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Abstract

Traditional imaging cytometry uses fluorescence markers to identify specific structures, but
is limited in throughput by the labeling process. Here we develop a label-free technique that
alleviates the physical staining and provides highly multiplexed readouts via a deep
learning-augmented digital labeling method. We leverage the rich structural information
and superior sensitivity in reflectance microscopy and show that digital labeling predicts
highly accurate subcellular features after training on immunofluorescence images. We
demonstrate up to 3% improvement in the prediction accuracy over the state-of-the-art.
Beyond fluorescence prediction, we demonstrate that single-cell level structural phenotypes
of cell cycles are correctly reproduced by the digital multiplexed images, including Golgi
twins, Golgi haze during mitosis and DNA synthesis. We further show that the multiplexed
readouts enable accurate multi-parametric single-cell profiling across a large cell
population. Our method can dramatically improve the throughput for imaging cytometry
toward applications for phenotyping, pathology, and high-content screening.
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Introduction

Cell morphology features are powerful phenotypical readouts, which have been the basis
for pathology for decades. They are also the underlying mechanisms for varieties of imaging
cytometry and high-content screening platforms to characterize pathological changes and
responses to drug treatments (/). The most widely used approach for imaging readouts are
fluorescence labels that highlight specific subcellular components or cell functions through
immunofluorescence (IF), fluorescent reporter cells or dyes. However, the throughput of
these approaches is fundamentally limited by the physical process of labeling. The IF
staining is labor-intensive and generally requires cell fixation that does not allow kinetic
observations of live cells over time. Fluorescent reporter cells are permissive for
longitudinal live cell imaging. However, the process of gene editing and validation takes a
significant amount of time and can be difficult to introduce multiple markers within the
same cells for multiplexed analysis. Regardless of the fluorescence labeling approaches, the
overlapping of the fluorescence emission spectra further limits the multiplexing capability.
To alleviate these limitations, here we develop a label-free single-cell cytometry that is
highly multiplexed and can forgo the physical staining via a deep learning (DL)-augmented
digital labeling method.

Our work relies on the premise that label-free scattering-based microscopy captures rich
structural information and can be effective to characterize cell morphological features (2).
Brightfield, phase contrast and differential interference contrast (DIC) microscopy have
been routinely used for observing and quantifying cell morphology (3). Scattering-based
microscopy and tomography techniques have been increasingly utilized to reconstruct
cellular structures (4). Of particular interest is the reflectance-mode microscopy that
provides exquisite sensitivity in detecting nanoscale structural changes beyond the
diffraction limit (5—7). By capturing backscattering signals, reflectance imaging provides
access to the highest spatial-frequency components in the reciprocal Fourier space and thus
can provide higher structural contrast than the transmission techniques (2). Indeed, our
recent work shows that backscattering signals allow resolving finer details than the
transmission counterparts (8, 9). In this work, we further leverage the higher sensitivity
provided by the reflectance-mode microscopy and demonstrate how enriched label-free
information allows predicting highly accurate subcellular structural features.

The framework of this study is summarized in Fig. 1. The angle-dependent backscattering
features are captured with darkfield oblique illumination and paired with IF images (Fig.
1A). Using the IF images as the ground truths, multiple DL models are independently
trained for individual IF labels (Fig. 1B). Once all the models are trained, we perform digital
multiplexing by feeding the same label-free input to each network and make different IF
predictions in parallel (Fig. 1C). By doing so, multiple subcellular structures and cell states
can be revealed simultaneously without physical labeling. While previous works have
shown that DL models can disentangle the complex structures captured in the label-free data
and make in-silico fluorescence labeling with high accuracy (/0—12) or holistically capture
“hidden” structural features that are not easily perceived or described (/3-22), these results
are fundamentally limited by the weak structural contrast from the transmission modes that
contain only forward scattering information. By exploiting the enhanced resolution and
sensitivity in the backscattering data, we demonstrate a dramatic increase in the
fluorescence prediction accuracy with up to 3x improvement as compared to the current
state-of-the-art.
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One distinct contribution of our work is to advance beyond the prediction of fluorescence
images, and to demonstrate accurate structural phenotyping and quantitative single-cell
cytometry using digitally multiplexed fluorescence images. Importantly, we show that our
DL model can correctly capture and predict characteristic subcellular features during the
cell cycle, including morphological changes of nuclei and Golgi apparatus. We also show
that our DL model can capture the structural features of cell proliferation and recapitulate
the DNA duplication through the cell cycle. Remarkably, the label-free structural features
identified in proliferating cells are not obvious by visual inspection of the raw images,
demonstrating that our holistic DL model can potentially capture novel cellular attributes
with high accuracy. Another distinct advantage of multiplexing several fluorescence
markers is that it enables the development of multiple quantitative metrics for imaging
cytometry and phenotyping across the large cell population and at the single-cell level (e.g.
cell size, nuclear-cytoplasmic ratio, nuclear roughness, Golgi eccentricity, efc.). As other
“omic” platform technologies are rapidly being developed to evaluate biological processes
at various levels (e.g. genomics, transcriptomics, proteomics, metabolomics), single-cell
level structural metrics will complement these population-based studies, particularly when
a contextual phenotypic shift is expected only for a subset of cells. As a demonstration, we
evaluate several cellular features, including morphology and fluorescence expressing
intensity on the DL predicted digitally multiplexed readouts.

A common criticism of DL-based methods is the “black-box” nature of these models (23).
To overcome this issue, we adapt the attention mechanism (24) to elucidate on the working
mechanism of our DL model. We construct the saliency map that highlights the most
important subcellular features contributing to each IF prediction by the network. Our results
show that the structural components in label-free reflectance input that correspond to the
fluorescence labels can be correctly identified by the saliency map, and the “attention” is
consistent across different cell batches when predicting all IF labels. This indicates that our
network learns to extract the salient and specific structural information from the reflectance
images matching the underlying subcellular components. In addition, the improved
prediction accuracy is attributed to the enhanced resolution and sensitivity to subcellular
structures from the backscattering information.

Results

Oblique illumination-based reflectance microscopy captures rich morphological
information

The imaging platform is based on our recently developed LED-array reflectance microscope
for capturing co-registered label-free reflectance and fluorescence images (8). By flexibly
controlling the LED patterns, this new platform enables capturing multiple angle-dependent
backscattering contrasts in the darkfield without any mechanical switching. Based on our
prior work (8), we heuristically optimize the illumination strategy and implement half-
annulus LED patterns along four different orientations (including top, bottom, left, and
right) (see Fig. 1A). In addition, we compute the darkfield reflectance differential phase
contrast (drDPC) based on the raw measurements (see Materials and Methods). The raw
oblique-illumination darkfield and drDPC images contain complementary structural
contrasts. In particular, subcellular structures are shown with high contrast in the raw
darkfield measurements, including the nuclei, nucleoli, and hyper-reflective structures at
the nuclear periphery. Cell membranes with sharp boundaries are highlighted in the drDPC
images, with cytoplasm spreading on the substrate with thicker nuclei at the cells’ centers.
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The extra cell topography information exhibited in the drDPC images are found particularly
useful for predicting IF labels that are sensitive to morphology of the cell boundary. These
label-free images are used as the multi-channel input to our DL model. On the same
platform, two-channel epi-fluorescence images are concurrently acquired on the same
sample to serve as the ground-truth for training our DL models (Fig. 1A) (see Materials and
Methods). The significance of this new microscopy platform is that we capture enriched
label-free information by multiple contrasts in the reflectance-mode. This empowers our
label-free high-content cytometry technique to uncover highly sensitive and specific
structural phenotypes at the single-cell level across large cell populations.

Individual fluorescence prediction achieves state-of-the-art performance

To evaluate the performance of our DL models, we take measurements on fixed HeLa cells
containing in-total six IF labels, including DNA (Hoechst), Golgi apparatus (GM130),
endosome (EEAL), actin (Phalloidin), proliferation (EdU), and apoptosis (TUNEL).
Specifically, five separate batches of IF staining are performed with GM130, EEAI,
Phalloidin, EAU, TUNEL, each of which is co-stained with Hoechst (see Materials and
Methods). We then train six networks for performing individual IF label predictions using
paired reflectance-fluorescence image dataset (Fig. 1B). Additional details about the
network implementation and the data preprocessing procedure are provided in Materials and
Methods and Supplementary Materials Figs. S1 and S2, respectively.

A major goal of our study is to investigate the structural contrast captured by different label-
free reflectance modes and understand how they impact the DL-based fluorescence
predictions. To this end, we conduct ablation studies on the drDPC input in Supplementary
Materials Fig. S3 and Table S1. As expected, the additional drDPC channels substantially
improve the actin IF label predictions by ~9% since drDPC clearly highlights cell
topography and boundaries as compared to the plain darkfield images. Notably, the
additional drDPC channels also dramatically improve the prediction accuracy for
proliferation and apoptosis IF labels, by ~8% and ~17%, respectively. We hypothesize that
this is because distinct structural features exhibited during proliferation or apoptosis can be
more prominently displayed by drDPC and subsequently recognized by the DL model.

After training, we first evaluate each network’s prediction accuracy on unseen reflectance
input from the same cell batch. Figure 2 shows the label-free input, the individual IF ground-
truth, and the prediction for all six labels. The predicted subcellular structures and cell states
have excellent visual agreement with the ground-truths. Characteristic morphological
features are clearly recovered, including rounded nuclei, cytoplasmic endosome, spreading
cell membrane (actin), and Golgi apparatus at the nuclei periphery. Selective cellular events
or functions such as proliferation and apoptosis are also captured by the DL predictions.
Additional examples of the prediction results are shown in Supplementary Materials Fig.
S4.

We quantify the prediction accuracy by computing several evaluation metrics on the
network’s predictions based on the underlying cytometry tasks. Specifically, we formulate
the predictions of the DNA, endosome, actin, and Golgi apparatus as regression problems
because they are distinct subcellular structures and thus better described in their
morphologies. Accordingly, the performance is quantified by calculating the image patch-
wise Pearson correlation coefficient (PCC), which measures the pixel-level similarity of
morphologies between the DL prediction and the ground truth (see Materials and Methods).
The distributions of the PCCs for the four IF label predictions are shown in the violin plots
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in Fig. 3A. Notably, all four of our regression DL models achieve higher accuracy as
compared to the current state-of-the-art techniques based on transmission label-free
microscopy data (/0). The median PCCs on the DNA, endosome, actin, and Golgi apparatus
label predictions achieve 87.25%, 91.85%, 92.01%, and 59.82%, respectively. These results
agree well with the example visualizations in Fig. 2. The cellular features in the reflectance
images associated with the corresponding fluorescence label are clearly visible. Although
these scattering signals are entangled with other signals in the raw label-free images, our
result shows that our DL models are able to recognize and distill these salient features with
high accuracy. As visualized in the violin plots and quantified by the 25% and 75% quantiles
in Fig. 3A, different amounts of variations in the prediction accuracy are seen for the four
labels. In general, we observe that the larger deviation of the prediction from the ground-
truth, as measured by the median value, is also associated with larger accuracy variations.
To investigate these spatial variations, we visualize the patch-wise PCC as a spatial map in
Supplementary Materials Fig. S5. Low-value PCC outliers are generally observed in
background regions, and hence are removed by a standard algorithm (see Materials and
Methods). Other than the background outliers, the PCCs are consistent across all the cell
regions for all the four IF label predictions, which demonstrates the overall robustness of
the DL model.

We formulate the prediction of the proliferation and apoptosis as detection problems, which
is more biologically meaningful because they are selective cell states. The proliferation
labels are only present in the DNA-replicating cells. The apoptosis labels are only for cells
undergoing programmed deaths. Accordingly, the performance is first quantified by the
pixel-level Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) to
measure the ability of separating the positives (i.e. those expressing the fluorescence) from
the negatives at each pixel (see Materials and Methods). The calculation is image batch-
wise, the same way as we calculated PCC. The distributions of the AUCs over all batches
for the two IF labels are shown in the violin plots in Fig. 3B. The median detection
accuracies are 91.65% and 77.24% for the proliferation and apoptosis, respectively. Next,
we further evaluate the cell-level detection performance to give a more direct assessment
on these two label predictions. To do so, we perform single-cell segmentation on both the
predicted and the ground-truth IF images and then identify each prediction as one of the
four possible detection outcomes, including the true positive (TP), true negative (TN), false
positive (FP), and false negative (FN), from which we compute the cell-level detection
metrics, including the sensitivity and specificity (see Materials and Methods). As
summarized in Fig. 3C, the cell-level proliferation prediction achieves 83.55% sensitivity
and 90.92% specificity; the apoptosis prediction achieves 75.91% sensitivity and 98.88%
specificity. Notably, the scattering features in the proliferating cells cannot be easily
perceived from the raw reflectance images, yet our DL model can capture the salient
structural features with high accuracy. The balanced high sensitivity and specificity
validates the reliability of our DL models for identifying these highly selective cell
states/events.

Overall, these individual label prediction results validate our hypothesis that the improved
sensitivity and resolution in reflectance images contain rich morphological features that can
be utilized effectively for structural phenotyping by DL.

Multiplexed prediction recovers biological accurate cellular structures
Next, we demonstrate the digital multiplexing capability by feeding the same reflectance
input to each network and make six different IF predictions in parallel. By doing so, multiple
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subcellular structures and cell states are revealed simultaneously. In Fig. 4A, the image
multiplexes the nucleus, Golgi apparatus, actin, and endosome virtual IF labels in a single
wide field-of-view (FOV) for a large cell population. In Fig. 4B, the virtual labels for
proliferating and apoptotic cells are multiplexed with the darkfield reflectance input in the
same FOV as in Fig. 4A. These multiplexed predictions are performed on the cell batch
under the Golgi apparatus staining condition. To further demonstrate the robustness of this
digital multiplexing procedure, we show additional examples of multiplexed predictions
performed on different cell batches/staining conditions in Supplementary Materials Fig. S6.

Importantly, our results show that the DL model can correctly capture and predict
characteristic subcellular features during the cell cycle. During interphase, the nuclei have
a regular rounded shape with nucleoli present, and Golgi apparatus is anchored primarily to
one side of the nuclei (Figs. 4C-4E). At this stage, cells that have initiated or ongoing
DNA/chromatin replications have a positive signal for proliferation (Fig. 4F). When cells
enter mitosis, the chromosomes start to condense toward the centers of the cells, and
nucleoli disappears. Golgi apparatus undergoes vesiculation and fragmentation, and its
components are found scattered throughout the cytoplasm in the form of tiny (~50-nm) vesicles,
often referred to as the “Golgi haze” (25). During metaphase, chromosomes align at the
metaphase plate and the cell shape also changes dramatically, bulging into a sphere (Figs.
4G-41). Golgi haze appears rounded, with a shaded center where chromosomes are located
(Fig. 4H). During anaphase, the duplicated chromosomes separate from one another and
move to opposite poles of the spindle (Fig. 4K-4M). During telophase, chromosomes start
to de-condense, and begin to take on a more interphase-like shape (Figs. 40-4Q). In this
stage, Golgi apparatus has also completed replication, and reassembled into two closely-
spaced cell bodies, referred to as “Golgi twins” (25) (Fig. 4P). There is no DNA replication
during mitosis, so the markers for proliferation (incorporation of the fluorescent nucleoside,
EdU) are absent for the metaphase, anaphase, and telophase (Figs. 4J, 4N, 4R). As shown
in Fig. 4C-4R, these structural, subcellular, cell cycle-dependent features are accurately
captured and predicted by our DL model, which validates our hypothesis that label-free
reflectance imaging and DL enable structural phenotyping.

Cell profile analysis on multiplexed images allows phenotyping and quantitative
cytometry

A distinct advantage of multiplexing several markers is that it enables the development of
multi-variant quantitative metrics for imaging cytometry and phenotyping across the large
cell population and at the single-cell level. As a demonstration, we evaluate several cellular
features, including cell morphology and fluorescence intensity, on the digitally multiplexed
readouts. First, we generate fluorescence intensity scatter plots similar to those used in the
flow cytometry, of EAU vs. Hoechst for all cells from the ground-truth and digitally
multiplexed IF images in Fig. 5B and 5C, respectively. Evaluating the scatter plots on the
population level, the DL-multiplexed prediction matches well with the ground truth, both
of which show the increase in EAU and doubling of Hoechst intensity in the S and G2/M
phases of the cell cycle, respectively. Next, we further evaluate the results on the individual
cell level by overlaying the detection outcome for proliferation of every cell onto the same
scatter plot in Fig. 5D. Specifically, by comparing the predicted proliferation IF label and
the ground truth, each data point is labeled as one of the four detection outcomes (TP, TN,
FP, or FN) (see details in Materials and Methods). Our analysis shows that the incorrect
predictions (including FP and FN) tend to cluster around the boundaries between the S phase
and S1 phases, leading to confusions in the DL predictions. There are relatively fewer
incorrect predictions in G2/M phase, which are expected because of the distinctive
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morphological features during mitosis that can be easily captured by the DL model (e.g.
metaphase, anaphase, and telophase in Fig. 4).

In Figs. SE-5L, we extract several biologically relevant single-cell profile metrics using the
predicted IF labels and compare them with the ground truths (see Materials and Methods),
as visualized in the violin plots. In particular, we show the statistics of eight different
morphological and subcellular structural parameters. In Fig. SE-5F, we gather statistical
data about the DNA label to measure the nuclear size and intensity contrast. In Fig. 5G-5H,
we evaluate the actin size (i.e. cell size) and its compactness. In Fig. 51, we compute the
nuclear- cytoplasmic ratio (NCR), an important marker for cancers, as the area ratio between
the nucleus and actin. In Fig. 5J, we measure the endosome size. In Fig. 5K-5L, we collect
morphological parameters about the Golgi apparatus, including the eccentricity and
concentration. Additional metrics are provided in the Supplementary Materials Fig. S7. For
all these single-cell profile metrics, the prediction and the ground truth show excellent
agreement. These results clearly demonstrate that our DL-augmented label-free cytometry
can provide comprehensive morphological quantifications with high accuracy at the single-
cell level, which is the key element for phenotyping and high-content screening (26).

Saliency map reveals inner mechanism of the deep neural network

Deep neural networks have shown high expressivity for complex models, but suffer from
poor explainability. Many theoretical explanations for the DL model have resorted to
statistical perspective while treating the overall model as a “black box”. Instead, we utilize
the “attention”-based technique (24) to elucidate on the specific label-free subcellular
features that contribute to the fluorescence prediction. To do so, we treat the trained DL
model as a mapping function between the input and the output. We then visualize the
network’s gradient with respect to the input and extract the salient features (i.e. those having
the largest gradients) the network pays most attention to (see details in Materials and
Methods). The resulting “saliency map” highlights the most important features contributing
to the IF prediction. By doing so, the saliency map directly evaluates the specificity of the
structural features extracted from the reflectance images and how they are transformed to
the target fluorescence labels by our network.

Figure 6 shows the computed saliency maps for each network across different sample
batches and labeling conditions. Importantly, distinct subcellular features not only are
highlighted by the network’s saliency map, but also have good visual correspondence to the
targeted fluorescence label. By inspecting different columns, we show morphologically
distinct features from different networks, indicating that different networks can indeed learn
to recognize and focus on specific features present in the label-free images. For example,
the DNA saliency maps show emphasis on nuclear boundaries and some subcellular
structures. The actin saliency maps show concentration over the whole cell and spreading
out to the membrane boundaries. The saliency maps for Golgi apparatus generally form
shapes in “partial-moon” or circular lines. By contrast, the saliency maps for proliferation
and apoptosis show that the network selectively pays attention to certain features around the
nuclei. In addition, the saliency maps show that our network learns to extract invariant
structural features specific to the underlying fluorescence label regardless of the cell
preparation and labeling processes. Across different rows, we observe consistent saliency
maps under different sample batches / staining conditions for the same labeling network.

Page 8 of 27


https://doi.org/10.1101/2020.07.31.231613
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.231613; this version posted November 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Discussion

In this study, we have presented a DL-augmented label-free cytometry technique that
accurately predicted six fluorescence targets in-parallel at the single-cell level. The accuracy
has been improved up to 3x in predicting subcellular structures as compared to the current
state-of-the-art. Remarkably, the DL model is able to accurately recognize subcellular
organelles, such as Golgi apparatus reconfigure during the cycle of proliferation, as well as
to distinguish subtle morphological differences between the proliferating and non-
proliferating cells. These results demonstrate the data-driven model’s unique capability of
holistically extracting “non-intuitive” structural features from the label-free imaging data
on a large cell population. The specificity for predicting cellular features by our DL model
is illuminated by the saliency maps. This analysis demonstrated the ability of the DL models
in processing highly complex and entangled structural information from scattering images.

Beyond predicting IF labels, we have further demonstrated quantitative cytometry analysis
based on the multiplexed digital output from our DL models. Importantly, our analysis has
shown that a multitude of single-cell profile metrics can be accurately extracted from the
DL predictions. The digital multiplexing enabled us to simultaneously quantify several
morphological features on multiple subcellular components across a large cell population.
This capability drastically improves the technique’s throughput for structural phenotyping
in the application of imaging cytometry, such as high-content analysis/screening. Cell
morphological features are effective phenotypes for different disease states and
environmental influences. This phenomenon is well described and practiced in pathology
and cell biology. Nuclear condensation, enlargement, and increased NRC are ubiquitous
hallmarks of cancers (5, 6). Cell morphology is distinct for different cell types, which is
often denoted in their terminology (i.e. astrocytes, macrophage, squamous, and columnar
cells, efc.), and stem cells change structures along separate differentiation paths (/3). It has
been shown that cell morphological changes can be directly associated with changes of
morphogenic gene expressions (27), and comprehensive morphological profiling can be
used to detect genetic functions (28). Meanwhile, it has been shown that DL techniques can
holistically capture complex structural features for classification. This has found broad
applications in detecting cell types (13, 14, 29), cell states (15—18, 22), drug response (19),
and stem cell lineage (20). By fully leveraging the label-free and high multiplexing nature
of our technique, it can potentially generate significant impacts in imaging cytometry by
offering unprecedented information content and discovering new compound morphological
features necessitating multiplexed fluorescence readouts.

Label-free, DL-augmented method of cell-morphology profiling is data-driven and
ultimately relies on the rich information content in the images. Our LED-array reflectance
microscopy enables multi-contrast imaging (i.e. angle-dependent darkfield and drDPC) by
detecting the angled-dependent backscattering signals by a programmable LED array
without any mechanical moving parts. The superior sensitivity in detecting subtle structures
using backscattering than transmission-microscopy is well documented (2). The superb
sensitivity of backscattering-based method has been demonstrated in a variety of techniques,
such as partial wave spectroscopy (30), confocal light absorption and scattering
spectroscopic microscopy (37), confocal reflectance quantitative phase microscopy (32),
and spatial-domain low-coherence quantitative phase microscopy (33). In addition, the
angle-dependent measurement has been used to measure characteristic structural length
scale (6) and to enable 3D reconstruction of the refractive index distribution (34).
Leveraging angle-dependent reflectance signal, we outperformed the state-of-the-art for
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predicting multiple subcellular components. By switching to a higher NA objective lens, the
prediction performance of our DL model to subcellular structures, such as those missed in
our actin label predictions, may be further improved. Recently, the LED array microscopy
has also been extensively explored in transmission that allows sampling the low spatial
frequency components in the Fourier space (34). In addition, backscattering spectroscopic
techniques further enable characterization of ultrastructural phenotypes with sensitivity
down to nm-length scale (35). A potential future improvement of our imaging system is to
incorporate additional transmission and multispectral LED-array illumination to fully
exploit the angle- and wavelength-dependent scattering contrast with a single objective lens
by versatile illumination engineering.

One limitation of our current work is that it is based on fixed cells that does not allow
longitudinal imaging. This can be overcome by using fluorescent reporter cell lines or live
cell dyes to provide the fluorescence ground-truth (/0) and enable dynamic observation.
The additional temporal dimension may further improve the model’s sensitivity in cell
phenotyping and discover new label-free features by incorporating the information about
the cell dynamics (20, 22, 36). Another limitation of the DL framework we used here is that
it cannot be generalized to different types of cells. Techniques based on transfer learning
(37, 38) and domain adaptation (39) will be investigated in our future work to overcome
this limitation.

The variations in the prediction accuracy of our DL models are currently evaluated post hoc,
and based on pixel-wise and cell-level metrics by comparing the DL predictions and the
ground truth. For many biomedical applications, it is beneficial to understand how much
error the model may make without knowing the ground truth, i.e. the confidence of the
model predictions. Emerging Bayesian DL based uncertainty quantification techniques have
proved useful to provide a proxy estimate of the prediction accuracy and quantify the model
confidence (40, 41), which will be adapted in our future work.

In summary, we have reported a label-free imaging cytometry technique that multiplexes
six IF labels in-parallel with high accuracy via DL models. We have validated the
fluorescence predictions by comparing them to the ground-truth IF images. In addition, we
have conducted imaging cytometry studies on several quantitative morphological metrics
on subcellular structures and phenotyping of cell proliferation. Finally, the specificity of the
DL model is assessed by visualizing the saliency map at the single cell level across different
staining and fixation conditions. With this unique combination of new capabilities, this new
framework may find wide applications in image-based cytometry, in particular for high-
content screening and analysis.
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Materials and Methods

Cell preparation and immunofluorescence staining

HeLa cells were cultured in a Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal
bovine serum (Gibco, 10564011) and 5% penicillin streptomycin (Gibco, 15140122). The
cells were trypsinized and passaged twice a week. Two days before the staining and
imaging, cells were cultured on glass-bottom petri dishes (FluoroDish FD35-100) which
were first treated with 10% poly-L-lysine (SigmaAldrich, RNBG0769) with PBS for ten
mins in an incubator. The staining and imaging were performed on the glass-bottom dishes.

We follow the standard IF staining protocols. In total, six IF stains are used to label DNA
(Hoechst), actin (Phalloidin, Alexa Fluor 488 Phalloidin, Invitrogen, A12379), endosome
(EEAL1, Santa Cruz, sc-137130 AFF488), Golgi apparatus (GM 130, Cell Signaling, 12480),
proliferation (EdU, Click-iT Plus EdU Alexa Fluor 488 kit, Invitrogen), and apoptosis
(TUNEL, Click-iT TUNEL Alexa Fluor 488 kit, Invitrogen). The HeLa cells were first fixed
with ice-cold methanol, washed three times (10 min each) in 0.05% PBST (0.05% Triton
X-100 PBS solution), and incubated for 20 mins at room temperature in a blocking solution
containing 0.25% Triton X-100 and 10% bovine serum albumin in PBS. Alexa-488
conjugated antibodies were diluted in the blocking solution with the recommended
concentration by the manufacturers and incubated with cells to label the specific subcellular
components (EEA1 for endosome, Phalloidin for actin). For actin staining, cells were fixed
with ice-cold acetone to preserve the structures. For Golgi staining, a secondary antibody
Anti-rabbit IgG (Santa Cruz, 4412S) was diluted in blocking solution and used to culture
the cells for 1.5 hours at room temperature in dark. To stain cell proliferation and apoptosis,
we used EAU and TUNEL assays, respectively, according to the recommended protocol by
Invitrogen. The apoptosis was induced by culturing the cells with 1uM Staurosporine for
24 hours. In all the above stains, cell nuclei were counterstained with 1x Hoechst 33342.

Image data acquisition

We collect the data using our custom-built multimodal reflectance microscope (8), as shown
in Fig. 1A. A custom-built LED array consisting of two LED rings is used for providing
controllable darkfield illumination in reflection. We use commercially available LEDs
(APTF1616SEEZGQBDC, Kingbright) that can provide three independent RGB color
channels (central wavelength is 460, 515, and 630 nm, respectively). All the LEDs are
individually addressable using two cascaded LED drivers (TLC5955, Texas Instruments).
A microcontroller (Teensy 3.2, PJRC) provides the camera trigger signal through digital
Input/Output pins and simultaneously controls the LED illumination pattern. The LED array
is mounted around the objective lens (10x 0.3 NA, UPlanFL N, Olympus, Japan) using a
3D-printed adapter. The tube lens is a commercial SLR lens (Nikon AF DC-NIKKOR 135
mm {/2D) to maximize the FOV. The microscope provides an overall 7.5% magnification.
An sCMOS camera (CS2100M-USB, Thorlabs, 1920 x 1080 pixels, 5.04-um pixel size, 16-
bit depth) is used to acquire the images. We capture four darkfield reflectance images by
using half-annulus green LED patterns along different orientations, including top (Iop),

bottom (Igottom)» left (Iieft), and right (Igignt). The exposure time is 700 ms. Two drDPC
images along two orthogonal orientations are generated by

ITop_IBottom ILeft_IRight
————— Ippca = (1)

I =
DPC1 .
ITop‘HBottom’ ILeft+IRight
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The fluorescence excitations are provided by two LED sources (M365LP1 and M470L4,
Thorlabs, central wavelength 365 nm, 470 nm, respectively) combined with a dichroic
mirror (DMLP425R, Thorlabs). The epi-fluorescence illumination is introduced by a 50/50
beam splitter (CCM1-BS013, Thorlabs). The emission filters (MF460-60, MF525-39,
Thorlabs) are placed on a filter wheel (CFW6, Thorlabs) for blue and green fluorescence
emissions. Two-channel fluorescence images are acquired sequentially after acquiring the
reflectance images. The exposure time is 400 ms for IF imaging. Specifically, the first green
channel is for one of the five IF antibodies conjugated with the green fluorophores (Alexa
488) for endosome, actin, Golgi apparatus, proliferation, and apoptosis; the second blue
channel is for the co-stained DNA. We capture 30 image stacks for each sample batch / IF
stain.

Data preprocessing procedure

The raw reflectance and fluorescence images are preprocessed before feeding into our deep
neural networks for training. The preprocessing procedure consists of four steps, including
flat-field cropping, image denoising, background correction, and intensity normalization.
Since the fluorescence excitation illumination is not evenly distributed across the entire
rectangular FOV, we first perform flat-field cropping by using only the central 1000 x 1080-
pixel region for training, where the excitation is approximately uniform. Second, we
perform image denoising on the measurements. We apply two denoising approaches. In the
first approach, we apply an unsupervised DL-based denoising algorithm, noise2void (42),
to suppress the sensor noise present in the images. To do so, each 1000 x 1080-pixel image
is cropped into 256 x 256-pixel patches. Each image patch is fed to a blind-spot network to
perform denoising. After denoising, the patches are then stitched back together by alpha
blending. This unsupervised denoising algorithm is found to be effective in removing
unstructured, signal-independent noise, including the sensor noise and isolated hot pixels,
in particular for measurements with low signal-to-noise ratios (SNRs). The whole training
and inference (denoising) procedure takes ~10 hours for processing the entire dataset
containing 30 images. We find this denoising procedure is only necessary for processing the
Golgi and proliferation fluorescence images, as well as for the reflectance images for the
actin prediction where the sensor noise severely corrupts the images. In the second
approach, when the SNRs are sufficiently high for the measurements on other cell batches,
we use a computationally more efficient morphology opening operation to remove the hot
pixels in the fluorescence images under the assumption that hot pixels are isolated pixels
with extreme intensity values. The opening operation takes a square kernel of size 2 x 2
pixels. This hot-pixel removal procedure takes ~15 min to process the entire dataset
containing 30 images. Third, we perform background correction on the fluorescence images
by eliminating the potential background bias across the batches. To do so, we calculate the
histogram of each fluorescence image and denote the mode value (i.e. the most frequent
value) as the constant background. This background of each fluorescence image is
subtracted; the negative values from the subtraction are clipped to zero. Fourth, we perform
intensity normalization by normalizing the pixel values of both the input and output images
to be between 0 and 1. Additional details about the data preprocessing steps are shown in
Supplementary Materials Fig. S2.

Our network takes 256 x 256-pixel input images. Accordingly, we split the 30 pairs of
images into 256 x 256-pixel patches to generate the training and testing data. For each IF
prediction, 512 training samples and 128 testing samples are randomly generated from the
full-FOV image pairs. Each input stack consists of four different channels combining
darkfield reflectance images from different oblique illumination patterns (Fig. 1A). In

Page 12 of 27


https://doi.org/10.1101/2020.07.31.231613
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.231613; this version posted November 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

addition, we construct the two-direction drDPC images using Equation (1) from the
darkfield images (Fig. 1A), which were found particularly effective for predicting the actin,
proliferation, and apoptosis labels. We provide example comparisons of the prediction
results with and without the drDPC inputs for all six IF labels in Supplementary Materials
Fig. S3. Quantitative comparisons of the prediction results with and without the drDPC
inputs for all six IF labels are provided in Supplementary Materials Table S1. When making
the full-FOV predictions (e.g. Fig. 4), we use the entire 1080 x 1920-pixel reflectance
images since they do not suffer from the non-uniform illumination issue.

Neural network implementation

We develop a convolutional neural network (CNN) to learn the highly complex nonlinear
mapping between the morphology information contained in the multi-channel reflectance
images and the fluorescence labels. The network structure follows the encoder-decoder “U-
net” architecture and further incorporates the dense-blocks and skip-connections to enable
high-resolution information prediction (40). The input of the preprocessed 256 x 256-pixel
reflectance image stack passes through the “encoder” path consisting of four dense blocks
followed by the max-pooling layers, and the bottleneck feature maps are then fed into the
“decoder” path with four dense blocks followed by upsampling layers. The skip connections
bridge the lower-level activation maps with higher-level activation maps and preserve the
high-frequency information. More details about the network are provided in Supplementary
Materials Fig. S1. We use the negative PCC (NPCC) as the training loss (43). We train our
network using ADAM optimizer with 500 epochs and 0.1 training/validation splitting. No
overfitting is observed during the training.

Quantitative evaluation of network prediction

We use the PCC to evaluate the performance of the regression-type of problems.
Specifically, the PCC is used to quantify the prediction quality for pervasive subcellular
features, including DNA, endosome, actin, and Golgi apparatus labels. It computes the
statistical correlation between the predicted and ground-truth IF image patches and is able
to quantify the pixel-level similarity on the fine subcellular features. The PCC between the
prediction X and the ground truth Y (each image is reshaped to a N dimensional vector) is
computed as

T X=X (vi-T)

PCC = s
[P im0 [E iz e

)

where € = 10719 is a small regularizer to prevent zero denominator, = denotes the mean, and
i is the index of each vector. The value of the PCC ranges from —1 to +1, where +1
indicates total positive or negative correlation and 0 indicates no correlation. The PCC
computation is implemented by a custom code in Python. The PCCs are computed on the
testing image patches, each containing a 128x128-pixel FOV. In total, the statistics from
676 patches from four large FOV testing images of size 908x908 pixels at each staining
condition are aggregated and shown in the violin plots in Fig. 3B.

To evaluate the spatial variations of the prediction performance, we construct the PCC map
for each label prediction. To do so, 169 consecutive image patches are obtained from each
large FOV image by cropping the image with a 128x128-pixel sliding-window and 64x64-
pixel overlap between the neighboring patches. The patch-wise PCC map is computed and
shown in Supplementary Materials Fig. S5. The lower PCC patches are found to generally
align with the background region where very low reliable IF readings are present. We treat
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these patches as outliers. Accordingly, we use a median-based outlier detection and removal
algorithm (see Supplementary Material Section S1) to remove these background outliers
when constructing the violin plots in Fig. 3.

We use the AUC to quantify the detection performance for identifying the selective cell
events including the proliferation and apoptosis. To plot the ROC of the detection label
performance, the ground-truth labels are first binarized with certain thresholds. We use the
well-established Otsu’s method to reliably compute the binarization threshold values (44),
which finds the optimal values that maximize the intensity variance between the signals and
the background based on a histogram clustering criterion. Specifically, the threshold values
are calculated based on the aggregated histogram from the entire ground-truth dataset of
proliferation and apoptosis, and are found to be 0.31 and 0.11, respectively. Next, each
continuous-valued pixel in the predicted image is regarded as the predicted probability of
expressing the IF label at this pixel. By using the binarized ground-truth images as the target,
the predictor (the trained CNN) achieves different pixel-wise True Positive Rate (TPR) and
False Positive Rate (FPR) under different detection thresholds on the predicted images. By
varying the detection thresholds, the TPR and FPR as functions of the thresholds can be
plotted on the ROC curve. The AUC measures the area under the ROC curve and provides
an aggregated quantification of the performance across all possible detection thresholds.
The AUC is computed by the built-in functions ‘roc_curve’ and ‘auc’ in the scikit-learn
module in Python. The AUCs are computed on the testing image patches, each contains a
128 x 128-pixel FOV. In total, the statistics from 676 testing image patches from four large
FOV testing images of size 908x908 pixels at each condition are aggregated and shown in
the violin plots in Fig. 3B.

We also quantify the single-cell level detection accuracy for the proliferation and apoptosis
label predictions. To do so, we develop an automatic image processing pipeline to segment
and identify each prediction as TP, TN, FP, or FN in CellProfiler. Subsequently, we
compute the cell-level detection metrics, including the sensitivity and specificity. The
sensitivity (a.k.a recall) is computed from the TPR, and the specificity (a.k.a selectivity) is

computed as the TNR as
TPR=2=_2_ pyp="E=-_TF_ 3)
P TP+FN N TN+FP

The implementation details of the image processing pipeline are described in ‘Digital
cytometry analysis’ section and Supplementary Material Section S2 and Fig. S8.

Digital cytometry analysis

We develop a digital cytometry analysis framework for exploring the interdependencies of
different fluorescence markers on the multiplexed predictions. A commonly used flow
cytometry analysis is performed by displaying the scatter plot of single-cell level
proliferating DNA concentration in the log-scale against the DNA concentration in the
linear-scale. Different from flow cytometry that directly collects the integrated fluorescence
intensity from each cell, our method performs imaging with subcellular resolution across a
large cell population. As a result, we first perform cell segmentation and then aggregation
of the fluorescence signals within each cell region to carry out the single-cell digital
cytometry analysis. We perform the digital cytometry analysis to relate the cell-level
Hoechst and EdU fluorescence concentration using CellProfiler (45). Since our data contain
co-registered two-channel fluorescence images with co-stained Hoechst and EdU, we can
directly compare the ground-truth cytometry scatter plot with that from our multiplexed
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prediction. To generate the scatter plots, we process the co-registered Hoechst and EdU
images and the multiplexed predictions using CellProfiler with a standard single-cell
segmentation-based pipeline and extract the paired cell-level fluorescence intensity data. A
small value (1071%) is added to the fluorescence intensity of the proliferating DNA before
taking the log operation to avoid the singularity at 0. Three distinct clusters representing the
S, G1, and G2/M phase are clearly shown in the digital cytometry scatter plots. Additional
details are provided in Supplementary Material Section S3 and Fig. S9.

We construct an image processing pipeline to quantify the single-cell-level detection
performance on the proliferation and apoptosis labels (denoted as the target IF in this
paragraph). First, for each of the cell event labels, we perform segmentation on the co-
stained DNA channel ground truth images to find all the nuclear localizations. Second, we
segment all the nuclei in both the target IF prediction and ground-truth images. Third, each
nucleus is labeled as one of the four possible detection outcomes. Specifically, a prediction
is TP if both the prediction and the ground truth express the target IF. A prediction is TN if
neither the prediction nor the ground truth express the target. A prediction is FP if the
prediction expresses the target I[F while the ground truth does not. A prediction is FN if the
prediction does not express the target IF while the ground truth does. To further investigate
the effect of false detections (FP/FN) on the prediction digital cytometry scatter plot, we
apply the above pipeline and label each prediction as TP, TN, FP, or FN in Fig. 5D.
Additional details are provided in Supplementary Material Section S2.

Cell profile analysis

We use CellProfiler (45) to generate the single-cell profiles across each fluorescence image.
We feed the ground truth and the predicted IF images of DNA, actin, endosome, and Golgi
apparatus to CellProfiler. After initial cell segmentation, single-cell level parameters of
morphology and intensity distribution are computed automatically by different
measurement modules in CellProfiler, including the fluorescence marker size (area),
compactness, eccentricity, fluorescence concentration, and single-cell-level fluorescence
variance and contrast. In addition, we compute the compound metric, NCR, based on the
multiplexed DNA and actin fluorescence labels. To compute the NCR, co-registered
ground-truth / prediction images containing the DNA and actin labels are processed
individually in CellProfiler. The NCR is computed as the ratio between the area of
segmented nuclei and actin masks. The single-cell profiles also present the same outliers
from the background regions, which are eliminated by our outlier removal algorithm (see
Supplementary Material Section S1) when constructing the violin plots. Additional details
are provided in Supplementary Material Section S4.

Saliency map visualization

Our network performs image-to-image translation and can be treated as a function relating
the input and output images. On the other hand, the norm of the network output is a scalar
function. As a result, computing and visualizing the gradient over the norm is still possible.
Based on this notion, we compute the saliency map as the gradient of the norm of the output
with respect to the given input image. The practical implementation is achieved by the
automatic differentiation feature in TensorFlow, as detailed in Supplementary Materials
Section S5. We specified the gradient modifier as the absolute values of the gradient, which
shows the regions in the input that contribute most to the change in the output regardless of
the sign of the change (i.e. negative or positive). We also used the guided backpropagation
to propagate only the positive gradients for positive activations to achieve a smoother
visualization. The saliency map was computed for each network and on different sample

Page 15 of 27


https://doi.org/10.1101/2020.07.31.231613
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.231613; this version posted November 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

input (for varying sample batches / fixation conditions). The inputs are 256 x 256-pixel
image stacks randomly selected from the testing groups under the six sample conditions.
The computed saliency maps are normalized to have a uniform range between 0 and 1 for
visualization.

Page 16 of 27


https://doi.org/10.1101/2020.07.31.231613
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.231613; this version posted November 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

References and Notes

1. F.Zanella, J. B. Lorens, W. Link, High content screening: seeing is believing. Trends
Biotechnol. 28, 237-245 (2010).

2. N.N. Boustany, S. A. Boppart, V. Backman, Microscopic Imaging and Spectroscopy with
Scattered Light. Annu. Rev. Biomed. Eng. 12, 285-314 (2010).

3. R. Kasprowicz, R. Suman, P. O’Toole, Characterising live cell behaviour: Traditional label-
free and quantitative phase imaging approaches. Int. J. Biochem. Cell Biol. 84, 89-95 (2017).

4. Y. Park, C. Depeursinge, G. Popescu, Quantitative phase imaging in biomedicine. Nat.
Photonics. 12, 578 (2018).

5. S. Uttam, H. V. Pham, J. LaFace, B. Leibowitz, J. Yu, R. E. Brand, D. J. Hartman, Y. Liu,
Early Prediction of Cancer Progression by Depth-Resolved Nanoscale Mapping of Nuclear
Architecture from Unstained Tissue Specimens. Cancer Res. 75, 4718-4727 (2015).

6. A.Wax, K. J. Chalut, Nuclear Morphology Measurements with Angle-resolved Low
Coherence Interferometry for Application to Cell Biology and Early Cancer Detection. Anal.
Cell. Pathol. Amst. 34,207 (2011).

7. L. Cherkezyan, 1. Capoglu, H. Subramanian, J. D. Rogers, D. Damania, A. Taflove, V.
Backman, Interferometric spectroscopy of scattered light can quantify the statistics of
subdiffractional refractive-index fluctuations. Phys. Rev. Lett. 111, 033903 (2013).

8. W. Song, A. Matlock, S. Fu, X. Qin, H. Feng, C. V. Gabel, L. Tian, J. Yi, LED array
reflectance microscopy for scattering-based multi-contrast imaging. Opt. Lett. 45, 1647-1650
(2020).

9. A. Matlock, A. Sentenac, P. C. Chaumet, J. Yi, L. Tian, Inverse scattering for reflection
intensity phase microscopy. Biomed. Opt. Express. 11, 911-926 (2020).

10. C. Ounkomol, S. Seshamani, M. M. Maleckar, F. Collman, G. R. Johnson, Label-free
prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat.
Methods. 15, 917-920 (2018).

11. E. M. Christiansen, S. J. Yang, D. M. Ando, A. Javaherian, G. Skibinski, S. Lipnick, E.
Mount, A. O’Neil, K. Shah, A. K. Lee, P. Goyal, W. Fedus, R. Poplin, A. Esteva, M. Bernd],
L. L. Rubin, P. Nelson, S. Finkbeiner, In Silico Labeling: Predicting Fluorescent Labels in
Unlabeled Images. Cell. 173, 792-803.e19 (2018).

12. S.-M. Guo, L.-H. Yeh, J. Folkesson, I. E. Ivanov, A. P. Krishnan, M. G. Keefe, E. Hashemi,
D. Shin, B. B. Chhun, N. H. Cho, M. D. Leonetti, M. H. Han, T. J. Nowakowski, S. B. Mehta,
Revealing architectural order with quantitative label-free imaging and deep learning. eLife. 9
(2020), doi:10.7554/eLife.55502.

13. D. Kusumoto, S. Yuasa, The application of convolutional neural network to stem cell biology.
Inflamm. Regen. 39, 14 (2019).

Page 17 of 27


https://doi.org/10.1101/2020.07.31.231613
http://creativecommons.org/licenses/by-nc/4.0/

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.231613; this version posted November 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

. D. Kusumoto, M. Lachmann, T. Kunihiro, S. Yuasa, Y. Kishino, M. Kimura, T. Katsuki, S.

Itoh, T. Seki, K. Fukuda, Automated Deep Learning-Based System to Identify Endothelial
Cells Derived from Induced Pluripotent Stem Cells. Stem Cell Rep. 10, 16871695 (2018).

C. L. Chen, A. Mahjoubfar, L.-C. Tai, I. K. Blaby, A. Huang, K. R. Niazi, B. Jalali, Deep
Learning in Label-free Cell Classification. Sci. Rep. 6,21471 (2016).

T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A.
Filby, A. E. Carpenter, P. Rees, Label-free cell cycle analysis for high-throughput imaging
flow cytometry. Nat. Commun. 7, 10256 (2016).

P. Eulenberg, N. Kohler, T. Blasi, A. Filby, A. E. Carpenter, P. Rees, F. J. Theis, F. A. Wolf,
Reconstructing cell cycle and disease progression using deep learning. Nat. Commun. 8, 463
(2017).

J. K. Zhang, Y. R. He, N. Sobh, G. Popescu, Label-free colorectal cancer screening using
deep learning and spatial light interference microscopy (SLIM). APL Photonics. 5, 040805
(2020).

H. Kobayashi, C. Lei, Y. Wu, A. Mao, Y. Jiang, B. Guo, Y. Ozeki, K. Goda, Label-free
detection of cellular drug responses by high-throughput bright-field imaging and machine
learning. Sci. Rep. 7, 12454 (2017).

F. Buggenthin, F. Buettner, P. S. Hoppe, M. Endele, M. Kroiss, M. Strasser, M.
Schwarzfischer, D. Loeffler, K. D. Kokkaliaris, O. Hilsenbeck, T. Schroeder, F. J. Theis, C.
Marr, Prospective identification of hematopoietic lineage choice by deep learning. Nat.
Methods. 14, 403—406 (2017).

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. Kim, S.-J. Kang, M. C. Choi, S. Y. Lee, Y. Park,
Holographic deep learning for rapid optical screening of anthrax spores. Sci. Adv. 3,
e1700606 (2017).

A. Zaritsky, A. R. Jamieson, E. S. Welf, A. Nevarez, J. Cillay, U. Eskiocak, B. L. Cantarel, G.
Danuser, bioRxiv, in press, doi:10.1101/2020.05.15.096628.

T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin, B. T. Do, G. P. Way, E.
Ferrero, P.-M. Agapow, M. Zietz, M. M. Hoffman, W. Xie, G. L. Rosen, B. J. Lengerich, J.
Israeli, J. Lanchantin, S. Woloszynek, A. E. Carpenter, A. Shrikumar, J. Xu, E. M. Cofer, C.
A. Lavender, S. C. Turaga, A. M. Alexandari, Z. Lu, D. J. Harris, D. DeCaprio, Y. Qi, A.
Kundaje, Y. Peng, L. K. Wiley, M. H. S. Segler, S. M. Boca, S. J. Swamidass, A. Huang, A.
Gitter, C. S. Greene, Opportunities and obstacles for deep learning in biology and medicine.
J. R. Soc. Interface. 15 (2018), doi:10.1098/rsif.2017.0387.

K. Simonyan, A. Vedaldi, A. Zisserman, Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps. ArXivi3126034 Cs (2014) (available at
http://arxiv.org/abs/1312.6034).

G. M. Gaietta, B. N. G. Giepmans, T. J. Deerinck, W. B. Smith, L. Ngan, J. Llopis, S. R.
Adams, R. Y. Tsien, M. H. Ellisman, Golgi twins in late mitosis revealed by genetically
encoded tags for live cell imaging and correlated electron microscopy. Proc. Natl. Acad. Sci.
103, 17777-17782 (2006).

Page 18 of 27


https://doi.org/10.1101/2020.07.31.231613
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.231613; this version posted November 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

26. J. C. Caicedo, S. Cooper, F. Heigwer, S. Warchal, P. Qiu, C. Molnar, A. S. Vasilevich, J. D.
Barry, H. S. Bansal, O. Kraus, M. Wawer, L. Paavolainen, M. D. Herrmann, M. Rohban, J.
Hung, H. Hennig, J. Concannon, I. Smith, P. A. Clemons, S. Singh, P. Rees, P. Horvath, R. G.
Linington, A. E. Carpenter, Data-analysis strategies for image-based cell profiling. Nat.
Methods. 14, 849-863 (2017).

27. C. Bakal, J. Aach, G. Church, N. Perrimon, Quantitative Morphological Signatures Define
Local Signaling Networks Regulating Cell Morphology. Science. 316, 1753—-1756 (2007).

28. M. H. Rohban, S. Singh, X. Wu, J. B. Berthet, M.-A. Bray, Y. Shrestha, X. Varelas, J. S.
Boehm, A. E. Carpenter, Systematic morphological profiling of human gene and allele
function via Cell Painting. eLife. 6, €24060 (2017).

29. S.-M. Guo, A. P. Krishnan, J. Folkesson, I. Ivanov, B. Chhun, N. Cho, M. Leonetti, S. B.
Mehta, Revealing architectural order with polarized light imaging and deep neural networks.
bioRxiv, 631101 (2019).

30. D. Damania, H. K. Roy, D. Kunte, J. A. Hurteau, H. Subramanian, L. Cherkezyan, N.
Krosnjar, M. Shah, V. Backman, Insights into the field carcinogenesis of ovarian cancer
based on the nanocytology of endocervical and endometrial epithelial cells. /nt. J. Cancer.
133, 1143-1152 (2013).

31. L. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell,
C. Andersson, L. M. Kimerer, P. B. Cipolloni, K.-H. Lim, S. D. Freedman, I. Bigio, B. P.
Sachs, E. B. Hanlon, L. T. Perelman, Confocal light absorption and scattering spectroscopic
microscopy monitors organelles in live cells with no exogenous labels. Proc. Natl. Acad. Sci.
104, 17255-17260 (2007).

32. V. R. Singh, Y. A. Yang, H. Yu, R. D. Kamm, Z. Yaqoob, P. T. C. So, Studying
nucleic envelope and plasma membrane mechanics of eukaryotic cells using confocal
reflectance interferometric microscopy. Nat. Commun. 10, 3652 (2019).

33. P. Wang, R. K. Bista, W. E. Khalbuss, W. Qiu, S. Uttam, K. D. Staton, L. Zhang, T. A.
Brentnall, R. E. Brand, Y. Liu, Nanoscale nuclear architecture for cancer diagnosis beyond
pathology via spatial-domain low-coherence quantitative phase microscopy. J. Biomed. Opt.
15, 066028 (2010).

34. R. Ling, W. Tahir, H.-Y. Lin, H. Lee, L. Tian, High-throughput intensity diffraction
tomography with a computational microscope. Biomed. Opt. Express. 9,2130-2141 (2018).

35. 1. Yi, A. J. Radosevich, J. D. Rogers, S. C. P. Norris, I. R. Capoglu, A. Taflove, V. Backman,
Can OCT be sensitive to nanoscale structural alterations in biological tissue? Opt. Express.
21, 9043-9059 (2013).

36. Z. Wu, B. B. Chhun, G. Schmunk, C. N. Kim, L.-H. Yeh, T. Nowakowski, J. Zou, S. B.
Mehta, bioRxiv, in press, doi:10.1101/2020.07.20.213074.

37. Y. Rivenson, H. Wang, Z. Wei, K. de Haan, Y. Zhang, Y. Wu, H. Glinaydn, J. E.
Zuckerman, T. Chong, A. E. Sisk, L. M. Westbrook, W. D. Wallace, A. Ozcan, Virtual
histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat.
Biomed. Eng. 3, 466—477 (2019).

Page 19 of 27


https://doi.org/10.1101/2020.07.31.231613
http://creativecommons.org/licenses/by-nc/4.0/

38

39.

40.

41.

42.

43.

44,

45.

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.231613; this version posted November 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

. Y. Rivenson, K. de Haan, W. D. Wallace, A. Ozcan, Emerging Advances to Transform

Histopathology Using Virtual Staining. BME Front. 2020 (2020),
doi:https://doi.org/10.34133/2020/9647163.

R. Hollandi, A. Szkalisity, T. Toth, E. Tasnadi, C. Molnar, B. Mathe, 1. Grexa, J. Molnar, A.
Balind, M. Gorbe, M. Kovacs, E. Migh, A. Goodman, T. Balassa, K. Koos, W. Wang, J. C.
Caicedo, N. Bara, F. Kovacs, L. Paavolainen, T. Danka, A. Kriston, A. E. Carpenter, K.
Smith, P. Horvath, nucleAlzer: A Parameter-free Deep Learning Framework for Nucleus
Segmentation Using Image Style Transfer. Cell Syst. (2020), doi:10.1016/j.cels.2020.04.003.

Y. Xue, S. Cheng, Y. Li, L. Tian, Reliable deep-learning-based phase imaging with
uncertainty quantification. Optica. 6, 618—629 (2019).

R. Liu, S. Cheng, L. Tian, J. Yi, Deep spectral learning for label-free optical imaging
oximetry with uncertainty quantification. Light Sci. Appl. 8, 102 (2019).

A. Krull, T.-O. Buchholz, F. Jug, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2019), pp. 2129-2137.

S. Li, M. Deng, J. Lee, A. Sinha, G. Barbastathis, Imaging through glass diffusers using
densely connected convolutional networks. Optica. 5, 803—813 (2018).

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, 5.

A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman, D. A.
Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Golland, D. M. Sabatini, CellProfiler:
image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7,
R100 (2006).

Page 20 of 27


https://doi.org/10.1101/2020.07.31.231613
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.231613; this version posted November 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Acknowledgments

We thank Alex Matlock for helpful discussions on cell phenotyping visualization and
evaluation, and Boston University Shared Computing Cluster for proving the computational
resources.

Funding: This work was supported by the National Science Foundation (1846784),
National Institutes of Health (ROINS108464), and Boston University Hariri Institute
Research Incubation Award.

Author contributions: L.T. and J.Y. conceived the idea. S.F. and Y.K. prepared the cell
sample culturing, fixation, staining and acquired all the imaging data. S.C., Y.L.and Y. X.
conducted the image processing, network training, cell phenotype and profile analysis,
quantitative evaluation and saliency map analysis. W.S. developed the LED-array
reflectance microscope platform. L.T., J.Y. and S.C. further discussed the results and refined
the deep learning model, cell profiling and cytometry pipeline. All authors contributed to
the writing of the manuscript.

Competing interests: The authors declare that they have no competing interests.
Data and materials availability: All data needed to evaluate the conclusions in the paper

are present in the paper and/or the Supplementary Materials. The data that support the
findings in this study are available upon request from the corresponding authors.

Page 21 of 27


https://doi.org/10.1101/2020.07.31.231613
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.231613; this version posted November 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Figures and Tables

p
(A) Experimental setup and data acquisition

Objective

G Camera Label-free input stack Co-registered
Excitation - Tube lens - fluorescence
source Emission ‘
F|Iters | :
g £ Beam |
B g splitter | |
|
LED array =g :
|
|

|
\
|
|
|

—
L Sample L

(B) Single model training

Cell samﬁles \}\ - EZ

Reflectance ‘

mlcroscape

t
|
|
|

Saliency map

Morphology transformation U-net -
________ > .
—_—— _> — >
—» - *

Fig. 1. Overview of the DL augmented label-free cytometry technique.
(A) A multimodal LED-array reflectance microscope is developed to acquire co-registered label-
free reflectance and fluorescence images. Reflectance images from oblique darkfield illumination
and computed drDPC contain rich morphological information and are the multi-channel input to
our DL model. Two-channel epi-fluorescence images are acquired on the same sample to serve as
the ground truth for training our DL model. (B) Individual DL models are trained independently
with paired label-free and IF images. The saliency map is used to reveal specific label-free features
captured by the model to perform the transformation. (C) To perform digital multiplexed
predictions, the same reflectance input is fed to each network and makes six different IF predictions
in parallel.
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Input
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Fig. 2. Visualization of the results from the six IF prediction networks. The rows show sample
darkfield reflectance images from each input stack, the network’s IF prediction, and the ground-
truth IF image, respectively. The columns show six IF labels covering four different subcellular
features, including nuclei (DNA), endosome, actin, and Golgi apparatus, as well as two different
cell states, including proliferation and apoptosis. The IF predictions have excellent visual agreement
with the ground-truths in all six cases.
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Fig. 3. Quantitative evaluation of the DL prediction. The violin plots show the quantitative
metrics for each IF label prediction. The upper and lower bounds of each grey bar represent the
25% and 75% quantiles, respectively; the center white point marked by the black dashed line
denotes the median. In total, 676 testing image patches are aggregated for computing the statistics
for each label. (A) The image patch-wise PCCs of the predictions for nuclei (DNA), endosome,
actin, and Golgi apparatus, which evaluates the pixel-level similarity between the regression-type
predictions and ground-truth subcellular features. (B) The image patch-wise AUC of the
proliferation and apoptosis predictions, which assess the pixel-level detection accuracy. (C)
Quantitative evaluation of the cell-level detection performance of the proliferation and apoptosis
predictions.
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Fig. 4. Multiplexed prediction on six IF labels from the same label-free input. (A) Visualization
of the Full-FOV multiplexed prediction including DNA (blue), endosome (red), actin (green), and
Golgi apparatus (yellow), and (B) proliferation (cyan) and apoptosis (magenta) from the same
reflectance input (grayscale). (C-R) Zoomed-in of DNA, Golgi apparatus, multiplexed, and
proliferation predictions. White circles indicate representative cell morphology during different
phases of the cell cycle, including (C-F) interphase, (G-J) metaphase, (K-N) anaphase, and (O-R)
telophase.
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Fig. 5. Cell profile analysis on digital multiplexed IF staining. (A) Illustration of the cell cycle.
(B-D) The scatter plots for the whole cell-level EAU (proliferating DNA) and Hoechst (DNA)
concentrations from (B) the co-stained ground-truth, (C) the DL-prediction, and (D) the detection
performance for the EAU predictions quantified by TP, TN, FP, and FN, across the entire cell
population under the proliferation staining condition. The total numbers of sample cells collected
from the ground truth and DL-predictions are 14778 and 14275, respectively. The numbers of TP,
FP, TN and FN in (D) are 4089, 852, 8529, and 805, respectively (in the brackets). (E-L) The
comparisons of the statistics of eight single-cell profile metrics extracted from the entire cell
population in the ground truth (GT) and the DL-predictions (pred), including (E) nuclear size, (F)
DNA (nuclear) fluorescence intensity contrast, (G) cell (actin) size, (H) compactness of the actin,
(I) NCR measured by the area ratio between the nuclei and actin, (J) endosome size, (K)
eccentricity of the Golgi apparatus distribution, and (L) concentration of the Golgi apparatus. The
total numbers of sample cells collected from the ground truth and DL-predictions are respectively
20021 and 25257 in (E) and (F), 6183 and 5151 in (G) and (H), 2246 and 1491 in (I), 15944 and
22408 in (J), 3380 and 9392 in (K), 3380 and 3380 in (L). All the single-cell profile metrics show
good agreements between the predictions and the ground truths.
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Saliency maps of different subcellular structures
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Fig. 6. Saliency maps from each network across six cell batches with different staining
conditions. The columns show the label-free input (the first darkfield reflectance channel) and the
saliency maps for six different IF labels, including DNA (blue), endosome (red), actin (green),
Golgi apparatus (yellow), proliferation (cyan), and apoptosis (magenta). The rows show the label-
free input and the saliency maps from six cell batches under different staining conditions. The
saliency maps show good consistency across different batches and highlight distinct morphological
features.
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