DC protocol (Geladaki et al., 2019) and quanti�ed 6837 proteins
across 3 biological replicates. In favour of brevity, we do not consider protein correlation
pro�ling (PCP) based spatial proteomics datasets in this manuscript, though our method
also applies to such data (Foster et al., 2006; Kristensen et al., 2012; Kristensen and Foster,
2014) and other sub-cellular proteomics methods which utilised cellular fractionation (Orre
et al., 2019).

2.2 Model

2.2.1 Spatial proteomics mixture model

In this section, we brie�y review the TAGM model proposed by Crook et al. (2018). Let
N denote the number of observed protein pro�les each of length L, corresponding to the
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number of quanti�ed fractions. The quantitative pro�le for the i-th protein is denoted by
xi = [x1i, . . . , xLi]. In the original formulation of the model it is supposed that there are
K known sub-cellular compartments to which each protein could be localised (e.g. cytosol,
endoplasmic reticulum, mitochondria, . . . ). For simplicity of exposition, we refer to these K
sub-cellular compartments as components, and introduce component labels zi, so that zi = k
if the i-th protein localises to the k-th component. To �x notation, we denote by XL the set
of proteins whose component labels are known, and by XU the set of unlabelled proteins. If
protein i is in XU , we seek to evaluate the probability that zi = k for each k = 1, . . . , K;
that is, for each unlabelled protein, we seek the probability of belonging to each component
(given a model and the observed data).

The distribution of quantitative pro�les associated with each protein that localises to
the k-th component is modelled as multivariate normal with mean vector µk and covariance
matrix Σk. However, many proteins are dispersed and do not �t this assumption. To model
these "outliers", Crook et al. (2018) introduced a further indicator variable φ. Each protein
xi is then described by an additional variable φi, with φi = 1 indicating that protein xi
belongs to an organelle-derived component and φi = 0 indicating that protein xi is not
well described by these known components. This outlier component is then modelled as a
multivariate T distribution with degrees of freedom κ, mean vector M, and scale matrix V .
Thus the model can be written as:

xi|zi = k, φi ∼ N (µk,Σk)
φiT (κ,M , V )1−φi . (1)

Let f(x|µ,Σ) denote the density of the multivariate normal with mean vector µ and
covariance matrix Σ evaluated at x, and similarly let g(x|κ,M,V) denote the density of the
multivariate T-distribution. For any i, the prior probability of the i-th protein localising to
the k-th component is denoted by p(zi = k) = πk. Letting θ = {µk,Σk}Kk=1 denote the set
of all component mean and covariance parameters, and π = {πk}Kk=1 denote the set of all
mixture weights, it follows that:

p(xi|θ,π, φi, κ,M, V ) =
K∑
k=1

πk
(
f(xi|µk,Σk)

φig(xi|κ,M , V )1−φi
)
. (2)

For any i, we set the prior probability of the i-th protein belonging to the outlier com-
ponent as p(φi = 0) = ε, where ε is a parameter that we infer.

Equation (2) can then be rewritten in the following way:

p(xi|θ,π, κ, ε,M, V ) =
K∑
k=1

πk ((1− ε)(f(xi|µk,Σk) + εg(xi|κ,M , V )) , (3)

As in Crook et al. (2018), we �x κ = 4, M as the global empirical mean, and V as
half the global empirical variance of the data, including labelled and unlabelled proteins.
To extend this model to permit novelty detection, we specify the maximum number of
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components Kmax > K. Our proposed model then allows up to Knovelty = Kmax −K ≥ 0,
new phenotypes to be detected. Equation 3 can then be written as

p(xi|θ,π, κ, ε,M, V ) =
K∑
k=1

πk ((1− ε)(f(xi|µk,Σk) + εg(xi|κ,M , V ))

+
Kmax∑
k=K+1

πk ((1− ε)(f(xi|µk,Σk) + εg(xi|κ,M , V )) ,

(4)

where, in the �rst summation, the K components correspond to known sub-cellular niches
and the second summation corresponds to the new phenotypes to be inferred. The parameter
sets are then augmented to include these possibly new components; that is, we rede�ne
θ = {µk,Σk}Kmaxk=1 to denote the set of all component mean and covariance parameters, and
π = {πk}Kmaxk=1 denotes the set of all mixture weights. Relying on the principle of over-�tted
mixtures (Rousseau and Mengersen, 2011), components that are not supported by the data
are left empty with no proteins allocated to them. We �nd setting Knovety = 10 is ample to
detect new phenotypes. To complete our Bayesian model, we need to specify priors. Detailed
prior speci�cations and sensitivity analysis are provided in the supplement (section 7.9).

2.2.2 Bayesian inference and convergence

We perform Bayesian inference using Markov-chain Monte-Carlo methods. We make modi-
�cations to the collapsed Gibbs sampler approach used previously in Crook et al. (2018) to
allow inference to be performed for the parameters of the novel components (see supplement
for full details). Since the number of occupied components at each iteration is random, we
monitor this quantity as a convergence diagnostic.

2.2.3 Visualising patterns in uncertainty

To simultaneously visualise the uncertainty in the number of newly discovered phenotypes,
as well as the uncertainty in the allocation of proteins to new components, we use the so-
called posterior similarity matrix (PSM) (Fritsch and Ickstadt, 2009). The PSM is an N×N
matrix where the (i, j)th entry is the posterior probability that protein i and protein j reside
in the same component. Throughout we use a heatmap representation of this quantity. The
PSM is summarised into a clustering by maximising the posterior expected adjusted Rand
index (see appendix for details; (Fritsch and Ickstadt, 2009)). Formulating inference around
the PSM also avoids some technical statistical challenges, which are discussed in detail in
the appendix.

2.2.4 Uncertainty quanti�cation

We may be interested in quantifying the uncertainty in whether a protein belongs to a new
sub-cellular component. Indeed, it is important to distinguish whether a protein belongs to a
new phenotype or if we simply have large uncertainty about its localisation. The probability
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that protein i belongs to a new component is computed from the following equation:

P (zi ∈ {K + 1, ..., Kmax}|X) = 1− P (zi ∈ {1, ..., K}|X), (5)

(6)

which we approximate by the following Monte-Carlo average:

1− 1

T

T∑
t=1

P (z
(t)
i ∈ {1, ..., K}|X) = 1− 1

T

T∑
t=1

K∑
k=1

P (z
(t)
i = k|X), (7)

where T is the number of Monte-Carlo iterations. Throughout, we refer to equation 7 as the
discovery probability.

2.2.5 Applying the model in practice

Applying Novelty TAGM to spatial proteomics datasets consists of several steps. After
having run the algorithm on a dataset and assessing convergence, we proceed to explore the
ouput of the method. We explore putative phenotypes, which we de�ne as newly discovered
clusters with at least 1 protein with discovery probability greater than 0.95.

2.3 Validating computational approaches

In a supervised framework the performance of computational methods can be assessed by us-
ing the training data, where a proportion of the training data is withheld from the classi�er to
be used for the assessment of predictive performance. In an unsupervised or semi-supervised
framework we cannot validate in this way, since there is no "ground truth" with which to
compare. Thus, we propose several approaches, using external information, for validation of
our method.

2.3.1 Arti�cial masking of annotations to recover experimental design

Removing the labels from an entire component and assessing the ability of our method to
rediscover these labels is one form of validation. We consider this approach for several of
the datasets; in particular, chromatin enrichment was performed in two of the hyperLOPIT
experiments, where the intention was to increase the resolution between chromatin and non-
chromatin associated nuclear proteins (Christoforou et al., 2016; Mulvey et al., 2017; Thul
et al., 2017). As validation of our method we hide these labels and seek to rediscover them
in an unbiased fashion.

2.3.2 The Human Protein Atlas

A further approach to validating our method is to use additional spatial proteomic infor-
mation. The Human Protein Atlas (HPA) (Thul et al., 2017; Sullivan et al., 2018) provides
confocal microscopy information on thousands of proteins, using validated antibodies. When
we consider a dataset for which there is HPA annotation, we use this data to validate the
novel phenotypes for biological relevance.
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2.3.3 Gene Ontology (GO) term enrichment

Throughout, we perform GO enrichment analysis with FDR control performed according to
the Benjamini-Höchberg procedure (Benjamini and Hochberg, 1995; Ashburner et al., 2000;
Yu et al., 2012). The proteins in each novel putative phenotype are assessed in turn for
enriched Cellular Component terms, against the background of all quanti�ed proteins in
that experiment.

2.3.4 Robustness across multiple MS-based spatial proteomics datasets

On occasion some cell lines have been analysed using multiple spatial proteomics technologies
(Geladaki et al., 2019). In these cases, the putative phenotypes discovered by Novelty TAGM
are compared directly. If the same phenotype is discovered in di�erent proteomic datasets
we consider this as robust evidence for su�cient resolution of that phenotype.
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3 Results

Motivated by the need for novelty detection methods which also quantify the uncertainty
in the number of clusters and the assignments of proteins to each cluster, we developed
Novelty TAGM (see methods). This approach extends our previous TAGM model (Crook
et al., 2018) to enable the detection of novel putative phenotypes, which we de�ne as newly
discovered clusters with at least 1 protein with discovery probability greater than 0.95. Our
proposed methodology allows us to interrogate individual proteins to assess whether they
belong to a newly discovered phenotype. Through the posterior similarity matrix (PSM) we
can visualise the global patterns in the uncertainty in phenotype discovery (see supplement).
We summarise this posterior similarity matrix into a single clustering by maximising the
posterior expected adjusted rand index (see methods). This methodology infers the number
of clusters supported by the data, in contrast to many existing approaches which require
speci�cation of the number of clusters (such as K-means or Mclust (Fraley et al., 2012)). To
demonstrate the value of this approach, we applied Novelty TAGM to a diverse set of spatial
proteomics datasets.

3.1 Validating experimental design in hyperLOPIT

Initially, we validated Novelty TAGM in a setting where we have a strong a priori expectation
for the presence of an unannotated niche. For this we used a human bone osteosarcoma
cell (U-2 OS) hyperLOPIT dataset (Thul et al., 2017) and an mESC hyperLOPIT dataset
(Christoforou et al., 2016). These experimental protocols used a chromatin enrichment step
to resolve nuclear chromatin-associated proteins from nuclear proteins not associated with
chromatin. Removing the nuclear, chromatin and ribosomal annotations from the datasets,
we test the ability of Novelty TAGM to recover them.

3.1.1 Human bone osteosarcoma (U-2 OS) cells

For the U-2 OS dataset, Novelty TAGM reveals 9 putative phenotypes, which we refer to as
phenotype 1, phenotype 2, etc... These phenotypes, along with the uncertainty associated
with them, are visualised in �gure 2. We consider the HPA confocal microscopy data for
validation (Thul et al., 2017; Sullivan et al., 2018). The HPA provides information on
the same cell line and therefore constitutes an excellent complementary resource. This
hyperLOPIT dataset was already shown to be in strong agreement with the microscopy
data (Thul et al., 2017; Geladaki et al., 2019). Proteins in phenotypes 3, 4, 5 and 8 have
a nucleus-related annotation as their most frequent HPA annotation, as well as di�erential
enrichment of nucleus-related GO terms (�gure 2). Phenotype 3 validates the chromatin
enrichment preparation (�gure 2 panel (c)) and phenotype 4 reveals a nucleoli cluster, where
nucleoli and nucleoli/nucleus are the 2nd and 3rd most frequent HPA annotations for proteins
belonging to this phenotype. For phenotype 5, the most associated term is nucleoplasm from
the HPA data and this is further supported by GO analysis (�gure 2 panel (c)). Phenotype 8
demonstrates further sub-nuclear resolution and has nuclear membrane as its most frequent
HPA annotation and has corresponding enriched GO terms (�gure 2 panel (c)). In addition,
phenotypes 1 and 2 are enriched for ribosomes and endosomes respectively.
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3.1.2 Pluripotent mESCs (E14TG2a)

In the case of the mESC dataset, Novelty TAGM reveals 8 new putative phenotypes. The
chromatin enrichment preparation is also validated in these cells, as well as new phenotypes
with additional annotations such nucleolus and centrosome (see supplement 7.1). We also
used this dataset to explore how our results are impacted if we reduce the number of markers
from other niches (see supplement 7.10).
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Figure 2: (a) PCA plot of the hyperLOPIT U-2 OS cancer cell line data. Points are scaled
according to the discovery probability with larger points indicating greater discovery prob-
ability. (b) Heatmaps of the posterior similarity matrix derived from U-2 OS cell line data
demonstrating the uncertainty in the clustering structure of the data. We have only plot-
ted the proteins which have greater than 0.99 probability of belonging to a new phenotype
and probability of being an outlier less than 0.5 for the U-2 OS dataset to reduce the num-
ber of visualised proteins. (c) Tile plot of discovered phenotypes against GO CC terms to
demonstrate over-representation, where the colour intensity is the -log10 of the p-value.
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3.2 Uncovering additional sub-cellular structures

Having validated the ability of Novelty TAGM to recover known experimental design, as
well as uncover additional sub-cellular niches resolved in the data, we turn to apply Novelty
TAGM to several additional datasets.

3.2.1 U-2 OS cell line revisited

We �rst consider the LOPIT-DC dataset on the U-2 OS cell line (Geladaki et al., 2019).
Again, we removed the nuclear, proteasomal, and ribosomal annotations. Novelty TAGM
reveals 10 putative phenotypes (�gure 3).

In a similar vein to the analysis performed on the hyperLOPIT U-2 OS dataset, we ini-
tially use the available HPA data to validate these clusters (Thul et al., 2017). Phenotypes
3, 5, 7 and 9 display nucleus-associated terms as their most frequent HPA annotation. Clear
di�erential enrichment of phenotypes with GO Cellular Component terms is evident from
�gure 3 panel (e). This analysis reveals nucleolus, ribosome, proteasome phenotypes. Fur-
thermore, a chromatin phenotype is also resolved. Notably, this is the �rst evidence for
sub-nuclear resolution in this LOPIT-DC dataset. Phenotype 6 represents a cluster with
mixed plasma membrane and extracellular matrix annotations and this is supported by HPA
annotation with vesicles, cytosol, and plasma membrane being the top three annotations. An
extracellular matrix-related phenotype was not previously known in these data and might
correspond to exocytic vesicles containing ECM proteins. Furthermore, phenotype 8 is sig-
ni�cantly enriched for endosomes, again a novel annotation for this data. In addition, 107
of the proteins in this phenotype are also localised to the endosome-enriched phenotype pre-
sented in the U-2 OS hyperLOPIT dataset (section 3.1.1). Thus, we robustly identify new
phenotypes across di�erent spatial proteomics protocols. Hence, we have presented strong
evidence for additional annotations in this dataset, beyond the original analysis of the data
(Geladaki et al., 2019). In particular, although a separate chromatin enrichment preparation
was not included in the U-2 OS LOPIT-DC analysis and the original authors did not iden-
tify su�cient resolution between the nucleus and chromatin clusters in this dataset, Novelty
TAGM could, in fact, reveal a chromatin-associated phenotype in the U-2 OS LOPIT-DC
data. In addition, we have joint evidence for an endosomal cluster in both the LOPIT-
DC and hyperLOPIT datasets. Finally, through the discovery probability and by using the
PSMs we have quanti�ed uncertainty in these proposed phenotypes, enabling more rigorous
interrogation of these datasets.

3.2.2 Saccharomyces cerevisiae

Novelty TAGM uncovers 8 putative phenotypes in the yeast hyperLOPIT data (Nightingale
et al., 2019). Four of these phenotypes have no signi�cant over-represented annotations.
Figure 3 panel (f) demonstrates that the remaining four phenotypes are di�erentially enriched
for GO terms. Firstly, a mixed cell periphery and fungal-type vacuole phenotype is uncovered
along with a kinetochore phenotype, and a cytoskeleton phenotype. Phenotype 8 represents
a joint Golgi and ER cluster with several enriched GO terms. Indeed, most of the proteins in
this phenotype have roles in the early secretory pathway that involve either transport from
the ER to the early Golgi apparatus, or retrograde transport from the Golgi to the ER (Bue
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et al., 2006; Inadome et al., 2005; Otte et al., 2001; Yofe et al., 2016), (also reviewed in Delic
et al. (2013)). To be precise, 11 out of the total 20 proteins in this cluster are annotated
as core components of COPII vesicles and 6 associated with COPI vesicles. The protein
Ksh1p (Q8TGJ3) is further suggested through homology with higher organisms to be part
of the early secretory pathway (Wendler et al., 2010). The proteins Scw4p (P53334), Cts1p
(P29029) and Scw10p (Q04951) (Cappellaro et al., 1998), as well as Pst1p (Q12355)(Pardo
et al., 2004), and Cwp1p (P28319) (Yin et al., 2005), however, are annotated in the literature
as localising to the cell wall or extracellular region. It is therefore possible that their predicted
co-localisation with secretory pathway proteins observed here re�ects a proportion of their
lifecycle being synthesised or spent tra�cking through the secretory pathway. The protein
Ssp120p (P39931) is of unknown function and has been shown to localise in high throughput
studies to the vacuole (Yofe et al., 2016) and to the cytoplasm in a punctate pattern (Huh
et al., 2003). The localisation observed here may suggest that it is therefore either part of the
secretory pathway, or tra�cks through the secretory organelles for secretion or to become a
constituent of the cell wall.

3.2.3 Fibroblast cells

We also uncover additional annotations for the HCMV infected and the control �broblast
spatial proteomics datasets (Beltran et al., 2016); such as, sub-mitochondrial annotations,
as well as resolution of the small and large ribosomal sub-units. These annotations were
overlooked in the original analysis (Beltran et al., 2016) and further details can be found in
the supplement 7.2.
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Figure 3: (a, c) PCA plots of the LOPIT-DC U-2 OS data and the hyperLOPIT yeast
data. The points are scaled according to the discovery probability. (b, d) Heatmaps of the
posterior similarity matrix derived from the U-2 OS and yeast datasets demonstrating the
uncertainty in the clustering structure of the data. We have only plotted the proteins which
have greater than 0.99 probability of belonging to a new phenotype and probability of being
an outlier less than 0.95 (10−5 for LOPIT-DC to reduce the number of visualised proteins).
(e, f) Tile plots of phenotypes against GO CC terms where the colour intensity is the -log10

of the p-value.
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3.3 Re�ning annotation in organellar maps

The Dynamic Organellar Maps (DOM) protocol was developed as a faster method for MS-
based spatial proteomic mapping, albeit at the cost of lower organelle resolution (Itzhak
et al., 2016; Gatto et al., 2019). The three datasets analysed here are two HeLa cell lines
(Itzhak et al., 2016; Hirst et al., 2018) and a mouse primary neuron dataset (Itzhak et al.,
2017). All three of these datasets have been annotated with a class called "large protein
complexes�. This class contains a mixture of cytosolic, ribosomal, proteasomal and nuclear
sub-compartments that pellet during the centrifugation step used to capture this mixed
fraction (Itzhak et al., 2016). We apply Novelty TAGM to these data and remove this "large
protein complexes" class, to derive more precise annotations for these datasets.

3.3.1 HeLa cells (Itzhak et. al 2016)

The HeLa dataset of Itzhak et al. (2016) has 3 additional phenotypes uncovered by Novelty
TAGM. Figure 4 panel c shows a mitochondrial membrane phenotype, distinct from the
already annotated mitochondrial class. Phenotype 2 represents a mixed cluster with nucleus-,
ribosome- and cytosol-related enriched terms. The �nal phenotype is enriched for chromatin
and chromosome, suggesting sub-nuclear resolution. Furthermore, as a result of quantifying
uncertainty, we can see that there are potentially more sub-cellular structures in this data
(�gure 4). However, the uncertainty is too great to support these phenotypes.

3.3.2 Mouse primary neurons and HeLa cells (Hirst et. al 2018)

Application of Novelty TAGM to mouse primary neuron data (Itzhak et al., 2017) and
another HeLa dataset (Hirst et al., 2018) yields further annotations; such as, ribosomal,
cytosolic and extracellular annotations (see supplement 7.3).
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Figure 4: (a) PCA plots of the HeLa data. The pointers are scaled according to their
discovery probability. (b) Heatmaps of the HeLa Itzhak data. Only the proteins with
discovery probability greater than 0.99 and outlier probability less than 0.95 are shown. The
heatmaps demonstrate the uncertainty in the clustering structure present in the data. (c)
Tile plot of phenotypes against GO CC terms where the colour intensity is the -log10 of the
p-value.
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4 Comparison between Novelty TAGM and phenoDisco

Next, we compare an already available novelty detection algorithm, phenoDisco, with Nov-
elty TAGM. Despite both methods performing novelty detection, the algorithms are quite
distinct. The �rst major di�erence is that Novelty TAGM is a Bayesian method that per-
forms uncertainty quanti�cation. Novelty TAGM quanti�es the uncertainty in both the
number of newly identi�ed phenotypes and whether individual proteins should belong to a
new phenotype. On the other hand, phenoDisco uses the Bayesian Information Criterion
(BIC) to select just a single clustering, without taking into account the uncertainty in the
number of phenotypes, and does not provide an estimate of individual protein-to-phenotype
allocation uncertainty. Another di�erence is the input to both methods; Novelty TAGM
uses the data directly, whereas phenoDisco takes the top principal components (by default,
the �rst two) as input. PhenoDisco also requires an additional parameter - the minimum
group size. This parameter can be challenging to specify, since there is a trade-o� between
identifying functionally relevant phenotypes of di�erent sizes and picking up small spurious
protein clusters. Furthermore, phenoDisco struggles to scale to many of the datasets pre-
sented in this manuscript, because it requires iteratively re�tting models and building of an
outlier test statistic.

To demonstrate the di�erences between the two approaches, we apply phenoDisco and
Novelty TAGM to the HEK-293 spatial proteomics dataset interrogated by Breckels et al.
(2013). The PCA plots in �gure 5 reveal broad similarities in the location of the discovered
phenotypes. Novelty TAGM provides more information than phenoDisco; for example, we
can scale the pointer size to the discovery probability. We note that both methods reveal
8 putative phenotypes in the data. Figure 5 (panels d and e) reveals the distribution of
proteins across these phenotypes. We conclude that both approaches are able to discover
small and large clusters, with both methods identifying phenotypes with a few proteins, but
also phenotypes with greater than 100 proteins. Figure 5 (panel f) shows that both methods
�nd the same number of phenotypes; however, not all of these phenotypes are functionally
enriched. For phenoDisco, four of the phenotypes had at least 1 signi�cant Gene Ontology
term, whereas this was true for �ve of the Novelty TAGM phenotypes. Figure 5 (panel g)
characterises the protein overlap between the two approaches. We see that both methods are
in broad agreement, with most of the disagreement attributed to cases where one method
assigns a protein as unknown whilst the other allocates to it a phenotype or organelle. For
example, Novelty TAGM associates phenoDisco phenotype 3, which is a lysosome-enriched
phenotype, with the plasma membrane (albeit with low probability). On the other hand,
Novelty TAGM phenotypes 2 and 3, enriched for chromatin and ribosome respectively, are
associated with the mitochondria by phenoDisco. This demonstrates the ability of Novelty
TAGM to derive more biologically meaningful phenotypes.
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Figure 5: (a) PCA plot showing marker proteins for the HEK-293 dataset. (b) PCA plot with
phenotypes identi�ed by phenoDisco. (c) PCA plot with phenotypes identi�ed by Novelty
TAGM with pointer size scaled to discovery probability. (d, e) Barplots showing the number
of proteins allocated to di�erent phenotypes by phenoDisco and Novelty TAGM respectively.
(f) A table demonstrating the number of phenotypes with functional enrichment for both
methods and the number of phenotypes discovered. (g) A heatmap showing the overlap
between phenoDisco and Novelty TAGM allocations.
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5 Improved annotation allows exploration of endosomal

processes

Given the information that the U-2 OS hyperLOPIT dataset resolves an endosomal cluster
not previously explored, we perform a re-analysis of this dataset focusing on the endosomes.
We curate a set of marker proteins for the endosomes and add these annotations to the U-2
OS hyperLOPIT dataset. After which, we apply our Bayesian generative classi�er TAGM
to the data with this additional annotation (Crook et al., 2018). Protein allocations to
each sub-cellular niche are visualised in the PCA plot of �gure 6 (panel a). Figure 6 (panel
c) demonstrates the increased number of proteins that can be characterised by improved
annotation of the U-2 OS cell dataset. Furthermore, we examine 7 (of 240) proteins with
uncertain endosomal localisation, which can be visualised in each of the violin plots in �gure
6 (panel d).

All 7 proteins with uncertain assignment to our new endosome cluster are known to func-
tion in endosome dynamics. Rab5a and Rab5b (P20339; P61020) are isoforms of Rab5, a
small GTPase which is considered a master organiser of the endocytic system, regulating
clathrin-mediated endocytosis and early endosome dynamics (Simonsen et al., 1998; Wood-
man, 2000; Zerial and McBride, 2001; Rink et al., 2005; Mendoza et al., 2013; Chen et al.,
2014; Gautreau et al., 2014; Law et al., 2017). RN-tre (Q92738) is a GTPase-activating pro-
tein which controls the activity of several Rab GTPases, including Rab5, and is therefore a
key player in the organisation and dynamics of the endocytic pathway (Lanzetti et al., 2000;
Gautreau et al., 2014). KIF16B (Q96L93) is a plus end-directed molecular motor which
regulates early endosome motility along microtubules. It is required for the establishment
of the steady-state sub-cellular distribution of early endosomes, as well as the balance be-
tween PM recycling and lysosome degradation of signal transducing cell surface receptors
including EGFR and TfR (Hoepfner et al., 2005; Carlucci et al., 2010). Notably, it has
been demonstrated that KIF16B co-localises with the small GTPase Rab5, whose isoforms
Rab5a and Rab5b we also identi�ed as potentially localised to the endosome and PM in
this dataset. ZNRF2 (Q8NHG8) is an E3 ubiquitin ligase which has been shown to regulate
mTOR signalling as well as lysosomal acidity and homeostasis in mouse and human cells
and has been detected at the endosomes, lysosomes, Golgi apparatus and PM according to
the literature (Araki and Milbrandt, 2003; Hoxhaj et al., 2016). Ykt6 (O15498) is a SNARE
(soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein that regu-
lates a wide variety of intracellular tra�cking and membrane tethering and fusion processes.
The membrane-associated form of Ykt6 has been detected at the PM, ER, Golgi apparatus,
endosomes, lysosomes, vacuoles (in yeast), and autophagosomes as part of various SNARE
complexes (Dilcher et al., 2001; Tai et al., 2004; Fukasawa et al., 2004; Meiringer et al., 2008;
Takáts et al., 2018; Matsui et al., 2018; Linnemannstöns et al., 2018; Yong and Tang, 2019).
In line with this, our results show a mixed sub-cellular distribution for Ykt6 with potential
localisation to the endosome and cytosol (�gure 6, panel d). EHD3 (Q9NZN3) is an im-
portant regulator of endocytic tra�cking and recycling, which promotes the biogenesis and
stabilisation of tubular recycling endosomes by inducing early endosome membrane bending
and tubulation (Bahl et al., 2016; Henmi et al., 2016). We observe a mixed steady-state
potential localisation to the endosome and PM for EHD3 (�gure 6, panel d). This is in
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agreement with EHD3's role in recycling endosome-to-PM transport (Naslavsky et al., 2006,
2009; George et al., 2007; Cabasso et al., 2015; Henmi et al., 2016).

Of these 7 proteins with uncertain endosome assignment, only 4 have localisations anno-
tated in HPA (�gure 6 (b)). The HPA assigns Rab5b to the vesicles which, in this context,
include the endosomes, lysosomes, peroxisomes and lipid droplets. Therefore, a more precise
annotation is available using Novelty TAGM. Ykt6 is localised to the cytosol, in support of
our observations. EHD3 has approved localisation to the plasma membrane, again in agree-
ment with our assignments. KIF16B is assigned to the mitochondrion, which contradicts
our �ndings as well as previously published literature on the localisation and biological role
of this protein. We speculate that this disagreement arises from the uncertainty associated
with the speci�city of the chosen antibody (Thul et al., 2017). Thus, Novelty TAGM enables
sub-cellular fractionation-based methods to identify proteins in sub-cellular niches which can
not be fully interrogated by immunocytochemistry.
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Distribution of Subcellular Membership for Protein Q92738 Distribution of Subcellular Membership for Protein P61020 Distribution of Subcellular Membership for Protein O15498

Distribution of Subcellular Membership for Protein Q9NZN3 Distribution of Subcellular Membership for Protein P20339-2 Distribution of Subcellular Membership for Protein Q96L93-6

Distribution of Subcellular Membership for Protein Q8NHG8

(d)

Figure 6: (a) PCA of U-2 OS hyperLOPIT data with pointer scaled to localisation probability
and outliers shrunk. Points are coloured according to their most probable organelle. (b)
Immuno�uorescence images and sub-cellular localisation annotation taken from the HPA
database (https://www.proteinatlas.org/humanproteome/cell) for the proteins with UniProt
accessions P61020 (Rab5b), O15498 (Ykt6), Q9NZN3 (EHD3), and Q96L93 (KIF16B). The
nucleus is stained in blue; microtubules in red, and the antibody staining targeting the
protein in green. (c) A barplot representing the number of proteins allocated before and
after re-annotation of the endosomal class. (d) Violin plots of full probability distribution of
proteins to organelles, where each violin plot is for a single protein.
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6 Discussion

We have presented a semi-supervised Bayesian approach that simultaneously allows prob-
abilistic allocation of proteins to organelles, detection of outlier proteins, as well as the
discovery of novel sub-cellular structures. Our method uni�es several approaches present in
the literature, combining the ideas of supervised machine learning and unsupervised struc-
ture discovery. Formulating inference in a Bayesian framework allows for the quanti�cation
of uncertainty; in particular, the uncertainty in the number of newly discovered annotations.

Application of our method across 10 di�erent spatial proteomic datasets acquired using
diverse fractionation and MS data acquisition protocols and displaying varying levels of
resolution revealed additional annotation in every single dataset. Our analysis recovered the
chromatin-associated protein phenotype and validated experimental design for chromatin
enrichment in hyperLOPIT datasets. Our approach also revealed additional sub-cellular
niches in the mESC hyperLOPIT and U-2 OS hyperLOPIT datasets.

Our method revealed resolution of 4 sub-nuclear compartments in the U-2 OS hyperLOPIT
dataset, which were validated by Human Protein Atlas annotations. An additional endosome-
enriched phenotype was uncovered and Novelty TAGM robustly identi�ed an overlapping
phenotype in U-2 OS LOPIT-DC data, providing strong evidence for endosomal resolution.
Further biologically relevant annotations were uncovered in these, as well as other datasets.
For example, a group of vesicle-associated proteins involved in transport from the ER to the
early Golgi was identi�ed in the yeast hyperLOPIT dataset; resolution of the ribosomal sub-
units was identi�ed in the �broblast dataset, and separate nuclear, cytosolic and ribosomal
annotations were identi�ed in the DOM datasets.

A direct comparison with the state-of-the-art approach phenoDisco demonstrates clear
di�erences between the approaches. Novelty TAGM, a fully Bayesian approach, quanti�es
uncertainty in both the number of newly discovered phenotypes and the individual protein-
phenotype associations - phenoDisco provides no such information.

Improved annotation of the U-2 OS hyperLOPIT data allowed us to explore endosomal
processes, which have not previously been considered with this dataset. We compare our re-
sults directly to immuno�uorescence microscopy-based information from the HPA database
and demonstrate the value of orthogonal spatial proteomics approaches to determine pro-
tein sub-cellular localisation. Our results provide insights on the sub-cellular localisation of
proteins for which there is no information in the HPA Cell Atlas database.

During our analysis, we observed that the posterior similarity matrices have poten-
tial sub-clustering structures. Many known organelles and sub-cellular niches have sub-
compartmentalisation, thus methodology to detect these sub-compartments is in prepara-
tion. Furthermore, we have observed that di�erent experiments and di�erent data modalities
provide complementary results. Thus, integrative approaches to spatial proteomics analysis
are also desired.

Our method is widely applicable within the �eld of spatial proteomics and builds upon
state-of-the-art approaches. The computational algorithms presented here are disseminated
as part of the Bioconductor project (Gentleman et al., 2004; Huber et al., 2015) building on
MS-based data structures provided in Gatto and Lilley (2012) and are available as part of
the pRoloc suite, with all data provided in pRolocdata (Gatto et al., 2014b).
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7 Appendix

7.1 mESC chromatin enrichment validation

For the mESC dataset, Novelty TAGM reveals 8 new putative phenotypes. Novelty TAGM
recovers the masked annotations with phenotype 2 having the enriched terms associated
with chromatin, such as chromatin and chromosome (p < 10−80). Phenotype 3 corresponds
to a separate nuclear substructure with enrichment for the terms nucleolus (p < 10−60) and
nuclear body (p < 10−30). Thus, in the mESC dataset Novelty TAGM con�rms the chro-
matin enrichment preparation designed to separate chromatin and non-chromatin associated
nuclear proteins (Mulvey et al., 2017). In addition, phenotype 4 demonstrates enrichment
for the ribosome annotation (p < 10−35). Phenotype 1 is enriched for centrosome and mi-
crotubule annotations (p < 10−15), though observing the PSM in �gure 7 we can see there is
much uncertainty in this phenotype. This uncertainty quanti�cation can then be used as a
basis for justifying additional expert annotation.
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Endosome
Extracellular matrix
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Figure 7: (a) PCA plot of the hyperLOPIT mESC dataset. Points are scaled according
to the discovery probability. (b) Heatmaps of the posterior similarity matrix derived from
mESC data demonstrating the uncertainty in the clustering structure of the data. We have
only plotted the proteins which have greater than 0.99 probability of belonging to a new
phenotype and probability of being an outlier less than 0.95 for the mESC dataset to reduce
the number of visualised proteins.

7.2 Uncovering additional annotations in �broblast cells

7.2.1 HCMV-infected �broblast cells

We apply Novelty TAGM to the dataset corresponding to the HCMV-infected �broblast
cells 24 hours post infection (hpi) (Beltran et al., 2016), and discover 9 putative additional
phenotypes (demonstrated in �gure 8). Phenotype 2 contains a singleton protein and phe-
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notypes 4, 6, 7, 8 and 9 are not signi�cantly enriched for any annotations. However, pheno-
type 3 is enriched for the mitochondrial membrane and mitochondrial envelope annotations
(p < 10−4); this is an addition to the already annotated mitochondrial class, indicating
sub-mitochondrial resolution. Phenotype 1 is a mixed ribosomal/nuclear cluster with en-
richment for nucleoplasm (p < 10−5) and the small ribosomal subunit (p < 10−4), which
is distinct from phenotype 5 which is enriched for the large ribosomal subunit (p < 10−10).
This demonstrates unbiased separation of the two ribosomal subunits, which was overlooked
in the original analysis (Beltran et al., 2016).

7.2.2 Fibroblast cells without infection

Novelty TAGM reveals 7 putative phenotypes in the control �broblast dataset (Beltran
et al., 2016). Phenotypes 2, 4, 5, 6 and 9 have no signi�cantly enriched Gene Ontology terms
(threshold p = 0.01). However, we observe that phenotype 3 is enriched with the large riboso-
mal subunit with signi�cance at level p < 10−7. Phenotype 1 represents a mixed peroxisome
(p < 10−2) and mitochondrion cluster (p < 10−2), an unsurprising result since these or-
ganelles possess similar biochemical properties and therefore similar pro�les during density
gradient centrifugation-based fractionation (Geladaki et al., 2019; Dealtry and Rickwood,
1992). The di�ering number of con�dently identi�ed and biologically relevant phenotypes
discovered between the two �broblast datasets could be down to the di�ering levels of struc-
ture between the two datasets. Indeed, it is evident from �gure 8 that we see di�ering levels
of clustering structure in these datasets.

7.3 Additional organellar map datasets

7.3.1 Mouse primary neurons

The mouse primary neuron dataset reveals 10 phenotypes after we apply Novelty TAGM.
However, 8 of these phenotypes have no enriched GO annotations. This is likely a manifes-
tation of the dispersed nature of this dataset, where the variability is generated by technical
artefacts rather than biological signal. Despite this, Novelty TAGM is able to detect two
relevant phenotypes: the �rst phenotype is enriched for nucleolus (p < 0.01); the second for
chromosome (p < 0.01). This suggests additional annotations for this dataset.

7.3.2 HeLa cells (Hirst et. al 2018)

The HeLa dataset of Hirst et al. (2018), which we refer to as HeLa Hirst, reveals 7 pheno-
types with at least 1 protein with discovery probability greater than 0.95. However, three of
these phenotypes represent singleton proteins. Phenotype 1 reveals mixed cytosol/ribosomal
annotations with the terms cytosolic ribosome (p < 10−30) and cytosolic part (p < 10−25)
signi�cantly over-represented. There are no further phenotypes with enriched annotations
(threshold p = 0.01), except phenotype 2 which represents a mixed extracellular struc-
ture/cytosol cluster. For example, the terms extracellular organelle (p < 10−13) and cytosol
(p < 10−10) are over-represented.
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Figure 8: (a, c) PCA plots of the HCMV-infected �broblast data 24 hpi and the mock
�broblast data 24 hpi. The points are coloured according to the organelle or proposed new
phenotype and are scaled according to the discovery probability. (b, d) Heatmaps of the
posterior similarity matrix derived from the infected �broblast data and mock �broblast
data demonstrating the uncertainty in the clustering structure of the data. We have only
plotted the proteins which have greater than 0.99 probability of belonging to a new phenotype
and probability of being an outlier less than 0.95.
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Figure 9: (a),(c) PCA plots of the mouse primary neuron data and HeLa Hirst data. The
pointers are scaled according to their discovery probability. (b),(d) Heatmaps of the mouse
neuron data and HeLa Hirst data. Only the proteins whose discovery probability is greater
than 0.99 and outlier probability less than 0.95 (10−2 for the mouse primary neuron dataset
to reduce the number of visualised proteins) are shown. The heatmaps demonstrate the
uncertainty in the clustering structure present in the data.
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7.4 Handling label switching

Bayesian inference in mixture models su�ers from an identi�ability issue known as label
switching - a phenomenon where the allocation labels can �ip between runs of the algorithm
(Richardson and Green, 1997; Stephens, 2000). This occurs because of the symmetry of the
likelihood function under permutations of these labels. We note that this only occurs in
unsupervised or semi-supervised mixture models. This makes inference of the parameters
in mixture models challenging. In our setting the labels for the known components do not
switch, but for the new phenotypes label switching must occur. One standard approach
to circumvent this issue is to form the so-called posterior similarity matrix (PSM) (Fritsch
and Ickstadt, 2009). The PSM is an N ×N matrix where the (i, j)th entry is the posterior
probability that protein i and protein j reside in the same component. More precisely, if we
let S denote the PSM and T denote the number of Monte-Carlo iterations then

Sij = P (zi = zj|X,θ,π, κ, ε,M, V ) ≈ 1

T

T∑
t=1

I(z
(t)
i = z

(t)
j ), (8)

where I denotes the indicator function. The PSM is clearly invariant to label switching and
so avoids the issues arising from the label switching problem.

7.5 Summarising posterior similarity matrices

To summarise the PSMs, we take the approach proposed by Fritsch and Ickstadt (2009).
They proposed the adjusted Rand index (AR) (Rand, 1971; Hubert and Arabie, 1985), a
measure of cluster similarity, as a utility function and then we wish to �nd the allocation
vector ẑ that maximises the expected adjusted Rand index with respect to the true clustering
z. Formally, we write

ẑ = arg max
z∗

E[AR(z∗, z)|X,θ,π, κ, ε,M, V ], (9)

which is known as the Posterior Expected Adjusted Rand index (PEAR). One obvious pitfall
is that this quantity depends on the unknown true clustering z. However, this can be
approximated from the MCMC samples:

PEAR ≈ 1

T

T∑
t=1

AR(z∗, z(t)). (10)

The space of all possible clustering over which to maximise is infeasibly large to explore. Thus
we take an approach taken in Fritsch and Ickstadt (2009) to propose candidate clusterings
over which to maximise. Using hierarchical clustering with distance 1 − Sij, the PEAR
criterion is computed for clusterings at every level of the hierarchy. The optimal clustering
ẑ is the allocation vector which maximises the PEAR.

7.6 Details of MCMC

The MCMC algorithm used in Crook et al. (2018) is insu�cient to handle inference of
unknown phenotypes. As in Crook et al. (2018), a collapsed Gibbs sampler approach is
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used, but a number of modi�cations are made. Firstly, to accelerate convergence of the
algorithm half the proteins are initial allocated randomly amongst the new phenotypes.
Secondly, the parameters for the new phenotypes are proposed from the prior. Throughout
the same default prior choices are used as in Crook et al. (2018).

7.7 Further details of endosomal proteins

For completeness, this appendix provides additional details and important literature on the
proteins discussed in section 5.

First, P20339 (Rab5a) and P61020 (Rab5b) are two of the three isoforms of Rab5, a
small GTPase which belongs to the Ras protein superfamily and is considered a master
organiser of the endocytic system. Rab5a and Rab5b share a high level of amino acid
sequence identity (approximately 85%) and are ubiquitously expressed in the mouse and hu-
man. Independently, these isoforms act as key regulators of clathrin-mediated endocytosis
and early endosome dynamics by controlling the following processes in vivo and in vitro: (a)
clathrin-coated vesicle formation at the cell surface; (b) endocytosed vesicle transport from
the plasma membrane towards, and fusion with, early endosomes; (c) early endosome biogen-
esis and maintenance; (d) molecular motor-driven, microtubule-dependent early endosome
motility along the endocytic route; (e) early endosome docking/tethering and homotypic fu-
sion, and (f) Rab conversion and early-to-late endosome maturation (Simonsen et al., 1998;
Zerial and McBride, 2001; Rink et al., 2005; Chen et al., 2014; Gautreau et al., 2014; Law
et al., 2017).

Rab5a and Rab5b play crucial roles in the internalisation and recycling/degradation of
cell surface receptors such as EGFR (epidermal growth factor receptor), TfR (transferrin re-
ceptor) and several GPCRs (G-protein-coupled receptors) and integrins as well as peripheral
plasma membrane-associated signalling molecules, thereby regulating important intracellular
signal transduction pathways (Trischler et al., 1999; Chen et al., 2009; Bastin and Heximer,
2013; Liu et al., 2015). We observe a mixed steady-state potential localisation between the
endosome and PM for both Rab5a and Rab5b (�gure 6, panel d). According to previously
published information, both Rab5a and Rab5b are mainly localised to (and considered well-
established constituents of) the early endosome compartment but have also been detected
on the PM and clathrin-coated vesicles, in support of our results (Simonsen et al., 1998;
Woodman, 2000; Mendoza et al., 2013). Moreover, according to the HPA Cell Atlas, Rab5b
resides in the vesicles (which, in this context, include the endosomes, lysosomes, peroxisomes
and lipid droplets). There is no information regarding the sub-cellular location of Rab5a in
this database.

Second, Q92738 (RN-tre) is a GTPase-activating protein (GAP) which controls the ac-
tivity of several Rab GTPases. RN-tre is a major Rab5 (see above) regulator and therefore a
key player in the organisation and dynamics of the endocytic pathway (Lanzetti et al., 2000;
Gautreau et al., 2014). This protein modulates the internalisation of and signal transduction
mediated by cell surface receptors such as EGFR, TfR and β1 integrins (Lanzetti et al., 2000;
Martinu et al., 2002; Palamidessi et al., 2013; De Franceschi et al., 2015). It also controls
early endosome-to-Golgi retrograde transport and Golgi membrane organisation (Haas et al.,
2007). We observe a steady-state snapshot of the sub-cellular distribution of RN-tre with
potential localisation to the endosome and PM (�gure 6, panel d). In line with these results,
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RN-tre has been shown to reside in Rab5-positive early endosomes at steady state, but has
also been detected at the PM and focal adhesions (Lanzetti et al., 2000; Martinu et al.,
2002; Palamidessi et al., 2013; Gautreau et al., 2014; De Franceschi et al., 2015). There
is no information concerning the sub-cellular localisation of RN-tre in the HPA Cell Atlas
database.

Third, Q96L93 (KIF16B) is a plus end-directed molecular motor which belongs to the
kinesin-3 protein family. This kinesin regulates early endosome motility along microtubules
and is required for the establishment of the steady-state sub-cellular distribution of early
endosomes as well as the balance between PM recycling and lysosome degradation of signal
transducing cell surface receptors including EGFR and TfR (Hoepfner et al., 2005; Carlucci
et al., 2010). In neuronal cells, KIF16B plays an important role in the establishment of
somatodendritic early endosome localisation and in the tra�cking of AMPA and NGF re-
ceptors (Farkhondeh et al., 2015). In epithelial cells, this protein controls the transcytosis
of TfR from juxtanuclear recycling endosomes to apical recycling endosomes (Bay et al.,
2013). KIF16B is also involved in tubular endosome biogenesis and �ssion by regulating
early endosome fusion (Skjeldal et al., 2012). Lastly, this kinesin has been shown to medi-
ate biosynthetic Golgi-to-endosome transport of FGFR (�broblast growth factor receptor)-
carrying vesicles and thereby control FGFR cell surface presentation and signalling during
in vivo mouse embryogenesis (Ueno et al., 2011). Our results indicate a mixed localisation
to the endosome and PM for KIF16B (�gure 6, panel d). In line with our observations, it
has been reported that this protein is associated with early endosome membranes at steady
state in mouse and human cells (Hoepfner et al., 2005; Farkhondeh et al., 2015). Addition-
ally, it has been demonstrated that KIF16B co-localises with, and its spatial distribution
and activity is regulated by, the small GTPase Rab5, whose isoforms Rab5a and Rab5b we
also identi�ed as potentially localised to the endosome and PM in the U-2 OS hyperLOPIT
dataset (see above), on early endosomes (Hoepfner et al., 2005; Skjeldal et al., 2012). Taking
the above into account, a mixed distribution between the endosome and PM is re�ective of
the molecular function of KIF16B. However, the HPA Cell Atlas database classi�es KIF16B
as a component of the mitochondria (�gure 6, panel b), contradicting our �ndings as well as
previously published information regarding the sub-cellular localisation and biological role
of this protein. We speculate that this disagreement arises from the uncertainty associated
with the speci�city of the chosen antibody (Thul et al., 2017). Indeed, the reliability of the
mitochondrial annotation for KIF16B is classi�ed as "uncertain" in this database.

Fourth, Q8NHG8 (ZNRF2) is an E3 ubiquitin ligase which has been shown to regulate
mTOR signalling as well as lysosomal acidity and homeostasis in mouse and human cells
(Hoxhaj et al., 2016). This protein has been found to control the sub-cellular localisation
and biological function of mTORC1, the V-ATPase and the Na+/K+-ATPase α1 (Hoxhaj
et al., 2012, 2016). ZNRF2 is membrane-associated but can be released into the cytosol upon
phosphorylation by various kinases (Hoxhaj et al., 2016). We observe a mixed steady-state
distribution between the endosome and PM for this protein (�gure 6, panel d). In support
of this result, we �nd that ZNRF2 has been detected on the endosomes, lysosomes, Golgi
apparatus and PM according to the literature (Araki and Milbrandt, 2003; Hoxhaj et al.,
2016). There is no information in regard to the sub-cellular location of ZNRF2 in the HPA
Cell Atlas database.

Fifth, O15498 (Ykt6) is a SNARE (soluble N-ethylmaleimide-sensitive factor attachment
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protein receptor) protein which is conserved from yeast to humans. This protein regu-
lates a wide variety of intracellular tra�cking and membrane tethering and fusion processes
including ER-to-Golgi vesicular transport, intra-Golgi tra�c, retrograde Golgi-to-ER trans-
port, retrograde endosome-to-TGN (trans-Golgi network) tra�cking, homotypic fusion of
ER membranes, Golgi-to-PM transport and exosome/secretory vesicle-PM fusion, Golgi-to-
vacuole tra�c (in yeast), homotypic vacuole fusion (in yeast), autophagosome formation and
autophagosome-lysosome fusion (Dilcher et al., 2001; Tai et al., 2004; Takáts et al., 2018;
Matsui et al., 2018; Linnemannstöns et al., 2018; Yong and Tang, 2019). Ykt6 lacks a trans-
membrane domain and is able to cycle between intracellular membranes and the cytosol
in a palmitoylation- and farnesylation-dependent manner (Fukasawa et al., 2004; Meiringer
et al., 2008). The membrane-associated form of Ykt6 has been detected on the PM, ER,
Golgi apparatus, endosomes, lysosomes, vacuoles (in yeast), and autophagosomes as part
of various SNARE complexes (Dilcher et al., 2001; Tai et al., 2004; Fukasawa et al., 2004;
Meiringer et al., 2008; Takáts et al., 2018; Matsui et al., 2018; Linnemannstöns et al., 2018;
Yong and Tang, 2019). In line with this information, our results show a mixed sub-cellular
distribution for Ykt6 with potential localisation to the endosome and cytosol (�gure 6, panel
d). The cytosolic localisation for Ykt6 is also supported by the HPA Cell Atlas annotation
corresponding to this protein (�gure 6, panel b), further reinforcing our �ndings.

Sixth, Q9NZN3 (EHD3) is another important regulator of endocytic tra�cking and recy-
cling. This protein promotes the biogenesis and stabilisation of tubular recycling endosomes
by inducing early endosome membrane bending and tubulation (Bahl et al., 2016; Henmi
et al., 2016). Additionally, EHD3 is essential for early endosome-to-recycling endosome trans-
port, retrograde early endosome-to-Golgi tra�c, Golgi apparatus morphology maintenance,
and recycling endosome-to-PM transport (Naslavsky et al., 2006, 2009; George et al., 2007;
Cabasso et al., 2015; Henmi et al., 2016). It plays an important role in the recycling of cell
surface receptors and the biosynthetic transport of lysosome proteins (Naslavsky et al., 2006,
2009; George et al., 2007; Cabasso et al., 2015). We observe a mixed steady-state poten-
tial localisation to the endosome and PM for EHD3 (�gure 6, panel d). Our results are in
agreement with previously published studies which have reported that EHD3 is resident in
the early endosomes and recycling endosomes at steady state (Naslavsky et al., 2006, 2009;
George et al., 2007; Cabasso et al., 2015), and our PM localisation-related observation is
supported by the HPA Cell Atlas-derived annotation for this protein (�gure 6, panel b).

Our �ndings provide insights on the dynamic sub-cellular distribution of proteins which
play important roles in development, physiology and disease. For example, Rab5/Rab5a has
been identi�ed as a master regulator of cancer cell migration, tumour invasion and dissemi-
nation programs in vitro and in vivo. It has been demonstrated that Rab5/Rab5a expression
is dysregulated in many invasive human cancers, Rab5/Rab5a is overexpressed in metastatic
foci compared to the matched primary tumours, and Rab5/Rab5a activity critically pro-
motes the acquisition of invasive properties by poorly invasive tumour cell types (Torres
et al., 2010; Liu et al., 2011, 2015; Mendoza et al., 2013; Frittoli et al., 2014; Díaz et al.,
2014; Saitoh et al., 2017). Several publications have reported that elevated Rab5/Rab5a
expression correlates with, and is predictive of, increased local invasiveness and metastatic
potential, as well as poor patient prognosis in a variety of human cancer types (Yu et al.,
1999; Fukui et al., 2007; Zhao et al., 2010; Yang et al., 2011; Mendoza et al., 2013; Frittoli
et al., 2014; Díaz et al., 2014; Igarashi et al., 2017). Due to its established role in cancer pro-
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gression and metastasis, Rab5/Rab5a is considered a fundamental cancer-associated protein
and a potential diagnostic marker or therapeutic target (Frittoli et al., 2014; Igarashi et al.,
2017). Recently, Rab5 was identi�ed as a promising therapeutic target for colorectal cancer,
as inhibition of Rab5 (and Rab7) activity led to elimination of colorectal cancer stem cells
and disruption of colorectal cancer foci (Takeda et al., 2019). Moreover, individual ablation
of Rab5a but also Rab5b was shown to impair the invasion and dissemination ability of
di�erent cancer cell types (Frittoli et al., 2014). In addition to its important role in cancer,
there is some evidence suggesting that Rab5a might also be involved in the early pathogen-
esis of Alzheimer's disease (Cataldo et al., 1997, 2000; Rosenfeld et al., 2001). Lastly, the
Rab5 machinery has also been identi�ed as an important factor in several bacterial, para-
sitic and viral infections. Bacterial pathogens such as Mycobacterium tuberculosis, Listeria
monocytogenes, Tropheryma whipplei and Salmonella typhimurium (Madan et al., 2008), as
well as parasites such as Leishmania donovani have evolved speci�c subversion mechanisms
with which they are able to control the intracellular distribution and/or activity of Rab5
and its e�ectors as a way to avoid neutralisation by the immune system or facilitate invasion
(Verma et al., 2017). L. donovani speci�cally controls the expression and function of the
Rab5a isoform in this context (Verma et al., 2017). Additionally, Rab5 was shown to partic-
ipate in adenovirus endocytosis (Rauma et al., 1999), both Rab5a and Rab5b were found to
play functional roles in web formation and viral genome replication during HCV (hepatitis
C virus) infection (Stone et al., 2007), and Rab5a was identi�ed as a crucial target of HBV
(hepatitis B virus) during HBV-related hepatocellular carcinoma pathogenesis (Sheng et al.,
2014).

Apart from Rab5a and Rab5b, the other proteins also possess demonstrated roles in devel-
opment and disease. RN-tre is overexpressed in a subset of aggressive basal-like breast can-
cers, where high levels of this protein prevent the endocytosis and recycling of EGFR, leading
to Akt overstimulation. In turn, Akt activity stabilises the glucose transporter GLUT1 at the
cell membrane, resulting in an increase in glycolysis and cancer cell proliferation. RN-tre has
been proposed as a potential therapeutic target for these types of breast cancer (Avanzato
et al., 2018). This protein also plays a functional role in infection, as it was shown to regulate
the uptake and intracellular tra�cking of Shiga toxins (Fuchs et al., 2007). Furthermore, it
has been reported that KIF16B is essential for early post-implantation mouse embryo de-
velopment, as Kif16b-knockout animals display peri-implantation embryonic lethality (Ueno
et al., 2011). In addition, recent studies have shown that ZNRF2 is overexpressed in human
non-small cell lung cancer, osteosarcoma and papillary thyroid cancer, and that high levels
of this protein are correlated with disease progression and poor patient prognosis in these
cases (Zhang et al., 2016; Xiao et al., 2017; Cui et al., 2019). Moreover, Ykt6 was found to be
necessary for glycosome biogenesis and function in the kinetoplastid parasite Trypanosoma
brucei, which causes African sleeping sickness, with Ykt6 ablation signi�cantly reducing the
viability of the parasite in both its pro-cyclic and bloodstream forms (Banerjee and Rachu-
binski, 2017). Finally, EHD3 has been identi�ed as an essential factor for heart physiology
(Curran et al., 2014).
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7.8 Summary of convergence diagnostics

We provide a summary of convergence diagnostics using parallel chains analysis (Gelman
and Rubin, 1992). We compute the number of proteins allocated to the outlier component
at each iteration of the Markov-chain and monitor this quantity for convergence. The R̂
statistic between parallel chains in then computed and reported in the table below. A value
of R̂ < 1.2 indicates convergence.

Convergence diagnostics for MCMC

Dataset Protocol R̂ Upper con�dence Interval
R̂

mESC hyperLOPIT
1.03 1.15

U-2 OS hyperLOPIT
1.00 1.00

U-2 OS LOPIT-DC
1.02 1.06

S. cerevisiae hyperLOPIT
1.00 1.01

HCMV-infected �broblast Spatio-Temporal
Proteomics

1.01 1.02

HCMV mock �broblast Spatio-Temporal
Proteomics

1.03 1.08

HeLa (Itzhak et al., 2016) DOM
1.07 1.21

Mouse primary neurons DOM
1.04 1.13

HeLa (Hirst et al., 2018) DOM
1.02 1.06

HEK-293 LOPIT
1.00 1.01

Table 2: A table reporting convergence diagnostics for MCMC analysis

7.9 Prior speci�cation and sensitivity

To complete the Bayesian speci�cation, here we provide details of the priors on the model
parameters. In the multivariate Gaussian components of the Novelty TAGM model, as with
TAGM, a common and practical choice is the use of a normal-inverse-Wishart prior. That
is,

µ|Σ ∼ N (µ0,Σ/λ0)

Σ ∼ IW(ν0, S0)

∝ |Σ|
ν0+d+1

2 exp

[
−1

2
trace(Σ−1S−10 )

]
,

(11)

for each mixture component and where d is the dimension of the data. To complete this
discussion, we need to specify the hyperparameters, µ0, λ0, ν0 and S0. We use di�usive priors
that make minimal assumptions about the data, but they are set semi-empirically as to
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obtain the correct scale of the data. The hyperparameters are selected as follows

µ0 =
1

n

n∑
i=1

xi,

λ0 = 0.01,

ν0 = d+ 2,

S0 =
diag (var(X))

K1/d
.

(12)

The hyperparameters are interpreted in the following ways. The prior mean, µ0, is the mean
of the data. Then λ0 is viewed as the number of observations with data µ0 which are added
to each component speci�c mean. This value is small to avoid strong prior in�uence. The
marginal prior distribution (or prior predictive) for a cluster speci�c mean µ is given by a
student's t-distribution. This can be observed by recalling that the student's t-distribution
arises by marginalisation of the covariance from a normal distribution. Now, to ensure this t-
distribution has �nite covariance we require that ν0 > d+1. Thus, the choice presented here
is the smallest integer value of ν0 that ensures a �nite covariance matrix. Hence, we have a
well de�ned t-distribution with heavy tails. The empirically chosen scale matrix S0 is chosen
to roughly partition the range of the data intoK balls of equal size. Previous work has shown
that these priors lead to good predictive performance (Crook et al., 2018). For π, we take a
conjugate symmetric Dirichlet prior with parameter β, so that π1, . . . , πKmax ∼ Dirichlet(β).
Note that to apply the principle of over�tted mixtures, we have to choose maxj βj < d/2
(Rousseau and Mengersen, 2011), which is satis�ed in all examples by setting βj = 1 for
every j. Empirically Van Havre et al. (2015) have recommended smaller values of βj ≈ n−1

to encourage stronger shrinkage.

7.9.1 Sensitivity to the choice of βj

To explore the sensitivity of our inferences to the speci�cation of βj, we considered setting
βj = 0.1, 0.01, as well as βj ≈ n−1 for the mESC example, which in this case n−1 ≈ 0.0002. As
before, we hid nucleus, chromatin and ribosome annotations and sought to use our model to
rediscover them. As we now summarily describe, we found that our results can be sensitive
to the choice of βj and hence it should be set carefully. For example when βj = 0.1,
we were unable to detect a ribosomal phenotype. Furthermore, there was a joint nucleus
and chromatin phenotype, phenotype 1, rather than two distinct phenotypes. Chromosome
was enriched for this phenotype (p < 10−100), as well as nucleolus (p < 10−60). When
βj = 0.01 the results were somewhat improved with a phenotype 1 enriched for chromosome
(p < 10−100) but phenotype 3 was enriched for cytosolic ribosome (p < 10−48) and nucleolus
(p < 10−50). Setting βj = 0.0002 provided the expected results with 3 distinct phenotypes
for chromatin (phenotype 1) (p < 10−100), nucleolus (phenotype 4) (p < 10−50), and cytosolic
ribsome (phenotype 3) (p < 10−59), successfully matching our test components. Hence, based
on these results, we would recommend either βj = 1 or βj ≈ n−1 depending on the desired
amount of shrinkage.
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7.10 Impact of reducing the proportion of labelled proteins

In all the examples we considered previously, the proportion of labelled proteins is roughly
20% of the total number of proteins. To assess the impact of the relative proportion of
labelled and unlabelled proteins, we reconsidered our mESC example, where the goal was to
detect ribosomal, nuclear and chromatin niches without annotation. In addition to masking
these annotations as test components, we also masked, uniformly at random, an additional
10%, 20% and 50% of labelled proteins and assessed our ability to rediscover the ribosomal,
nuclear and chromatin testing classes.

Brie�y, we were able to rediscover two distinct phenotypes according to two nuclear
clusters in all cases. When we masked 10% of the labels, the enrichments for the two nuclear
phenotypes were chromosome (p < 10−99) and nucleolus (p < 10−59), the results were the
same when we removed 20% and 50% of labels. However, only in the scenario were 20%
of the labels were hidden did we �nd a ribosome enriched phenotype (p < 10−30). In the
other cases, the ribosome clustered with the other large protein complex: the proteasome.
This re�ects the similar biochemical properties of these subcellular niches. Furthermore,
removing annotations renders the proteasome pro�le less well de�ned, resulting in a more
di�use cluster. In practice, careful quality control would mitigate these scenarios (Gatto
et al., 2019). In applications where there are very few annotated niches and the analysis is
close to the unsupervised setting, it may be valuable to increase Knovelty above 10 - others
have found n/2 to work well (Kirk et al., 2012).
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