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Abstract 

Oxford Nanopore Technologies (ONT) is a promising sequencing technology that could generate 

relatively longer sequencing reads compared to the next generation sequencing (NGS) technology. 

The base calling process is very important for TGS. It translates the original electrical signals from 

the sequencer to the nucleotide sequence. By doing that, the base calling could significantly 

influence the accuracy of downstream analysis. Bonito is a recently developed basecaller based on 

deep neuron network, the neuron network architecture of which is composed of a single 

convolutional layer followed by three stacked bidirectional GRU layers. Although Bonito 

achieved the state-of-the-art accuracy, its speed is so slow that it is not likely to be used in 

production. We therefore implement Fast-Bonito, which introduces systematic optimization to 

speed up Bonito. Fast-Bonito archives 53.8% faster than the original version on NVIDIA V100 

and could be further speed up by HUAWEI Ascend 910 NPU, achieving 565% faster than the 

original version. The accuracy of Fast-Bonito is also slightly higher than the original Bonito. 

Keywords: Bonito, Base calling, Nanopore, Ascend Chip, Deep Neural Network, Neural 

Architecture Search 

 

Introduction 

In the last several decades, genomic sequencing technologies have been evolved from Sanger 
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sequencing1 to massively parallel next generation sequencing (NGS)2, and long-read third-

generation sequencing (TGS)3. Compared to NGS, TGS could produce longer reads, which make 

it a better choice to study complex genome and variants. Several different TGS technologies have 

been developed, such as PacBio and Oxford Nanopore Technology (ONT) platform3. Nanopore 

sequencing powered by ONT could generate very long reads by saving the electrical resistance 

signals of the single strand DNA that passing through the protein nanopore4. It shows great 

advantage on sequencing long reads and detecting complex genome structure variation4,5, but the 

high sequencing error rates slowed down its industry use in many areas.  

 

A very important step that introduces the high error rates is base calling. This process is used to 

translate the raw electrical signal into nucleotide sequence. Although a number of machine 

learning approaches have been used for base calling6–12, it is still quite challenging to obtain a fast 

and accurate basecaller. The electrical signals are determined by multiple nucleotides residing in 

the nanopores, but the noises, such as the emergence of DNA methylation will make the signals 

very complex12 to decode. 

 

Many approaches have been developed for the base calling task. For example, ONT released 

Albacore, Guppy, Scappie, Flappie (https://github.com/nanoporetech/flappie) and Bonito 

(https://github.com/nanoporetech/bonito); research communities also contribute to a lot of tools, 

such as Nanocall10, DeepNano9, Chrion8 and causalcall7. In recent years, deep neuron network has 

been used more and more in tools for this task, including convolutional neural network (CNN), 

recurrent neural network (RNN) and connectionist temporal classification (CTC) decoder7. These 

tools vary a lot in speed or accuracy. And currently Guppy is an order of magnitude12 faster than 

all the others, also with a relatively high accuracy. 

 

Recently, a new algorithm, Bonito, has been developed and achieved state-of-the-art accuracy, 

representing a significant improvement of over 1% comparing to Guppy 

(https://nanoporetech.com/about-us/news/new-research-algorithms-yield-accuracy-gains-

nanopore-sequencing). The speed of Bonito, however, is very slow, which limits its application in 

practice. Therefore, we developed Fast-Bonito, which introduces systematic approaches to 
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optimize the architecture of Bonito, and achieves 565% faster sequencing speed than the original 

version. 

 

Results 

Search for an Optimized Neuron Network Backbone 

The neural network backbone of Bonito is inspired by QuartzNet13, which is originally developed 

for speech recognition. The backbone of Bonito consists of several TCSConv-BN-ReLU modules, 

each contains a depth-wise separable convolution. It reduces the number of parameters of the 

model dramatically. However, hardware and inference engine library cannot support such 

convolution operator well, which makes its running time slower than expectation.   

 

To speed up Bonito, we use neural architecture search (NAS) to search for a more efficient neuron 

network for the same task. Previous NAS frameworks only focus on searching for a higher 

performance module, which might result in a backbone that satisfies the accuracy, but takes longer 

time for inference (higher latency). To balance both the accuracy and inference latency, a multi-

objective and adaptive NAS framework (so called MnasNet14) was used in our work. The original 

separable convolution module was replaced by Bottleneck Convolution module from ResNet5015, 

because the latter is more friendly supported by current inference engine library. The NAS search 

focused on the architecture of five middle blocks. The search space of each block was defined as 

follows. The number of modules of each block is selected from 1 to 9. 

1. The number of channels of block is searched from 32, 64, 128, 256, 378, 512.  

2. The kernel size of Bottleneck Conv operator is searched from 3, 5, 7, 9, 11, 17, 29, 31, 

47, 53, 69, 73, 83, 91, 107, 115, 123, 129. 

 

The best backbone from NAS search is named Fast-Bonito, the overall architecture is shown in 

Fig. 1, including a sequential of convolution module layers to calculate the probability of 

nucleotide, and a CTC decoder to translate the probability into nucleotide sequence. Considering 

that the electrical signals are diverse in length, we also performed segments-split, referring to 
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Bonito. The input signals are cut into 6,000 segments with an overlap of 300 before fed into the 

convolutional architecture, with corresponding output segments with length of 6,000. Both ends of 

segments are removed by a length of 150 except the first and last one. The back-end and leading-

end of the first and last segments are removed, respectively. The remaining parts of segments are 

concatenated together and fed into the CTC decoder to produce final nucleotide sequencing. 

 

Train New Backbone from Scratch 

After the best backbone of Fast-Bonito is decided, we began to train it from scratch using the 

optimization tricks below. 

1) Data Augmentation is a popular method to improve the model performance16–18. The 

common augmentation approaches, such as cutout19, rotate, flip20, shearX21, are not very 

suitable for 1-dimensional DNA sequence. We therefore used SpecAugment18, a data 

augmentation method for speech recognition, which is similar to DNA sequence decoder.  

2) Label Smoothing22,23 is a method to prevent the network becoming over-confident and 

has been utilized in many state-of-the-art models. Here we introduced this method to 

prevent over-fitting.  

3) Knowledge Distillation24,25 is a method to migrate the knowledge from the well-trained 

"teacher" model to the "student" model, thus to improve the performance of "student" 

model. Here we take the pre-trained model of the original Bonito as "teacher"” and our 

own model as "student".  

 

Model performance comparison 

Our primary benchmark dataset that is used to estimate the speed and accuracy of Fast-Bonito is 

obtained from the dataset provided by Bonito. This dataset contains 100000 reads for evaluation. 

On NVIDIA V100 GPU. The speed of the original version of Bonito is 1,400,000 bp/s (Fig. 2A). 

Fast-Bonito could achieve 1,840,000 bp/s in speed, which is 53.8% faster than the original Bonito.  

 

As Neuron Process Unite (NPU) is more and more popular for AI computing, we also tested Fast-
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Bonito on HUAWEI Ascend 910 Chip, an NPU from HUAWEI. The results show that on 

HUAWEI Ascend 910 Chip, Fast-Bonito could achieve 7,910,000 bp/s in speed, which is 565% 

faster than the original version (Fig. 2A). 

 

Fast-Bonito could achieve a slightly better median accuracy, which is 97.18% on NVIDIA V100 

and HUAWEI Ascend 910 (Fig. 2B), compared to 96.98% of the original Bonito. 

 

Discussion 

Base calling is the key step for the nanopore sequencing analysis workflow. Fast and accurate base 

calling is still a challenging problem. Although Bonito achieves the state-of-the-art accuracy, the 

speed of Bonito limits its application into the production. Base calling tools require huge 

computational resources, especially GPU resources. Our study demonstrates that AI processor 

could be used to accelerate base calling, and could achieve 4.3 times faster than on NVIDIA V100 

GPU, indicating the promising use of AI processor on genomic study.  

The Bonito version in this study is 0.2.3, Fast-Bonito is also developed with the same training and 

validation dataset. Bonito is still an active project, and continuously releases new features. We 

will also continuously update Fast-Bonito with the new features in the future. 

 

Data and Software Statement 

Training and validation data is downloaded from GitHub of Bonito . Fast-Bonito is made public 

under https://github.com/EIHealth-Lab/fast-bonito. 

 

Test environment 

The test environment of V100 is under the NVIDIA Tesla, 16 GB GPU with 8 CPUs. And the 

environment of Ascend 910 is under 16 GB*8 NPUs with 192 CPUs, while only 1 NPU and 24 

CPUs are specified for current task. 
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Metrics for Base calling Evaluation 

To evaluate base calling, a pairwise sequence alignment library, parasail26, was used to calculate 

the accuracy between sequencing and referencing. “bonito evaluate dna_r9.4.1 –chunks 100000” 

was used to evaluate the performance for the original bonito model. 

 

Author Contributions 

N.Q. and Y.L. designed and conceived the project. Y.M. performed the optimization of Bonito 

and model training. Z.X. and D.L. implemented the Fast-Bonito package and performed data 

experiment with the help from W.H, C.X., L.Z. and N.Q, D.L. wrote the manuscript. X.M., J.M. 

and W.A.Z. provided suggestions and revised the manuscript. All authors read and approved the 

final manuscript.  

 

Competing Interests statement 

The authors declare no competing interests. 

 

Reference 

1. Sanger, F. & Coulson, A. R. A rapid method for determining sequences in DNA by primed 

synthesis with DNA polymerase. J. Mol. Biol. 94, 441–448 (1975). 

2. Behjati, S. & Tarpey, P. S. What is next generation sequencing? Arch. Dis. Child. - Educ. 

Pract. Ed. 98, 236–238 (2013). 

3. Lee, H. et al. Third-generation sequencing and the future of genomics. 

http://biorxiv.org/lookup/doi/10.1101/048603 (2016) doi:10.1101/048603. 

4. Mikheyev, A. S. & Tin, M. M. Y. A first look at the Oxford Nanopore MinION sequencer. 

Mol. Ecol. Resour. 14, 1097–1102 (2014). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.08.318535doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.318535
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
 

5. Ho, S. S., Urban, A. E. & Mills, R. E. Structural variation in the sequencing era. Nat. Rev. 

Genet. 21, 171–189 (2020). 

6. Huang, N., Nie, F., Ni, P., Luo, F. & Wang, J. An attention-based neural network basecaller for 

Oxford Nanopore sequencing data. in 2019 IEEE International Conference on Bioinformatics 

and Biomedicine (BIBM) 390–394 (IEEE, 2019). doi:10.1109/BIBM47256.2019.8983231. 

7. Zeng, J. et al. Causalcall: Nanopore Basecalling Using a Temporal Convolutional Network. 

Front. Genet. 10, 1332 (2020). 

8. Teng, H. et al. Chiron: translating nanopore raw signal directly into nucleotide sequence using 

deep learning. GigaScience 7, giy037 (2018). 

9. Boža, V., Brejová, B. & Vinař, T. DeepNano: Deep recurrent neural networks for base calling 

in MinION nanopore reads. PLOS ONE 12, e0178751 (2017). 

10. David, M., Dursi, L. J., Yao, D., Boutros, P. C. & Simpson, J. T. Nanocall: an open source 

basecaller for Oxford Nanopore sequencing data. Bioinformatics 33, 49–55 (2017). 

11. Silvestre-Ryan, J. & Holmes, I. Pair consensus decoding improves accuracy of neural network 

basecallers for nanopore sequencing. 

http://biorxiv.org/lookup/doi/10.1101/2020.02.25.956771 (2020) 

doi:10.1101/2020.02.25.956771. 

12. Wick, R. R., Judd, L. M. & Holt, K. E. Performance of neural network basecalling tools for 

Oxford Nanopore sequencing. Genome Biol. 20, 129 (2019). 

13. Kriman, S. et al. QuartzNet: Deep Automatic Speech Recognition with 1D Time-Channel 

Separable Convolutions. ArXiv191010261 Eess (2019). 

14. Tan, M. et al. MnasNet: Platform-Aware Neural Architecture Search for Mobile. in 2019 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.08.318535doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.318535
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2815–2823 

(IEEE, 2019). doi:10.1109/CVPR.2019.00293. 

15. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. 

ArXiv151203385 Cs (2015). 

16. Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V. & Le, Q. V. AutoAugment: Learning 

Augmentation Strategies From Data. in 2019 IEEE/CVF Conference on Computer Vision and 

Pattern Recognition (CVPR) 113–123 (IEEE, 2019). doi:10.1109/CVPR.2019.00020. 

17. Zoph, B. et al. Learning Data Augmentation Strategies for Object Detection. ArXiv190611172 

Cs (2019). 

18. Park, D. S. et al. SpecAugment: A Simple Data Augmentation Method for Automatic Speech 

Recognition. in Interspeech 2019 2613–2617 (ISCA, 2019). doi:10.21437/Interspeech.2019-

2680. 

19. DeVries, T. & Taylor, G. W. Improved Regularization of Convolutional Neural Networks with 

Cutout. ArXiv170804552 Cs (2017). 

20. Shorten, C. & Khoshgoftaar, T. M. A survey on Image Data Augmentation for Deep Learning. 

J. Big Data 6, 60 (2019). 

21. Hu, B., Lei, C., Wang, D., Zhang, S. & Chen, Z. A Preliminary Study on Data Augmentation 

of Deep Learning for Image Classification. ArXiv190611887 Cs Eess (2019). 

22. Kim, S., Seltzer, M. L., Li, J. & Zhao, R. Improved training for online end-to-end speech 

recognition systems. ArXiv171102212 Cs (2018). 

23. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the Inception 

Architecture for Computer Vision. in 2016 IEEE Conference on Computer Vision and Pattern 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.08.318535doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.318535
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
 

Recognition (CVPR) 2818–2826 (IEEE, 2016). doi:10.1109/CVPR.2016.308. 

24. Hinton, G., Vinyals, O. & Dean, J. Distilling the Knowledge in a Neural Network. 

ArXiv150302531 Cs Stat (2015). 

25. Wei, L. et al. Circumventing Outliers of AutoAugment with Knowledge Distillation. 

ArXiv200311342 Cs (2020). 

26. Daily, Jeff. Parasail: SIMD C library for global, semi-global, and local pairwise sequence 

alignments. BMC Bioinformatics, 17(1), 1-11. doi:10.1186/s12859-016-0930-z (2016). 

 

Figure Legends 

 

Figure 1. Backbone of Fast-Bonito. Fast-Bonito replaced the Separable Convolution module in 

Bonito by Bottleneck Convolution module for acceleration. The architecture of Fast-Bonito 

comprises a convolutional architecture, a Convolution module layer in the last layer that calculates 

Figure1. Architecture of the Model.
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the probability of nucleotide, and a CTC decoder to translate the output of network into nucleotide 

sequence. 

 

 

 

Figure 2. Performance of FastBonito. A). On NVIDIA V100, Fast-Bonito 0.54 times faster than 

the original version. While on Asscend 910 NPU, Fast-Bonito is 4.65 times faster. B). The 

accuracy of basecalling of Fast-Bonito is slightly higher than the Original-Bonito (by 0.2%). 
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