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Abstract 
The large diversity of neuron types of the brain, characterized by a unique set of electrophysiological 

characteristics, provides the means by which cortical circuits perform complex operations. To 

quantify, compare, and visualize the functional features of single neurons, we have developed the 

open-source framework, CellExplorer. It consists of three components: a processing module that 

calculates standardized physiological metrics, performs neuron type classification and detects putative 

monosynaptic connections, a flexible data structure, and a powerful graphical interface. The graphical 

interface makes it possible to explore any combination of pre-computed features at the speed of a 

mouse click. The CellExplorer framework allows users to process and relate their data to a growing 

collection of “ground truth” neurons from different genetic lines, as well as to tens of thousands of 

single neurons collected across our labs. We believe CellExplorer will accelerate the linking of 

physiological properties of single neurons in the intact brain to genetically identified types. 
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INTRODUCTION 
Discovering novel mechanisms in brain circuits requires high-resolution monitoring of the constituent 

neurons and understanding the nature of their interactions. Identification and manipulation of different 

neuron types in the behaving animal is a prerequisite for deciphering their role in circuit dynamics and 

behavior. Yet, currently, a large gap exists between neuron classification schemes based on molecular 

and physiological methods (Gouwens et al., 2019; Jia et al., 2019; Kepecs and Fishell, 2014; 

Klausberger and Somogyi, 2008; McBain and Fisahn, 2001; Roux and Buzsáki, 2015; Rudy et al., 

2011). 

 

Large-scale extracellular electrophysiology aims to establish the relationship between neuronal firing 

and behavioral or cognitive variables in order to provide insights about the computational role of 

neurons and neuronal assemblies (Barlow, 1972; Buzsáki, 2004; Steinmetz et al., 2019). However, 

exploiting the power of correlations between neuronal firing and behavioral variables requires multi-

level characterization of single neurons and their interactions. Simultaneous recordings from large 

numbers of neurons, preferably identified by optogenetic and other methods, make it possible to build 

an extensive list of neuron feature and their assigned ‘cell type’ properties (Fig. 1). These properties 

can be described at multiple levels of complexity. The first level is a description of the biophysical and 

physiological characteristics of single neurons. This level includes waveform features (Fig. 1B), their 

position relative to the recording sites and other units (Csicsvari et al., 2003), interspike interval 

statistics, and autocorrelograms (Fig. 1C). These first-level features can be used for the first-order 

separation of single neurons into putative major classes, typically excitatory and inhibitory cells (Fig. 

1D). The second level relates single neurons to other neurons and includes cross-correlations and 

putative monosynaptic connections derived from spike transmission probabilities (Fig. 1E), 

relationship to multiple oscillatory and irregular local field potentials (LFP; e.g., rhythmic patterns, 

sharp-wave bursts, up-down transitions in cortex). The third level metrics of single-unit activity 

include the relationship between its firing patterns and brain states (e.g. non-REM, REM, awake; Fig. 

1H) and overt behavioral correlates (Fig. 1I), including spontaneous motor patterns and autonomic 

parameters (McGinley et al., 2015; Stringer et al., 2019). In turn, these physiological properties can be 

related to genetically identified neuron classes with optogenetics methods (Boyden et al., 2005; 

Klausberger and Somogyi, 2008; Rudy et al., 2011; Buzsáki et al., 2015; Roux and Buzsáki, 2015). 

Antidromic and unit-LFP coupling techniques provide further assignment of single neurons to cortical 

regions, layers, and target projections (Bishop et al., 1962; Zhang et al., 2013; Ciocchi et al., 2015; 

Senzai et al., 2019). 
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These three levels provide universal features of neuronal activity common to all experimental 

paradigms and, therefore, are communicable across different experiments and laboratories. In turn, 

these universal features can be contrasted and compared with experimenter-provided manipulations 

and higher-level correlates. Because these latter variables are often paradigm-specific and differ across 

laboratories, the three-level analysis can guard against mistakenly assigning cognitive roles of 

neuronal spiking that may be explained by measurable overt correlates. Yet, even if all of the above 

information is available separately, factoring out critical variables and their combinations is possible 

only when the multitudes of single neuron characteristics can be compared flexibly. 

 
Figure 1: Multifaceted single neuron characterization A. Using high-density silicon probes or multiple tetrodes (shown 
is a single shank with 8 recording sites), dozens to hundreds of neurons can be recorded simultaneously. B, Spikes of 
putative single neurons are extracted from the recorded traces and assigned to individual neurons through spike sorting 
algorithms, their relative position determined through trilateration (representation shows neurons projected on a silicon 
probe with 6 shanks) and autocorrelograms (ACGs) are used to characterize the neurons (bursting pyramidal cell in red; 
fast spiking interneuron in blue). D. Neuron-type classification based on first-order physiological parameters, using the 
spike waveform width (trough-to-peak) and the temporal scale of the ACGs (𝛕rise). Optogenetic and other direct 
identification methods can ground units to neuron types.  E. Interactions between neurons are characterized by their cross-
correlograms and monosynaptic connections (determined via spike transmission probabilities).  F. Relating spikes to LFP 
patterns, e.g. to sharp wave ripples. G. Relationship to oscillations, e.g. theta oscillations (7-12Hz) with a phase histogram 
below from a CA1 neuron. H-I. Spike pattern correlations with brain states and overt behaviors.  
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Whether testing a specific hypothesis or mining the ever-growing number of publicly available 

datasets, the process can be advanced by fast and user-friendly visualization methods. To this end, we 

developed the open-source MATLAB based framework, CellExplorer, to characterize and classify 

single-cell, i.e. neuron, features from multi-site extracellular recordings. It consists of a pipeline for 

extracting and calculating physiological features, a flexible data format, and a powerful graphical 

interface that allows for fast manual curation and feature exploration. 

 

RESULTS 
The CellExplorer architecture and operation consist of three main parts: a processing module for 

feature extraction, a graphical interface for manual curation and exploration, and a standardized yet 

flexible data structure (Fig 2). A step-by-step tutorial is available in the supplementary section, and 

more tutorials are available online (Suppl. Video 1). Flow charts are available in Suppl. Figure 2. The 

first step in running the pipeline is defining the data input. 

 
Figure 2. Three-component framework. A single extensive processing module (green); Standardized yet flexible data 
structure (yellow); and a graphical interface (purple). Data inputs are compatible with most existing spike sorting 
algorithms (grey). The data structure joins the Processing module with the Graphical interface (* signifies data containers). 
CellExplorer is open-source, built in MATLAB, and available on GitHub. 

 
Data Input 

Before running the pipeline, relevant metadata describing the spike format, raw data, and experimental 

metadata must be defined (Fig. 2). All experimental metadata (session-level) are handled in a single 

MATLAB structure, with an optional GUI for manual entry. The platform supports several spike 

sorting data formats, including Neurosuite, Phy, KiloSort, SpyKING Circus, Wave_Clus, MClust, 

AllenSDK, NWB, ALF, MountainSort, IronClust, (Chung et al., 2017; Hazan et al., 2006; Pachitariu 

et al., 2016; Quiroga et al., 2004; Schmitzer-Torbert et al., 2005; Yger et al., 2018). The raw data 

(wide-band) is critical for comparing derived metrics across laboratories since preprocessing pipelines 

vary widely and depend on equipment type and filter settings. 
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Processing Module 

From the input data, the processing module will generate cell metrics corresponding to the three-level 

description of neuronal firing and their relationship to experiment-specific behaviors (Figure 2; Suppl. 

Table 2 contains an incomplete list of metrics for illustration; full list available at CellExplorer.org). 

The processing module is comprised of a single MATLAB script, ProcessCellMetrics.m, which 

computes metrics using a modular structure. The first-level description provides temporal features, 

waveform features (filtered and wideband), interspike interval statistics (ISIs), and autocorrelograms 

(ACGs). Next, the unit parameters are used for the initial classification of single neurons into broad 

default classes: putative pyramidal cells, narrow waveform interneurons, and wide waveform 

interneurons. In experiments with silicon probes, the physical position relative to recording sites is 

also determined using trilateration (Petersen and Berg, 2016; Csicsvari et al., 2003). 

The second level of description relates single neuron spikes to the activity of other neurons and 

population patterns. These metrics include spike cross-correlograms (CCGs), quantitative 

identification of putative monosynaptic connections, phase relationships to various local field potential 

(LFP) patterns, and to unit population patterns. Monosynaptic connections, in turn, can be used to 

identify putative excitatory and inhibitory neurons and use this information to refine the primary unit 

classification (Fig. 1E; Suppl Fig. 3H; Barthó et al., 2004; English et al., 2017). All parameters can be 

customized according to the needs of each experimental paradigm (Suppl Table 2; 

CellExplorer.org/datastructure/standard-cell-metrics). 

The third-level metrics are used to assess the relationship between firing patterns of neurons and overt 

behaviors, including immobility, locomotion, and running speed. Level 1-3 metrics can further be 

supported by optogenetic methods, which can bind physiological parameters to genetically identified 

neuron groups (Boyden et al., 2005; Buzsáki et al., 2015; Roux and Buzsáki, 2015). Because these 3-

level metrics of single unit features are universal, they can be readily compared with similar analyses 

across laboratories, independent of paradigm-specific features. Towards these goals, the processing 

module automatically generates all cell metrics in a standardized fashion.  

 

Features related to any behavioral paradigms, can also be computed, including manipulations (PSTHs), 

behavioral tracking (spatial firing rate maps) and task related trial-wise response curves (e.g., response 

to a sensory cue). 
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Figure 3: Graphical interface. A. The interface consists of 4 to 9 main plots, where the top row is dedicated to population-
level representations of the neurons. Other plots are selectable and customizable for individual neuron (e.g., single 
waveforms, ACGs, ISIs, CCGs, PSTHs, response curves, and firing rate maps). The surrounding interface consists of 
panels placed on either side of the graphs. The left side displays settings and population settings, including a custom plot 
panel, color group panel, display settings panel, and legends. The right side-panel displays single-cell dimensions, 
including a navigation panel, neuron assignment panel, tags, and a table with metrics. In addition, there are text fields for 
a custom text filter and a message log. B. Layout examples highlighting three configurations with 1-3 group plots and 3-6 
single neuron plots. C. The interface has many interactive elements, including navigation and selection from plots (left 
mouse click links to selected cell and right mouse click selects the neuron from all the plots), visualization of monosynaptic 
connections, various data plotting styles (more than 30+ unique plots built-in), supports custom plots; plotting filters can 
be applied by text or selection, keyboard shortcuts, zooming any plot by mouse-scrolling and polygon selection of 
neurons D. Group plotting options: 2D, 3D, raincloud plot, t-SNE, and double histogram. Each dimension can be plotted 
on linear or logarithmic axes. E. Single cell plot options: waveform, ACG, ISI, firing rate across time, PSTH, response 
curve, firing rate maps, neuron position triangulation relative to recording sites, and monosynaptic connectivity 
graph. F. Most single cell plots have three representations: individual single cell representation, single cell together with 
the entire population with absolute amplitude and a normalized image representation (colormap). 
 
Data structure 

The data structure of CellExplorer (summarized in Fig. 2 and supplementary Fig. 1) is organized in 

data containers and MATLAB structured arrays (“structs”), which functionally separate different data 

content, making them both easily interpretable (human-readable) and machine-readable. The format is 
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derived from the Buzcode (a MATLAB based data format for electrophysiological recordings and 

toolset developed communally in the Buzsaki lab; github.com/buzsakilab/buzcode), Neurosuite 

(neurosuite.sourceforge.net), and Freely Moving Animal (FMA) Toolboxes  

(fmatoolbox.sourceforge.net). 

 

The two most important structures are the session metadata struct and cell_metrics struct.  

The session metadata struct: Contains all session-level experimental metadata (Suppl fig 1). A 

session is defined as a set of data typically recorded with the same day in the same subject and is also 

commonly referred to as a single dataset. The metadata struct has a modular structure that makes it 

flexible and expandable, intuitive and interpretable, and it offers a single structure preventing 

scattering of metadata. A GUI (gui_session.m) allows for intuitive manual metadata entry, and a 

template script (sessionTemplate.m) can assist in importing existing experimental metadata. See 

https://cellexplorer.org/datastructure/data-structure-and-format/ for more info. 

 

The cell_metrics struct: Modular structure containing all cell metrics calculated in the processing 

module. It consists of three types of data-fields for handling the diverse types of data: numeric double, 

character-cells, and structs. Single value metrics are stored in double and character cells for respective 

numeric and character metrics. Time series (e.g., waveforms), group data (e.g. synaptic connections), 

and session parameters are stored in predefined struct modules. This structure makes the content 

machine-readable, including user-defined metrics, and provides expandability and flexibility, while 

maintaining compatibility with the graphical interface. The single struct allows for processing multiple 

sessions together in the graphical interface (batch processing) and is convenient for sharing with 

collaborators and the broader scientific community in publications (see Supplementary Section and 

Supplementary table 2 for a detailed description and https://cellexplorer.org/datastructure/standard-

cell-metrics/  

Graphical Interface 

The most important component of the framework is the user-friendly graphical interface (Fig. 3), 

which allows for characterization and exploration of all single unit metrics through a rich set of high-

quality built-in plots, interaction modes, neuron grouping, cross-level pointers, and filters. User-

defined numbers of plots can be selected at any time and replaced on the screen instantaneously. In 

the typical layout, the top row displays population-level representations, and the bottom row displays 

single cell features. Selecting individual neurons from any plot automatically updates their features in 
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the remaining interface. For easy navigation and selection, the left mouse click links to the selected 

neuron and the right mouse click selects the neuron(s) from any of the plots. These selected groups 

can be displayed alone or highlighted and superimposed against all data in the same session, multiple 

sessions, or the entire database. Clusters of neurons of interest can be selected by drawing polygons 

with the mouse cursor, and the features of the selected groups can be shown separately. Multiple group 

selections are also possible for both visualization and statistical comparison. Flexibility is assisted by 

self-explanatory side panels. The left side panel contains a custom plot panel, color group panel, 

display settings panel, and legend. The right panel contains single cell actions including a navigation 

panel, cell assignment panel, tags, and a table with metrics. The left panel also includes a text field for 

custom text filters and there is a message log below the main plots. The group plotting options include 

2D-representation, 3D-representation, raincloud plot, t-SNE, and double histogram. Axis scaling can 

be either linear or logarithmic (Fig. 3E). 

Examples of the flexible operation of the graphical interface module are illustrated in Fig. 4 and 

described in more detail in Supplementary video 1. Here we begin with motifs of monosynaptically 

connected clusters of neurons from the hippocampal CA1 area, as provided by the Processing Module 

(Fig. 4A). An example sub-network of connected neurons is highlighted in panel B with a selected 

single neuron (arrow) to be characterized. Selected levels one, two, and three metrics of the neuron are 

displayed in panels C to G, respectively. In several panels, the metrics of the selected neuron are shown 

against other neurons from the same dataset. Left mouse clicking on any neuron will update all the 

panels, allowing quick screening and qualitative evaluation of multiple features of each chosen neuron. 

Neurons of interest can be marked for further quantitative comparisons. Next, level one to three metrics 

can be compared with paradigm-specific features of the selected neuron(s). For example, in case of 

hippocampal neurons, place field, trial-by-trial variability of firing patterns, travel direction firing 

specificity, spike phase precession relative to theta oscillation cycles, and multiple other features can 

be predefined by the experimenter. During the data mining process, unexpected features and outliers 

may be noted, instabilities of neurons (‘drifts’) can be recognized, and artifacts identified. Such 

experimenter-supervised judgments are also essential for evaluating the quality of quantified data 

processing and estimating potential single neuron-unique features that might drive population 

statistics. 

 

Several benchmarks were performed to characterize the performance of CellExplorer under various 

conditions, benchmarking single cell plots, and computation of various features. The results are 

summarized in Supplementary Fig. 5. 
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Figure 4. Data exploration example. A. Connectivity graph with monosynaptic modules found across multiple datasets. 
Neurons are color-coded by their putative cell types (pyramidal cells in red, narrow interneurons in blue and wide 
interneurons in cyan). B. Highlighted monosynaptic module with single pyramidal cell highlighted (arrow). C. First level 
metrics: Auto-correlogram, average waveform (top row; gray area signifies the noise level of the waveforms), ISI 
distributions, with the selected neuron in black, and the physical location of the neurons relative to the multi-shank silicon 
probe. D. Firing rate across time for the population, each neuron is normalized to its peak rate. The session consists of three 
behavioral epochs: pre-behavior sleep, behavior (track running), and post-behavior sleep (boundaries shown with dashed 
lines). E. Theta phase distribution for all neurons recorded in the same session (red, pyramidal cells; blue, interneurons) 
during locomotion with the selected neuron highlighted (black line). F. Average ripple waveform for the electrode sites on 
a single shank. The site of the selected neuron is highlighted (dashed black line). The polarity of the average sharp wave is 
used to determine the position of the neuron relative to the pyramidal layer in CA1. G. Ripple wave-triggered PSTH for 
the selected neuron aligned to the ripple peak. H. Trial-wise raster for the selected neuron in a maze. I. The average firing 
rate of the neuron across trials. J. Spike raster showing the theta phase relationship to the spatial location of the animal. 
All of the place fields show phase precession. 
 
Value of large inter-laboratory datasets 

While progress in discovery science often depends on the investigator-unique approach to novel 

insights, standardization of data processing and screening is essential in fields where ‘big data’ 

generation is achieved through collaborative efforts. This applies to the current effort to quantitatively 

relate physiology-based and genetically classified cell types (Klausberger and Somogyi, 2008; McBain 

and Fisahn, 2001; Rudy et al., 2011). In each experiment, typically only one or a limited number of 

neuron types can be identified. Yet, combining datasets from numerous experiments and different 

laboratories can generate physiological metrics, grounded by optogenetics and other ‘ground truth’ 

data. 

 

Fig. 5 illustrates the feasibility and utility of this approach. Level one to three metrics of neurons 

recorded from the same brain region and layer can be combined from multiple experiments and 

laboratories and contrasted to the data quality of units recorded in a single session. An ever-growing 

data set allows for more reliable modality separation and characterization of neuron types. For 

example, the initial divisions of neurons into putative pyramidal cells, narrow and wide interneurons 
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can be further refined by quantifying monosynaptic connections, increasing confidence of pyramidal 

cell–interneuron separation as well as identifying subsets of the unclassified group as interneurons 

(Fig. 5a) (Mizuseki et al., 2011; Petersen and Buzsáki, 2020; Peyrache et al., 2015; Stark et al., 2013). 

Combining extracellular spiking with intracellular recordings can further help determine the excitatory 

or inhibitory identity of neurons (Radosevic et al., 2019).  

 

Single neurons identified by opto-tagging or other direct means (Ciocchi et al., 2015; Klausberger and 

Somogyi, 2008; Royer et al., 2012; Senzai et al., 2019; Stark et al., 2012; Zhang et al., 2013; Roux and 

Buzsáki, 2015) can be used to link level one to three features of initially classified neurons to 

genetically defined neuron types (Fig. 5b). For example, expressing a light-gated ion channel under 

the control of a specific promotor makes it possible to evoke extracellularly detectable action potentials 

in GABA transporter (VGAT) expressing inhibitory interneurons, and even in interneuron sub-types, 

including parvalbumin (PV), somatostatin (SST), vasoactive intestinal peptide (VIP), vesicular, 

chandelier cells (axo-axonic cells), as well as in pyramidal cells (Fig. 5b). Having access to these 

ground truth labels may offer further clues for a separation based on physiological criteria. An expected 

outcome of the growing number of datasets containing ground truth-verified neurons, is trained models 

for classifying diverse neuron types based on physiological metrics alone. This is especially important 

for recordings in model organisms for which genetic manipulations are less tractable than in mice. 

Opto-tagged neurons can be explored in CellExplorer, e.g. by displaying the average PSTH (Figure 

5D) as well as trial-wise raster plots (Figure 5E). Further manual curation can be done while accessing 

the neuron’s other characteristics including waveforms, firing rates and connectivity. Communal 

contribution of ground truth data to CellExplorer is possible through the public GitHub repository 

(Figure 5F; visit CellExplorer.org for tutorials and further details). 

 

CellExplorer uses and shares data through our lab databank (buzsakilab.com/wp/database) (Petersen 

et al., 2020). Through our database and CellExplorer, we currently share more than 79.000 processed 

neurons publicly. The datasets are all from awake rodents, from freely behaving rats and mice in our 

laboratory, as well as neurons from two large datasets from head-fixed mice: the Allen Institute Visual 

Cortex dataset (Siegle et al., 2019)  and the UCL dataset spanning many brain regions (Steinmetz et 

al., 2019). All these datasets can be downloaded directly in CellExplorer and used as reference data or 

explored directly (Fig. 6). The infrastructure is designed towards continually growing the public 

datasets and ground truth data with the goal of building ever larger data banks for discovery science, 

cross-laboratory interactions, and reproducibility control. 
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Using large numbers of shared datasets, one can begin to compare brain regions, different electrode 

types, and other features efficiently using t-SNE plots. Such representations can highlight 

inconsistencies and differences across recording sessions, identify important regional and layer-

specific differences, and alert for interspecies characteristics (Supplementary Fig. 6). 

 

 
Figure 5. Ground truth data, reference data, and opto-tagging. A. Distribution of putative cell types (3811 cells), 
including their projections determined via spike-transmissions CCG curves (Petersen and Buzsáki, 2020; Petersen et al., 
2020). B. 407 ground truth neurons spanning PV (184), SST (115), Pyramidal cells (44), Axo-axonic (35), VGAT (15) and 
VIP cells (14) projected on the same population of neurons as in A. Data from ref. Petersen et al. (2020) and Allen Brain 
Observatory Neuropixels database (https://portal.brain-map.org/explore/circuits/visual-coding-neuropixels; Siegle et al., 
2019). C. Single session (dots) compared with data from 30 reference sessions (shaded zones). D. Opto-tagged data can be 
processed and curated directly in CellExplorer. E. Example of a PSTH of a PV-expressing neuron to 500 ms square light 
pulses. Raster plot and average responses to the light pulses visualized in CellExplorer. F. The CellExplorer framework 
allows for sharing ground truth and reference data directly with the end-user. End users can upload their ground truth data 
to the CellExplorer GitHub repository for communal sharing (see the opto-tagging tutorial at CellExplorer.org).  
 
Demonstration of the inter-laboratory applicability of CellExplorer 

To demonstrate the applicability of CellExplorer, we processed datasets from the CA1 region of the 

hippocampus (Figure 6A) and visual cortex (Figure 6B) in freely moving mice (Senzai et al., 2019; 

Petersen and Buzsáki, 2020; Petersen et al., 2020), and comparable data from the two largest public 

dataset collections from University College London (Fig 6C;Steinmetz et al., 2019) and the Allen 

Institute (Figure 6D; Siegle et al., 2019). Processing data collected in different laboratories and 

investigators by the same program(s) will allow investigators to standardize protocols for levels one 
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to three metrics and, therefore, higher reliability of interlaboratory experiments between neuronal 

firing patterns and their behavioral, cognitive correlates. For example, baseline data collected for levels 

one to three classification, such as bursts, firing rates, coefficient of variation of interspike intervals, 

may differ whether the recordings are made during active behavior, immobility or sleep.  
 

 
Figure 6. Comparison of initial neuron classification by CellExplorer on large scale datasets from three different 
laboratories. A. Data from hippocampus (Petersen and Buzsáki, 2020). B. Data from visual cortex (Senzai et al., 2019). 
C. Hippocampal and visual neurons selected from the UCL dataset (Steinmetz et al., 2019). D. Visual cortex cells from 
the Allen Institute (Siegle et al., 2019). Right panels across A-D: Z-scored waveforms across all neurons (top) and 
distribution of instantaneous rates (1/interspike intervals) across all neurons. A and B are based on long homecage (sleep) 
data (several hours), while C and D data are from short (~ 30 min) sessions in head-fixed, task-performing mice. See also 
Suppl. Fig. 6. Red, pyramidal cells; Blue, narrow waveform interneurons; Cyan, wide waveform interneurons. 
 
DISCUSSION 
We have developed CellExplorer, a transparent, open-source, MATLAB-based resource for 

characterizing single neurons and neuron types based on their electrophysiological features. The 

CellExplorer platform enables visualization and analysis for users without the need to write code. Its 

modular format allows for fast and flexible comparisons of a large set of preprocessed physiological 

characteristics of single neurons and their interactions with other neurons, as well as their correlation 

with experimental variables. The code is publicly available on GitHub for users to download and to 

use the same standardized processing module on their local computers (Windows, OS X, and Linux). 
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CellExplorer offers step-by-step online tutorials for first-time users. It is linked to the Allen Institute 

reference atlas (Chon et al., 2019; Wang et al., 2020; https://atlas.brain-map.org/) and can be expanded 

to include other online resources that provide annotated data on putative neuron types. The open-

source design of CellExplorer permits the optimization of current standardized components tested 

against the ever-growing community-contributed database and will accelerate efforts to link 

genetically identified neuron types with their physiological properties in the intact brain. 

 

Multiple-level characterization and classification of single neurons 

To correctly interpret neuron firing-behavior/cognition relationships, numerous controls are needed to 

rule out or reduce the potential contribution of spurious variables. The Processing Module generates a 

battery of useful metrics for this. In addition to the first-level description of the biophysical and 

physiological characteristics of single neurons, it can compute brain state-dependent firing rates, 

interspike interval variation, and relationships between single neurons and spiking activity of the 

population and LFP (second level). When behavioral data is also available, it can describe the 

relationship between single neuron firing patterns and routine behavioral parameters, such as 

immobility, walking, respiration, and pupil diameter (third level). The third-level metrics can help 

avoid inappropriately attributing spiking activity to high-level phenomena, such as learning, 

perception or decision making, that are often linked to overt movement and autonomic changes. 

Because these three-level metrics are independent of particular experimental paradigms, they can be 

used as benchmarks for assessing consistencies across experiments performed by different 

investigators in the same laboratory or across laboratories (Figure 6). Concatenating datasets obtained 

from the same brain regions and layers will create a continuously growing data bank. In turn, these 

data-rich sets make it possible to identify and quantify reliable boundaries among putative clusters and 

suggest inclusion and exclusion of parameters for a more refined separation of putative neuronal 

classes. Sets from different brain regions can be readily compared in order to identify salient 

differences. 

Although several statistical tests are available in CellExplorer, it is not meant to substitute rigorous 

quantification. Instead, it is designed as a tool for facilitating visualization, interpretation and 

discovery. It is a complementary approach to dimensionality reduction and population analysis 

methods. Because assemblies of neurons consist of highly unequal partners (Buzsáki and Mizuseki, 

2014), knowledge about the neuron-specific contribution to population measures is critical in many 

situations (Nicolelis and Lebedev, 2009). Such inequality may stem from unknowingly lumping 

neurons of different classes together into a single type and because even members of the same type 
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belong to broad and skewed distribution and may contribute to different aspects of the experiment 

(Grosmark and Buzsáki, 2016). 

 

Two key features make the CellExplorer platform highly efficient: flexibility and speed. Flexibility is 

provided by the numerous parameters as outputs of the Processing Module. High speed is achieved by 

using pre-computed metrics and limiting the computation time in the user interface. A caveat is that 

online alteration of the plots and metrics is not allowed. Yet, such changes can be performed by 

working with the raw spike data. Multiple features of single neurons, displayed on the same screen, 

can be compared. Moving from one neuron to the next and its multiple displayed features requires 

only a mouse click. These multiple features can be compared by superimposing the same features of 

two or more neurons, all neurons in a session, or the entire database. This allows unexpected features 

to be noted, or obvious artifacts to be recognized and deleted. When unusual sets are discovered in any 

display, all other features of the same set can be rapidly compared and contrasted to other sets. Neuron 

clouds can be selected by drawing polygons around them and regrouped in any arbitrary configuration. 

Inspection of datasets containing even several thousand neurons (Siegle et al., 2019; Steinmetz et al., 

2019) is realistic because minimal computing time is required in the graphical interface and because 

in most conditions only small subsets need individual inspection and quality control. 

 

Various classification schemes have been developed to assign extracellular spikes to putative 

pyramidal cells, interneurons, and their putative subtypes, based on a variety of physiological criteria. 

These include waveform features, firing rate statistics in different brain states, embeddedness in 

various population activities, firing patterns characterized by their autocorrelograms, and putative 

monosynaptic connections to other neurons (Barthó et al., 2004; Csicsvari et al., 1999; Fujisawa et al., 

2008; Mizuseki et al., 2009; Okun et al., 2015; Sirota et al., 2008). Increasingly larger datasets will 

likely improve such physiology-based classification. Yet, the ‘ground truth’ for these classifying 

methods is largely missing. Optogenetic tagging (Boyden et al., 2005) offers such grounding by 

connecting putative subtypes based on physiologically distinct features to their molecular identities. 

Because in a single animal only one or few neuron types can be tagged optogenetically or identified 

by other direct methods (Fosque et al., 2015; Klausberger and Somogyi, 2008), refinement of a library 

of physiological parameters should be conducted iteratively, so that in subsequent experiments the 

various neuron types can be recognized reliably by using solely physiological criteria (English et al., 

2017; Royer et al., 2012; Senzai and Buzsáki, 2017, 2017; Roux and Buzsáki, 2015). In turn, 

knowledge about the molecular identity of the different neuronal components of a circuit can 
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considerably improve the interpretation of correlational observations provided by large-scale 

extracellular recordings. 

 

Data sharing 

Above, we described one of the many possible examples that can benefit from large databases. 

Currently, tens to hundreds of thousands of pre-processed neurons exist across laboratories in different 

brain regions, which can be identically streamlined by the Processing Module, and displayed and 

compared in the same coordinate system. We welcome shared datasets from other research groups for 

enhancement and comparison with our publicly-accessible database (buzsakilab.com/wp/database; 

Allen Institute; UCL; Petersen et al., 2020; Siegle et al., 2019; Steinmetz et al., 2019). The single 

prerequisite for quantitative comparison of data across laboratories is to make wideband data available 

(≤ 3 Hz to ≥ 8 kHz; ideally ≥ 20 kHz sampling rate) so that all data are processed the same way. 

 

Through our web resource (Petersen et al., 2020), we host > 1,000 publicly shared datasets of long (4 

to 24 hrs), large-scale recordings of single units from multiple brain structures, including the 

hippocampus, entorhinal, prefrontal, somatosensory, and visual cortices, thalamus, amygdala, and 

septum (buzsakilab.com/wp/database). The database also includes the data from Allen Institute and 

UCL. Long-recordings have the advantages of defining brain state-dependent characteristics of 

neurons, such as their firing rates and patterns during waking and sleep, unmasking the ‘hidden’ or a 

relatively silent majority of neurons (Mizuseki and Buzsáki, 2013; Shoham et al., 2006) and 

discovering their connectivity patterns (English et al., 2017). These data already provide benchmarks 

assessing the reliability of initial neuron classification into the broad groups of pyramidal cells and 

interneurons, many of which are identified physiologically by their monosynaptic connections. They 

also offer normative data about spikes features, firing rates, and spike dynamics. These features can 

serve as benchmarks for comparison with data collected in any other laboratory. 

 

Development and availability 

Development takes place in a public code repository at github.com/petersenpeter/CellExplorer. All 

examples in this article have been calculated with the pipeline and plotted with CellExplorer. Extensive 

documentation, including installation instructions, tutorials, description of all metrics and their 

calculations, is hosted at CellExplorer.org. CellExplorer is available for MATLAB 2017B and 

forward, and for the operating systems Windows, OS X, and Linux. More information can be found at 

CellExplorer.org. All data presented is available from https://buzsakilab.com/wp/database/ (Petersen 

et al., 2020). 
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SUPPLEMENTARY SECTION 
 

 
Supplementary figure 1: Datatypes. The data structure. A detailed description is available online at 
CellExplorer.org/datastructure/data-structure-and-format. session, spikes, cell_metrics, trials are defined data types, 
while behavior, firingRateMap, events, manipulation, timeseries, states, channelinfo are data containers.   
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Supplementary Figure 2. Flow charts. A) Generating the metadata structure for a recording session. B) Running the 
processing pipeline. C) Running the CellExplorer module for manual curation and exploration. CellExplorer data structures 
are shown in yellow, MATLAB functions in green, and the input data in grey. Input from the Buzsáki lab database is shown 
in purple (buzsakilab.com/wp/database). 
 

 
Supplementary Figure 3. The various single-cell plots. Most single cell data-visualizer have three representations: single 
neurons (with neuronal connections highlighted for a subset of the plots), all neurons (absolute or normalized 
representations), and an image representation (normalized data, with selected cell highlighted by a white line). A. 
Waveform representations: waveform of a selected single neuron, waveforms of all neurons (z-scored), and their image 
representation. The white line in the image representation corresponds to the selected neuron. B. Autocorrelograms (ACGs) 
for the single neuron, ACGs for all neurons and their image representation. C. ACGs on a log scale (single, all, image).  D, 
E. Interspike interval distributions (ISIs) on a log scale (single, all image) for two different normalizations (D, rate (Hz); 
E, occurrence). F. Theta phase spike histogram for the single interneuron (black line) and those of pyramidal neurons 
monosynaptically connected to the interneurons (blue lines; left) and all neurons in the same session (middle and right 
panels). G. Firing rate map for a pyramidal cell. Session average (left) and trial-wise heatmap. H. Connectivity graph 
showing all monosynaptic modules in the dataset. A module is highlighted and enhanced (top right). I. Physical location 
of neurons recorded in the same animal using trilateration. Eight-shank silicon probe recording (8 sites on each shank). 
Red, pyramidal cells. Blue, interneurons. Monosynaptic connections between two pyramidal cells and a target interneuron 
are also shown (blue lines) J. Average waveform across channels of the single interneurons shown in most panels. A-F, 
H-J: a narrow interneuron, G: Spatial firing rate of a pyramidal cell on a linear track. 
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Supplementary Figure 4. Population data plots. Top row: The three standard representations: custom plot (A), classic 
representation (B), and t-SNE plot (C). Bottom row: The custom plot has 3 further data representations: a 3-dimensional 
plot with custom marker size (D), 2D plot with marginal histograms (E), and one-dimensional raincloud plots (F), 
combining 1D scattered neurons with error bars histogram and KS significance test (line thickness represent significance 
levels). Color-coded according to cell types: pyramidal cell (red), narrow interneuron (blue), wide interneuron (cyan).  

 

Supplementary figure 5. Benchmarks of the CellExplorer user interface (UI). A. UI display times when switching 
between units for the three layouts shown in figure 3B (approximately 110 ms for layout 1+3; blue lines. 180 ms for 
layout 3+3; green lines) and 290 ms (layout 3+6; in red), respectively. Dark gradient colored lines (dark red, green, and 
blue) indicate where there were no limits on the number of traces plotted for single-cell plots, and the light gradient lines 
show screen update times with a maximum of 2000 random traces. B. Display times for single-cell plots, quantified by 
the number of cells displayed. The plots contributing most to an increased display time are the plots with trace 
representations for each cell (ACGs, ISIs, waveforms, ISIs, theta phase) and the connectivity graph. By default, a 
maximum of 2000 traces is drawn capping the processing time below ~80 ms for all plots except the connectivity 
graph. C. Benchmarking of cell metrics file readings. On average, 230 cells can be loaded per second quantified across 
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180 sessions with various cell count (red dots and linear fit in red). By storing the data on a local SSD, the loading time 
could be decreased and attain cell loading above 500 cells per second. 
 

 
Supplementary figure 6. Exploration and comparison of metrics and cells across, species, subjects and brain 
regions. A. Distributions of spike amplitudes and waveform width (quantified by the trough to peak metrics) for the 
three groups from multiple CA1 datasets. Note inverse relationship between spike amplitude and waveform for putative 
interneurons. B-D. t-SNE representations of putative cell types (B), species (C, rat, and mouse in magenta and red, 
respectively) and subjects (D, colors scaled across subjects) for hippocampal neurons. E-I: Comparison of spike features 
of neurons recorded from CA1 pyramidal cells and visual cortex pyramidal cells. Significant differences are observed 
across several basic metrics, including CV2 (E), burst index (F), trough-to-peak (G), waveform asymmetry (H), and 
waveform peak voltage (I). 
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Supplementary figure 7. ACG fits. A. Three examples of typical autocorrelograms for a wide interneuron (left column) 
narrow interneuron (middle column) and a pyramidal cell (right column). The exponential components are plotted in the 
lower row. B. The R2 values for each fit across the 4000 pyramidal cells plotted against the number of spikes. C-D 𝝉rise 
(C) and 𝝉decay (D) values plotted against the spike count. Color coded by putative cell type. 
 

Functions Description 

sessionTemplate A template script which automatically extracts and imports relevant metadata 

gui_session A graphical user interface (GUI) for manual inspection and entry of metadata 

ProcessCellMetrics The processing module 

CellExplorer The main graphical interface of CellExplorer 

preferences_CellExplorer Preferences for the graphical interface 

preferences_ProcessCellMetrics Preferences for the processing module 

gui_MonoSyn GUI for manual curation of monosynaptic connections 

gui_DeepSuperficial GUI for manual curation of the depth assignment of neurons based on depth-
related changes of sharp-wave-ripples (Mizuseki et al., 2011) 

loadCellMetricsBatch Batch loading script for combining cell_metrics structs across sessions 

loadCellMetrics Script for loading cell_metrics with built-in common text filters (putative cell 
type, brain region, synaptic effect, label, animal, tags, groups, etc.) 

Supplementary Table 1. Primary MATLAB functions of the CellExplorer framework. 
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Metrics Description/Calculation Type
General metrics
general struct containing general information about the session struct

  .basename the name of the session char

  .basepath the path to the raw data char

  .cellCount number of cells in the current session double

  .ccg cross correlogram matrix between cell pairs within a session 201xNxN double

  .ccg_time time vector describing the time bins in the ccg (standard: -100ms:1ms:100ms) 201x1 double

animal (name) Unique name of animal 1xN cell array of charactor vectors

general.animal struct containing animal specific information struct

  .sex Sex of the animal [Male, Female, Unknown] char

  .species Animal species [Rat, Mouse,...] char

  .strain Animal strain [Long Evans, C57B1/6,...] char

  .geneticLine Genetic line of the animal char

sessionName Name of session 1xN cell array of charactor vectors

general.session struct containing session specific information struct

  .sessionType [Acute, Chronic] 1xN cell array of charactor vectors

  .spikeSortingMethod char

  .investigator char

UID The ID for each cell unique within a session 1xN double

cellID 1xN double

cluID clustering ID from spike sorting pipeline 1xN double

batchIDs only present in batch sessions. The batch ids the cells 1xN double

putativeCellType Putative cell type 1xN cell array of charactor vectors

brainRegion Brain region acronyms from Allan institute Brain atlas. 1xN cell array of charactor vectors

spikeGroup Spike group: Shank number / spike group 1xN double

labels Custom labels 1xN cell array of charactor vectors

groups struct containing groups struct

tags struct containing tags struct

Spike event-based metrics
spikeCount Spike count of the cell from the entire session 1xN double

firingRate Firing rate in Hz: Spike count normalized by the interval between the first and the last spike. 1xN double

cv2 Coefficient of variation 1xN double

refractoryPeriodViolation Refractory period violation (‰): Fraction of ISIs less than 2ms. 1xN double

burstIndex_Mizuseki2012 Burst index: Fraction of spikes with a neighboring ISI < 6ms as defined in Mizuseki et al. 1xN double

Waveform metrics
waveform struct containing waveform information struct

  .filt Average filtered waveform from peak chanel (µV) 1xN cell array of 1xM numeric vectors

  .filt_std Std of average filtered waveform (µV) 1xN cell array of 1xM numeric vectors

  .raw Average raw waveform from peak chanel (µV) 1xN cell array of 1xM numeric vectors

  .raw_std Std of average raw waveform (µV) 1xN cell array of 1xM numeric vectors

maxWaveformCh peak channel (0-indexed) 1xN double

maxWaveformCh1 peak channel (1-indexed) 1xN double

maxWaveformChannelOrder linearized channel position

polarity waveform polarity

troughToPeak waveform trough to peak interval (µs) 1xN double

ab_ratio waveform peak to peak ratio 1xN double

peakVoltage amplitude of the filtered waveform (µV). max(waveform)-min(waveform). 1xN double

troughtoPeakDerivative derivative of waveform trough to peak interval (µs) 1xN double

ACG metrics
acg struct containing autocorrelogram information struct

  .wide [-1000ms:1ms:1000ms] 1xN cell array of 1xM numeric vectors

  .narrow [-50:0.5:50] 1xN cell array of 1xM numeric vectors

  .log10 [log-intervals spanning 1ms:10s] 1xN cell array of 1xM numeric vectors

thetaModulationIndex defined by the difference between the theta modulation trough (mean of autocorrelogram 

bins 50-70 ms) and the theta modulation peak (mean of autocorrelogram bins 100-140ms) 

1xN double

ACG fit metrics Fit to the autocorrelogram with a triple-exponential equation ( fit = cexp(-x/τ_decay)-dexp(- 1xN double

acg_asymptote the asymptote of the ACG fit 1xN double

acg_c ACG fit: amplitude 1xN double

acg_d ACG fit: amplitude 1xN double

acg_fit_rsquare ACG fit R-square (the goodness of the fit) 1xN double

acg_h ACG fit: amplitude 1xN double

acg_refrac ACG fit: refractory period (ms) 1xN double

acg_tau_burst ACG fit: tau bursts (ms) 1xN double

acg_tau_decay ACG fit: tau decay (ms) 1xN double

acg_tau_rise ACG fit tau rise (ms) 1xN double

burstIndex_Royer2012 Burst index (Royer 2012) 1xN double

burstIndex_Doublets Burst index doublets 1xN double

ISI metrics
isi struct with interspike interval information struct

  .log10 [log-intervals spanning 1ms:10s] 1xN cell array of 1xM numeric vectors

Putative connections
putativeConnections putative connections determined from cross correlograms struct

putativeConnections.Excitatory excitatory connection pairs 2xP double

putativeConnections.Inhibitory inhibitory connection pairs 2xP double

synapticEffect Excitatory' or 'Inhibitory' 1xN cell array of charactor vectors

synapticConnectionsIn Synatic connections count 1xN double

synapticConnectionsOut Synatic connections count 1xN double

Event metrics
events event time series struct

  .'name' the event curve 1xN cell array of 1xM numeric vectors

name'_modulationIndex modulation index for each event types 1xN double

name'_modulationSignificanceLevel modulation significance level for each event types

name'_modulationPeakResponseTime modulation peak response time for each event types 1xN double
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Supplementary Table 2: Cell metrics. An incomplete list of the standard cell metrics. The full list is available online at 
CellExplorer.org/datastructure/standard-cell-metrics  
 
Supplementary video 1 

 
The supplementary video is available on YouTube and at CellExplorer.org. 
 
TUTORIALS 
A general tutorial on the full pipeline is available below. There are many more detailed tutorials online, 
covering: the generation of the metadata struct, the manual curation process, generating spike raster 
plots, connections, performing opto-tagging, using ground truth data, export figure, and many other 
topics. 

Tutorials are available online at CellExplorer.org/tutorials/tutorials  

Firing rate map metrics
firingRateMaps struct with (spatial) linearized firing rate maps struct

  .firingRateMaps The mean firing rate map 1xN cell array of 1xM numeric vectors

spatialCoverageIndex Spatial coverage index. Defined from the inverse cumulative distribution, where bins are 
sorted by decreasing rate. The 75 percentile point defines the spatial coverage by the fraction 
of bins below and above the point (defined by Royer et al., NN 2012)

1xN double

spatialGiniCoeff Spatial Gini coefficient. Defined as the Gini coefficient of the firing rate map 1xN double

spatialCoherence Spatial Coherence. Defined by the degree of correlation between the firing rate map and a 
hollow convolution with the same map

1xN double

spatialPeakRate Spatial peak firing rate (Hz). Defined as the peak rate from the firing rate map 1xN double

placeFieldsCount Place field count: Number of intervals along the firing rate map that fulfills a set of spatial 
criteria: minimum rate of 2Hz and above 10% of the maximum firing rate bin and minimum of 
4 connecting bins. The cell further has to have a spatial coherence greater than 0.6 (Mizuseki 

1xN double

spatialSplitterDegree 1xN double

placeCell Place cell (determined from the Mizuseki spatial metrics) 1xN binary

Manipulation metrics
manipulations manipulations time series struct

  .'manipulationName' 1xN cell array of charactor vectors

Response curves metrics
responseCurves response curves struct

  .'responseCurveName' 1xN cell array of charactor vectors

Quality metrics
refractoryPeriodViolation Refractory period violation (‰): Fraction of ISIs less than 2ms 1xN double

isolationDistance Isolation distance as defined by Schmitzer-Torbert et al. Neuroscience. 2005. 1xN double

lRatio L-ratio as defined by Schmitzer-Torbert et al. Neuroscience. 2005. 1xN double

Hippocampal sharp wave ripple metrics
deepSuperficial Deep-Superficial region assignment [Unknown, Cortical, Superficial, Deep]
deepSuperficialDistance Deep Superficial depth relative to the reversal of the sharp wave (µm) 1xN double

Hippocampal theta oscillation metrics
thetaPhasePeak Theta phase peak 1xN double

thetaPhaseTrough Theta phase trough 1xN double

thetaEntrainment Theta entrainment 1xN double

thetaModulationIndex Theta modulation index. determined from the ACG 1xN double

Firing rate stability metrics
firingRateGiniCoeff The Gini coefficient of the firing rate across time 1xN double

firingRateCV Standard deviation of the "firing rate across time" divided by the mean' 1xN double

firingRateInstability Mean of the absolute differential "firing rate across time" divided by the mean. 1xN double

Database metrics
entryID database entry id 1xN double

sessionID database session id 1xN double
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General tutorial 
This tutorial shows you the full processing pipeline, from generating the necessary session metadata 
using the template, running the processing pipeline, opening multiple sessions for manual curation in 
CellExplorer, and finally using the cell_metrics for filtering cells, by two different criteria. The tutorial 
is also available as a Matlab script: ( tutorials/CellExplorer_Tutorial.m ). 

1. Define the basepath of the dataset to process. The dataset should consist of a basename.dat (a 
binary raw data file),  a basename.xml  (recommended; not required) and spike sorted data. 
basepath = '/your/data/path/basename/'; 

cd(basepath) 

2. Generate session metadata struct using the template function and display the metadata in a GUI 
session = sessionTemplate(basepath, 'showGUI', true); 

In the GUI you can put in relevant metadata. Please pay attention to the general, extracellular, 
and spike sorting tabs and verify all metadata. 

3. Run the cell metrics pipeline ProcessCellMetrics  using the session struct as input 
cell_metrics = ProcessCellMetrics('session', session); 

4. Visualize the cell metrics in CellExplorer 
cell_metrics = CellExplorer('metrics', cell_metrics);  

5. Now you can repeat step 1-4 on a couple of datasets and load them together in CellExplorer, 
providing several paths 
basepaths = {'path/to/session1','path/to/session2'}; 

cell_metrics = loadCellMetricsBatch(' basepaths', basepaths); 

cell_metrics = CellExplorer('metrics', cell_metrics); 

6. Curate your cells and save the metrics 
7. Finally, to incorporate the cell metrics into your analysis you can use the load function that has 

filters built-in: 
1. Get cells that are assigned as Interneuron 
cell_metrics_idxs1 = loadCellMetrics('cell_metrics', cell_metrics, 'putativeCellType', {'Interneuron'}); 

2. Get cells that have the groundTruthClassification label Axoaxonic 
cell_metrics_idxs2 = loadCellMetrics('cell_metrics', cell_metrics, 'groundTruthClassification', {'Axoaxonic'}); 
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