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Abstract

Brain activation mapping using functional magnetic resonance imaging (fMRI) has been extensively studied in brain gray matter
(GM), whereas in large disregarded for probing white matter (WM). This unbalanced treatment has been in part due to controversies
in relation to the nature of the blood oxygenation level-dependent (BOLD) contrast in WM and its detachability. However, an
accumulating body of studies has provided solid evidence of the functional significance of the BOLD signal in WM and has
revealed that it exhibits anisotropic spatio-temporal correlations and structure-specific fluctuations concomitant with those of the
cortical BOLD signal. In this work, we present an anisotropic spatial filtering scheme for smoothing fMRI data in WM that
accounts for known spatial constraints on the BOLD signal in WM. In particular, the spatial correlation structure of the BOLD
signal in WM is highly anisotropic and closely linked to local axonal structure in terms of shape and orientation, suggesting that
isotropic Gaussian filters conventionally used for smoothing fMRI data are inadequate for denoising the BOLD signal in WM. The
fundamental element in the proposed method is a graph-based description of WM that encodes the underlying anisotropy observed
across WM, derived from diffusion-weighted MRI data. Based on this representation, and leveraging graph signal processing
principles, we design subject-specific spatial filters that adapt to a subject’s unique WM structure at each position in the WM that
they are applied at. We use the proposed filters to spatially smooth fMRI data in WM, as an alternative to the conventional practice
of using isotropic Gaussian filters. We test the proposed filtering approach on two sets of simulated phantoms, showcasing its greater
sensitivity and specificity for the detection of slender anisotropic activations, compared to that achieved with isotropic Gaussian
filters. We also present WM activation mapping results on the Human Connectome Project’s 100-unrelated subject dataset, across
seven functional tasks, showing that the proposed method enables the detection of streamline-like activations within axonal bundles.
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1. Introduction

To date, reports on task-based functional magnetic resonance
imaging (fMRI) activation mapping and resting-state functional
connectivity have been overwhelmingly restricted to the gray
matter (GM), whereas white matter (WM) functional data have
been largely ignored or treated as a nuisance regressor. Such
unbalanced treatment of fMRI data within GM and WM, due
in part to controversies in relation to the source of the BOLD
signal in WM, has led to a systematic underreporting of BOLD-
related activity in WM (Mazerolle et al., 2019; Gawryluk et al.,
2014).

Despite past controversies, evidence provided by an increas-
ing body of recent studies, see e.g. Grajauskas et al. (2019)
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and Gore et al. (2019) and references therein, has led to more
widespread acceptance of the detectability and functional rel-
evance of the BOLD signal in WM. For example, Ding et al.
(2013) showed that resting-state BOLD signals in WM ex-
hibit structure-specific temporal correlations along WM tracts,
which coincide with fiber patterns revealed by diffusion tensor
imaging (DTI), and which, under functional load, become more
pronounced in functionally relevant structures (Ding et al.,
2016). More specifically, Mishra et al. (2020) showed that
varying experimental task parameters results in a coupled mod-
ulation of the BOLD signal in the visual cortex and relevant
WM tracts, corroborating past findings of simultaneous BOLD
activations in structurally-connected regions of GM and WM
(Mazerolle et al., 2010). More recently, it has been shown
that functional neuroplasticity, as manifested by changes in the
BOLD signal, can be detected in WM (Frizzell et al., 2020).
Furthermore, a growing number of recent studies have shown
that low frequency BOLD fluctuations can be used to estimate
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the dynamic functioning of fiber tracts (Gore et al., 2019), in
both health (Marussich et al., 2017; Huang et al., 2018b; Li
et al., 2020b) and disease (Jiang et al., 2019; Ji et al., 2019;
Gao et al., 2020), providing a powerful means to study how
information is transferred and integrated between functionally
specialized cortices.

Due to the significantly lower vascularization density in
WM compared to that in GM (Logothetis and Wandell, 2004;
Jochimsen et al., 2010), the overall magnitude of the BOLD
signal in WM is substantially lower than that in GM (Yarkoni
et al., 2009), which has been reported to be as low as 10% of
that observed in GM and modulated as a function of distance
from the cortical layer (Li et al., 2019b). In addition to being
weak, the BOLD signal in WM is affected by unique confound-
ing factors, suggesting the need for WM-tailored acquisition
and processing schemes. Broadly speaking, the BOLD contrast
and its detection in WM can potentially be enhanced in three
ways: i) development and use of MRI sequences optimal for
fMRI of WM (e.g. increased T2-weighting (Gawryluk et al.,
2009) or tailored field strengths (Mazerolle et al., 2013)); ii)
design of temporal models that account for the unique hemo-
dynamic response function (HRF) in WM, which substantially
differs from that in GM (Yarkoni et al., 2009; Fraser et al., 2012;
Erdogan et al., 2016)); and iii) design of spatial models that ac-
count for the unique spatial features of the BOLD contrast in
WM, which is highly anisotropic (Ding et al., 2013, 2016). This
paper focuses on the third category, presenting the case for the
importance of spatial filter design when handling fMRI data in
WM, particularly in relation to the inherent differences between
the spatial profiles of BOLD signal in WM relative to those in
GM.

1.1. Spatial smoothing tailored to fMRI data in white matter

Typical fMRI analysis pipelines rely on the assumption that
the BOLD signal exhibits isotropic spatial profiles at focal ac-
tivated regions (Carp, 2012). Isotropic Gaussian kernels ap-
plied to functional data, which is a staple of conventional fMRI
analysis, is only justified under this assumption, and generally
trades spatial specificity for increased sensitivity. In particular,
by virtue of the matched filter argument, spatial filters are opti-
mal only for detecting activations that conform to the size and
shape of the filter kernel, and can otherwise result in loss of in-
formation regarding the spatial extent and shape of activation
areas (Geissler et al., 2005; Mikl et al., 2008), obliterating all
non-smooth singularities in the data.

In order to improve on the sensitivity-specificity trade-off
afforded by conventional isotropic spatial smoothing, multi-
ple smoothing methods that adapt to local spatial image fea-
tures have been proposed. These include steerable filters
(Knutsson et al., 1983), which enable directionally-adaptive
spatial smoothing (Friman et al., 2003; Eklund et al., 2011;
Zhuang et al., 2017; Abramian et al., 2020b), wavelet trans-
forms (Mallat, 1989; Bullmore et al., 2004), which try to strike
a balance between localization in space and frequency domain
(Ruttimann et al., 1998; Van De Ville et al., 2004; Breakspear
et al., 2006), and non-linear filters (e.g. bilateral filters) that
locally adapt to various features of adjacent voxels (Smith and

Brady, 1997; Rydell et al., 2008; Lohmann et al., 2018). While
such methods have been successfully applied to GM, their adap-
tive properties rely on the spatial features manifested by the
BOLD contrast. Given that this contrast is substantially reduced
in WM, the effectiveness of these methods would likely be re-
duced when applied to fMRI data in WM.

Rather than adapting the smoothing operation to features
present in the BOLD contrast, alternative adaptive smoothing
approaches can be leveraged that incorporate information from
the domain on which the data reside, typically provided by com-
plementary anatomical images. One common approach is cor-
tical surface smoothing, which has shown to provide increased
sensitivity and specificity (Jo et al., 2007; Coalson et al., 2018).
Such methods have also been used to formulate smoothing ap-
proaches that respect tissue boundaries (Behjat et al., 2019),
preventing artifacts resulting from the mixing of signals from
adjacent but differing tissue types during filtering. In both of
these scenarios the anatomical information is provided by T1-
weighted images.

An important distinguishing feature of the BOLD signal in
WM is that it exhibits a spatial correlation structure grossly
consistent with the directions of water diffusion, as measured
by DTI (Ding et al., 2013), which is present during rest and be-
comes more pronounced under functional loading (Wu et al.,
2017; Ding et al., 2018). The anatomical basis for this observa-
tion can be that up to half of the blood volume in WM resides in
vessels that run in parallel to WM tracts (Doucette et al., 2019).
As a consequence, conventional isotropic Gaussian filters may
prove especially unsuited for the task of increasing the SNR of
the BOLD signal in the highly anisotropic WM domain. Filter-
ing methods adaptive to features of the BOLD signal may prove
more effective, but the low BOLD contrast manifested in WM
will potentially limit their usefulness. On the other hand, the
strong anatomical dependence in the correlation structure of the
BOLD signal in WM suggests that domain-informed smooth-
ing methods can be particularly beneficial. Such methods can
rely on T1-weighted images as well as diffusion-weighted MRI
(DW-MRI) to adapt the filtering to the morphology and the ax-
onal microstructure of WM, respectively. This paper presents
the design and validation of such a filtering scheme.

1.2. Structure-informed processing of fMRI data through GSP

In the past five years, an increasing number of studies have
showcased the use of principles from the recently emerged
field of graph signal processing (GSP) within neuroimaging, in
particular, in proposing intuitive methodologies for structure-
informed processing of fMRI data. The fundamental idea in
GSP is to analyze data recorded at a discrete set of positions
in such way that the underlying structural relationship between
those positions is accounted for, wherein this underlying struc-
ture can be represented in the form of a graph, i.e., a structure
consisting of a set of vertices and edges. We refer the reader
to Shuman et al. (2013) for an introduction to GSP and to Or-
tega et al. (2018) and Stankovic et al. (2020) for an overview of
recent developments, challenges, and applications.

An increasing number of studies have proposed the use of
region of interest (ROI) based structural connectomes (Sporns
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et al., 2005), derived from tractography data, as underlying
backbones for interpreting fMRI data (Atasoy et al., 2016; Ab-
delnour et al., 2018; Huang et al., 2018a). When structural con-
nectomes are interpreted as graphs, a number of their Laplacian
eigenvectors manifest spatial patterns that are reminiscent of
well-established functional networks, as shown by Atasoy et al.
(2016). Under this framework, methods have been proposed
for spatio-temporal deconvolution of fMRI data (Bolton et al.,
2019), quantification of the coupling strength of resting-state
fMRI data with underlying structure (Medaglia et al., 2018;
Preti and Van De Ville, 2019), implementation of neural field
models (Aqil et al., 2020), prediction of brain disorders (Itani
and Thanou, 2020) or behaviorally relevant scores (Bolton and
van De Ville, 2020), and for characterization of functional con-
nectivity dynamics in health (Huang et al., 2018b), and its
changes, for instance, due to concussion (Sihag et al., 2020),
and under hallucinogenic drugs (Atasoy et al., 2017).

As alternatives to macro-scale ROI-based graphs, a number
of voxel-wise brain graph designs have been proposed for anal-
ysis of fMRI data. Graphs encoding GM morphology have
been proposed for enhanced activation mapping in GM, for both
group-level (Behjat et al., 2015) and subject-level (Behjat et al.,
2013, 2014) analyses, and for discriminative characterization of
fMRI data across functional tasks (Behjat and Larsson, 2020).
A closely related work to that presented here is by Tarun et al.
(2020), in which DW-MRI data were used to encode the WM
fiber structure, for the task of visualizing WM fiber pathways
based on the functional activity observed at the cortical layer.

1.3. Aim and overview

To the best of our knowledge, no method has to date been
presented to specifically account for the spatial features of the
BOLD contrast in WM when it comes to spatial processing of
fMRI data. The main objective of this work is to present the
case for the importance of spatial filter design when handling
fMRI data in WM, particularly, in relation to the inherent dif-
ference between the spatial profiles of BOLD signal in WM
relative to those in GM.

In this paper, we develop an adaptive spatial smoothing
method tailored to the processing of fMRI data in WM. Us-
ing diffusion orientation distribution functions (ODF) obtained
from high angular resolution diffusion imaging (HARDI) data,
we construct subject-specific voxel-wise WM graphs. A spec-
tral heat kernel filter is then defined on the spectrum of the
resulting graphs, and implemented in a computationally effi-
cient way for the task of fMRI data filtering, using principles
from GSP. When instantiated at any position within the WM,
the proposed filters adapt to the local axonal orientation, be-
coming consistent with the spatial correlation structure of the
BOLD signal in WM.

The remainder of this paper is organized as follows: in Sec-
tion 2, we review relevant GSP principles and describe our pro-
posed graph and filter designs, as well as the construction of
phantoms. In Section 3, we examine the smoothing filters pro-
duced by the proposed design and evaluate their performance
on phantoms of two types and on real task fMRI data. We con-

clude the paper in Section 4 with a discussion on design con-
siderations, limitations and future work.

2. Materials and Methods

2.1. Data and preprocessing

Data used in the preparation of this work were obtained from
the WU-Minn Human Connectome Project (HCP) (Van Essen
et al., 2013) database'. We use the 100 unrelated adult subject
sub-group (54% female, mean age = 29.11+ 3.67, age range =
22-36), which we denote as the HCP100 subject set. Five of
the subjects were excluded due to incomplete WM coverage of
the DW-MRI data, leaving a total of 95 subjects. The HCP data
acquisition study was approved by the Washington University
Institutional Review Board and informed consent was obtained
from all subjects. We used the minimally preprocessed struc-
tural, task fMRI, and DW-MRI data. Task fMRI data for each
subject consist of 1940 time frames across seven functional
tasks: Emotion, Gambling, Language, Motor, Relational, So-
cial, and Working Memory, comprising 23 experimental condi-
tions in total. The method proposed in this paper heavily relies
on the accurate co-registration between the structural and func-
tional data, as provided by the minimally processed HCP data.
The imaging parameters and image preprocessing steps have
been thoroughly described by Glasser et al. (2013). All data
processing in this work was done using the MATLAB software
and the SPM12 toolbox”. Diffusion ODFs were generated us-
ing the method presented by Yeh et al. (2010) and implemented
in the DSI Studio software packagee’.

The HCP preprocessed data are provided in a mixture of
three spatial resolutions within two neurological spaces (ACPC,
i.e., native subject space, and MNI): 0.7 mm isotropic ACPC for
the structural data, 1.25 mm isotropic ACPC for the DW-MRI
data, and 2 mm isotropic MNI for the fMRI data. A fundamen-
tal necessity for the proposed methodology is to reconcile the
three datasets into a single set of working parameters. However,
the resampling process and the nonlinear conversion between
ACPC and MNI spaces have the potential of negatively affect-
ing the data quality. The number of voxels is also a relevant
parameter, as it determines to a great extent the memory usage
and computation time of the various processing steps. Given the
importance of axonal orientation information to the proposed
method, we prioritized minimizing the manipulations applied
to the DW-MRI data.

Based on these considerations, we chose the ACPC space at
the resolution of the diffusion data, i.e., 1.25 mm isotropic, as
the working space. As such, the HCP preprocessed fMRI vol-
umes were warped back into ACPC space and upsampled to the
voxel resolution of the diffusion data. This mapping was done
by leveraging the mni2acpc.nii displacement maps provided
with the HCP preprocessed data, using first order splines as the
basis for interpolation. In addition, the segmentation volume

"https://ida.loni.usc.edu/login. jsp
’https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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aparc+aseg.nii, computed via FreeSurfer (Fischl, 2012) and
provided with the HCP data, was downsampled to the work-
ing resolution, from which voxels associated to WM were ex-
tracted.

2.2. GSP preliminaries

The fundamental idea in GSP is the application of signal pro-
cessing procedures to data residing on the vertices of a graph,
wherein the graph defines the underlying irregular domain of
the data. Let G = (V, &, A) denote an undirected, connected,
weighted graph, defined by a vertex set V of size N,, denot-
ing the size of the graph, an edge set & consisting of connect-
ing pairs (i, j) of vertices, and a symmetric adjacency matrix
A whose nonzero elements a; ; represent the weight of edges
(i,j) € & Let £2(G) denote the Hilbert space of all square-
integrable graph signals f : V — R defined on the vertex set
V. A graph signal f € ¢(3(G) is in essence an N, X 1 vector,
whose n-th component represents the signal value at the n-th
vertex of G.

The graph spectral domain, analogous to the Euclidean
Fourier domain, can be defined using a graph’s Laplacian ma-
trix. In particular, the normalized Laplacian matrix of G is de-
fined as L = I — D™'/2AD~"/2, where D denotes the graph’s
degree matrix, which is diagonal with elements defined as
di; = Xja;j. Given that L is real, symmetric, diagonally
dominant, and with non-negative diagonal entries, it is posi-
tive semi-definite; i.e., all its N, eigenvalues are real and non-
negative, and they are also no larger than 2 due to the nor-
malization used in the definition of L. This set of eigen-

values defines the spectrum of G (Chung, 1997), denoted as

A={0=24,<2...< AN, def Amax < 2}. The associated eigen-

ning the £*(G) space.

In classical Fourier analysis, complex exponentials of vary-
ing frequencies are used to obtain spectral representations
of signals, with larger frequencies corresponding to greater
variability—per region or unit of time. It can be shown that, in
the graph setting, the eigenvalues and eigenvectors of L fulfill
a corresponding role to the frequencies and complex exponen-
tials of the classical domain, respectively. In particular, larger
eigenvalues of L are similarly associated to eigenvectors with
greater spatial variability; we refer the interested reader to Ap-
pendix A for a more detailed presentation of this point. Given
this analogy between the classical and graph settings, the eigen-
vectors of L can be used to obtain spectral representations of
graph signals. Specifically, a graph signal f can be transformed
into a spectral representation through the use of the Laplacian
eigenvectors as

Ny
£ = > winlffn] (1
n=1
=u'f, I=1,...,N,. 2)

This spectral representation possesses a perfect reconstruction,
. . N, &
that is, the signal can be recovered as f = 3, f[/]u;.

In contrast to filters in classical signal processing, graph fil-
ters are shift-variant, adapting their shape to the underlying
graph structure when localized at any given vertex. Conse-
quently, individual filters defined in the spectral domain of a
graph will become spatially-adaptive by the nature of GSP.
This valuable property of graph filters enables the proposed
methodology, but it also prevents the implementation of filter-
ing operations as straightforward convolutions. Instead, in anal-
ogy to frequency-domain filtering in classical signal processing,
graph signal filtering can be conveniently defined in the graph
spectral domain. Given the spectral profile of a desired filter,
k(1) : [0,2] — R, a graph signal f can be filtered with k(1) as

Ng
P=) k)t 3)

=1

Ng
EDW T 0)

=1

However, implementing (4) requires the Laplacian eigenvec-
tors, i.e., a full diagonalization of L, which is impractical for
large graphs, such as those presented in this work. An effi-
cient alternative approach is to implement the filtering using a
polynomial approximation of k(1) (Hammond et al., 2011). We
refer the interested reader to Appendix B for details on the im-
plementation.

2.3. WM graph design

In order to take advantage of GSP tools, it is necessary to de-
fine graphs that encode relevant information in their vertices,
edges, and weights. For the purpose of allowing diffusion-
informed smoothing of the BOLD signal in WM, we require
graphs capable of encoding the subject’s axonal microstructure.
Filters defined on the spectral domain of such graphs will be-
come locally adapted to this microstructure due to the shift-
variant nature of graph filters.

We define a WM graph as a graph whose vertex set V' con-
sists of all WM voxels, resulting in graphs with 240k +60k ver-
tices on the HCP100 subject set. The graph’s edge set & is
defined on the basis of voxel adjacency, with pairs of vertices
being connected to each other whenever their associated vox-
els are spatially neighboring. Two neighborhood definitions are
considered, corresponding to cubic lattices of sizes 3 X 3 X 3
(henceforth 3-conn) and 5x5X%5 (henceforth 5-conn), where the
focal voxel is located in the center of the lattice. The 3-conn lat-
tice specifies 26 voxels in the neighborhood of the focal voxel,
whereas for the 5-conn lattice, voxels in the outer layer that fall
in parallel to the voxels within the inner layer are excluded, re-
sulting in 98 voxels in the neighborhood; see Figure 1.

The encoding of axonal microstructure by the graph is prin-
cipally achieved through the edge-weighting scheme, inspired
by the work of Iturria-Medina et al. (2007). The weights pro-
vide a discretization of the diffusion ODF at each point, and
include information on the coherence of diffusion orientation
among neighboring voxels. Let O;(7) denote the ODF associ-
ated to voxel v;, with its coordinate origin at the voxel’s center,
and with 7 denoting the unit direction vector. Let 7;; denote
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Figure 1: (a) 26 voxels within the 3 X 3 x 3 neighborhood (gray) used to define
edges to the focal voxel (red). (b) 98 voxels within the 5 X 5 X 5 neighborhood
(gray), used to define edges to the focal voxel (red). (c) Scattered dots on the
unit sphere specify the 98 neighborhood directions encoded by the 5 X 5 X 5
voxel neighborhood. Circled dots represent the subset of 26 directions encoded
by the 3 x 3 X 3 voxel neighborhood.

the unit vector pointing from the center of voxel v; to the cen-
ter of neighboring voxel v;. A discretization of the ODF along
direction 7; ; can be obtained as

piiiy = [ oo, )
Q)
where €; ; denotes the solid angle of 47/26 (for 3-conn) or
47/98 (for 5-conn) around 7;; and dQ denotes the infinitesi-
mal solid angle element. This measure can be approximated by
taking N; samples of the ODF within the solid angle €; ; as

N,
pli.Fg) = pliFig) = 5 ) 0. (©6)
! k=1

where f’f‘j denotes the k-th sampling direction within Q; ;. De-

tails of the sampling process are given in Appendix C. Further-

more, we normalize this metric as

_ P, Fij)
2max;{p(, 7)) | (i, j) € EY

qij @)
which bounds it in the [0, 0.5] range. The maximum value of
0.5 is reached if the ODF at v; shows its maximal diffusion
along #; ;, whereas otherwise g; ; < 0.5.

The measure defined in (7) constitutes a normalized dis-
cretization of the diffusion ODF at voxel v;. However, it does
not guarantee symmetry, i.e., generally g; ; # g;;, which makes
it unsuitable for the edge weights in an undirected graph. Nev-
ertheless, we can obtain a symmetric weight by considering a
bidirectional measure of diffusion given by

Wij = Wi = qij+ 4, ()

which is constrained to the [0, 1] range. Consequently, we de-
fine the graph’s edge weights as

ajj=aj; = h(w;;), )

Figure 2: Sigmoid function used for thresholding edge weights, for three dif-
ferent values of @ and a fixed value 8 = 50.

where A(-) : [0,1] — [0,1] is a tunable sigmoid function
(Granlund and Knutsson, 1994) defined as

(1-a)x)”
(I-a)nf+((1-xa)

h(x) = 5 € [0, 1], (10)
where parameters @ € (0,1) and 8 > O control the threshold
level and the steepness of the transition from O to 1, respec-
tively; see Figure 2. Given that diffusion ODFs generally man-
ifest non-zero magnitudes in all directions, with little contrast
between directions of strong and weak diffusion, the threshold-
ing step enables associating weights only to the main directions
of diffusion, without the need to use sharpened ODFs as pre-
sented in our preliminary work (Abramian et al., 2020a). The
choice of the sigmoid function over a Heaviside step ensures
retaining a single connected structure in the graph; that is, any
non-zero value is mapped to a non-zero value. In this work we
use a fixed value of 8 = 50, but study the effect of varying the
threshold point, in particular, for values @ = 0.85,0.9 and 0.95.

The expression for the edge weight between a pair of voxels
(9) integrates information about the extent of diffusion along
#;,j from both v; and v;, amounting to a measure of orientational
coherence of the diffusion ODFs at these voxels. In addition,
the @ parameter of the thresholding function provides added
flexibility to this representation.

2.4. Spectral graph heat kernel filters

We design spatial smoothing filters with a heat kernel profile
in the graph spectral domain, defined by

k) =™, VA€ [0, Amal, 1)

where 7 is a free parameter determining the spatial extent of
the filter. Figure 3 shows several realizations of the heat ker-
nel over a range of 7. When instantiated in the vertex domain,
such filters are roughly similar in shape to the Gaussian filters
typically used for fMRI analysis; however, given the irregular
domain represented by the graph, there is no direct equivalence
between the two filters.

The filtering is implemented using the polynomial approxi-
mation scheme described in Appendix B. The polynomial order
required to obtain a suitable approximation of the heat kernel
varies depending on the choice of 7. For the range of 7 investi-
gated in this study, we used polynomial approximations of order
15, resulting in negligible approximation error in representing
the filters.


https://doi.org/10.1101/2020.10.25.353920
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.25.353920; this version posted April 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

LI e T e e )

[ O T T T TR TR
®NO O A ON =

Figure 3: Spectral graph heat kernels, defined within the bounds of the spectrum
of a normalized graph Laplacian matrix, i.e., [0, 2].

2.5. Circular phantom construction

Due to the discrete nature of graphs, the set of orientations
that can be perfectly captured by edges between voxels is lim-
ited by the neighborhood definition used. To evaluate the influ-
ence of angular resolution on denoising performance, we tested
the 3-conn and 5-conn neighborhood definitions on a set of
simulated circular phantoms of various orientations and radii.
These phantoms aim to simulate a wide range of streamline ori-
entations and curvatures, which could be encountered in prac-
tice.

Each phantom consisted of an activation profile in the shape
of a circular streamline, accompanied by an ODF map oriented
along its tangent, representing strong diffusion along the circle.
The phantoms were constructed in 93 different orientations in
3D space, selected in a roughly uniform way by subdividing
the faces of an icosahedron three times, and from the result-
ing polyhedron, selecting its subset of vertices that fall in the
spherical sector of 0 < 6,¢ < m/2; see Figure 4(a). Due to
symmetries in the phantoms and the neighborhood definitions,
this set of phantom orientations provides a relatively exhaustive
sampling of the effects of streamline orientation on smoothing
performance. Additionally, to study the effects of curvature, we
created the phantoms with three different radii for each orienta-
tion: 10, 20, and 30 voxels at 1.25 mm isotropic resolution.

2.6. Streamline-based phantom construction

Given that the correlation structure of the BOLD signal in
WM is highly anisotropic and resemblant of the diffusion ten-
sor (see Section 1.1), activation patterns in this tissue are likely
to have elongated shapes which locally follow the direction of
diffusion. To validate the performance of the proposed filter-
ing scheme at detecting such activation patterns, we performed
tests on a set of simulated semi-synthetic phantoms that sim-
ulate streamline-shaped activations. We denote the phantoms
as semi-synthetic, as the spatial activation patterns were de-
rived from real diffusion data from the HCP100 dataset. Each
phantom consisted of a set of non-uniformly spread activation
patterns diffusing along WM streamlines obtained through de-
terministic tractography of the HCP100 subject set; see Fig-
ures 4(b) and (c). Details of the construction of the phantoms
are given in Appendix D.

Time-series versions of the streamline-based phantoms were
also generated in order to evaluate the performance of the pro-
posed method in the context of a typical fMRI general linear

model (GLM) analysis. These were created by using each
streamline-based phantom as the underlying ground-truth ac-
tivity in a 100-volume fMRI time series, with a block design
alternating 20 volume stretches of rest and activity in an off-on-
off-on-off paradigm.

3. Results

We validated the performance of the proposed diffusion-
informed spatial smoothing (DSS) method relative to isotropic
Gaussian spatial smoothing (GSS) through a series of tests on
synthetic phantoms—circular and streamline-based—and pro-
duced proof-of-concept results on real data from the HCP100
subject set.

3.1. Diffusion-informed filters

The adaptive properties of DSS filters are illustrated in Fig-
ure 5. The three filters shown were generated using identical
parameters (@ = 0.9, 7 = 7), and differ only in the location
within the WM where they were instantiated. The filters closely
follow the local diffusion orientation in WM described by the
diffusion ODFs. For highly anisotropic WM regions this results
in slender and strongly oriented filters—see first two columns,
whereas for regions of low anisotropy it results in filters that are
more isotropic in shape. Particularly, at crossing fiber regions,
DSS filters are not constrained to follow any single axonal path-
way, and instead spatially extend along all directions of high
diffusion—see third column. This avoids the uncertainty in-
herent in resolving the orientation of individual crossing fibers,
while still resulting in more spatially-constrained filters than
would be achieved with isotropic Gaussian filtering.

The shape of DSS filters can be controlled by setting the
7 parameter of the graph spectral filter kernel (see (11)) and
the a parameter of the weight thresholding function (see (10)).
While the former controls the spatial extent of the filter in a
manner akin to the full width at half maximum (FWHM) of
isotropic Gaussian filters, the latter controls the minimum edge
weights retained by the graph, which in turn, constrains fil-
ters to follow main directions of diffusion. Figure 6 presents a
range of different filter shapes that can be achieved by varying
these two parameters. High values of a result in very narrow,
streamline-like filters that are highly constrained relative to the
underlying diffusion map, whereas lower values result in less
constrained filters. In particular, low enough values of @ negate
the diffusion-adaptive properties of DSS, with the resulting fil-
ters adapting solely to the morphology of the WM domain (see
Supplementary Figure S1).

The choice of neighborhood definition plays a significant role
in the shape of the resulting filters. In combination with the
5-conn neighborhood definition, higher @ values can result in
non-local averaging filters when the ODFs are oriented along a
neighborhood direction in the outer shell of the neighborhood
(see Figure 5 middle left, Figure 6 bottom row). This effect is
not present in filters created using the 3-conn neighborhood def-
inition (see Figure S2), which additionally show a more limited
capacity to represent orientation due to the reduced angular res-
olution of the neighborhood definition. More exhaustive results
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Figure 4: Phantom construction. (a) Circular phantom construction. Left: A subset of vertices of a 3-level subdivided icosahedron, 93 out of 642, were selected.
Vectors pointing from the center of the sphere to these vertices constitute the normal vectors of the planes within which circular phantoms were realized. Right: Five
representative unit circles with orientations corresponding to the vertices on the left of matching color. For example, the red circle falls within a plane that passes
through the center of the sphere and has its normal vector pointing from the center of the sphere to the red point shown on the left. (b) Streamline-based phantom
construction. A WM streamline constructed using tractography (shown in yellow) is randomly selected, a focal point along the streamline is randomly selected, and
a diffused non-binary activation pattern is created around the focal point (shown in red). (c) Axial, coronal, and sagittal view of a representative streamline-based

phantom with 100 streamline activations, overlaid on subject’s T1-weighted image.

for both 5-conn and 3-conn filters are presented in Supplemen-
tary Figures S1-S6.

3.2. Validations on circular phantoms

Circular phantoms of 93 different orientations and 3 different
radii were created as described in Section 2.5. Each phantom
was corrupted with 10 realizations of additive white Gaussian
noise of standard deviation 1, and subsequently denoised by
spatial filtering with GSS and DSS over a range of parameters.
The FWHM of GSS and the 7 parameter of DSS were varied
over a range from 1 to 8 in unit steps. Both the 3-conn and 5-
conn neighborhood definitions were tested for DSS, which we
will refer to as DSS3 and DSSS5, respectively. The a parameter
of DSS was set to 0.9 throughout.

To assess the denoising performance of GSS, DSS3 and
DSSS5, we performed receiver operating characteristic (ROC)
analyses. The filtered phantom volumes were each thresholded
at 300 uniformly-spaced consecutive levels spanning the min-
imum and maximum value in each filtered volume. The re-
sulting detections for each threshold level were compared with
the ground truth of the phantom, yielding true positive rates
(TPR) and false positive rates (FPR) that were collected in ROC
curves. The area under the curve (AUC) of the ROC curves was
then computed, resulting in an overall measure of performance.

Figures 7(a) and (b) show the overall performance of DSS3,
DSS5 and GSS as characterized by the AUCs. Due to the lack
of equivalence between DSS and GSS filters, there is no di-
rect correspondence between individual values of FWHM and
7. However, it can be noted that the performance of GSS peaks
at 2 mm FWHM, and diminishes for larger filter sizes. On the

other hand, both DSS3 and DSS5 achieve substantially higher
maximum performances, which are not negatively affected by
increased filter size in the range of 7 tested.

The median AUC of DSS5 consistently falls above that of
DSS3 for 7 > 2 and all three phantom radii. The performance
gap between DSS5 and DSS3 increases for larger 7, and slightly
increases on circular phantoms with larger radii, i.e., smaller
curvatures. These results corroborate the improvements in de-
tection performance thanks to the increased angular resolution
of the 5-conn neighborhood definition. This is further illus-
trated by Figure 7(c), which shows the performance improve-
ment of DSS5 over DSS3 for individual phantoms orientations.
The wide range of performance gains is representative of the
varying difficulty of representing specific spatial orientations in
the discrete domain of graphs, highlighting the importance of
angular resolution for the proposed filters.

Given the overall superior performance of DSS5 over DSS3,
in the following, DSS results are only presented for graphs us-
ing the 5-conn neighborhood definition.

3.3. Validations on streamline-based phantoms

A similar analysis was performed on streamline-based phan-
toms. A single phantom with Ny = 50, 100 and 200 streamline
activations was created for each of the 95 subjects as described
in Section 2.6. As in the analysis on circular phantoms, each
phantom was corrupted with 10 realizations of additive white
Gaussian noise of standard deviation 1, and denoised by spatial
filtering with GSS and DSS over the same range of parameters.
The a parameter of DSS was set to 0.9, whereas values of 0.85
and 0.95 were also tested on the 100-streamline phantoms. The
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WM voxel corresponds to a vertex in the graph, with weighted connections to neighboring voxels (middle left). The edge weights are determined on the basis
of coherence between the directions of diffusion and the orientation of the graph edges (bottom left). Using this WM graph definition, graph filters from a single
spectral profile become adaptive to the local axonal microstructure when instantiated in different WM regions (top row). Note that both the edges connecting voxels
and the graph filters extend in three dimensions, whereas their 2D axial intersection centered at the focal voxel are shown. Graph parameters: 5-conn neighborhood,
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Figure 6: Effects of parameters T and @ on the shape of DSS filters located at
red ROI shown in Figure 5. Graph parameters: 5-conn neighborhood, 8 = 50.
Filters are shown normalized to the [0, 1] range.

denoising performance of both methods was assessed by apply-
ing the same ROC/AUC analysis described in Section 3.2.

Figures 8(a) and (b) show AUC results on all three types of
phantoms for DSS and GSS, respectively. Due to the substan-
tial amount of noise present in the phantoms, spatial smoothing
using either GSS or DSS generally leads to better performance
compared to no smoothing. DSS outperforms GSS across the
range of 7 and FWHM values tested, and across the different
settings. As with the circular phantoms, the performance of
GSS peaks at 2 mm FWHM, with increased size negatively af-
fecting performance beyond that value. DSS shows a similar
pattern, with peak performance achieved for 7 of 3 and 4 for
a = 0.9. Both GSS and DSS show better performance on phan-
toms with a greater number of streamlines. Additional results
show that DSS outperforms GSS in both sensitivity and speci-
ficity (see Supplementary Figure S7(a)), and across a range of
SNR values (see Supplementary Figure S7(b)).

To assess the performance of DSS and GSS in combination
with temporal modeling, i.e., as used within fMRI activation
mapping studies, time-series version of the streamline-based
phantoms were generated as described in Section 2.6. The
phantoms were corrupted with additive white Gaussian noise

“https://www.nitrc.org/projects/csaodf-hough
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Figure 7: Validation of spatial smoothing on circular phantoms. (a)-(b) AUC
of ROC curves obtained from volumes spatially smoothed with DSS and GSS,
respectively. The markers show the median AUC over 930 ROCs (93 orienta-
tions X 10 realizations), whereas the whiskers represent 5—95% percentiles. (c)
Difference between AUC values for DSS5 and DSS3 for phantoms with 25 mm
radius. The black curve shows the difference between the median performances
shown in (a), whereas the remaining curves show the difference between the 10-
realization medians for each of the 93 phantom orientations. The five colored
curves correspond to the phantom orientations shown in Fig. 4(a).

of standard deviation 1 and subsequently spatially filtered with
GSS and DSS with the same range of parameters used previ-
ously. The smoothed phantoms were subjected to a standard
single-subject analysis in SPM, and the resulting t-maps were
used in the ROC/AUC analysis.

Figures 8(c) and (d) show AUC results from the time-series
phantoms. Due to the increased detection power afforded by
temporal modeling, AUCs are higher for all scenarios in the
time-series analysis compared to those in the single-volume
analysis. Similarly to the single-volume phantom results, GSS
achieves its best performance for 2 mm filters, and considerably
deteriorates beyond that size. Notably, GSS only provides a
distinct improvement over no smoothing for 2 mm filters. DSS
results also show a negative correlation between filter size and
performance for 7 > 2, but the overall performance is superior
to GSS and provides a benefit over no smoothing in most tested
cases, with best results achieved for T between 2 and 4. After
subjecting the t-maps to activation mapping with false discov-

ery rate (FDR) correction at 5% (Genovese et al., 2002), the de-
tection maps resulting from DSS showed substantially higher
sensitivity and specificity than those from GSS (see Supple-
mentary Figures S8-S10). These results also illustrate that the
diminished performance of both methods on phantoms with a
greater number of streamline activations is a consequence of
increased FPR when using large filters.

Figures 8(a) and (c) also illustrate the effects of varying the «
parameter of DSS in single-volume and time-series phantoms,
respectively. For both types of phantoms higher values of «
generally resulted in better performance. In the case of single-
volume phantoms, filters with @=0.9 outperformed the others
for small filter sizes, while @=0.95 is superior for larger filter
sizes and across all sizes for time-series phantoms. In addition,
filters with @ = 0.95 show minimal decay in performance as
filter size increases for both versions of the phantoms. Filters
with @ = 0.85 consistently performed worse than the others.

3.4. Single-subject task fMRI results

In order to explore the effects of the proposed smoothing
method on real task fMRI data, we used SPM12 to perform
activation mapping on the HCP100 task fMRI data, comprising
23 experimental conditions across 7 tasks. Each GLM analysis
included 12 motion regressors (raw and temporal derivative) in
addition to regressors for 2 to 8 experimental conditions associ-
ated with each task. The canonical HRF model, corresponding
to a double gamma, was used—although such a temporal model
is not tailored to the WM BOLD signal, it affects GSS and DSS
equally, and should have no discernible influence on spatial fil-
tering comparisons. Temporal noise modeling was done using a
global AR(1) model. The fMRI data were smoothed using GSS
and DSS with the same parameters used previously. For GSS,
each fMRI volume was first multiplied with the WM mask, to
avoid introducing signal from GM. This step is not required for
DSS, as the method by its nature functions only in WM. The
resulting t-maps were then thresholded to determine significant
active voxels after FDR correction at 5%. Our choice of FDR
as the correction method was due to it only assuming the p-
values to be uniformly distributed under the null hypothesis.
Correction methods based on assumptions about the smooth-
ness of the data, such as those based on Gaussian random field
theory, would be difficult to justify for an adaptive smoothing
approach.

The sheer number of detection maps generated by this
analysis—37,145 maps (95 subjects X 23 conditions X 17 filter
settings)—renders exhaustive visual examination of them im-
practicable. Therefore, in our presentation, we focus on repre-
sentative results that highlight the differences in maps generated
by GSS and DSS. The full set of unthresholded t-maps is made
available at NeuroVault®.

Figure 9 shows representative t-maps and detections from
two subjects generated by DSS and GSS, with unmasked (i.e.,

Shttps://identifiers.org/neurovault.collection:9494
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Figure 8: Validation of spatial smoothing on streamline-based phantoms. (a)-(b) AUC of ROC curves obtained from volumes spatially smoothed with DSS and
GSS, respectively. (c)-(d) AUC of ROC curves obtained from activation mapping t-maps of time-series streamline-based phantoms smoothed with DSS and GSS,
respectively. The markers show the median AUC over 950 ROCs (95 subjects x 10 realizations), whereas the whiskers represent 5 — 95% percentiles.

full brain) GSS results included for reference.® Visual inspec-
tion of the t-maps reveals that GSS results in generally round
features with little oriented structure, with very little visible
structure remaining for larger Gaussian filters. In contrast, t-
maps obtained using DSS present notable spatial detail, with
linear features in the shape of streamlines discernible across
filter sizes. These differences are also present in the detec-
tion maps from both methods. While GSS detections are gen-
erally large and rounded—with very few detections present
for smaller filters—DSS manifests detection maps with pro-
nounced subtle spatial details—with considerable detections
even for small filter sizes. The detections presented in Fig-
ure 9(a) highlight the capability of DSS in identifying sepa-
rate streamline-shaped activations in two contiguous parallel
axonal bundles (orange arrow), which remain distinct across the
tested filter sizes. On the other hand, with GSS, these activa-
tions are combined into a single active region when large filters
are used, and are not present when small filters are used. No-
tably, the case of FWHM = 3 mm shows activation foci being
combined across rather than along axonal bundles, suggesting
that these activations may not be separable with GSS. In Fig-
ure 9(b), DSS activation maps manifest an elongated, clearly

6In our default analysis setting, regions outside the WM are masked out of
fMRI volumes prior to GSS smoothing. This prevents the introduction of spu-
rious signal, particularly from gray matter, while ensuring an unbiased com-
parison with DSS. Such considerations are not adhered to when implementing
full brain GSS, and these results are therefore provided only for reference. Fur-
thermore, due to the differences in FDR thresholding, there is no expectation of
WM detections of either GSS method being a subset of those of the other.
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resolved streamline-shaped activation that spans the corpus cal-
losum (orange arrow), which is mostly undetected in GSS acti-
vation maps. In addition, the activations seen around the edges
of the WM mask deserve notice. Although these activations
may be attributed to interpolation artifacts or partial volume ef-
fect, due to them consistently being found in positions adja-
cent to active GM regions, it is important to note that both GSS
and DSS produce these activations solely on the basis of sig-
nal from WM. DSS generally manifests more such activations,
especially for small filter sizes. Additional activation mapping
results are presented in Supplementary Figures S11 and S12.

In order to quantitatively investigate the degree to which
spatial structure is present in t-maps obtained using the two
smoothing methods, we analyzed the t-maps using structure
tensor methods (Knutsson, 1989). While a thorough introduc-
tion to such methods falls outside the scope of this work, it is
sufficient for our purposes to point out that the eigenvalues and
eigenvectors of the structure tensor provide information on the
presence and orientation of spatial structure, in the form of lines
and edges, at a given point in an image or volume.

For each t-map, we constructed a quantitative structure map
by computing the sum of the structure tensor eigenvalues at
every voxel (a measure of the amount of spatial structure in
each voxel). The mean value of each structure map provides a
global measure of the presence of spatial structure in the cor-
responding t-map. Figure 10(a) shows a comparison of this
global structure measure for DSS and GSS. For both methods
the amount of structure present in the t-maps diminishes as the


https://doi.org/10.1101/2020.10.25.353920
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.25.353920; this version posted April 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Subject 280739, Gambling task, win condition

GSS full brain

o
anjea-

o
anjea-

GSS full brain

o N B O

anjea-

anjea-

(b)

Figure 9: Comparison of representative single-subject activation mapping results generated with GSS and DSS, with t-maps shown in grayscale and detections
overlaid in red (FDR-corrected at 5%). Full-brain activation maps are also shown for reference, overlaid on the subject’s T1w image.
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Figure 10: Structural analysis of task fMRI t-maps, obtained using local struc-
ture tensor analysis (Knutsson, 1989) where the eigenvalues of the structure
tensor denote the amount of spatial structure. (a) Quantification of the amount
of anisotropic structure observed in t-maps, specified by the mean structure
map value, averaged across the task’s experimental conditions. (b) Correlation
between subjects’ QA maps and structure maps, averaged across each task’s ex-
perimental conditions. Markers shows the median value across the 95 subjects.

filter size increases, which is consistent with the loss of spa-
tial detail resulting from smoothing the data. This effect is very
pronounced for GSS, while t-maps generated using DSS exhibit
a more consistent amount of spatial structure across the tested
filter sizes.

To determine the extent to which the structure present in the
t-maps is influenced by the diffusion information introduced by
DSS, we computed Pearson’s correlation coefficient between
the quantitative structure maps and the quantitative anisotropy
(QA) map (Yeh et al., 2013) of the associated subject; see Fig-
ure 10(b). For DSS, this correlation is close to zero at 7 = 1,
and steadily increases for increased filter sizes. In contrast, the
structure manifested in t-maps obtained through GSS shows a
slightly negative correlation with QA, which stays nearly con-
stant across all filter sizes. These results suggest that DSS is
successful at informing the smoothing process with the local
diffusion properties of the underlying WM, with larger values
of 7 resulting in stronger diffusion encoding.

Figure 11 compares the number of detections obtained from
DSS and GSS. To prevent bias due to differences in brain size,
we present the fraction of each subject’s WM mask being de-
clared as active. Overall, the detection rates for both methods
increase as a function of filter size, with DSS exhibiting a more
linear increase than GSS. While the number of detections on
t-maps obtained from volumes smoothed with DSS and GSS is
comparable for large filters, DSS generally produces substan-
tially more detections with smaller filter sizes, as manifested
by comparing the median detection numbers of corresponding
tasks.

In the absence of ground truth, it is not possible to make
definitive statements on the relationship between differences in
the number of voxels deemed active by each method and poten-
tial differences in their sensitivity and specificity. However, it
can be insightful to quantify the difference between the detec-
tion maps generated with DSS and GSS. To quantify the simi-

12

larity between a pair of detection maps we computed the Dice
coeflicient between them, defined as

2|M‘r n Mfwhm|

, (12)
|MT| + |Mfwhm|

d‘r,fwhm =

where M, denotes the set of detected voxels using DSS with a
given 7, Mpynm denotes the set of detected voxels using GSS
with a given FWHM, and | - | denotes set cardinality. The Dice
coefficient is constrained to the [0, 1] range, where a value of
1 signifies perfect overlap between the detection maps and a
value of 0 represents no overlap.

For every subject and experimental condition we calculated
Dice coefficients between detection maps obtained with GSS
and DSS of all filter sizes, and arranged them into 8 X 8 Dice
matrices. Additionally, we calculated the maximum Dice coef-
ficient between each DSS filter size and every GSS filter size
for each subject and condition. Figure 12 shows Dice results
for several representative experimental conditions. The overall
similarity between the detection maps obtained with DSS and
GSS is relatively low. The highest ensemble Dice is achieved
for r = 7 and FWHM = 8 mm, where it reaches a value of
0.65, with other combinations achieving values close to this one
(see ensemble Dice matrix). The relationship between the 7 and
FWHM values that result in the highest similarity in the detec-
tion maps is also shown to be nonlinear, tracing a particular
curve across the Dice matrices that is generally similar across
experimental conditions. The similarity between the detection
maps also shows considerable variation across tasks and indi-
vidual experimental conditions (see results for all experimental
conditions in Supplementary Figure S13), with below-average
similarity in the Language and Motor tasks and above-average
in the Gambling and Relational tasks.

In order to determine whether the detections generated by ei-
ther method are a subset of the detections from the other, we
examined the number of common and unique detections pro-
duced by DSS and GSS. For all subjects and experimental con-
ditions, the detection maps produced by DSS were compared
with the most similar maps produced by GSS. Figure 12, bot-
tom right, shows the average number of voxel detections com-
mon to both methods, as well as those unique to each method,
for the tested values of 7. These results show that, across fil-
ter sizes, both DSS and GSS produce a considerable number
of detections that are not produced by the other method. This
observation, together with the generally low Dice similarities,
suggests the presence of substantial differences in the localiza-
tion and spatial extent of activations detected using DSS and
GSS.

3.5. Group task fMRI results

We performed random-effects group analysis based on the
single-subject results for each of the 23 experimental condi-
tions across the seven tasks. The estimated regressor weights
of each experimental condition were taken to MNI space us-
ing the displacement maps provided with the HCP data—the
inverse of those used to map the preprocessed fMRI data to
ACPC space—and a GLM was fitted to them to create group
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Figure 11: Fraction of voxels within WM mask detected as being significant using DSS (top left) and GSS (bottom left) across 7 functional tasks, over 95 subjects.
Significant voxels were determined after FDR correction at 5%. In the plots on the left, each dot corresponds to one subject, whereas B shows the median value
across the 95 subjects. The plots on the right show the trend of the average value as a function of filter parameters T and FWHM for GSS and DSS respectively.

t-maps. These group maps were then thresholded to determine
significant active voxels after Bonferroni correction at 5%.

Figure 13 shows representative results for one condition of
the Gambling task. Overall, spatial patterns in the t-maps are
more clearly visible than in the single-subject analysis, remain-
ing more defined in the DSS results than in those of GSS. Inter-
estingly, both methods show large WM regions in the shape of
axonal bundles that are strongly anticorrelated with the experi-
mental conditions.

The activation maps in Figure 13 show similar patterns to the
single-subject activation maps. While DSS is capable of pro-
ducing elongated, streamline-like detections, those of GSS are
generally round. In addition, DSS reveals considerable detec-
tions for small filter sizes. Additional group activation mapping
results are shown in Supplementary Figures S14-S16.

In order to study the consistency of the results obtained by
each method, we investigated the test-retest reliability of GSS
and DSS through a Monte Carlo experiment. The 95 subjects
were repeatedly split into two groups, after which a random-
effects model was fitted to each group, and the resulting t-maps
and detection maps were compared. This process was repeated
30 times, and the similarities of the resulting t-maps and detec-
tion maps were quantified using Pearson correlation and Dice
similarity, respectively. Figure 14 shows results of this analysis
for a representative subset of experimental conditions. Corre-
lation and Dice scores show an increasing trend with respect
to the filter size, for both GSS and DSS. The values produced
by both methods are roughly comparable, being slightly higher
overall for DSS, particularly for small filter sizes. Full com-
parisons for all experimental conditions are presented in Sup-
plemetary Figure S17.
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3.6. Processing time

Although the proposed methodology requires additional MRI
scanning time for the acquisition of DW-MRI data, it does not
impose a dramatic increase in processing time over conven-
tional approaches. Using a workstation with an Intel Core i7-
7700K processor and 64 GB of RAM, the generation of dif-
fusion ODFs from DW-MRI data required approximately 90
seconds. The graph and its Laplacian matrix could then be cal-
culated from the ODFs in under 15 seconds. Both of these op-
erations need only be performed once per subject.

In our implementation, the average filtering time of a sin-
gle volume with GSS was 10.3 ms using the imgaussfilt3
MATLAB function (the same operation required about 450 ms
when using the smoothing implemented in SPM). On the other
hand, DSS filtering scales efficiently with the number of filter
kernels used. Average single-volume DSS filtering times for a
single kernel were 115 ms for the 5-conn neighborhood and 56
ms for 3-conn, and became reduced to 17.7 ms and 11.0 ms,
respectively, when using 8 filter kernels at once. With worst
case performance, the proposed method gave filtering times of
around 45 seconds for a 405-volume series (the longest of those
available in HCP data, corresponding to the Working Memory
task).

4. Discussion

4.1. Interpretation of results from simulated data

Previous implementations of voxel-wise graphs on GM (Be-
hjat et al., 2015; Maghsadhagh et al., 2019; Behjat and Lars-
son, 2020) have used the 3-conn neighborhood in defining
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Figure 14: Results of Monte Carlo test-retest analysis for one representative ex-
perimental condition from each task. Subjects were repeatedly divided into two
groups and subjected to group analysis, and the resulting statistical maps were
compared. (a) Correlation between t-maps of both groups. (b) Dice similarity
between activation maps of both groups. The markers show the median value
across 30 experiments, whereas the whiskers represent 5 — 95% percentiles.

graph edges. However, given the different nature of the pro-
posed encoding for WM graphs—representing axonal orienta-
tions rather than GM morphology, we considered the potential
advantages of using a larger neighborhood definition. To this
end, we compared the denoising performance obtained with
graphs using the 3-conn and 5-conn neighborhood definitions
on circular phantoms of multiple orientations and radii. Such
phantoms were used because, barring discretization artifacts,
they offer an exhaustive sampling of all possible orientations in
which data can appear in three dimensions. The results show a
clear improvement from using the larger neighborhood defini-
tion (see Figures 7(a) and (c)), which can be attributed to its su-
perior angular resolution of 98 neighborhood directions, against
the 26 of the 3-conn definition. Furthermore, comparing per-
formances obtained on phantoms of different radii shows that
the larger neighborhood definition provides more stable perfor-
mance across spatial curvatures than the smaller neighborhood,
which performs worse for smaller curvatures, particularly for
larger filters. Compared to isotropic Gaussian smoothing (see
Figure 7(b)), both the 3-conn and 5-conn neighborhood defi-
nitions used in DSS showed enhanced denoising performance
on circular phantoms. In particular, while the performance
of GSS deteriorates for larger filter sizes, the performance of
DSS reaches a plateau instead, suggesting that the diffusion-
informed nature of DSS filters is capable of minimizing the in-
troduction of spurious signal even for larger filter sizes.

To better mimic spatial activation patterns manifested as
BOLD contrast in WM, we designed and studied semi-synthetic
streamline-based phantoms, whose diffuse activation patterns
are representative of WM fiber structures, along which corre-
lated BOLD activity is expected (Ding et al., 2013, 2016). The
phantoms were studied in two settings. In the first setting, the
denoising performance was studied in the absence of tempo-
ral modeling, wherein both methods provided an improvement
over no smoothing, but DSS outperformed GSS for all tested
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filter sizes (Figure 8(a)). In the second setting, the phantoms
were studied within the context of GLM activation mapping,
i.e. with temporal modeling, wherein GSS provided only mini-
mal improvements over no smoothing, whereas DSS provided a
notable improvement (Figure 8(b)). In addition, when the time-
series phantoms were subjected to activation mapping with
FDR correction, activation maps from GSS showed reduced
sensitivity and specificity when compared to those of DSS (see
Supplementary Figures S8-S10). The phantoms were also used
to study the influence of the @ parameter of DSS, which sets a
lower bound on the weight of connections allowed in the WM
graph. Due to the narrower and more directional filters resulting
from higher « values (Figure 5, Supplementary Figures S1-S6),
the increased performance on the streamline-based phantoms
would be expected (Figures 8(a) and (c)). However, this result
may not be readily extensible to real fMRI data, as the spread
of real activation patterns is not known.

4.2. Interpretation of results from real data

We compared single-subject activation mapping results from
DSS and GSS on task fMRI data from the HCP100 subject set.
Structure tensor analysis of the resulting t-maps revealed that
the overall amount of structure present diminished for larger
filter sizes, an effect that is more pronounced for GSS (Fig-
ure 10(a)). Such results reflect the loss of spatial details that
happens as a result of lowpass filtering. However, due to the
highly anisotropic shapes that DSS filters take within the WM
(Figure 5), features in the shape of lines and edges can be
present in t-maps even for larger filter sizes (Figure 9). In
addition, the spatial structure present in the t-maps obtained
with DSS is correlated with regions of high diffusion anisotropy
(Figure 10(b)), indicating that DSS successfully adapts its
smoothing to the underlying WM microstructure.

Due to the differences in their definitions, as well as the adap-
tive nature of DSS, there is no direct correspondence between
GSS and DSS filters. This is corroborated by the relatively low
Dice coefficients between detection maps resulting from both
methods (see Dice matrices in Figure 12). The overall number
of detections is comparable for GSS and DSS, with a consid-
erable and roughly equal number of activations being unique
to each method (see bar chart in Figure 12, bottom right). On
the other hand, example detection maps corroborate that DSS
is capable of resolving subtle, slender activation patterns along
axonal pathways across multiple filter sizes by leveraging in-
formation about the spatial correlation structure of the BOLD
signal in WM. Figure 9(a) exemplifies the increased resolution
from DSS, presenting a case where it is capable of resolving
two parallel streamline-like activations that GSS is incapable of
identifying as separate. Figure 9(b) illustrates a similar case,
with DSS detecting a highly resolved streamline-like activation
through the corpus callosum that is left largely undetected by
GSS. Supplementary Figures S11 and S12 present additional
detection map comparisons highlighting the increased sensitiv-
ity and specificity of the proposed methodology over conven-
tional GSS.

We also compared group activation mapping results from
DSS and GSS. Similarly to the single-subject results, group t-
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maps obtained with DSS manifested intricate spatial structures
across filter sizes, while t-maps generated with GSS presented
mostly smooth, round features (Figure 13). The same pat-
terns extended to the activation maps produced by both meth-
ods, where DSS has shown greater specificity and an increased
number of detections in multiple instances (Supplementary Fig-
ures S14-S16). Although group WM activations obtained with
GSS and DSS are often contained within those obtained with
full brain GSS, it is important to note that while the latter rely
mostly on signal from the GM, the former rely solely on sig-
nal from the WM, and result in much greater specificity in the
detected activations.

In order to evaluate the consistency of the statistical maps
generated by both methods, we performed a test-retest analy-
sis of group activation mapping. While the performances of
DSS and GSS were comparable for the upper range of filter
sizes tested, DSS showed a marked improvement for small fil-
ter sizes (Figure 14), altogether suggesting that DSS is capable
of yielding equally or more consistent results than GSS is.

4.3. Limitations

We used a sigmoid function, see (10), as a means of boosting
orientation encoding, allowing diffusion only along main direc-
tions of diffusion coherence. We studied three threshold values,
a = 0.85,0.9 and 0.95, all of which yielded better performance
than GSS on phantom data, with noticeable variations in perfor-
mance among the three values. However, the general choice of
the thresholding function and its associated parameters is rather
ad-hoc, which is a complication of similar nature as that en-
countered in connectomic studies (Rubinov and Sporns, 2010).
Future work should consider a more rigorous validation of the
thresholding scheme for obtaining optimal performance, espe-
cially on real fMRI data.

Accurate co-registration of functional, structural, and diffu-
sion MRI data is a cornerstone of the proposed methodology.
Within this study, we used preprocessed HCP data, which have
been diligently motion-corrected, distortion-corrected, and co-
registered (Glasser et al., 2013). However, conducting solid
preprocessing steps may not be possible in some datasets, and if
so, results obtained using the proposed method on such datasets
should be interpreted with care.

A number of recent studies have highlighted substantial dif-
ferences between the HRF in WM and that in GM (Li et al.,
2019b; Wang et al., 2020b; Choi et al., 2020), which corrob-
orate similar sporadic observations from earlier studies that
showed evidence for delayed and subdued hemodynamic re-
sponses compared to that in GM (Yarkoni et al., 2009; Fraser
etal., 2012), and in particular, in the corpus callosum (Tae et al.,
2014; Courtemanche et al., 2018). The recent evidence for the
unique features of HRF in WM is indeed insightful, but given
the ongoing nature of this research, we decided to use the stan-
dard HRF model that is conventionally used in fMRI activation
mapping in the present work. Given that our work is compar-
ative, the choice of the HRF model affects both DSS and GSS
equally, and as such, we do not believe that our conclusions
would be substantially affected by the use of a more precise
model. Nevertheless, future work aimed at investigating the
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BOLD signal in WM can most likely benefit from combining
a more appropriate HRF model with adaptive smoothing of the
BOLD signal by DSS.

4.4. Outlook; potential extensions and other applications

Due to the limited degree to which diffusion ODFs can dif-
ferentiate fiber orientation (Jones et al., 2013), we boost ori-
entation encoding by means of a weight thresholding scheme.
Alternatively, the proposed design can be extended to lever-
age standard fiber orientation distribution (FOD) functions esti-
mated from either the diffusion ODFs (Descoteaux et al., 2008)
or the raw diffusion data (Tournier et al., 2007), or asymmetric
FODs (Bastiani et al., 2017), to obviate the need for threshold-
ing. In the absence of HARDI data but presence of DTI data,
the proposed method can be readily extended to leverage diffu-
sion tensors instead of diffusion ODFs, e.g. as in Tarun et al.
(2019), which can be of particular interest for reanalyzing the
vast extent of currently available fMRI datasets that are accom-
panied by DTI data.

In the absence of any DW-MRI data, it would be pos-
sible to adapt the proposed method to use a structure ten-
sor representation (Knutsson, 1989) derived from T1-weighted
MRI images as the complementary contrast (Abramian et al.,
2020b), wherein the proposed filtering scheme could be ex-
tended to function across the entire brain mask. The resulting
morphology-based spatial smoothing could then be seen as a
GSP-based alternative to non-linear filtering algorithms which
enable spatial smoothing within similar anatomical compart-
ments (Smith and Brady, 1997; Weickert and Scharr, 2002;
Ding et al., 2005; Rydell et al., 2008; Lohmann et al., 2018),
but will not provide adaptation to WM fiber orientations.

In addition to performing denoising through heat kernel
smoothing (i.e., lowpass filtering), the proposed WM graphs
can be used to implement graph-wavelet denoising, similar to
that implemented by Behjat et al. (2015) for GM graphs, us-
ing novel data-driven GSP denoising schemes (de Loynes et al.,
2019) in combination with computationally efficient multi-scale
spectral graph decomposition methods (Li et al., 2019¢; Shu-
man, 2020) that can be tractably implemented on large graphs.

In the present study, we only explored spatial smoothing of
task-based fMRI data within the context of activation mapping,
whereas DSS can be readily applied to WM resting-state fMRI
data, where recent studies have used Gaussian smoothing of
the data as a pre-processing step. Such research appears par-
ticularly promising in light of studies reporting the existence of
BOLD-like response in resting-state data (Liu and Duyn, 2013;
Petridou et al., 2013; Karahanoglu and Van De Ville, 2015; Li
etal., 2021), and the current growing interest in exploring func-
tional dynamics of WM at rest (Peer et al., 2017; Ding et al.,
2018; Li et al., 2019a; Wang et al., 2020a; Li et al., 2020a).

It is worth noting that DSS may prove beneficial for en-
hancing the detection of functional pathways through the use
of functional-correlational tensors (FCT) (Ding et al., 2013) or
high angular resolution functional imaging (HARFI) (Schilling
etal., 2019). FCT and HARFI provide the means to derive func-
tional WM pathways by characterizing the spatial anisotropy
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observed in the temporal correlation in the BOLD signal at ad-
jacent WM voxels. Given the lack of spatial adaptiveness of
GSS, its use is likely to distort the spatial anisotropy in the sig-
nal, on which these methods rely. On the other hand, filtering
the fMRI data with DSS may help boost this spatial anisotropy,
thus enhancing the detection of spatiotemporal correlation in
the local BOLD signal. Furthermore, FCTs have been lever-
aged for improving inter-subject registration of resting-state
data based on functional features (Zhou et al., 2018), which
might also be enhanced if the data are initially filtered with
DSS.

DSS may also be used as a method to filter tractography
streamlines in a manner similar to SIFT (Smith et al., 2013).
In particular, by applying DSS to voxelized representations of
streamlines, the resulting filtered maps can be quantified to ob-
tain a validity score for tracts—tracts that are closely aligned
with the underlying diffusion map should be minimally deteri-
orated by DSS.

Another research avenue that can benefit from the proposed
WM graph design is structural studies. The eigenvalues of
cortical surface graphs as well as their eigenmodes have been
leveraged in multiple applications, namely, quantifying cor-
tical folding patterns (Germanaud et al., 2012; Rabiei et al.,
2016; Dubois et al., 2019), age prediction (Wachinger et al.,
2015; Masoumi et al., 2019), and analysis of brain asymmetry
in health (Wachinger et al., 2015; Maghsadhagh et al., 2019)
and in disease (Wachinger et al., 2016a,b; Masoumi et al.,
2019). Such analyses can be extended to leverage the spec-
tra of WM graphs. Analysis on similarly designed graphs using
DW-MRI data—covering the entire brain rather than just the
WM-—has shown that an initial subset of the graph eigenmodes
provides informative features to distinguish between subjects
(Tarun et al., 2019). Lastly, ODF-based WM graphs may be
found beneficial in deriving structural connectivity measures
that account for direct as well as indirect pathways, for ex-
ample, similar in nature to those derived from a recently pro-
posed DTI-based conductance model (Frau-Pascual et al., 2019,
2020).

5. Conclusion

The development of methods geared specifically towards
WM can prove substantially helpful in investigating the func-
tional significance of the BOLD signal in WM. Notwithstand-
ing the repository of sophisticated smoothing techniques found
in the literature, to date, studies on fMRI data in WM have
mainly resorted to isotropic Gaussian smoothing. An appar-
ent reason is the ease in implementing Gaussian smoothing and
its availability in widely used open-access software packages,
which facilitate its routine application. The proposed diffusion-
informed spatial filtering method, in conjunction with the use of
WM-specific HRF models and MR sequences, holds promise to
aid better understanding of the functional role of WM.
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Code and data availability

An implementation of the methods proposed in this work
will be made available as a MATLAB package on GitHub.
The simulated circular and streamline-based phantoms used in
this work will be made available on the OpenNeuro platform.
Single-subject and group activation mapping t-maps will be
made available on the NeuroVault platform. Customized links
will be added in the final version of the manuscript.
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Appendix A. Frequency interpretation of graph Laplacian
eigenvalues

In classical signal processing, in particular in the case of 1D
discrete temporal signals, a set of complex exponentials e/“*
of varying frequencies w defines a basis that can be used to
transform a given signal to a Fourier (spectral) representation.
Importantly, these complex exponentials are the eigenfunc-
tions of the one-dimensional Laplacian operator, i.e., dd; eJwx =
—w?e/**. Given that a graph structure can be interpreted as a
generalization of the 1D regular grid, the eigenvalues A; and
eigenvectors u; of the graph Laplacian L can be seen as analo-
gous to the frequencies and complex exponentials of classical
signal processing, respectively. With this interpretation, given
two eigenvalues of L such that 4, < A, it can be stated that
the eigenvector associated with A, entails a notion of higher
frequency—i.e., higher spatial variability—than the eigenvec-
tor associated to 4,,. In the following we will illustrate this point
in two ways.

Given a graph signal f € £%(G), the extent of variation of f on
G can be quantified by introducing a measure denoted as graph
signal variation (GSV), defined as

GSVE) =fTLE = 3" ay(fi - £)?, (A1)

(i.)e&

where larger values of GS V(f) represent greater variability of f
on G. The eigenvectors of L can be equivalently seen as graph
signals, and thus be quantified in relation to their extent of vari-
ation on G. By noting that i) the eigenvectors of L are orthonor-
mal, i.e., ulTul = 1 and ii) Lu; = Ajuy, it follows that

GSV(w) = u/ Ly, = 4, (A.2)

showing that the eigenvalue A; associated to each eigenvector u;
is a quantification of the extent of variability of u,.

The variability of eigenvectors can also be measured by ex-
amining their zero crossings—i.e., changes in their sign at ad-
jacent graph vertices—using a weighted zero crossing measure
(WZC) defined as

1
WZC) = 5 > aiH-wlilwlj),
(i,))e&

(A.3)

where H(-) denotes the Heaviside step function. To show the
link between WZC(u;) and A;, we calculated the WZC of an
even sampling of 41 eigenvectors of L for fifty subjects—
computing the full eigendecomposition of L is impractical due
to its size. Figure A.l1 shows the relation between A; and the
WZC(uy), illustrating that larger eigenvalues entail a greater ex-
tent of spatial variability in their associated eigenvectors, as
measured by the WZC. It should be noted that the monotoni-
cally increasing behavior of WZC(w;) relative to A;, which holds
up to the very upper parts of the spectrum, stops at the higher
end eigenvalues. This is a consequence the decrease in delo-
calization manifested by eigenvectors of L at the upper part of
the spectrum—unlike the complex exponentials of classical sig-
nal processing, which are delocalized, eigenvectors of L can
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Figure A.1: WZC of a subset of eigenvectors of the WM graph Laplacian of 50
subjects.

present localized patterns of spatial variability. Nevertheless,
given the lowpass profile of the spectral kernels used in this
work, the loss of delocalization associated to the upper end of
the spectrum is of no concern for the application at hand. For a
more comprehensive overview of the link between classical sig-
nal processing and GSP, the interested reader is referred to Or-
tega et al. (2018); Stankovic et al. (2019); Huang et al. (2018a).

Appendix B. Spectral graph filtering through polynomial
approximation

Spectral graph filtering can be efficiently implemented us-
ing polynomial approximation schemes (Hammond et al., 2011;
Shuman, 2020), mitigating the need to diagonalize large L. ma-
trices as those used in the present work. Using this approach, a
spectral kernel k() is first approximated using a polynomial of
suitable order, denoted p(1) : [0,2] — R, and filtering of signal
f is then implemented as

Ne
£2 3" ey i, (B.1)
=1

where the vectorized form of (3) is invoked. Noting that Lu; =
Ay = p(Lw; = p(A4)uy, (B.1) can be simplified as

NS’
f=p) ) fiw = pLf, (B.2)
=1

where in the last equality we used f Zj\fl f[/lu;. Using
this scheme, filtering is performed through a series of polyno-
mial matrix operations on L, without the need to access the
Laplacian eigenvalues. In this work, we leveraged truncated
Chebyshev polynomial approximations of spectral kernels as
presented by Hammond et al. (2011), which have the benefit
of approximating a minimax polynomial, minimizing an upper
bound on the approximation error.

Appendix C. Uniform sampling of ODFs

We defined a spherical sampling grid using the vertices of
an icosahedron with five levels of subdivision, which resulted
in a total of 10,242 vertices on the unit sphere. Due to non-
uniformity in the spatial spread of the vertices, the number and
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Figure C.1: Uniform sampling within solid angles along different orientations.
(a) An icosahedron with five levels of subdivision, wherein the subset of its ver-
tices that fall within the solid angle 47r/98 around the z-axis direction, marked
with black dots, are treated as a template sampling pattern. (b) The template
sampling pattern (black) is then rotated towards other neighborhood directions;
two directions shown here, in red and blue.

distribution of vertices that fall within the solid angles €; ; sub-
tended along the 26/98 different 7;; neighborhood directions
vary. To overcome this bias, we treated the vertices that fall
within €; ; around the z-axis as a sampling template, resulting
in N; = 389 and 105 template directions for the 3-conn and
5-conn neighborhood definitions, respectively. The sampling
template was then rotated and centered around each neighbor-
hood direction 7;;, resulting in a set of sampling directions
{?f"jlk =1,...,N,} (see Figure C.1).

Appendix D. Streamline-based phantom construction

For each subject, 10 thousand streamlines, denoted {s;(x) €
R3},—1.10000, Were generated through deterministic tractogra-
phy using the method presented by Yeh et al. (2013), as imple-
mented in DSI Studio. A subset of S streamlines from a single
subject was randomly selected and used as the basis to produce
a phantom. Each streamline s;(x) was first voxelized, resulting
in a vector s; containing the indices of the voxels through which
it passes. A random source point for the activation was then se-
lected, represented by an indicator vector d; of the same length
as s;, wherein a single element of the vector was set to 1 and
the remaining elements were set to 0. An adjacency matrix A;
was then defined, specifying that every voxel in s; is connected
to itself and its neighbors within a 3 x 3 X 3 neighborhood, with
equal weights adding up to 1. The diffuse activation pattern,
denoted p;, was then synthesized as

Ad;

= — D.1
max A’d;’ (D)

Pi

where the exponent 7 is a parameter that controls the extent of
spatial spread of the activation. This parameter was arbitrarily
set to 250 in the design of all the phantoms used in this work,
with the goal of obtaining long and smoothly-decaying spatial
activation patterns. Finally, the phantom was constructed by
merging the various activation patterns {p;};=.s into a single
volume.
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