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Estimating the phenotypic correlations between complex traits and diseases based on their genome-11

wide association summary statistics has been a useful technique in genetic epidemiology and statistical12

genetics inference. Two state-of-the-art strategies, Z-score correlation across null-effect SNPs and LD13

score regression intercept, were widely applied to estimate phenotypic correlations. Here, we propose14

an improved Z-score correlation strategy based on SNPs with low minor allele frequencies (MAFs),15

and show how this simple strategy can correct the bias generated by the current methods. Comparing16

to LDSC, the low-MAF estimator improves phenotypic correlation estimation thus is beneficial for17

methods and applications using phenotypic correlations inferred from summary association statistics.18

Introduction19

Phenotypic correlation is an essential parameter that helps understand observational correlations between complex20

traits and the etiological perspectives underlying complex diseases. Conventionally, estimation of the phenotypic21

correlation between a pair of phenotypes, by definition, is straightforward in a sample where both phenotypes are22

measured. Depending on the distribution of each phenotype, the estimated phenotypic correlation serves as a sufficient23

statistic for many linear statistical models, such as ordinary linear and logistic regressions, allowing us to assess24

parameters such as odds ratios of risk factors on disease outcomes.25

Since a large number of genome-wide association studies (GWAS) were conducted, many GWASed phenotypes had26

measurements in an overlapping set of individuals, where many were from more than one participating cohort in GWAS27

meta-analysis. In practice, inference of the phenotypic correlations across these phenotypes would be complicated if28

estimating using the conventional way, which requires individual-level phenotypic data and subsequent meta-analysis.29

Fortunately, the phenotypic correlations can be estimated based on established GWAS summary statistics, especially30

when the proportion of sample overlap between two GWASed phenotypes is large. Two state-of-the-art strategies were31

proposed:32

1. “Z-cut” estimator. The phenotypic correlation can be estimated by the correlation between the two sets of33

GWAS estimated effects or Z-scores, assuming the genetic effect per SNP (single nucleotide polymorphism) is34

tiny or even null1, 2, 3, 4.35

2. LDSC intercept. The phenotypic correlation can be estimated by the intercept of a bivariate linkage disequilib-36

rium score regression (LDSC)5, 6, 7.37

Both estimators have reasonable performance in practice, however, bias exists for both strategies. Stephens (2013)138

reasoned that the correlation between Z-scores for the two phenotypes under the null is the same as the phenotypic39

correlation, thus “a set of putative null SNPs” were selected, by taking SNPs with |z| < 2. The same idea was also40
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adopted by later studies2, 4. The tool metaCCA3 neglected the null effect requirement, as the genetic effect per variant41

is tiny, and computed the correlation between Z-scores across as many SNPs as possible. However, the Z-cut estimator42

can generate bias due to its constrain on the summary statistics of the SNPs7. LDSC intercept performs better thus43

was adopted in statistical methods that requires pre-calculated phenotypic correlations6, 7, but the intercept collects44

noise generated by e.g., population substructure, which may also lead to biased estimates of phenotypic correlations8.45

Here, we revisit the correlation between GWAS summary statistics of two phenotypes and propose an alternative46

approach to select variants for the Z-score correlation estimation strategy. We show that selecting SNPs with low47

minor allele frequencies (MAFs) can lead to simple and consistent estimation of phenotypic correlations based on48

multi-SNP Z-score correlations. Via simulations, we show that the “low-MAF” estimator can overcome bias generated49

by the Z-cut estimator and the LDSC intercept. With higher estimation efficiency, when applied to UK Biobank50

GWAS results, the low-MAF estimator could discover 30% more significant phenotypic correlations than using the51

LDSC intercept.52

Methods53

We start by deriving a general mathematical form of the correlation between the summary statistics of two phenotypes54

y1 and y2, centred at a zero mean. For a single genetic variant in an association analysis, the model is yi = giβi + ei55

(i = 1, 2), where gi is the vector of genotypic values with 0-1-2 coding, and ei are the residuals. Assuming Hardy-56

Weinberg equilibrium (HWE), for SNP j, we have gij ∼ B(2, fj), where fj is the MAF of SNP j, and B(n, p) stands57

for the binomial distribution with size n and success probability p. g1 and g2 may differ due to different levels of58

sample overlap between the two phenotypes. At the single SNP j (omitted the subscripts j for simplicity),59

β1
β2

 ∼ dist

0,

 σ2
β1

rGσβ1
σβ2

rGσβ1
σβ2

σ2
β2

 , (1)

and60

ei ∼ dist

0,

 σ2
1IN1×N1

rEσ1σ21N1×N2

rEσ1σ21N2×N1
σ2
2IN2×N2

 , (2)

where rG is the underlying genetic correlation at SNP j, and rE is the residual correlation. In an association study,61

rG is un-identifiable at a single SNP. The estimated genetic effects are β̂i = g′iyi/g
′
igi, then62

var(β̂i) =
var(g′iyi)

(g′igi)
2

=
var(g′igiβi + g′iei)

(g′igi)
2

= σ2
βi

+ σ2
i (g′igi)

−1.

(3)
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So that63

cor(β̂1, β̂2) = cor(z1, z2) =
cov(g′1y1, g

′
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(4)

When σβi
= 0 (i = 1, 2), i.e., for any variant with null genetic effect, the above equation simplifies as64

cor(β̂1, β̂2) = cor(z1, z2) =
N0√
N1N2

rE =
N0√
N1N2

r(y1,y2) (5)

where r(y1,y2) is the phenotypic correlation based on completely overlapped individual-level data. Particularly, for65

perfectly overlap samples, i.e., N0 = N1 = N2, we have cor(z1, z2) = r(y1,y2), which is the same as the phenotypic66

correlation estimator derived by Zhu et al.2.67

The result suggests that the phenotypic correlation between the two phenotypes y1 and y2, subject to a shrinkage68

factor corresponding to sample overlap, can be estimated by the sample correlation of the summary statistics across69

any sufficient number of null variants. This leads to a commonly adopted strategy of estimating the phenotypic70

correlation from summary association statistics by taking a subset with e.g., |zi| < 2 (i = 1, 2). However, we will show71

that such thresholding may introduce bias into the correlation estimate.72

According to eq. (4), null genetic effect for the variant is a sufficient but not necessary condition for cor(z1, z2) to73

reduce to eq. (5). When f = 0, eq. (4) also becomes (5). In practice, the phenotypic correlation can be estimated by74

the correlation of the summary statistics across a sufficient number of variants with very low minor allele frequencies75

(MAFs), regardless of whether the genetic effects are null. The thresholding on the MAF does not directly introduce76

a threshold on βi or zi so that not prone to bias in the phenotypic correlation estimation.77

Simulation settings. We conducted two sets of simulations to compare the low-MAF estimator with the Z-cut78

estimator and LDSC intercept, respectively. For the first simulation, we simulated the genotypes of 5,000 independent79

SNPs in 500 individuals, and the MAFs ranged from 5 × 10−5 to 0.5. The genotypes of SNP j follow HWE. Two80

scenarios of phenotypic correlations were evaluated, where in one the phenotypic correlation was set to 0.5 without81

genetic correlation; and in the other a genetic correlation of 0.5 and a residual correlation of 0.25 were simulated,82

where the genetic effects across the 5,000 SNPs were extracted from a normal distribution with zero mean. In the83

simulation, three cutoffs of |z| < 2, |z| < 1, and |z| < 0.5 were evaluated for the Z-cut estimator. Five thresholds of84
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MAFs: 0.5, 0.05, 5× 10−3, 5× 10−4, and 5× 10−5 were evaluated for the low-MAF estimator. The true phenotypic85

correlations were computed as the Pearson’s correlations of the two vectors of simulated phenotypic values.86

For the second simulation, in order to compare with LDSC, we used the real UK Biobank (UKB) genotypes87

for 336,000 genomic British individuals across the 1,029,876 quality-controlled HapMap3 SNPs selected by the high-88

definition likelihood (HDL) software9. We draw the genetic effects across 10% of the SNPs from a normal distribution89

with zero mean, so that the phenotypic, genetic, and residuals correlations all had a true value of 0.5. 70,042 SNPs with90

MAF < 5× 10−4 were selected for the low-MAF estimator. Two reference panels were evaluated for LDSC, including91

the ldsc software inbuilt 1000 Genomes reference and the UKB reference based on the HDL software reference data.92

Results93

The low-MAF estimator corrects the bias of the Z-cut estimator. In the first simulation setting, when no94

genetic effect was present, namely, every SNP had a null effect, the Z-score correlation estimator based on all the95

SNPs satisfied eq. (5), resulted in unbiased estimates of the phenotypic correlations. However, constraining the Z-cut96

estimator on SNPs filtered by Z-score cutoffs generated downward-biased estimates. On the other hand, constraining97

the low-MAF estimator did not generate bias, regardless of the MAF cutoff (Fig. 1a). When genetic correlation98

was present, the Z-score correlation estimator based on all the SNPs produced inflated estimates, as the common99

SNPs with large MAFs substantially contributed to the genetic correlation. Same as in the previous scenario, the100

Z-cut estimator generated downward-biased estimates. With sufficiently low MAF cutoffs, the Z-score correlation101

maintained as a consistent estimator of the phenotypic correlation (Fig. 1b). Also, the estimation efficiency of the102

low-MAF estimator attained that of the estimator based on observed phenotypic values (Table 1).103

The low-MAF estimator corrects the bias of LDSC intercept. For the second simulation, we observed104

downward bias in the LDSC intercept when the default 1000 Genomes reference was applied (Fig. 2). Such a bias105

was overcome by the UKB reference, nevertheless, the estimates were slightly inflated possibly due to the population106

substructure in the UKB genomic British individuals8. These biases were all absent when applying the low-MAF107

estimator for the phenotypic correlation. Furthermore, the low-MAF estimator had a substantially higher estimation108

efficiency than the LDSC intercept, as if the sample size was 10 times larger (Table 2).109

Example. We selected the same 30 GWASed phenotypes used by Ning et al.’s in genetic correlation estimation9,110

as a real data example to compare the low-MAF estimator to LDSC intercept in the estimation of the phenotypic111

correlations (Fig. 3). The low-MAF estimates were based on 70,042 SNPs with MAF < 5× 10−4, and the LD scores112

were calculated based on the 1000 Genomes reference panel (default). At a 5% Bonferroni-corrected p-value threshold113

for 435 pairs of traits, the low-MAF method discovered 223 significant phenotypic correlations, and LDSC intercept114

discovered 171. Among these, 61 phenotypic correlations were only significant in the low-MAF method, versus 9 only115
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significant using the LDSC intercept.116

Discussion117

We have proposed the low-MAF estimator of phenotypic correlations based on GWAS summary statistics, as an118

improvement of the Z-score correlation strategy based on all SNPs or SNPs that pass a particular Z-score cutoff. The119

estimator overcomes the bias generated when thresholding on summary association statistics and even that generated120

in the bivariate LDSC intercept. We suggest the use of the low-MAF phenotypic correlation estimator in future121

practice. The more consistent and efficient estimation can improve our understanding of connections across human122

complex traits and diseases.123

Although the low-MAF method also introduces a filter on the tested SNPs, it is a threshold-free technique for the124

genetic effect parameter. Thus, the low-MAF estimator does not constrain the estimated genetic effects of selected125

SNPs, equivalent to sampling a set of null effect SNPs from the genome. This explains why “putative null effect”126

SNPs with e.g., |z| < 2 generate bias whereas the low-MAF estimator does not. Even if all the SNPs are null, some127

of them will generate z-score with |z| > 2 due to randomness. Removing them would lead to bias.128

As the low-MAF estimator is equivalent to sampling a set of null effect SNPs from the genome, the resulted129

phenotypic correlation estimates are close to those estimated using individual-level phenotypic data. In the real130

UKB genotype data simulation, we showed that the LDSC intercept could not produce consistent estimates of the131

phenotypic correlation due to population substructure. Such a complication in LDSC was overcome by the low-132

MAF estimator, because although the GWAS summary statistics were used, the estimator approximates observed133

phenotypic correlation and is irrelevant to genetic data structure. Namely, the genotypic data are treated as nuisance134

in the low-MAF estimator.135

For binary phenotypes, an advantage of summary-statistics-based estimators, such as the low-MAF estimator, is136

that it estimates the underlying phenotypic correlations on the liability scale. The liabilities follow an unobservable137

logistic distribution therefore the estimates are not the same as the observed phenotypic correlations directly computed138

using the 0-1 outcome data. The phenotypic correlation estimates on the liability scale is mathematically easier to139

interpret and can be transformed into odds ratios from logistic regressions.140

Data availability141

The individual-level genotype and phenotype data are available by application from the UKBB (http://www.ukbiobank.142

ac.uk/). The UKBB GWAS summary statistics by the Neale laboratory can be obtained from http://www.nealelab.143

is/uk-biobank/.144
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Code availability145

HDL: https://github.com/zhenin/HDL; ldsc: https://github.com/bulik/ldsc.146
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Table 1: Comparison of the phenotypic correlation estimates by the low-MAF and Z-cut estimators.184

The results are means and standard deviations (in brackets) summarised from 100 replicates, where in each replicate,185

5,000 SNPs were simulated for 500 individuals, and the minor allele frequencies (MAFs) ranged from 5e-5 to 0.5.186

The true (phenotypic) correlations (rP ) were computed as the Pearson’s correlations of the two vectors of simulated187

phenotypic values. Scenario 1: The two phenotypes had no genetic correlation and a (residual) phenotypic correlation188

of 0.5; Scenario 2: The two phenotypes had a genetic correlation of 0.5 and a residual correlation of 0.25.

Scenario True rP All-SNP |z| < 2 |z| < 1 |z| < 0.5 MAF<0.5 <0.05 <5e-3 <5e-4 <5e-5
1 0.50 0.50 0.41 0.18 0.05 0.50 0.50 0.49 0.50 0.50

(0.03) (0.04) (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
2 0.65 0.67 0.58 0.29 0.10 0.71 0.66 0.65 0.65 0.65

(0.01) (0.01) (0.01) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)

189

Table 2: Comparison of the phenotypic correlation estimates by the low-MAF estimator and LDSC190

intercept. The results were summarised from 100 replicates, where in each replicate, two phenotypes were simulated191

for 336,000 genomic British individuals. The true phenotypic, genetic, and residual correlations were all set to 0.5.192

The low-MAF estimates were based on 70,042 SNPs with MAF < 5e-4. 1kG ref: LD scores calculated based on the193

1000 Genomes reference panel; UKB ref: LD scores calculated based on the UK Biobank reference panel.

Low-MAF LDSC (1kG) LDSC (UKB)
Minimum 0.4865 0.4447 0.4656

25% Quantile 0.4964 0.4719 0.4927
Median 0.4996 0.4887 0.5034

Mean 0.5001 0.4871 0.5040
75% Quantile 0.5035 0.4997 0.5166

Maximum 0.5205 0.5391 0.5498
Variance 3.603e-05 3.626e-04 3.022e-04

194
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Figure 1: Simulations comparing the Z-cut and low-MAF estimators for phenotypic correlation. The195

boxplots show the results from 100 replicates, where in each replicate, 5,000 SNPs were simulated for 500 individuals,196

and the minor allele frequencies (MAFs) ranged from 5e-5 to 0.5. The true (phenotypic) correlations were computed197

as the Pearson’s correlations of the two vectors of simulated phenotypic values. a. The two phenotypes had no genetic198

correlation and a (residual) phenotypic correlation of 0.5; b. The two phenotypes had a genetic correlation of 0.5 and199

a residual correlation of 0.25.200
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Figure 2: Simulations comparing the low-MAF estimator and LD score regression (LDSC) intercept201

using the UK Biobank genotype data. The boxplots show the results from 100 replicates, where in each replicate,202

two phenotypes were simulated for 336,000 genomic British individuals. The true phenotypic, genetic, and residual203

correlations were all set to 0.5. The low-MAF estimates were based on 70,042 SNPs with MAF < 5× 10−4. 1kG ref:204

LD scores calculated based on the 1000 Genomes reference panel; UKB ref: LD scores calculated based on the UK205

Biobank reference panel.206
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Figure 3: Phenotypic correlations across 30 UK Biobank traits using the low-MAF estimator (lower207

triangle) and LD score regression (LDSC) intercept (upper triangle). The default 1000 Genomes reference208

panel was used in LDSC. Bonferroni-corrected significant correlations with P < 0.05/435 are marked with asterisks209

or dots, where those correlations that are only significant using one of the two methods are marked with asterisks and210

squares.211
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