bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.318535; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Fast-Bonito: A Faster Basecaller for Nanopore Sequencing

Zhimeng Xu'# Yuting Mai*#, Denghui Liu*#, Wenjun He?, Xinyuan Lin?, Chi Xu?, Lei Zhang?,
Xin Meng?, Joseph Mafofo?, Walid Abbas Zaher3, Yi, Lit”, Nan Qiao**

! Laboratory of Health Intelligence, Huawei Technologies Co., Ltd, Shenzhen, 518100, China.
20mics Centre, G42 HealthCare

3Chief research office, G42 Healthcare

#These authors contributed equally

* Correspondence should be addressed to Dr. Nan Qiao (giaonan3@huawei.com)
Abstract

Oxford Nanopore Technologies (ONT) is a promising sequencing technology that could generate
relatively longer sequencing reads compared to the next generation sequencing (NGS) technology.
The base calling process is very important for TGS. It translates the original electrical signals from
the sequencer to the nucleotide sequence. By doing that, the base calling could significantly
influence the accuracy of downstream analysis. Bonito is a recently developed basecaller based on
deep neuron network, the neuron network architecture of which is composed of a single
convolutional layer followed by three stacked bidirectional GRU layers. Although Bonito
achieved the state-of-the-art accuracy, its speed is so slow that it is not likely to be used in
production. We therefore implement Fast-Bonito, which introduces systematic optimization to
speed up Bonito. Fast-Bonito archives 53.8% faster than the original version on NVIDIA V100
and could be further speed up by HUAWEI Ascend 910 NPU, achieving 565% faster than the
original version. The accuracy of Fast-Bonito is also slightly higher than the original Bonito.
Keywords: Bonito, Base calling, Nanopore, Ascend Chip, Deep Neural Network, Neural

Architecture Search

Introduction

In the last several decades, genomic sequencing technologies have been evolved from Sanger

https://doi.org/10.1101/2020.10.08.318535
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.318535; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

sequencing! to massively parallel next generation sequencing (NGS)?, and long-read third-
generation sequencing (TGS)3. Compared to NGS, TGS could produce longer reads, which make
it a better choice to study complex genome and variants. Several different TGS technologies have
been developed, such as PacBio and Oxford Nanopore Technology (ONT) platform?. Nanopore
sequencing powered by ONT could generate very long reads by saving the electrical resistance
signals of the single strand DNA that passing through the protein nanopore®. It shows great
advantage on sequencing long reads and detecting complex genome structure variation*°, but the

high sequencing error rates slowed down its industry use in many areas.

A very important step that introduces the high error rates is base calling. This process is used to
translate the raw electrical signal into nucleotide sequence. Although a number of machine
learning approaches have been used for base calling® 12, it is still quite challenging to obtain a fast
and accurate basecaller. The electrical signals are determined by multiple nucleotides residing in
the nanopores, but the noises, such as the emergence of DNA methylation will make the signals

very complex!? to decode.

Many approaches have been developed for the base calling task. For example, ONT released

Albacore, Guppy, Scappie, Flappie (https://github.com/nanoporetech/flappie) and Bonito

(https://github.com/nanoporetech/bonito); research communities also contribute to a lot of tools,

such as Nanocall*?, DeepNano®, Chrion® and causalcall”. In recent years, deep neuron network has
been used more and more in tools for this task, including convolutional neural network (CNN),
recurrent neural network (RNN) and connectionist temporal classification (CTC) decoder’. These
tools vary a lot in speed or accuracy. And currently Guppy is an order of magnitude!? faster than

all the others, also with a relatively high accuracy.

Recently, a new algorithm, Bonito, has been developed and achieved state-of-the-art accuracy,
representing a significant improvement of over 1% comparing to Guppy

(https://nanoporetech.com/about-us/news/new-research-algorithms-yield-accuracy-gains-

nanopore-sequencing). The speed of Bonito, however, is very slow, which limits its application in

practice. Therefore, we developed Fast-Bonito, which introduces systematic approaches to

https://github.com/nanoporetech/flappie
https://github.com/nanoporetech/bonito
https://nanoporetech.com/about-us/news/new-research-algorithms-yield-accuracy-gains-nanopore-sequencing
https://nanoporetech.com/about-us/news/new-research-algorithms-yield-accuracy-gains-nanopore-sequencing
https://doi.org/10.1101/2020.10.08.318535
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.318535; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

optimize the architecture of Bonito, and achieves 565% faster sequencing speed than the original

version.

Results

Search for an Optimized Neuron Network Backbone

The neural network backbone of Bonito is inspired by QuartzNet!3, which is originally developed
for speech recognition. The backbone of Bonito consists of several TCSConv-BN-ReLLU modules,
each contains a depth-wise separable convolution. It reduces the number of parameters of the
model dramatically. However, hardware and inference engine library cannot support such

convolution operator well, which makes its running time slower than expectation.

To speed up Bonito, we use neural architecture search (NAS) to search for a more efficient neuron
network for the same task. Previous NAS frameworks only focus on searching for a higher
performance module, which might result in a backbone that satisfies the accuracy, but takes longer
time for inference (higher latency). To balance both the accuracy and inference latency, a multi-
objective and adaptive NAS framework (so called MnasNet'4) was used in our work. The original
separable convolution module was replaced by Bottleneck Convolution module from ResNet50%,
because the latter is more friendly supported by current inference engine library. The NAS search
focused on the architecture of five middle blocks. The search space of each block was defined as
follows. The number of modules of each block is selected from 1 to 9.

1. The number of channels of block is searched from 32, 64, 128, 256, 378, 512.

2. The kernel size of Bottleneck Conv operator is searched from 3, 5, 7, 9, 11, 17, 29, 31,

47,53, 69, 73, 83, 91, 107, 115, 123, 129.

The best backbone from NAS search is named Fast-Bonito, the overall architecture is shown in
Fig. 1, including a sequential of convolution module layers to calculate the probability of
nucleotide, and a CTC decoder to translate the probability into nucleotide sequence. Considering

that the electrical signals are diverse in length, we also performed segments-split, referring to

https://doi.org/10.1101/2020.10.08.318535
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.318535; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Bonito. The input signals are cut into 6,000 segments with an overlap of 300 before fed into the
convolutional architecture, with corresponding output segments with length of 6,000. Both ends of
segments are removed by a length of 150 except the first and last one. The back-end and leading-
end of the first and last segments are removed, respectively. The remaining parts of segments are

concatenated together and fed into the CTC decoder to produce final nucleotide sequencing.

Train New Backbone from Scratch

After the best backbone of Fast-Bonito is decided, we began to train it from scratch using the
optimization tricks below.

1) Data Augmentation is a popular method to improve the model performance!®18. The
common augmentation approaches, such as cutout®®, rotate, flip?°, shearX?!, are not very
suitable for 1-dimensional DNA sequence. We therefore used SpecAugment?8, a data
augmentation method for speech recognition, which is similar to DNA sequence decoder.

2) Label Smoothing?>2 is a method to prevent the network becoming over-confident and
has been utilized in many state-of-the-art models. Here we introduced this method to
prevent over-fitting.

3) Knowledge Distillation?*2 is a method to migrate the knowledge from the well-trained
"teacher" model to the "student” model, thus to improve the performance of “student"
model. Here we take the pre-trained model of the original Bonito as "teacher"” and our

own model as "student".

Model performance comparison

Our primary benchmark dataset that is used to estimate the speed and accuracy of Fast-Bonito is
obtained from the dataset provided by Bonito. This dataset contains 100000 reads for evaluation.
On NVIDIA V100 GPU. The speed of the original version of Bonito is 1,400,000 bp/s (Fig. 2A).

Fast-Bonito could achieve 1,840,000 bp/s in speed, which is 53.8% faster than the original Bonito.

As Neuron Process Unite (NPU) is more and more popular for Al computing, we also tested Fast-

https://doi.org/10.1101/2020.10.08.318535
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.318535; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Bonito on HUAWEI Ascend 910 Chip, an NPU from HUAWEI. The results show that on
HUAWEI Ascend 910 Chip, Fast-Bonito could achieve 7,910,000 bp/s in speed, which is 565%

faster than the original version (Fig. 2A).

Fast-Bonito could achieve a slightly better median accuracy, which is 97.18% on NVIDIA V100

and HUAWEI Ascend 910 (Fig. 2B), compared to 96.98% of the original Bonito.

Discussion

Base calling is the key step for the nanopore sequencing analysis workflow. Fast and accurate base
calling is still a challenging problem. Although Bonito achieves the state-of-the-art accuracy, the
speed of Bonito limits its application into the production. Base calling tools require huge
computational resources, especially GPU resources. Our study demonstrates that Al processor
could be used to accelerate base calling, and could achieve 4.3 times faster than on NVIDIA V100
GPU, indicating the promising use of Al processor on genomic study.

The Bonito version in this study is 0.2.3, Fast-Bonito is also developed with the same training and
validation dataset. Bonito is still an active project, and continuously releases new features. We

will also continuously update Fast-Bonito with the new features in the future.

Data and Software Statement

Training and validation data is downloaded from GitHub of Bonito . Fast-Bonito is made public

under https://github.com/ElHealth-Lab/fast-bonito.

Test environment
The test environment of V100 is under the NVIDIA Tesla, 16 GB GPU with 8 CPUs. And the
environment of Ascend 910 is under 16 GB*8 NPUs with 192 CPUs, while only 1 NPU and 24

CPUs are specified for current task.

https://github.com/huaweicloud/fast-bonito
https://doi.org/10.1101/2020.10.08.318535
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.318535; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Metrics for Base calling Evaluation
To evaluate base calling, a pairwise sequence alignment library, parasail?®, was used to calculate
the accuracy between sequencing and referencing. “bonito evaluate dna_r9.4.1 —chunks 100000”

was used to evaluate the performance for the original bonito model.

Author Contributions

N.Q. and Y.L. designed and conceived the project. Y.M. performed the optimization of Bonito
and model training. Z.X. and D.L. implemented the Fast-Bonito package and performed data
experiment with the help from W.H, C.X., L.Z. and N.Q, D.L. wrote the manuscript. X.M., J.M.
and W.A.Z. provided suggestions and revised the manuscript. All authors read and approved the

final manuscript.

Competing Interests statement

The authors declare no competing interests.

Reference

1. Sanger, F. & Coulson, A. R. A rapid method for determining sequences in DNA by primed
synthesis with DNA polymerase. J. Mol. Biol. 94, 441-448 (1975).

2. Behjati, S. & Tarpey, P. S. What is next generation sequencing? Arch. Dis. Child. - Educ.
Pract. Ed. 98, 236-238 (2013).

3. Lee, H. et al. Third-generation sequencing and the future of genomics.
http://biorxiv.org/lookup/doi/10.1101/048603 (2016) doi:10.1101/048603.

4. Mikheyev, A. S. & Tin, M. M. Y. A first look at the Oxford Nanopore MinlON sequencer.

Mol. Ecol. Resour. 14, 1097-1102 (2014).

https://doi.org/10.1101/2020.10.08.318535
http://creativecommons.org/licenses/by-nc-nd/4.0/

P Broprint (Which was not coriiod by peet review) s (he aUthorfunder. who, has Grantedl BIORiy A icenise (o cieplay the proprintin
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

5. Ho, S. S., Urban, A. E. & Mills, R. E. Structural variation in the sequencing era. Nat. Rev.
Genet. 21, 171-189 (2020).

6. Huang, N., Nie, F., Ni, P., Luo, F. & Wang, J. An attention-based neural network basecaller for
Oxford Nanopore sequencing data. in 2019 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM) 390-394 (IEEE, 2019). doi:10.1109/BIBM47256.2019.8983231.

7. Zeng, J. et al. Causalcall: Nanopore Basecalling Using a Temporal Convolutional Network.
Front. Genet. 10, 1332 (2020).

8. Teng, H. et al. Chiron: translating nanopore raw signal directly into nucleotide sequence using
deep learning. GigaScience 7, giy037 (2018).

9. Boza, V., Brejova, B. & Vinaf, T. DeepNano: Deep recurrent neural networks for base calling
in MinlON nanopore reads. PLOS ONE 12, e0178751 (2017).

10.David, M., Dursi, L. J., Yao, D., Boutros, P. C. & Simpson, J. T. Nanocall: an open source
basecaller for Oxford Nanopore sequencing data. Bioinformatics 33, 49-55 (2017).

11.Silvestre-Ryan, J. & Holmes, I. Pair consensus decoding improves accuracy of neural network
basecallers for nanopore sequencing.
http://biorxiv.org/lookup/doi/10.1101/2020.02.25.956771 (2020)
doi:10.1101/2020.02.25.956771.

12.Wick, R. R., Judd, L. M. & Holt, K. E. Performance of neural network basecalling tools for
Oxford Nanopore sequencing. Genome Biol. 20, 129 (2019).

13.Kriman, S. et al. QuartzNet: Deep Automatic Speech Recognition with 1D Time-Channel
Separable Convolutions. ArXiv191010261 Eess (2019).

14.Tan, M. et al. MnasNet: Platform-Aware Neural Architecture Search for Mobile. in 2019

https://doi.org/10.1101/2020.10.08.318535
http://creativecommons.org/licenses/by-nc-nd/4.0/

P Broprint (Which was not coriiod by peet review) s (he aUthorfunder. who, has Grantedl BIORiy A icenise (o cieplay the proprintin
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2815-2823
(IEEE, 2019). d0i:10.1109/CVPR.2019.00293.

15.He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition.
ArXiv151203385 Cs (2015).

16.Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V. & Le, Q. V. AutoAugment: Learning
Augmentation Strategies From Data. in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) 113-123 (IEEE, 2019). doi:10.1109/CVPR.2019.00020.

17.Zoph, B. et al. Learning Data Augmentation Strategies for Object Detection. ArXiv190611172
Cs (2019).

18.Park, D. S. et al. SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition. in Interspeech 2019 2613-2617 (ISCA, 2019). doi:10.21437/Interspeech.2019-
2680.

19.DeVries, T. & Taylor, G. W. Improved Regularization of Convolutional Neural Networks with
Cutout. ArXiv170804552 Cs (2017).

20.Shorten, C. & Khoshgoftaar, T. M. A survey on Image Data Augmentation for Deep Learning.
J. Big Data 6, 60 (2019).

21.Hu, B, Lei, C., Wang, D., Zhang, S. & Chen, Z. A Preliminary Study on Data Augmentation
of Deep Learning for Image Classification. ArXiv190611887 Cs Eess (2019).

22.Kim, S., Seltzer, M. L., Li, J. & Zhao, R. Improved training for online end-to-end speech
recognition systems. ArXiv171102212 Cs (2018).

23.Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J. & Wojna, Z. Rethinking the Inception

Architecture for Computer Vision. in 2016 IEEE Conference on Computer Vision and Pattern

https://doi.org/10.1101/2020.10.08.318535
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.318535; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Recognition (CVPR) 2818-2826 (IEEE, 2016). doi:10.1109/CVPR.2016.308.

24.Hinton, G., Vinyals, O. & Dean, J. Distilling the Knowledge in a Neural Network.
ArXiv150302531 Cs Stat (2015).

25.Wei, L. et al. Circumventing Outliers of AutoAugment with Knowledge Distillation.
ArXiv200311342 Cs (2020).

26.Daily, Jeff. Parasail: SIMD C library for global, semi-global, and local pairwise sequence

alignments. BMC Bioinformatics, 17(1), 1-11. doi:10.1186/s12859-016-0930-z (2016).

Figure Legends

|

——l
Conv-BN-Swish

BNConv-BN-Swish
XR Y
RepeatR ,
times H

Conv-BN

BottleNet Conv

Batch Norm

CTC Decoder
ACGTACCACC
Figure 1. Backbone of Fast-Bonito. Fast-Bonito replaced the Separable Convolution module in

Bonito by Bottleneck Convolution module for acceleration. The architecture of Fast-Bonito

comprises a convolutional architecture, a Convolution module layer in the last layer that calculates

https://doi.org/10.1101/2020.10.08.318535
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.318535; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

the probability of nucleotide, and a CTC decoder to translate the output of network into nucleotide

sequence.
A B
1.00E+07 7 91E406 0.98 0.9698 0.9718 0.9718
8.00E+06
2 2 096
8 6.00E+06 ©
o) 5 094
& 4.00E+06 Q
S oo0E0s 140E+06 184500 < o092
| N
0.00E+00 0.9
V100 V100 Ascend910 V100 V100 Ascend910
Bonito-0.2.3 Fast-Bonito = Fast-Bonito Bonito-0.2.3 Fast-Bonito Fast-Bonito

Figure 2. Performance of FastBonito. A). On NVIDIA V100, Fast-Bonito 0.54 times faster than
the original version. While on Asscend 910 NPU, Fast-Bonito is 4.65 times faster. B). The

accuracy of basecalling of Fast-Bonito is slightly higher than the Original-Bonito (by 0.2%).

https://doi.org/10.1101/2020.10.08.318535
http://creativecommons.org/licenses/by-nc-nd/4.0/

