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Abstract 
 

Traditional imaging cytometry uses fluorescence markers to identify specific structures, but 
is limited in throughput by the labeling process. Here we develop a label-free technique that 
alleviates the physical staining and provides highly multiplexed readouts via a deep 
learning-augmented digital labeling method. We leverage the rich structural information 
and superior sensitivity in reflectance microscopy and show that digital labeling predicts 
highly accurate subcellular features after training on immunofluorescence images. We 
demonstrate up to 3× improvement in the prediction accuracy over the state-of-the-art. 
Beyond fluorescence prediction, we demonstrate that single-cell level structural phenotypes 
of cell cycles are correctly reproduced by the digital multiplexed images, including Golgi 
twins, Golgi haze during mitosis and DNA synthesis. We further show that the multiplexed 
readouts enable accurate multi-parametric single-cell profiling across a large cell 
population. Our method can dramatically improve the throughput for imaging cytometry 
toward applications for phenotyping, pathology, and high-content screening.   
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Introduction 
 

Cell morphology features are powerful phenotypical readouts, which have been the basis 
for pathology for decades. They are also the underlying mechanisms for varieties of imaging 
cytometry and high-content screening platforms to characterize pathological changes and 
responses to drug treatments (1). The most widely used approach for imaging readouts are 
fluorescence labels that highlight specific subcellular components or cell functions through 
immunofluorescence (IF), fluorescent reporter cells or dyes. However, the throughput of 
these approaches is fundamentally limited by the physical process of labeling. The IF 
staining is labor-intensive and generally requires cell fixation that does not allow kinetic 
observations of live cells over time. Fluorescent reporter cells are permissive for 
longitudinal live cell imaging. However, the process of gene editing and validation takes a 
significant amount of time and can be difficult to introduce multiple markers within the 
same cells for multiplexed analysis. Regardless of the fluorescence labeling approaches, the 
overlapping of the fluorescence emission spectra further limits the multiplexing capability. 
To alleviate these limitations, here we develop a label-free single-cell cytometry that is 
highly multiplexed and can forgo the physical staining via a deep learning (DL)-augmented 
digital labeling method.  

Our work relies on the premise that label-free scattering-based microscopy captures rich 
structural information and can be effective to characterize cell morphological features (2). 
Brightfield, phase contrast and differential interference contrast (DIC) microscopy have 
been routinely used for observing and quantifying cell morphology (3). Scattering-based 
microscopy and tomography techniques have been increasingly utilized to reconstruct 
cellular structures (4). Of particular interest is the reflectance-mode microscopy that 
provides exquisite sensitivity in detecting nanoscale structural changes beyond the 
diffraction limit (5–7). By capturing backscattering signals, reflectance imaging provides 
access to the highest spatial-frequency components in the reciprocal Fourier space and thus 
can provide higher structural contrast than the transmission techniques (2).  Indeed, our 
recent work shows that backscattering signals allow resolving finer details than the 
transmission counterparts (8, 9). In this work, we further leverage the higher sensitivity 
provided by the reflectance-mode microscopy and demonstrate how enriched label-free 
information allows predicting highly accurate subcellular structural features.  

The framework of this study is summarized in Fig. 1. The angle-dependent backscattering 
features are captured with darkfield oblique illumination and paired with IF images (Fig. 
1A).  Using the IF images as the ground truths, multiple DL models are independently 
trained for individual IF labels (Fig. 1B). Once all the models are trained, we perform digital 
multiplexing by feeding the same label-free input to each network and make different IF 
predictions in parallel (Fig. 1C). By doing so, multiple subcellular structures and cell states 
can be revealed simultaneously without physical labeling. While previous works have 
shown that DL models can disentangle the complex structures captured in the label-free data 
and make in-silico fluorescence labeling with high accuracy (10–12) or holistically capture 
“hidden” structural features that are not easily perceived or described (13–22), these results 
are fundamentally limited by the weak structural contrast from the transmission modes that 
contain only forward scattering information. By exploiting the enhanced resolution and 
sensitivity in the backscattering data, we demonstrate a dramatic increase in the 
fluorescence prediction accuracy with up to 3× improvement as compared to the current 
state-of-the-art. 
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One distinct contribution of our work is to advance beyond the prediction of fluorescence 
images, and to demonstrate accurate structural phenotyping and quantitative single-cell 
cytometry using digitally multiplexed fluorescence images.  Importantly, we show that our 
DL model can correctly capture and predict characteristic subcellular features during the 
cell cycle, including morphological changes of nuclei and Golgi apparatus. We also show 
that our DL model can capture the structural features of cell proliferation and recapitulate 
the DNA duplication through the cell cycle. Remarkably, the label-free structural features 
identified in proliferating cells are not obvious by visual inspection of the raw images, 
demonstrating that our holistic DL model can potentially capture novel cellular attributes 
with high accuracy. Another distinct advantage of multiplexing several fluorescence 
markers is that it enables the development of multiple quantitative metrics for imaging 
cytometry and phenotyping across the large cell population and at the single-cell level (e.g. 
cell size, nuclear-cytoplasmic ratio, nuclear roughness, Golgi eccentricity, etc.). As other 
“omic” platform technologies are rapidly being developed to evaluate biological processes 
at various levels (e.g. genomics, transcriptomics, proteomics, metabolomics), single-cell 
level structural metrics will complement these population-based studies, particularly when 
a contextual phenotypic shift is expected only for a subset of cells. As a demonstration, we 
evaluate several cellular features, including morphology and fluorescence expressing 
intensity on the DL predicted digitally multiplexed readouts.  

A common criticism of DL-based methods is the “black-box” nature of these models (23). 
To overcome this issue, we adapt the attention mechanism (24) to elucidate on the working 
mechanism of our DL model. We construct the saliency map that highlights the most 
important subcellular features contributing to each IF prediction by the network.  Our results 
show that the structural components in label-free reflectance input that correspond to the 
fluorescence labels can be correctly identified by the saliency map, and the “attention” is 
consistent across different cell batches when predicting all IF labels. This indicates that our 
network learns to extract the salient and specific structural information from the reflectance 
images matching the underlying subcellular components. In addition, the improved 
prediction accuracy is attributed to the enhanced resolution and sensitivity to subcellular 
structures from the backscattering information.  

 
Results 

Oblique illumination-based reflectance microscopy captures rich morphological 
information 
The imaging platform is based on our recently developed LED-array reflectance microscope 
for capturing co-registered label-free reflectance and fluorescence images (8). By flexibly 
controlling the LED patterns, this new platform enables capturing multiple angle-dependent 
backscattering contrasts in the darkfield without any mechanical switching. Based on our 
prior work (8), we heuristically optimize the illumination strategy and implement half-
annulus LED patterns along four different orientations (including top, bottom, left, and 
right) (see Fig. 1A). In addition, we compute the darkfield reflectance differential phase 
contrast (drDPC) based on the raw measurements (see Materials and Methods). The raw 
oblique-illumination darkfield and drDPC images contain complementary structural 
contrasts. In particular, subcellular structures are shown with high contrast in the raw 
darkfield measurements, including the nuclei, nucleoli, and hyper-reflective structures at 
the nuclear periphery.  Cell membranes with sharp boundaries are highlighted in the drDPC 
images, with cytoplasm spreading on the substrate with thicker nuclei at the cells’ centers. 
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The extra cell topography information exhibited in the drDPC images are found particularly 
useful for predicting IF labels that are sensitive to morphology of the cell boundary.  These 
label-free images are used as the multi-channel input to our DL model. On the same 
platform, two-channel epi-fluorescence images are concurrently acquired on the same 
sample to serve as the ground-truth for training our DL models (Fig. 1A) (see Materials and 
Methods). The significance of this new microscopy platform is that we capture enriched 
label-free information by multiple contrasts in the reflectance-mode. This empowers our 
label-free high-content cytometry technique to uncover highly sensitive and specific 
structural phenotypes at the single-cell level across large cell populations.   

Individual fluorescence prediction achieves state-of-the-art performance 
To evaluate the performance of our DL models, we take measurements on fixed HeLa cells 
containing in-total six IF labels, including DNA (Hoechst), Golgi apparatus (GM130), 
endosome (EEA1), actin (Phalloidin), proliferation (EdU), and apoptosis (TUNEL). 
Specifically, five separate batches of IF staining are performed with GM130, EEA1, 
Phalloidin, EdU, TUNEL, each of which is co-stained with Hoechst (see Materials and 
Methods). We then train six networks for performing individual IF label predictions using 
paired reflectance-fluorescence image dataset (Fig. 1B). Additional details about the 
network implementation and the data preprocessing procedure are provided in Materials and 
Methods and Supplementary Materials Figs. S1 and S2, respectively.   

A major goal of our study is to investigate the structural contrast captured by different label-
free reflectance modes and understand how they impact the DL-based fluorescence 
predictions.  To this end, we conduct ablation studies on the drDPC input in Supplementary 
Materials Fig. S3 and Table S1. As expected, the additional drDPC channels substantially 
improve the actin IF label predictions by ~9% since drDPC clearly highlights cell 
topography and boundaries as compared to the plain darkfield images. Notably, the 
additional drDPC channels also dramatically improve the prediction accuracy for 
proliferation and apoptosis IF labels, by ~8% and ~17%, respectively. We hypothesize that 
this is because distinct structural features exhibited during proliferation or apoptosis can be 
more prominently displayed by drDPC and subsequently recognized by the DL model. 

After training, we first evaluate each network’s prediction accuracy on unseen reflectance 
input from the same cell batch. Figure 2 shows the label-free input, the individual IF ground-
truth, and the prediction for all six labels. The predicted subcellular structures and cell states 
have excellent visual agreement with the ground-truths. Characteristic morphological 
features are clearly recovered, including rounded nuclei, cytoplasmic endosome, spreading 
cell membrane (actin), and Golgi apparatus at the nuclei periphery.  Selective cellular events 
or functions such as proliferation and apoptosis are also captured by the DL predictions. 
Additional examples of the prediction results are shown in Supplementary Materials Fig. 
S4. 

We quantify the prediction accuracy by computing several evaluation metrics on the 
network’s predictions based on the underlying cytometry tasks. Specifically, we formulate 
the predictions of the DNA, endosome, actin, and Golgi apparatus as regression problems 
because they are distinct subcellular structures and thus better described in their 
morphologies. Accordingly, the performance is quantified by calculating the image patch-
wise Pearson correlation coefficient (PCC), which measures the pixel-level similarity of 
morphologies between the DL prediction and the ground truth (see Materials and Methods). 
The distributions of the PCCs for the four IF label predictions are shown in the violin plots 
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in Fig. 3A. Notably, all four of our regression DL models achieve higher accuracy as 
compared to the current state-of-the-art techniques based on transmission label-free 
microscopy data (10). The median PCCs on the DNA, endosome, actin, and Golgi apparatus 
label predictions achieve 87.25%, 91.85%, 92.01%, and 59.82%, respectively. These results 
agree well with the example visualizations in Fig. 2. The cellular features in the reflectance 
images associated with the corresponding fluorescence label are clearly visible. Although 
these scattering signals are entangled with other signals in the raw label-free images, our 
result shows that our DL models are able to recognize and distill these salient features with 
high accuracy. As visualized in the violin plots and quantified by the 25% and 75% quantiles 
in Fig. 3A, different amounts of variations in the prediction accuracy are seen for the four 
labels. In general, we observe that the larger deviation of the prediction from the ground-
truth, as measured by the median value, is also associated with larger accuracy variations. 
To investigate these spatial variations, we visualize the patch-wise PCC as a spatial map in 
Supplementary Materials Fig. S5. Low-value PCC outliers are generally observed in 
background regions, and hence are removed by a standard algorithm (see Materials and 
Methods). Other than the background outliers, the PCCs are consistent across all the cell 
regions for all the four IF label predictions, which demonstrates the overall robustness of 
the DL model. 

We formulate the prediction of the proliferation and apoptosis as detection problems, which 
is more biologically meaningful because they are selective cell states. The proliferation 
labels are only present in the DNA-replicating cells. The apoptosis labels are only for cells 
undergoing programmed deaths. Accordingly, the performance is first quantified by the 
pixel-level Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) to 
measure the ability of separating the positives (i.e. those expressing the fluorescence) from 
the negatives at each pixel (see Materials and Methods). The calculation is image batch-
wise, the same way as we calculated PCC.  The distributions of the AUCs over all batches 
for the two IF labels are shown in the violin plots in Fig. 3B. The median detection 
accuracies are 91.65% and 77.24% for the proliferation and apoptosis, respectively.  Next, 
we further evaluate the cell-level detection performance to give a more direct assessment 
on these two label predictions. To do so, we perform single-cell segmentation on both the 
predicted and the ground-truth IF images and then identify each prediction as one of the 
four possible detection outcomes, including the true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN), from which we compute the cell-level detection 
metrics, including the sensitivity and specificity (see Materials and Methods). As 
summarized in Fig. 3C, the cell-level proliferation prediction achieves 83.55% sensitivity 
and 90.92% specificity; the apoptosis prediction achieves 75.91% sensitivity and 98.88% 
specificity. Notably, the scattering features in the proliferating cells cannot be easily 
perceived from the raw reflectance images, yet our DL model can capture the salient 
structural features with high accuracy. The balanced high sensitivity and specificity 
validates the reliability of our DL models for identifying these highly selective cell 
states/events.  

Overall, these individual label prediction results validate our hypothesis that the improved 
sensitivity and resolution in reflectance images contain rich morphological features that can 
be utilized effectively for structural phenotyping by DL. 

 Multiplexed prediction recovers biological accurate cellular structures 
Next, we demonstrate the digital multiplexing capability by feeding the same reflectance 
input to each network and make six different IF predictions in parallel. By doing so, multiple 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.07.31.231613doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.231613
http://creativecommons.org/licenses/by-nc/4.0/


Page 7 of 27 
 

subcellular structures and cell states are revealed simultaneously. In Fig. 4A, the image 
multiplexes the nucleus, Golgi apparatus, actin, and endosome virtual IF labels in a single 
wide field-of-view (FOV) for a large cell population. In Fig. 4B, the virtual labels for 
proliferating and apoptotic cells are multiplexed with the darkfield reflectance input in the 
same FOV as in Fig. 4A. These multiplexed predictions are performed on the cell batch 
under the Golgi apparatus staining condition. To further demonstrate the robustness of this 
digital multiplexing procedure, we show additional examples of multiplexed predictions 
performed on different cell batches/staining conditions in Supplementary Materials Fig. S6. 

Importantly, our results show that the DL model can correctly capture and predict 
characteristic subcellular features during the cell cycle. During interphase, the nuclei have 
a regular rounded shape with nucleoli present, and Golgi apparatus is anchored primarily to 
one side of the nuclei (Figs. 4C-4E). At this stage, cells that have initiated or ongoing 
DNA/chromatin replications have a positive signal for proliferation (Fig. 4F). When cells 
enter mitosis, the chromosomes start to condense toward the centers of the cells, and 
nucleoli disappears. Golgi apparatus undergoes vesiculation and fragmentation, and its 
components are found scattered throughout the cytoplasm in the form of tiny (~50-nm) vesicles, 
often referred to as the “Golgi haze” (25). During metaphase, chromosomes align at the 
metaphase plate and the cell shape also changes dramatically, bulging into a sphere (Figs. 
4G-4I).  Golgi haze appears rounded, with a shaded center where chromosomes are located 
(Fig. 4H).  During anaphase, the duplicated chromosomes separate from one another and 
move to opposite poles of the spindle (Fig. 4K-4M). During telophase, chromosomes start 
to de-condense, and begin to take on a more interphase-like shape (Figs. 4O-4Q).  In this 
stage, Golgi apparatus has also completed replication, and reassembled into two closely-
spaced cell bodies, referred to as “Golgi twins” (25) (Fig. 4P). There is no DNA replication 
during mitosis, so the markers for proliferation (incorporation of the fluorescent nucleoside, 
EdU) are absent for the metaphase, anaphase, and telophase (Figs. 4J, 4N, 4R). As shown 
in Fig. 4C-4R, these structural, subcellular, cell cycle-dependent features are accurately 
captured and predicted by our DL model, which validates our hypothesis that label-free 
reflectance imaging and DL enable structural phenotyping.   

Cell profile analysis on multiplexed images allows phenotyping and quantitative 
cytometry   
A distinct advantage of multiplexing several markers is that it enables the development of 
multi-variant quantitative metrics for imaging cytometry and phenotyping across the large 
cell population and at the single-cell level. As a demonstration, we evaluate several cellular 
features, including cell morphology and fluorescence intensity, on the digitally multiplexed 
readouts. First, we generate fluorescence intensity scatter plots similar to those used in the 
flow cytometry, of EdU vs. Hoechst for all cells from the ground-truth and digitally 
multiplexed IF images in Fig. 5B and 5C, respectively. Evaluating the scatter plots on the 
population level, the DL-multiplexed prediction matches well with the ground truth, both 
of which show the increase in EdU and doubling of Hoechst intensity in the S and G2/M 
phases of the cell cycle, respectively. Next, we further evaluate the results on the individual 
cell level by overlaying the detection outcome for proliferation of every cell onto the same 
scatter plot in Fig. 5D. Specifically, by comparing the predicted proliferation IF label and 
the ground truth, each data point is labeled as one of the four detection outcomes (TP, TN, 
FP, or FN) (see details in Materials and Methods). Our analysis shows that the incorrect 
predictions (including FP and FN) tend to cluster around the boundaries between the S phase 
and S1 phases, leading to confusions in the DL predictions.  There are relatively fewer 
incorrect predictions in G2/M phase, which are expected because of the distinctive 
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morphological features during mitosis that can be easily captured by the DL model (e.g. 
metaphase, anaphase, and telophase in Fig. 4).   

In Figs. 5E-5L, we extract several biologically relevant single-cell profile metrics using the 
predicted IF labels and compare them with the ground truths (see Materials and Methods), 
as visualized in the violin plots. In particular, we show the statistics of eight different 
morphological and subcellular structural parameters. In Fig. 5E-5F, we gather statistical 
data about the DNA label to measure the nuclear size and intensity contrast. In Fig. 5G-5H, 
we evaluate the actin size (i.e. cell size) and its compactness. In Fig. 5I, we compute the 
nuclear- cytoplasmic ratio (NCR), an important marker for cancers, as the area ratio between 
the nucleus and actin. In Fig. 5J, we measure the endosome size. In Fig. 5K-5L, we collect 
morphological parameters about the Golgi apparatus, including the eccentricity and 
concentration. Additional metrics are provided in the Supplementary Materials Fig. S7. For 
all these single-cell profile metrics, the prediction and the ground truth show excellent 
agreement. These results clearly demonstrate that our DL-augmented label-free cytometry 
can provide comprehensive morphological quantifications with high accuracy at the single-
cell level, which is the key element for phenotyping and high-content screening (26).   

Saliency map reveals inner mechanism of the deep neural network 
Deep neural networks have shown high expressivity for complex models, but suffer from 
poor explainability. Many theoretical explanations for the DL model have resorted to 
statistical perspective while treating the overall model as a “black box”. Instead, we utilize 
the “attention”-based technique (24) to elucidate on the specific label-free subcellular 
features that contribute to the fluorescence prediction. To do so, we treat the trained DL 
model as a mapping function between the input and the output. We then visualize the 
network’s gradient with respect to the input and extract the salient features (i.e. those having 
the largest gradients) the network pays most attention to (see details in Materials and 
Methods). The resulting “saliency map” highlights the most important features contributing 
to the IF prediction. By doing so, the saliency map directly evaluates the specificity of the 
structural features extracted from the reflectance images and how they are transformed to 
the target fluorescence labels by our network.  

Figure 6 shows the computed saliency maps for each network across different sample 
batches and labeling conditions. Importantly, distinct subcellular features not only are 
highlighted by the network’s saliency map, but also have good visual correspondence to the 
targeted fluorescence label. By inspecting different columns, we show morphologically 
distinct features from different networks, indicating that different networks can indeed learn 
to recognize and focus on specific features present in the label-free images. For example, 
the DNA saliency maps show emphasis on nuclear boundaries and some subcellular 
structures. The actin saliency maps show concentration over the whole cell and spreading 
out to the membrane boundaries. The saliency maps for Golgi apparatus generally form 
shapes in “partial-moon” or circular lines. By contrast, the saliency maps for proliferation 
and apoptosis show that the network selectively pays attention to certain features around the 
nuclei. In addition, the saliency maps show that our network learns to extract invariant 
structural features specific to the underlying fluorescence label regardless of the cell 
preparation and labeling processes. Across different rows, we observe consistent saliency 
maps under different sample batches / staining conditions for the same labeling network.  
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Discussion  

In this study, we have presented a DL-augmented label-free cytometry technique that 
accurately predicted six fluorescence targets in-parallel at the single-cell level. The accuracy 
has been improved up to 3× in predicting subcellular structures as compared to the current 
state-of-the-art. Remarkably, the DL model is able to accurately recognize subcellular 
organelles, such as Golgi apparatus reconfigure during the cycle of proliferation, as well as 
to distinguish subtle morphological differences between the proliferating and non-
proliferating cells. These results demonstrate the data-driven model’s unique capability of 
holistically extracting “non-intuitive” structural features from the label-free imaging data 
on a large cell population. The specificity for predicting cellular features by our DL model 
is illuminated by the saliency maps. This analysis demonstrated the ability of the DL models 
in processing highly complex and entangled structural information from scattering images.   

Beyond predicting IF labels, we have further demonstrated quantitative cytometry analysis 
based on the multiplexed digital output from our DL models. Importantly, our analysis has 
shown that a multitude of single-cell profile metrics can be accurately extracted from the 
DL predictions. The digital multiplexing enabled us to simultaneously quantify several 
morphological features on multiple subcellular components across a large cell population. 
This capability drastically improves the technique’s throughput for structural phenotyping 
in the application of imaging cytometry, such as high-content analysis/screening. Cell 
morphological features are effective phenotypes for different disease states and 
environmental influences. This phenomenon is well described and practiced in pathology 
and cell biology. Nuclear condensation, enlargement, and increased NRC are ubiquitous 
hallmarks of cancers (5, 6). Cell morphology is distinct for different cell types, which is 
often denoted in their terminology (i.e. astrocytes, macrophage, squamous, and columnar 
cells, etc.), and stem cells change structures along separate differentiation paths (13).  It has 
been shown that cell morphological changes can be directly associated with changes of 
morphogenic gene expressions (27), and comprehensive morphological profiling can be 
used to detect genetic functions (28). Meanwhile, it has been shown that DL techniques can 
holistically capture complex structural features for classification. This has found broad 
applications in detecting cell types (13, 14, 29), cell states (15–18, 22), drug response (19), 
and stem cell lineage (20). By fully leveraging the label-free and high multiplexing nature 
of our technique, it can potentially generate significant impacts in imaging cytometry by 
offering unprecedented information content and discovering new compound morphological 
features necessitating multiplexed fluorescence readouts.   

Label-free, DL-augmented method of cell-morphology profiling is data-driven and 
ultimately relies on the rich information content in the images. Our LED-array reflectance 
microscopy enables multi-contrast imaging (i.e. angle-dependent darkfield and drDPC) by 
detecting the angled-dependent backscattering signals by a programmable LED array 
without any mechanical moving parts. The superior sensitivity in detecting subtle structures 
using backscattering than transmission-microscopy is well documented (2). The superb 
sensitivity of backscattering-based method has been demonstrated in a variety of techniques, 
such as partial wave spectroscopy (30), confocal light absorption and scattering 
spectroscopic microscopy (31), confocal reflectance quantitative phase microscopy (32), 
and spatial-domain low-coherence quantitative phase microscopy (33). In addition, the 
angle-dependent measurement has been used to measure characteristic structural length 
scale (6) and to enable 3D reconstruction of the refractive index distribution (34).  
Leveraging angle-dependent reflectance signal, we outperformed the state-of-the-art for 
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predicting multiple subcellular components. By switching to a higher NA objective lens, the 
prediction performance of our DL model to subcellular structures, such as those missed in 
our actin label predictions, may be further improved. Recently, the LED array microscopy 
has also been extensively explored in transmission that allows sampling the low spatial 
frequency components in the Fourier space (34). In addition, backscattering spectroscopic 
techniques further enable characterization of ultrastructural phenotypes with sensitivity 
down to nm-length scale (35). A potential future improvement of our imaging system is to 
incorporate additional transmission and multispectral LED-array illumination to fully 
exploit the angle- and wavelength-dependent scattering contrast with a single objective lens 
by versatile illumination engineering. 

One limitation of our current work is that it is based on fixed cells that does not allow 
longitudinal imaging. This can be overcome by using fluorescent reporter cell lines or live 
cell dyes to provide the fluorescence ground-truth (10) and enable dynamic observation. 
The additional temporal dimension may further improve the model’s sensitivity in cell 
phenotyping and discover new label-free features by incorporating the information about 
the cell dynamics (20, 22, 36). Another limitation of the DL framework we used here is that 
it cannot be generalized to different types of cells. Techniques based on transfer learning 
(37, 38) and domain adaptation (39) will be investigated in our future work to overcome 
this limitation.  

The variations in the prediction accuracy of our DL models are currently evaluated post hoc, 
and based on pixel-wise and cell-level metrics by comparing the DL predictions and the 
ground truth. For many biomedical applications, it is beneficial to understand how much 
error the model may make without knowing the ground truth, i.e. the confidence of the 
model predictions. Emerging Bayesian DL based uncertainty quantification techniques have 
proved useful to provide a proxy estimate of the prediction accuracy and quantify the model 
confidence (40, 41), which will be adapted in our future work. 

In summary, we have reported a label-free imaging cytometry technique that multiplexes 
six IF labels in-parallel with high accuracy via DL models. We have validated the 
fluorescence predictions by comparing them to the ground-truth IF images. In addition, we 
have conducted imaging cytometry studies on several quantitative morphological metrics 
on subcellular structures and phenotyping of cell proliferation. Finally, the specificity of the 
DL model is assessed by visualizing the saliency map at the single cell level across different 
staining and fixation conditions.  With this unique combination of new capabilities, this new 
framework may find wide applications in image-based cytometry, in particular for high-
content screening and analysis.   
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Materials and Methods 

Cell preparation and immunofluorescence staining 
HeLa cells were cultured in a Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal 
bovine serum (Gibco, 10564011) and 5% penicillin streptomycin (Gibco, 15140122).  The 
cells were trypsinized and passaged twice a week. Two days before the staining and 
imaging, cells were cultured on glass-bottom petri dishes (FluoroDish FD35-100) which 
were first treated with 10% poly-L-lysine (SigmaAldrich, RNBG0769) with PBS for ten 
mins in an incubator. The staining and imaging were performed on the glass-bottom dishes.   

We follow the standard IF staining protocols. In total, six IF stains are used to label DNA 
(Hoechst), actin (Phalloidin, Alexa Fluor 488 Phalloidin, Invitrogen, A12379), endosome 
(EEA1, Santa Cruz, sc-137130 AFF488), Golgi apparatus (GM130, Cell Signaling, 12480), 
proliferation (EdU, Click-iT Plus EdU Alexa Fluor 488 kit, Invitrogen), and apoptosis 
(TUNEL, Click-iT TUNEL Alexa Fluor 488 kit, Invitrogen). The HeLa cells were first fixed 
with ice-cold methanol, washed three times (10 min each) in 0.05% PBST (0.05% Triton 
X-100 PBS solution), and incubated for 20 mins at room temperature in a blocking solution 
containing 0.25% Triton X-100 and 10% bovine serum albumin in PBS. Alexa-488 
conjugated antibodies were diluted in the blocking solution with the recommended 
concentration by the manufacturers and incubated with cells to label the specific subcellular 
components (EEA1 for endosome, Phalloidin for actin).  For actin staining, cells were fixed 
with ice-cold acetone to preserve the structures.  For Golgi staining, a secondary antibody 
Anti-rabbit IgG (Santa Cruz, 4412S) was diluted in blocking solution and used to culture 
the cells for 1.5 hours at room temperature in dark. To stain cell proliferation and apoptosis, 
we used EdU and TUNEL assays, respectively, according to the recommended protocol by 
Invitrogen. The apoptosis was induced by culturing the cells with 1µM Staurosporine for 
24 hours.  In all the above stains, cell nuclei were counterstained with 1× Hoechst 33342.  

Image data acquisition 
We collect the data using our custom-built multimodal reflectance microscope (8), as shown 
in Fig. 1A. A custom-built LED array consisting of two LED rings is used for providing 
controllable darkfield illumination in reflection. We use commercially available LEDs 
(APTF1616SEEZGQBDC, Kingbright) that can provide three independent RGB color 
channels (central wavelength is 460, 515, and 630 nm, respectively). All the LEDs are 
individually addressable using two cascaded LED drivers (TLC5955, Texas Instruments). 
A microcontroller (Teensy 3.2, PJRC) provides the camera trigger signal through digital 
Input/Output pins and simultaneously controls the LED illumination pattern. The LED array 
is mounted around the objective lens (10× 0.3 NA, UPlanFL N, Olympus, Japan) using a 
3D-printed adapter. The tube lens is a commercial SLR lens (Nikon AF DC-NIKKOR 135 
mm f/2D) to maximize the FOV. The microscope provides an overall 7.5× magnification. 
An sCMOS camera (CS2100M-USB, Thorlabs, 1920 × 1080 pixels, 5.04-µm pixel size, 16-
bit depth) is used to acquire the images. We capture four darkfield reflectance images by 
using half-annulus green LED patterns along different orientations, including top (𝐼!"#), 
bottom (𝐼$"%%"&), left (𝐼'()%), and right (𝐼*+,-%). The exposure time is 700 ms. Two drDPC 
images along two orthogonal orientations are generated by  

𝐼./01 =
2!"#32$"%%"&
2!"#42$"%%"&

,  𝐼./05 =
2'()%32*+,-%
2'()%42*+,-%

 .                     (1) 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.07.31.231613doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.231613
http://creativecommons.org/licenses/by-nc/4.0/


Page 12 of 27 
 

The fluorescence excitations are provided by two LED sources (M365LP1 and M470L4, 
Thorlabs, central wavelength 365 nm, 470 nm, respectively) combined with a dichroic 
mirror (DMLP425R, Thorlabs). The epi-fluorescence illumination is introduced by a 50/50 
beam splitter (CCM1-BS013, Thorlabs). The emission filters (MF460-60, MF525-39, 
Thorlabs) are placed on a filter wheel (CFW6, Thorlabs) for blue and green fluorescence 
emissions. Two-channel fluorescence images are acquired sequentially after acquiring the 
reflectance images. The exposure time is 400 ms for IF imaging.  Specifically, the first green 
channel is for one of the five IF antibodies conjugated with the green fluorophores (Alexa 
488) for endosome, actin, Golgi apparatus, proliferation, and apoptosis; the second blue 
channel is for the co-stained DNA. We capture 30 image stacks for each sample batch / IF 
stain.  

Data preprocessing procedure 
The raw reflectance and fluorescence images are preprocessed before feeding into our deep 
neural networks for training. The preprocessing procedure consists of four steps, including 
flat-field cropping, image denoising, background correction, and intensity normalization. 
Since the fluorescence excitation illumination is not evenly distributed across the entire 
rectangular FOV, we first perform flat-field cropping by using only the central 1000 × 1080-
pixel region for training, where the excitation is approximately uniform. Second, we 
perform image denoising on the measurements. We apply two denoising approaches. In the 
first approach, we apply an unsupervised DL-based denoising algorithm, noise2void (42), 
to suppress the sensor noise present in the images. To do so, each 1000 × 1080-pixel image 
is cropped into 256 × 256-pixel patches. Each image patch is fed to a blind-spot network to 
perform denoising. After denoising, the patches are then stitched back together by alpha 
blending. This unsupervised denoising algorithm is found to be effective in removing 
unstructured, signal-independent noise, including the sensor noise and isolated hot pixels, 
in particular for measurements with low signal-to-noise ratios (SNRs). The whole training 
and inference (denoising) procedure takes ~10 hours for processing the entire dataset 
containing 30 images. We find this denoising procedure is only necessary for processing the 
Golgi and proliferation fluorescence images, as well as for the reflectance images for the 
actin prediction where the sensor noise severely corrupts the images. In the second 
approach, when the SNRs are sufficiently high for the measurements on other cell batches, 
we use a computationally more efficient morphology opening operation to remove the hot 
pixels in the fluorescence images under the assumption that hot pixels are isolated pixels 
with extreme intensity values. The opening operation takes a square kernel of size 2 × 2 
pixels. This hot-pixel removal procedure takes ~15 min to process the entire dataset 
containing 30 images. Third, we perform background correction on the fluorescence images 
by eliminating the potential background bias across the batches. To do so, we calculate the 
histogram of each fluorescence image and denote the mode value (i.e. the most frequent 
value) as the constant background. This background of each fluorescence image is 
subtracted; the negative values from the subtraction are clipped to zero. Fourth, we perform 
intensity normalization by normalizing the pixel values of both the input and output images 
to be between 0 and 1. Additional details about the data preprocessing steps are shown in 
Supplementary Materials Fig. S2. 

Our network takes 256 × 256-pixel input images. Accordingly, we split the 30 pairs of 
images into 256 × 256-pixel patches to generate the training and testing data. For each IF 
prediction, 512 training samples and 128 testing samples are randomly generated from the 
full-FOV image pairs. Each input stack consists of four different channels combining 
darkfield reflectance images from different oblique illumination patterns (Fig. 1A). In 
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addition, we construct the two-direction drDPC images using Equation (1) from the 
darkfield images (Fig. 1A), which were found particularly effective for predicting the actin, 
proliferation, and apoptosis labels. We provide example comparisons of the prediction 
results with and without the drDPC inputs for all six IF labels in Supplementary Materials 
Fig. S3. Quantitative comparisons of the prediction results with and without the drDPC 
inputs for all six IF labels are provided in Supplementary Materials Table S1. When making 
the full-FOV predictions (e.g. Fig. 4), we use the entire 1080 × 1920-pixel reflectance 
images since they do not suffer from the non-uniform illumination issue. 

Neural network implementation 
We develop a convolutional neural network (CNN) to learn the highly complex nonlinear 
mapping between the morphology information contained in the multi-channel reflectance 
images and the fluorescence labels. The network structure follows the encoder-decoder “U-
net” architecture and further incorporates the dense-blocks and skip-connections to enable 
high-resolution information prediction (40). The input of the preprocessed 256 × 256-pixel 
reflectance image stack passes through the “encoder” path consisting of four dense blocks 
followed by the max-pooling layers, and the bottleneck feature maps are then fed into the 
“decoder” path with four dense blocks followed by upsampling layers. The skip connections 
bridge the lower-level activation maps with higher-level activation maps and preserve the 
high-frequency information. More details about the network are provided in Supplementary 
Materials Fig. S1. We use the negative PCC (NPCC) as the training loss (43). We train our 
network using ADAM optimizer with 500 epochs and 0.1 training/validation splitting. No 
overfitting is observed during the training. 
 
Quantitative evaluation of network prediction 
We use the PCC to evaluate the performance of the regression-type of problems. 
Specifically, the PCC is used to quantify the prediction quality for pervasive subcellular 
features, including DNA, endosome, actin, and Golgi apparatus labels. It computes the 
statistical correlation between the predicted and ground-truth IF image patches and is able 
to quantify the pixel-level similarity on the fine subcellular features. The PCC between the 
prediction X and the ground truth Y (each image is reshaped to a 𝑁 dimensional vector) is 
computed as 
 

𝑃𝐶𝐶 = ∑ (8.389)(;.3;9)/
.01

<∑ (8.389)2/
.01 <∑ (;.3;9)2/

.01 4=
,                       (2) 

 
where 𝜖 = 10-10 is a small regularizer to prevent zero denominator, ⋅ ̅denotes the mean, and 
i is the index of each vector. The value of the PCC ranges from −1 to +1, where ±1 
indicates total positive or negative correlation and 0 indicates no correlation. The PCC 
computation is implemented by a custom code in Python. The PCCs are computed on the 
testing image patches, each containing a 128×128-pixel FOV. In total, the statistics from 
676 patches from four large FOV testing images of size 908×908 pixels at each staining 
condition are aggregated and shown in the violin plots in Fig. 3B. 
 
To evaluate the spatial variations of the prediction performance, we construct the PCC map 
for each label prediction. To do so, 169 consecutive image patches are obtained from each 
large FOV image by cropping the image with a 128×128-pixel sliding-window and 64×64-
pixel overlap between the neighboring patches. The patch-wise PCC map is computed and 
shown in Supplementary Materials Fig. S5. The lower PCC patches are found to generally 
align with the background region where very low reliable IF readings are present. We treat 
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these patches as outliers. Accordingly, we use a median-based outlier detection and removal 
algorithm (see Supplementary Material Section S1) to remove these background outliers 
when constructing the violin plots in Fig. 3.  
 
We use the AUC to quantify the detection performance for identifying the selective cell 
events including the proliferation and apoptosis. To plot the ROC of the detection label 
performance, the ground-truth labels are first binarized with certain thresholds. We use the 
well-established Otsu’s method to reliably compute the binarization threshold values (44), 
which finds the optimal values that maximize the intensity variance between the signals and 
the background based on a histogram clustering criterion. Specifically, the threshold values 
are calculated based on the aggregated histogram from the entire ground-truth dataset of 
proliferation and apoptosis, and are found to be 0.31 and 0.11, respectively. Next, each 
continuous-valued pixel in the predicted image is regarded as the predicted probability of 
expressing the IF label at this pixel. By using the binarized ground-truth images as the target, 
the predictor (the trained CNN) achieves different pixel-wise True Positive Rate (TPR) and 
False Positive Rate (FPR) under different detection thresholds on the predicted images. By 
varying the detection thresholds, the TPR and FPR as functions of the thresholds can be 
plotted on the ROC curve. The AUC measures the area under the ROC curve and provides 
an aggregated quantification of the performance across all possible detection thresholds. 
The AUC is computed by the built-in functions ‘roc_curve’ and ‘auc’ in the scikit-learn 
module in Python. The AUCs are computed on the testing image patches, each contains a 
128 × 128-pixel FOV. In total, the statistics from 676 testing image patches from four large 
FOV testing images of size 908×908 pixels at each condition are aggregated and shown in 
the violin plots in Fig. 3B.  
 
We also quantify the single-cell level detection accuracy for the proliferation and apoptosis 
label predictions. To do so, we develop an automatic image processing pipeline to segment 
and identify each prediction as TP, TN, FP, or FN in CellProfiler. Subsequently, we 
compute the cell-level detection metrics, including the sensitivity and specificity. The 
sensitivity (a.k.a recall) is computed from the TPR, and the specificity (a.k.a selectivity) is 
computed as the TNR as 

 
𝑇𝑃𝑅 = >?

?
= >?

>?4@A
,								𝑇𝑁𝑅 = >A

A
= >A

>A4@?
   .                    (3) 

The implementation details of the image processing pipeline are described in ‘Digital 
cytometry analysis’ section and Supplementary Material Section S2 and Fig. S8.  

Digital cytometry analysis 
We develop a digital cytometry analysis framework for exploring the interdependencies of 
different fluorescence markers on the multiplexed predictions. A commonly used flow 
cytometry analysis is performed by displaying the scatter plot of single-cell level 
proliferating DNA concentration in the log-scale against the DNA concentration in the 
linear-scale. Different from flow cytometry that directly collects the integrated fluorescence 
intensity from each cell, our method performs imaging with subcellular resolution across a 
large cell population. As a result, we first perform cell segmentation and then aggregation 
of the fluorescence signals within each cell region to carry out the single-cell digital 
cytometry analysis. We perform the digital cytometry analysis to relate the cell-level 
Hoechst and EdU fluorescence concentration using CellProfiler (45). Since our data contain 
co-registered two-channel fluorescence images with co-stained Hoechst and EdU, we can 
directly compare the ground-truth cytometry scatter plot with that from our multiplexed 
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prediction. To generate the scatter plots, we process the co-registered Hoechst and EdU 
images and the multiplexed predictions using CellProfiler with a standard single-cell 
segmentation-based pipeline and extract the paired cell-level fluorescence intensity data.  A 
small value (10-10) is added to the fluorescence intensity of the proliferating DNA before 
taking the log operation to avoid the singularity at 0. Three distinct clusters representing the 
S, G1, and G2/M phase are clearly shown in the digital cytometry scatter plots. Additional 
details are provided in Supplementary Material Section S3 and Fig. S9. 

We construct an image processing pipeline to quantify the single-cell-level detection 
performance on the proliferation and apoptosis labels (denoted as the target IF in this 
paragraph). First, for each of the cell event labels, we perform segmentation on the co-
stained DNA channel ground truth images to find all the nuclear localizations. Second, we 
segment all the nuclei in both the target IF prediction and ground-truth images. Third, each 
nucleus is labeled as one of the four possible detection outcomes. Specifically, a prediction 
is TP if both the prediction and the ground truth express the target IF. A prediction is TN if 
neither the prediction nor the ground truth express the target. A prediction is FP if the 
prediction expresses the target IF while the ground truth does not. A prediction is FN if the 
prediction does not express the target IF while the ground truth does. To further investigate 
the effect of false detections (FP/FN) on the prediction digital cytometry scatter plot, we 
apply the above pipeline and label each prediction as TP, TN, FP, or FN in Fig. 5D. 
Additional details are provided in Supplementary Material Section S2. 

Cell profile analysis 
We use CellProfiler (45) to generate the single-cell profiles across each fluorescence image. 
We feed the ground truth and the predicted IF images of DNA, actin, endosome, and Golgi 
apparatus to CellProfiler. After initial cell segmentation, single-cell level parameters of 
morphology and intensity distribution are computed automatically by different 
measurement modules in CellProfiler, including the fluorescence marker size (area), 
compactness, eccentricity, fluorescence concentration, and single-cell-level fluorescence 
variance and contrast. In addition, we compute the compound metric, NCR, based on the 
multiplexed DNA and actin fluorescence labels. To compute the NCR, co-registered 
ground-truth / prediction images containing the DNA and actin labels are processed 
individually in CellProfiler. The NCR is computed as the ratio between the area of 
segmented nuclei and actin masks. The single-cell profiles also present the same outliers 
from the background regions, which are eliminated by our outlier removal algorithm (see 
Supplementary Material Section S1) when constructing the violin plots. Additional details 
are provided in Supplementary Material Section S4. 

Saliency map visualization 
Our network performs image-to-image translation and can be treated as a function relating 
the input and output images. On the other hand, the norm of the network output is a scalar 
function. As a result, computing and visualizing the gradient over the norm is still possible. 
Based on this notion,  we compute the saliency map as the gradient of the norm of the output 
with respect to the given input image. The practical implementation is achieved by the 
automatic differentiation feature in TensorFlow, as detailed in Supplementary Materials 
Section S5. We specified the gradient modifier as the absolute values of the gradient, which 
shows the regions in the input that contribute most to the change in the output regardless of 
the sign of the change (i.e. negative or positive). We also used the guided backpropagation 
to propagate only the positive gradients for positive activations to achieve a smoother 
visualization. The saliency map was computed for each network and on different sample 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.07.31.231613doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.231613
http://creativecommons.org/licenses/by-nc/4.0/


Page 16 of 27 
 

input (for varying sample batches / fixation conditions). The inputs are 256 × 256-pixel 
image stacks randomly selected from the testing groups under the six sample conditions. 
The computed saliency maps are normalized to have a uniform range between 0 and 1 for 
visualization.   
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Figures and Tables 
 
 

 
 

Fig. 1. Overview of the DL augmented label-free cytometry technique.  
(A) A multimodal LED-array reflectance microscope is developed to acquire co-registered label-
free reflectance and fluorescence images. Reflectance images from oblique darkfield illumination 
and computed drDPC contain rich morphological information and are the multi-channel input to 
our DL model. Two-channel epi-fluorescence images are acquired on the same sample to serve as 
the ground truth for training our DL model. (B) Individual DL models are trained independently 
with paired label-free and IF images. The saliency map is used to reveal specific label-free features 
captured by the model to perform the transformation. (C) To perform digital multiplexed 
predictions, the same reflectance input is fed to each network and makes six different IF predictions 
in parallel.  
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Fig. 2. Visualization of the results from the six IF prediction networks. The rows show sample 
darkfield reflectance images from each input stack, the network’s IF prediction, and the ground-
truth IF image, respectively. The columns show six IF labels covering four different subcellular 
features, including nuclei (DNA), endosome, actin, and Golgi apparatus, as well as two different 
cell states, including proliferation and apoptosis. The IF predictions have excellent visual agreement 
with the ground-truths in all six cases. 
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Fig. 3. Quantitative evaluation of the DL prediction. The violin plots show the quantitative 
metrics for each IF label prediction. The upper and lower bounds of each grey bar represent the 
25% and 75% quantiles, respectively; the center white point marked by the black dashed line 
denotes the median. In total, 676 testing image patches are aggregated for computing the statistics 
for each label. (A) The image patch-wise PCCs of the predictions for nuclei (DNA), endosome, 
actin, and Golgi apparatus, which evaluates the pixel-level similarity between the regression-type 
predictions and ground-truth subcellular features. (B) The image patch-wise AUC of the 
proliferation and apoptosis predictions, which assess the pixel-level detection accuracy. (C)  
Quantitative evaluation of the cell-level detection performance of the proliferation and apoptosis 
predictions. 
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Fig. 4. Multiplexed prediction on six IF labels from the same label-free input. (A) Visualization 
of the Full-FOV multiplexed prediction including DNA (blue), endosome (red), actin (green), and 
Golgi apparatus (yellow), and (B) proliferation (cyan) and apoptosis (magenta) from the same 
reflectance input (grayscale). (C-R) Zoomed-in of DNA, Golgi apparatus, multiplexed, and 
proliferation predictions. White circles indicate representative cell morphology during different 
phases of the cell cycle, including (C-F) interphase, (G-J) metaphase, (K-N) anaphase, and (O-R) 
telophase. 
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Fig. 5. Cell profile analysis on digital multiplexed IF staining. (A) Illustration of the cell cycle. 
(B-D) The scatter plots for the whole cell-level EdU (proliferating DNA) and Hoechst (DNA) 
concentrations from (B) the co-stained ground-truth, (C) the DL-prediction, and (D) the detection 
performance for the EdU predictions quantified by TP, TN, FP, and FN, across the entire cell 
population under the proliferation staining condition. The total numbers of sample cells collected 
from the ground truth and DL-predictions are 14778 and 14275, respectively. The numbers of TP, 
FP, TN and FN in (D) are 4089, 852, 8529, and 805, respectively (in the brackets). (E-L) The 
comparisons of the statistics of eight single-cell profile metrics extracted from the entire cell 
population in the ground truth (GT) and the DL-predictions (pred), including (E) nuclear size, (F) 
DNA (nuclear) fluorescence intensity contrast, (G) cell (actin) size, (H) compactness of the actin, 
(I) NCR measured by the area ratio between the nuclei and actin, (J) endosome size, (K) 
eccentricity of the Golgi apparatus distribution, and (L) concentration of the Golgi apparatus. The 
total numbers of sample cells collected from the ground truth and DL-predictions are respectively 
20021 and 25257 in (E) and (F), 6183 and 5151 in (G) and (H), 2246 and 1491 in (I), 15944 and 
22408 in (J), 3380 and 9392 in (K), 3380 and 3380 in (L).  All the single-cell profile metrics show 
good agreements between the predictions and the ground truths. 
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Fig. 6. Saliency maps from each network across six cell batches with different staining 
conditions. The columns show the label-free input (the first darkfield reflectance channel) and the 
saliency maps for six different IF labels, including DNA (blue), endosome (red), actin (green), 
Golgi apparatus (yellow), proliferation (cyan), and apoptosis (magenta). The rows show the label-
free input and the saliency maps from six cell batches under different staining conditions. The 
saliency maps show good consistency across different batches and highlight distinct morphological 
features. 
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