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ABSTRACT

Information is coded in the brain at different scales for different phenomena: locally,
distributed across regions and networks, and globally. For pain, the scale of
representation is controversial. Although generally believed to be an integrated cognitive
and sensory phenomenon implicating diverse brain systems, quantitative
characterizations of which regions and networks are sufficient to represent pain are
lacking. In this meta-analysis (or mega-analysis) using data from 289 participants across
10 studies, we use model comparison combined with multivariate predictive models to
investigate the spatial scale and location of acute pain representation. We compare
models based on (a) a single most pain-predictive module, either previously identified
elementary regions or a single best large-scale cortical resting-state network module; (b)
selected cortical-subcortical systems related to evoked pain in prior literature
(‘multi-system models’); and (c) a model spanning the full brain. We estimate the
accuracy of pain intensity predictions using cross validation (7 studies) and subsequently
validate in three independent holdout studies. All spatial scales convey information about
pain intensity, but distributed, multi-system models better characterize pain
representations than any individual region or network (e.g. multisystem models explain
>20% more of individual subject pain ratings than the best elementary region). Full brain
models showed no predictive advantage over multi-system models. These findings
quantify the extent that representation of evoked pain experience is distributed across
multiple cortical and subcortical systems, show that pain representation is not
circumscribed by any elementary region or conical network, and provide a blueprint for

identifying the spatial scale of information in other domains.
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Significance Statement :

We define modular, multisystem and global views of brain function, use multivariate fMRI
decoding to characterize pain representations at each level, and provide evidence for a
multisystem representation of evoked pain. We further show that local views necessarily
exclude important components of pain representation, while a global full brain
representation is superfluous, even though both are viable frameworks for representing
pain. These findings quantitatively juxtapose and reconcile divergent conclusions from
evoked pain studies within a generalized neuroscientific framework, and provide a

blueprint for investigating representational architecture for diverse brain processes.
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INTRODUCTION

Neuroscience is shaped by the opposition between local and global perspectives. One
holds that the brain is modular with distinct functions ascribed to specific brain regions
(Fodor 1983) while the other holds that the brain is best understood holistically (Flourens
1824; Lashley 1929). The dialectical opposition of these perspectives is famously
underscored by the classic language studies of Broca and Wernicke, which showed
unequivocal localization of function, but also identified “disconnection syndromes”
resulting from white matter lesions which demonstrate a distributed character for higher
order processing (Catani and Ffytche 2005; Mesulam 1990; Wernicke 1874). This
dialectic continues to inform contemporary neuroscience in the form of debates over the
extent to which the function of a region can be reduced to a single behavior or the
converse. This plays out in vision (Kanwisher, McDermott, and Chun 1997; Haxby et al.
2001), emotion (Janak and Tye 2015; Thompson and Neugebauer 2017), and other
areas, but is particularly relevant for pain where neurosurgical and neuromodulatory
interventions are guided directly by scientific understanding of how pain representations
are localized in the brain (Ronald Melzack and Wall 1965; Moisset, de Andrade, and
Bouhassira 2016; DeCharms et al. 2005).

Pain is often seen as an intrinsically distributed phenomenon (Baliki and Apkarian 2015;
Reddan and Wager 2019). The distributed model is supported by early fMRI data
(Becerra et al. 1999; Coghill et al. 1999; Apkarian et al. 2005) and neuroanatomical
evidence of widespread nociceptive projections in the brain, including targets in the
brainstem and amygdala, (Bernard, Bester, and Besson 1996; Thompson and
Neugebauer 2017), Sll and insula (Gauriau and Bernard 2004; Craig 2014) and
cingulate cortex (Apkarian and Shi 1998; Yamamura et al. 1996). However, this
perspective has been criticized for conflating pain-specific representations with a
nonspecific salience response (Mouraux et al. 2011; Legrain et al. 2011). Indeed,
traditional fMRI analyses cannot distinguish between the information necessary and
sufficient for representation from secondary responses cascading across brain systems.
Some have argued from a localist perspective that the dorsal posterior insula (Segerdahl
et al. 2015b) or anterior midcingulate cortex (Lieberman and Eisenberger 2015) are
“fundamental to” or “selective for” pain. This view follows in the tradition of Wilder

Penfield, who first provided support for pain localization through electrical stimulation of
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dorsal posterior insula (Penfield and Jasper 1954; Mazzola et al. 2012) Others suggest
that pain may be encoded throughout the brain (Liang et al. 2013) or even be a global
brain state (Mansour et al. 2016). Yet, despite two centuries of neuroscientific inquiry
into the architecture of brain representations, the best way to characterize pain remains
the subject of active debate (Segerdahl et al. 2015b; Davis et al. 2015; Lieberman and
Eisenberger 2015; Wager et al. 2016; Segerdahl et al. 2015a; Liberati et al. 2016).

Crucially, most brain studies identify foci of evoked pain response (Apkarian et al. 2005;
Becerra et al. 1999; Coghill et al. 1999) or multivariate patterns that predict pain intensity
(Wager et al. 2013; Cecchi et al. 2012; Marquand et al. 2010). Neither of these
approaches is sufficient to characterize where pain representations are localized,
because they do not explicitly test the spatial scope of representation--whether any
region or pattern is both necessary and sufficient to predict pain experience. Two
pioneering studies have investigated the spatial scope of patterns that discriminate
painful from nonpainful stimuli (Brodersen et al. 2012; Brown et al. 2011), and provide
preliminary evidence in favor of a distributed representation. However, they do not test
an exhaustive set of elementary regions or a comprehensive range of spatial scales. In
addition, they do not generalize across diverse task conditions or diverse cognitive and
nociceptive sources. And finally, they suffer from a number of statistical limitations,
including small sample sizes (N=16), which raises questions regarding their
reproducibility and generalizability (Button et al. 2013). Nevertheless these studies make
important contributions, including advancing multivariate modeling as a method of

quantifying unique pain information across brain areas.

Here we investigate the spatial architecture of pain representation using multivariate
decoding of pain intensity across a diverse set of physical and psychological pain
manipulations and a large multi-study cohort (N=289, 10 studies). We formalize a
modular perspective by testing predictive models in each of 486 elementary brain
parcels (including cortical areas from (Glasser et al. 2016), and others), and in defined
resting state connectivity modules (including 7-network and 32-network scales; (Yeo et
al. 2011)). These allow us to test whether any single, isolated region or any single
network module (e.g., the ‘salience network’) is sufficient to decode pain intensity. We
formalize the distributed, multi-system perspective by testing spatial basis patterns that

cross resting-state modular boundaries, including a priori multi-system maps and the
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whole brain. Formal model comparisons at each spatial scale provide a quantitative
measure of the extent to which modular features, distributed networks and the whole
brain represent pain experience. By repeating this process across a selection of
datasets with varying data acquisition and pain manipulations we are able to generalize

our findings to novel studies and contexts.

METHODS
Participants

This study aggregated data from 10 previously published studies involving 289
participants. Institutional review boards at the University of Colorado Boulder, Columbia
University or the ethics committee of the Medical Chamber Hamburg approved these
studies. Please refer to Table 1 for details on sample size, age ranges and gender. All

subjects are right handed.
Data

All data in this study have been previously published. Refer to Table 1 for references to
publications containing relevant experimental design and data acquisition details and
Table 2 for overviews of experimental designs. Data are available as ‘single trial’
statistical contrast maps, hosted at figshare.com and best accessed via the CANlab

Single Trials Repository on github (https://github.com/canlab/canlab_single_ftrials).

Each study involved a series of trials of painful stimuli of varying intensities (40.8C - 50C)
applied to the left arm, anticipatory cues, noxious stimuli lasting 1 to 20 sec, and a pain
rating period following a variable (jittered) interval (Figure 1A). Additionally many studies
included a cognitive or affective manipulation like romantic partner hand holding or
manipulations of perceived control over stimulus intensities (Figure 1B). Table 2 details
stimulus durations, sites, intensities, and additional protocol details by study. Table 3

provides effect sizes for experimental pain manipulations across studies.

We perform all of our primary analyses in seven studies (Studies 1-7), and use 3

validation studies (Studies V1-V3) as a post-hoc confirmation of the validity of our
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inferences. Importantly, the use of validation studies is separate from the use of cross
validation, which is used extensively for model fitting and evaluation (see MVPA sections
below): validation studies test an estimate while cross validation generates an estimate,
and validation studies were left untouched and uninspected until all of our primary

analyses had been completed.
Behavioral data analysis

We model pain report as a function of experimental manipulations and subject fixed
effects to provide a descriptive characterization of each study. We consider all
experimental manipulations, as well as site specific and non specific sensitization and
habituation effects, and then use backwards stepwise regression to select parameters
which significantly affect pain report (p < 0.05). All non-significant parameters other than
subject effects are removed. For simplicity, this study does not consider nonlinear effects
(i.e. interaction effects). All analyses are performed in quartiled data to better inform the

subsequent MVPA analyses, which are similarly quartiled.

Partial coefficient of determination (r?) quantifies variance explained. Formal definitions
in multivariate contexts vary, and the most common are marginal, quantifying the amount
of additional variance explained by the inclusion or omission of a variable from a model,
e.g. (Anderson-Sprecher 1994), however, when variables have any collinearities they will
show some overlap in the outcome variance they can explain which marginal r?
calculations omit. We instead adopt the method described by (Scherrer 1984) which
splits the difference for collinear independent variables. We take the covariance of the
independent variable with predicted pain report (a univariate analysis) and scale it by the
standardized regression coefficient of the multivariate model of pain report just
described. Computed this way, the individual r* sum to 1, validating their naive

interpretation as “percent variance explained”.
fMRI Acquisition and Preprocessing

Briefly, all data were acquired using 3T MRI scanners, and were motion corrected, had
cerebrospinal fluid and white matter signals linearly removed, and were spatially

normalized to a standard MNI152 template, except for Study 2 and Study 5, which were
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acquired at 1.5T and did not have cerebrospinal fluid or white matter signals removed.

Please refer to studies referenced in table 1 for further details on data preprocessing.
General linear model (GLM) analysis

This study uses beta-series analysis (Rissman, Gazzaley, and D’Esposito 2004) to
estimate brain response to each evoked noxious stimulus (a single “trial”). The GLM
design matrix includes separate regressors for each stimulus and nuisance parameters
(e.g. head motion). This study excludes trials with variance inflation factors > 2.5. We
thus obtain a separate parameter estimate brain map for stimulus evoked activity for
each stimulation (trial). For computational tractability we average these maps within pain

intensity quartile after data standardization (see “Data Standardization” below).
Data Standardization

We remove between-study voxel variability (i.e. the study mean maps), and standardize
all single trial images within-trial (mean voxel value is zero, standard deviation of voxel
values within trial image is 1). This removes global intensity differences between images,
but preserves relative spatial differences within images. Thus, individual images differ
from one another in the spatial configuration of their pain response but are matched on
net response. Although global intensity information may be task related, it is also
affected in idiosyncratic ways by preprocessing decisions, image acquisition parameters,

and spurious physiological noise.

We also z-score pain ratings within study to partially control for quantitative differences in
the rating scales and calibrations used between studies. This preserves between-subject
differences within-study. Following standardization, imaging data and pain ratings are
averaged within the pain rating quartiles for each subject. This removes some portion of
the overall variance in our data, and all reported r? statistics should be interpreted
accordingly as variance explained in quartiled data, but this is necessary for
computational tractability. Incidentally, this also partially aligns variability in our brain
data with our outcome variable (pain rating), improves the sensitivity of principal
component analysis to pain relevant features, and results in better multivariate models
when we subsequently employ principal component regression (see MVPA “General

Method Description” below).
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Defining hypothesis spaces and model inputs

We define three hypotheses regarding scope of pain representation (modular, a priori
multisystem areas or full brain) and formalize them using one or more of six hypothesis
spaces (explicitly enumerated below) which constrain subsequently trained machine
learning algorithms to draw on sources of information from particular brain areas (Figure
2A). The “modular” hypothesis contends that pain intensity information is best captured
in a single physiologically coherent brain area, but is agnostic with respect to location
and size of the brain area. To formalize this we draw on three brain parcellations which
vary in areal size from fine to coarse. (1) Our finest representation, the “regional”
parcellation, defines a set of elementary brain areas by combining the Human
Connectome Project’s cortical parcellation (Glasser et al. 2016) with individual cerebellar
lobules, and thalamic basal ganglia and brainstem nuclear parcellations. (2) A fine
resting state network (fRSN) parcellation involving 32 distinct resting state network
parcels and (3) a coarse resting state network (cCRSN) parcellation using 7 parcels
formalize the network hypothesis, including the hypothesis that a salience network
response may largely explain the brain’s response to evoked pain. The hypothesis that
pain has a “multisystem” representation assumes there is a pain specific configuration of
brain activity, localized in a finite but not necessarily contiguous set of brain areas. We
formalize this hypothesis as two additional hypothesis spaces. (4) First by identifying a
priori the subset of the regional parcellation which receives afferent nociceptive
information either directly or indirectly, and taking its union to define a hypothesis space
(“pain pathways”). (5) Next we take an empirical approach using a reverse inference
metaanalysis map for “pain” from neurosynth.org. Finally, the holistic hypothesis
assumes that any of a number of sensory or cognitive functions may recruit any one
brain area and therefore pain predictive information could be distributed anywhere and
everywhere in the brain. (6) Models trained on the entire brain formalize this final
hypothesis. Thus, three hypothesis spaces formalize the modular hypothesis, two
formalize the multisystem hypothesis and one formalizes the holistic hypothesis. We

elaborate on how each space is defined below.

Elementary regions map
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486 regions of interest subdivide the brain for anatomical characterization of sources of
predictive information. These regions comprehensively cover brain gray matter from the
brainstem through the forebrain, and are based on parcels and subcortical nuclei defined
in previous published studies. We obtain 360 cortical regions (180 areas x 2
hemispheres) from the Human Connectome Project’s cortical parcellation, which
delineates areas according to neuroimaging derived anatomical and multitask functional
criteria (Glasser et al. 2016), transformed to volumetric MNI space. T1 and T2 based
anatomical criteria delineate striatum, ventral tegmental area, substantia nigra, bed
nucleus of the stria terminalis, pallidum, mammillary nuclei and the habenula (25
regions) based on (Pauli et al. 2016). T1 based anatomical criteria delineate the
cerebellar lobules, vermis and deep nuclei (denate, interposed, fastigial; 34 regions total)
(Diedrichsen et al. 2009). T1 derived tissue boundaries and white matter tractography
delineate 16 thalamic nuclei and the hypothalamus (Krauth et al. 2010). A variety of
nucleus specific functional and anatomical criteria define monoaminergic brainstem
nuclei, the rostroventral medulla, parabrachial nuclei, trigeminal nuclei, nucleus
ambiguus, nucleus tractus solitarius, tegmental nuclei, and some subdivisions thereof
(24 areas) (Zambreanu et al. 2005; Fairhurst et al. 2007; Nash et al. 2009; Sclocco et al.
2016; Pauli, Nili, and Tyszka 2018; Shen et al. 2013; Keuken et al. 2014; Keren et al.
2009; Beliveau et al. 2015; Bar et al. 2016). Functional homogeneity criteria from a
graph theoretic analysis of functional connectivity delineates remaining gross divisions of
the brainstem (17 areas) (Shen et al. 2013). Finally, anatomical criteria adapted from
post-mortem studies and included in the SPM Anatomy Toolbox subdivide hippocampal
formation into CA1, CA2, CA3, dentate gyrus and subiculum, as well as gross
subdivisions of the amygdala (superficial, latero-basal, centro-medial) (9 regions)
(Amunts et al. 2005; Eickhoff et al. 2005).

Network parcellation maps

We used two different resting state network parcellations of the cortex as source regions
for pain intensity prediction. One involves 7 networks (coarse resting state networks,
cRSN), and the other is a finer parcellation of 17 networks (fine resting state networks,
fRSN). cRSN regions are bilateral, while the fRSN regions are largely unilateral (32

regions total), and are derived in the same study sample (Yeo et al. 2011).
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Pain Pathways Map

We manually create a map by combining areas from the elementary regions map
(above) by selecting regions related to pain in previous literature (Apkarian et al. 2005;
Duerden and Albanese 2013) and regions that play important roles in non-human pain
studies. The areas included are ventral posterolateral, intralaminar and mediodorsal
thalamic nuclei, hypothalamus, parabrachial nuclei, periaqueductal gray matter (PAG),
rostroventral medulla, amygdala, dorsal posterior, middle and anterior insula, primary
and secondary somatosensory cortices, and anterior medial cingulate cortex/medial
prefrontal cortex (PFC). Regions were selected based on the prior knowledge of the
field (by T.W.D.). The map and labels are available online in the Cognitive and Affective
Neuroscience Laboratory Github repository at

https://github.com/canlab/Neuroimaging Pattern Masks/.

Neurosynth.org empirical occurrence map

Following the approach of (Wager et al. 2013), we define an empirical map delineating
regions which occur in neuroimaging studies of pain by searching neurosynth.org
(Yarkoni et al. 2011) for “pain”, and thresholded the “association test” map (a
quas-‘reverse inference” map derived from frequentist test results) at the false discovery
rate (FDR) q < 0.05.

Multivariate Pattern Analysis (MPVA): General Method Description

Multivariate patterns are fit to each hypothesis space using principal component
regression (PCR) with bayesian optimization of mean squared error (MSE) used to
select the PCR dimensions. The dimensionality search space is restricted to be between
1 PCA dimension and R PCA dimensions, where R is the rank of the training data. We
preclude intercept only models (0 PCA dimensions) a priori. Finally, we used nested
5-fold cross validation to estimate model generalization performance: 5-fold inner CV
loop (Figure 2C) are used exclusively for bayesian selection of optimal PCR dimension
(which is part of the model fitting procedure), and these are nested within 5 outer CV
loops ultimately used for evaluating model performance (Figure 2B). We estimate model
performance using Pearson correlation between predicted and observed values

computed within-subject. This means the scope of this study is limited to within-subject
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variance in pain rather than between individual differences. Subject-wise Pearson
r-values are normalized by Fisher’s z transformation. We repeat this entire nested cross
validation procedure twice to stabilize results with respect to fold slicing (2x5 repeated
k-fold cross validation). Results shown are averaged over repetitions. PCR

implementation is available at https://github.com/bogpetre/mlipcrO.

We employ MVPA in two methods: (1) in a mega-analysis which pools data across
studies and yields a single model for each hypothesis space (and an associated
performance estimate), and (2) in an analysis of the learning capacity of each hypothesis
space, which trains a separate model for each study (with seven associated
performance estimates for each hypothesis space, one for each study’s model). The
former gives us the best performing models we can obtain given our large dataset, and
tells us how well we can expect them to perform (“model generalization performance”).
The latter estimates how much can be learned from more typically sized datasets and
allows for inference to how much will be learned by new models trained in new studies

(“learner generalization performance”). Each method is described below in turn.

Bayesian hyperparameter optimization samples from the hyperparameter space (PCR
dimension) and estimates loss (MSE) at each sampled point using (5-fold) cross
validation. Gaussian process regression estimates the posterior distribution over loss
functions after each sampling using the MSE from all thus-far obtained sample
estimates, stopping after 30 iterations (our implementation’s default stop condition).
There are two major advantages to this approach over other methods like grid sampling.
First, cross validation is subject to sampling variance (different fold slicing produces
slightly different results). Gaussian process regression models this variance as noise
and takes this noise into account when selecting global optima. Second, this approach
estimates a loss function after each sampling iteration, allowing for intelligent selection of
the next best point to sample (for instance sampling in the domain which maximally
improves precision of posterior loss function estimates). We used the algorithm as
implemented in the BayesianOptimization toolbox in Matlab (Snoek, Larochelle, and
Adams 2012).

MVPA mega-analysis and model generalization performance
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We perform a MVPA mega-analysis of data aggregated from seven training studies
using nested 2x5 repeated k-fold cross validation. We train separate MVPA models for
each hypothesis space pooling data across 7 studies. All input spaces require estimation
of a PCR dimension. We estimate these dimensions in a nested cross validation loop as
described in the “General Method Description” above, however modular spaces
(elementary regions, cRSN and fRSN) require the additional selection of a best module.
We use an additional level of cross validation fold nesting for this and sample modules
exhaustively (so counting the nested 5-fold cross validation for optimization of PCR

dimension within each area, so this is ultimately a 3x nested cross validation).

The mega-analysis balances participants across studies. Our smallest study had 16
participants, resulting in random sampling of 16 subjects from each study, for a total of
112 subjects and 6668 stimulus trials. After quartiling data this results in model training

over 448 observed points.
MVPA Mega-analysis Brain Map Visualizations

This study uses bootstrap resampling to generate brain maps representative of the study

population.

Bootstrap resampling identified statistically significant voxels (uncorrected, bootstrapped
95% CI does not include 0) for multisystem predictive models (neurosynth and pain
pathways) and the full brain predictive model. Additionally, we used bootstrapping
resampling to identify significant voxels for each region, cRSN and fRSN selected as
optimal by any inner cross validation loop. For visualization we fit predictive maps to the
entire dataset (balanced across studies and subjects but not resampled), and then only

show voxels identified as statistically significant under the bootstrap analysis.

For any bootstrapped analysis it is problematic to identify the PCR hyperparameters,
namely the dimensionality of the underlying PCA. We wish to identify the relationship
between PCA dimensionality and the expected generalization performance of the
obtained PCR models, a procedure which generally relies on some form of cross
validation (see section Multivariate Pattern Analysis: General Method Description).
However, cross validation is not valid on bootstrapped samples due to likely redundancy

of some resampled observations in both training and test splits. A common approach is
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to estimate model error as a function of the hyperparameters in the original, non
bootstrapped sample, and then reuse that point estimate of the optimum dimension for
PCR in the bootstrapped samples. However, there is some uncertainty in the estimate of
the optimal hyperparameter which our Bayesian hyperparameter optimization scheme

allows us to readily integrate into bootstrapped analysis.

Bayesian optimization of hyperparameters estimates a loss function of the
hyperparameters (e.g. error = f(dimensions)) using Gaussian process regression, which
entails computing a posterior probability distribution over loss functions. This posterior
models uncertainty in the model estimate. We compute this posterior using the full
dataset, and draw an instance f* from the posterior distribution over f, which varies
according to the gaussian process model’s estimate of uncertainty in f, compute the
global minima of ¥, and use that as the hyperparameter for the bootstrapped PCR. This
method is novel, results in greater MVPA map variance across bootstrap iterations, and

more conservative bootstrap correction than typical in other MVPA studies.
Study-wise MVPA and learner generalization performance

We define the learner as the combination of algorithm (PCR) and the hypothesis space
(regional, cRSN, fRSN, pain pathways, neurosynth or full brain). For learner
performance estimates we do not aggregate data across studies, instead defining 7
non-overlapping datasets, one for each study (using the complete subject sample
available in each case, in contradistinction with the mega-analysis where subjects were
balanced across studies), and train separate patterns for each. This study-wise MVPA
uses a total of 171 subjects and 9773 trials (16-30 subjects, 256-2592 trials per study
MVPA, table 2). As for the mega-analysis, we average data within pain rating quartile
within subject, and evaluate the performance of MVPA patterns using 2x5 repeated

k-fold nested cross validation.
Bayesian hypothesis tests

We assess support for a null hypothesis using Bayes factors. Bayes factor tests are
goodness of fit ratios that compare how well one model specification vs. another
accounts for data while taking into account all possible model parameter values and their

likelihoods. In all cases where we test support for the null we first begin with a frequentist
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test which fails to reject the null, i.e. an effect of interest lacks statistical significance (p >
0.05). This constitutes the ‘alternative model’. Null models tested are all nested
instances of the ‘alternative’ model lacking this parameter which fell short of significance
in frequentist testing. Non significant parameters of interest in alternative models often
have mixed sources of error (e.g. random noise and subject or study related random
effects). In such cases we remove all factors associated with parameters of interest,
including associated random effects, in null models. Following (Jeffreys 1998), this study
considers a Bayes factor greater than 10 in favor of the null “strong” enough to confirm

the null.

We implement Bayesian models using markov chain monte carlo (MCMC) sampling
algorithms specified in the STAN programming language (Carpenter et al. 2017). The
rstanarm package efficiently and reproducibly converts our linear mixed effects model
specifications used for frequentist testing into STAN source code for null hypothesis
confirmation (Goodrich et al. 2018). We subsequently perform Bayes factor tests using
bridge sampling (Gronau, Singmann, and Wagenmakers 2017). We evaluate four
MCMC chains with a burn in of 5000 samples and subsequent drawing of 5000 samples
each, and visually confirm chain convergence by inspecting parameter trace plots and by
confirming unitary Rhat statistics. Additionally, to confirm convergence between
frequentist and bayesian model specifications we compare maximum a posteriori (MAP)
parameter estimates in null and alternative models with estimates obtained using
restricted expectation maximum likelihood as implemented by the frequentist mixed
effects modeling LME4 R package (Bates et al. 2015). This ensures models used for null

hypothesis confirmation primarily reflect the data rather than Bayesian model priors.
Mediation analysis

Mediation analyses explore MVPA derived models and facilitate their interpretation. We
use a pair of ordinary least squares (OLS) regression models to estimate regression
coefficients. First we regress an MVPA model prediction (the mediator) on stimulus
intensity and psychological manipulations (independent variables, model a) and second
we regress pain report (the dependent variable) on the mediator and independent
variables (model b). We refer to the coefficient relating the mediator to the independent

variable as a, the coefficient relating the mediator to the dependent variable as 8. The
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coefficients’ product (a*B) estimates the mediation effect. Because resultant distributions
are often highly skewed, we use bias-corrected bootstrap sampling to estimate
confidence intervals of this product (MacKinnon, Lockwood, and Williams 2004) using
5000 resamplings of subjects, at the two-tailed alpha 0.05 level. This implementation is
identical to that used by Mplus 7.11, except we resample subjects (i.e. sets of
observations) instead of individual observations in accordance with independence
assumptions underlying bootstrap tests. The resulting estimates are slightly more
conservative than equivalent parametric estimates. We also model subject fixed effects
(one constant term per subject), but because these effects do not vary across bootstrap
iterations (bootstrapping is performed between not within subjects), bootstrap
distributions for these effects are not computed. Instead, we orthogonalize dependent
and independent variables and mediators with respect to subject fixed effects (one
constant term per subject) a priori before estimation of all path coefficients. Thus, all

mediation models reflect mediation of within-subject pain variance.

We select independent variables for mediation models in two steps. First, we consider
sensitization and habituation effects as well as all experimental manipulations in a
multivariate regression analysis on pain report. Second, backwards stepwise regression
iteratively removes variables that do not significantly predict pain report. We evaluate all
remaining variables for mediation. MVPA model predictions are used as mediators, but

are not included in the variable selection process just described.

An example of our path models can be succinctly expressed in Wilkinson notation
(Wilkinson and Rogers 1973) (common to linear model specifications in matlab and R),
bearing in mind that subject intercepts are independently estimated as fixed effects here,

as follows,
model a:

brain_MVPA_prediction ~ temperature + expectation_cue + sensitization + social_cue +

percieved_control + (1 | subject)

model b:
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pain_report ~ brain_ MVPA_prediction + temperature + expectation_cue + sensitization +

social_cue + percieved_control + (1 | subject)

In this example, temperature, expectation cues, sensitization/habituation effects (note
that sensitization also encompases habituation since the two only differ in sign), social
cues and perceived control would all show statistically significant prediction of pain

report in a multiple regression.

As for our behavioral analysis (see “Behavioral Analysis” above), we quantified
mediation variance explained using the method of (Scherrer 1984). Whereas in the
behavioral analysis we used standardized regression coefficients to scale the covariance
of predicted outcome with independent variables, here we scale by the standardized
indirect path coefficients (i.e. product of standardized a and standardized g, the
coefficients of the indirect paths from models a and b, respectively). This value is
equivalent to the marginal reduction in variance explained by mediated independent
variables due to inclusion of the mediator (brain prediction) in the path b model, i.e. the

reduction in variance explained by the corresponding direct effect on pain report.

RESULTS
Characterization of factors affecting pain

Behavioral models of pain report show different experimental factors drive pain across
studies. All but one study (Study 6) have manipulations of thermal stimulus intensity
across various ranges of intensity and duration (41.1-50C, 1-11s), and all but one study
(Study 5) have psychological manipulations of pain (pain predictive expectation cues,
Studies 1-4; social cues, Study 7; romantic partner handholding, Study 6; perceived
control, Study 4). Variance in these experimental manipulations explain 51% of variance
in pain report in a balanced aggregate of data across studies (n = 112 subjects, Figure
1B, Table 3), and 71% of within-subject pain variance, however this varies substantially
between studies, ranging from primarily cognitive factors driving pain variation (Study 2)
to primarily sensory factors like thermal stimulus intensity (Study 5). This reflects
systematic differences in thermal stimulus intensity and duration as well as variation in

efficacy of non-noxious manipulations between studies. There are also endogenous
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non-experimental factors, namely sensitization and habituation effects (Table 3,
sens./habit.) or subject specific idiosyncrasies, which drive pain report and in some
cases dominate pain report variance (Study 6). Differences are expected in sensitization
and habituation effects based on the number of thermal stimuli and stimulation sites
used (Jepma, Jones, and Wager 2014), while systematic differences in pain report
across subjects will depend on the particular rating scales, calibration procedures and
instructions provided in each study. Thus, variation in factors affecting pain across
studies are consistent with underlying variations in study designs, and demonstrate how

heterogeneous these data are.

Characterization of MVPA models

Multisystem and whole brain hypothesis spaces are fixed, but modular hypothesis
spaces are flexible: any particular area might be selected to predict pain. Indeed, many
modules (51/486 elementary regions, 7/32 fRSN and 4/7 cRSN) are individually
predictive (p < 0.05 regression coefficient, cross validated predicted vs. observed pain,
random subject and study slopes and intercepts, Sidak correction for multiple
comparisons, Figure 3), and no single region stands out as most predictive, with many
regional predictions showing high sampling variance, suggesting the “best” region or
network will highly depend on the subject sample selected (median sem, region: 0.10,
fRSN: 0.10, cRSN: 0.10, z-Fisher transformed Pearson r across subjects, no random
effects, n = 112, illustrated by whiskers in Figure 3). However, an examination of the
distribution of predictive areas suggests certain trends might characterize “best” module
selection. The areas which show high predictive accuracy, while numerous, are also
systematic in their distribution in the brain, preferentially covering clusters of brain areas
that are implicated in sensory processing, motor control, orienting attention to salient
stimuli, ascending nociceptive targets in the midbrain like the periaqueductal gray (PAG)
and parabrachial pigmented area (PMP, a subdivision of ventral tegmental area), and
cortical nociceptive relays like ventral posterior medial thalamus (VPM). Additionally,
predictive regions are disproportionately in the right hemisphere, reflecting the
preferential contralateral representation of thermal stimuli delivered to the left arm (32/51

elementary regions and 5/7 fRSN right lateralized, one elementary region and all cRSN
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are bilateral). Consistent with this analysis we find high variability in module selection
across cross validation folds (Figure 4), and regions selected appear to systematically
sample from areas implicated in sensory processing and orienting responses, are
overrepresented in the right hemisphere, and show some overlap in regions which are
selected across modular spaces, with ACC regions regions appearing across hypothesis

spaces, and areas which include the insula being selected in RSN spaces (Figure 3).

Pain pathways, neurosynth and full brain models cannot vary in voxel selection across
folds the way region or network patterns do (each fold fits weights to the same voxels),
however each fold still differs in configurations of MVPA patterns. Pattern stability is
most succinctly illustrated by voxel maps of pattern weights. Bootstrapped distributions
of pattern weights across subjects show stable patterns in ACC, insular, and visual
cortices, PAG, cuneiform, parabrachial, and raphe nuclei of the brainstem, select
cerebellar lobules, and pulvinar, VPM, and ventrolateral nuclei of the thalamus
(significant percent voxel coverage in constituent regions relative to permuted null

distribution, a = 0.05 uncorrected p < 0.001).

Patterns which correlate with pain in one hypothesis space remain correlated with pain in
other hypothesis spaces, and conversely those that are anti-correlated with pain in one
hypothesis space are also anti-correlated in models obtained in other hypothesis spaces
(mean Pearson r: 0.48, interquartile range: [0.11, 0.81], 15 unique pairwise
comparisons). Thus, the result of full brain hypothesis space stability analysis largely
summarizes the most frequent patterns selected across spaces (Figure 4). For instance,
areas like ACC, insula and cerebellum with significant positive weights in the pain
pathways or neurosynth derived patterns also have significant positive weights in the full
brain pattern. Similarly, negative pattern weights in the ventromedial PFC and dorsal
attention areas of the full brain model (significant, a = 0.05) are reproduced by patterns
fit in analogous areas in the fRSN and cRSN parcels. This suggests that as we move
from spatially constrained models to spatially less constrained models we are in fact
iteratively building on prior models in a consistent way. Larger models are leveraging the
same signals as smaller models and are using them in a similar way, but also
incorporate some marginal additional information available due to the broader scope of a

larger hypothesis space. Thus, each model draws on progressively greater amounts of
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independent additive information across brain areas as we move from elementary

regions to network parcellations to multisystem and full brain patterns.

MVPA mega-analysis and model performances

Mega-analytic comparison of predictive performance across models (n = 112 subjects,
16 per study) show significant differences in model performance (F; ,, = 11.12, p =
0.021, mixed model, random subject and study intercepts, random study effects,
Satterthwaite correction for degrees of freedom (df); Figure 5A, Tables 4, 5), and the
more cortical areas a model aggregates the better its performance. Planned
comparisons show models from multisystem (a priori “pain pathways” and empirical,
neurosynth derived) and full brain spaces are more predictive on average than modular
patterns (regional, fRSN and cRSN parcellations; F, ;, = 14.9, p = 0.006). Subdividing
further, signatures derived from modular hypothesis spaces perform similarly to one
another on the one hand and on the other hand models derived from multisystem or full
brain spaces show equivalent performance with one another (mixed effects contrast not
significant, Bayes Factor in favor of the null, cRSN vs. fRSN: 14.0, roi vs. c/fRSN: 98.3,
neurosynth vs. pain pathways: 232.3, full brain vs. neurosynth/pain pathways: 42.0).
However, a statistical contrast of multisystem and full brain spaces with modular spaces
implicitly performs model averaging (average of pain pathways, neurosynth and full brain
on the one hand vs. cRSN, fRSN and elementary regions on the other), and this
complicates interpretation. For greater transparency and interpretive convenience we
also perform a post-hoc comparison of the specific difference between full brain pattern
performance (our largest model) and the elementary region’s performance (our smallest
model), and find the full brain pattern is significantly more predictive (F,,,=12.4, p =
0.008). This demonstrates the added brain tissue aggregated under the pattern weights
of our larger models carry unique pain related signals that cannot be subsumed under

more limited subsets of brain areas.

Regression of pain report on experimental manipulations shows pain signals originate
from multiple sources (Figure 1B), including temperature, expectation,
sensitization/habituation, social cues and perceived control. Additionally, experimental

manipulations and our best brain models predict similar amounts of pain variance (70%
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and 72%, respectively), suggesting brain models may reflect the effect of experimental
manipulations, so we perform a within-subject mediation analysis to evaluate which of
these pain sources are captured by our best model (Figure 6, Table 6). The full brain
model significantly mediates the effects of temperature (T, : 0.065 [0.031, 0.113],
standardized a*B [95% confidence interval], 12% mediated), expectation (exp,,,: 0.030
[0.010, 0.060]), 12% mediated), and habituation effects on pain report (habit, . -0.022
[-0.051, -0.004], 10% mediated). However the full brain model does not fully capture
these effects since direct effects remain significant in all cases (T: 0.471 [0.388, 0.577],
partial-r? = 0.34; exp: 0.227 [0.148, 0.302], partial-r* = 0.14; social: 0.212 [0.177, 0.268],
partial-r* = 0.06; habituation: -0.139 [-0.211, -0.072], partial-r> = 0.08; control: -0.073
[-0.162, -0.001], partial-r* = 0.01; brain: 0.189 [0.107, 0.276], partial-r> = 0.1). Brain
model predictions mediate the effects of experimental manipulations because predictions
= 0.07, Figure 6 “a*B” inset),

but brain model predictions also contain additional unique information (brain

share variance with the manipulations (brain partial-r?

mediation

partial-r? = 0.03, ‘model b’ total brain partial-r* = 0.10). This shows our full brain

unique
model captures multiple dimensions of pain report, in proportions representative of their
overall effect on experimental pain, but misses the effects of some variables (social cue
and perceived control) while predicting something which cannot be explained by

experimental manipulations alone.

Learner generalization performance

Although the above mega-analysis and associated mediation analysis provides an
estimate of expected predictive performance for our models in novel data, and informs
the sources of information these models capture, it does not show if multisystem and full
brain hypothesis spaces will systematically confer an advantage in pattern training in
general. To establish whether multisystem and full brain patterns in general (rather than
the specific patterns obtained here) outperform modular models developed in new
datasets, we evaluate learner performance across individual studies (n = 16-30 subjects
each, 7 studies, 171 subjects total). Regardless of a study’s design or experimental
manipulation there is a systematic tendency for patterns trained on multisystem and full

brain hypothesis spaces to outperform patterns trained on modular hypothesis spaces
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(Fi64=9.04, p =0.022, mixed model, random subject and study intercept, random study
effects, Satterthwaite df correction; Figure 5B, Tables 4, 5). It is important to stress that
this is a stronger claim than the results of the mega-analysis since it shows more will be
learned in a formal sense by allowing pain representation to span multiple brain systems
than by adopting a localized perspective, and we quantify precisely how much more
(Tables 4, 5). For instance, the best region approach only explains 81% of the signal

represented by the full brain (ratio of r?).

Mediation analysis of study specific models does not show any significant mediation
effects (Study 7 social mediation p < 0.1, Study 2 temperature mediation p < 0.1, all
others p > 0.1), however this might be due to lack of power in small samples, so we pool
each prediction obtained from each study’s full brain model and perform a within-subject
mediation analysis across studies (Table 6). Backwards stepwise regression of all
experimental manipulations shows significant effects for temperature, expectation, social
cue, perceived control and sensitization/habituation, so all are evaluated for mediation
by the full brain models’ predictions. Temperature and expectation show significant
partial mediation (T, ,: 0.129 [0.088, 0.175], 23% mediated; exp,,,: 0.028 [0.005, 0.056],
13% mediated), while temperature, expectation, social cues, and habituation show
significant direct effects on pain report (T,: 0.429 [0.353, 0.510], partial-r"= 0.31; expy;:
0.192 [0.122, 0.259], partial-r* = 0.10; social,: 0.221 [0.188, 0.251], partial-r*= 0.06;
habit,,: -0.149 [-0.207, -0.092], partial-r* = 0.06) while controlling for brain predictions
(braing,: 0.253 [0.186, 0.315], partial-r*: 0.16, partial-r’ _....: 0.12, partial-r* . .: 0.04).
These results mirror those found in the mega-analysis (Figure 6, Table 6), albeit with
perhaps a greater bias towards capturing pain over expectation or habituation effects. It
may not be possible to understand which specific experimental factors are mediated by
multivariate models in any particular study. Nor is it possible to distinguish whether any
individual model captures multiple factors simultaneously, or if models obtained from
different studies rather differ in the factors they mediate. However, these results do show
that representations of multiple distinct dimensions of pain experience are learned
across multiple applications of these models, meaning distinct sensory and cognitive
pain modulating signals are successfully captured by multisystem spaces in a general

sense.
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Validation

We validate both model and learner generalization performances by evaluating 3 studies
which once again differ in experimental design, but which we have not used for model
training or obtaining estimates of model or learner performances up to this point.
Variability in model performances across validation studies fits estimates of variability in
model performance well, suggesting our models are well calibrated (Figure 7A, 95%
confidence interval (Cl) estimates: gray violin plots, observed: connected dots). We also
inspect significant planned and post-hoc comparisons from the model development
stage in the validation studies, and find validation data falls within the range of expected
effect sizes for multisystem and full brain vs. modular comparisons but not brain vs.
elementary region comparisons. Multisystem and full brain models show significantly
better predictions than modular models (F, 5,5 = 11.9, p = 0.0006, mixed model, fixed
study effects, random subject intercept, Satterthwaite df correction), and while full brain
predictions are not significantly different from elementary region predictions in the
validation data (p = 0.68, BF = 3.3e4 in favor of null), in absolute terms full brain
predictions still perform better than regional models on average across validation sample
subjects. Both contrasts found to be significant for learner generalization performance
and validation data fall within the expected range for all significant planned and post-hoc
contrasts (multisystem and full brain vs. region, cRSN, fRSN: F, .., = 38.2, p < 1e-8;
brain vs. region: F, ;s = 5.6, p = 0.02; Figure 7B). These comparisons serve as a sanity
check on the cross validated estimates of model and learner performance and confirm
the validity of inferences drawn: in novel subjects and experimental designs multisystem
and full brain models will systematically outperform more spatially constrained and

targeted models of pain intensity.

DISCUSSION

This study investigates whether pain representation is best characterized as a localized
signal within a discrete module, a distributed signal across multiple brain systems, or if it

is represented throughout the brain. In a mega-analytic sample of subjects pooled
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across seven studies we find multisystem and whole brain models best decode evoked
pain. However, models trained on the full brain show no advantage over models trained
on multisystem spaces, suggesting the latter have already subsumed all uniquely
informative signals, while the elementary region account emerges as a surprisingly good
approximation of overall pain representation. Followup comparisons of such models
trained separately for each study support identical conclusions, showing these results
will generalize to new models which might be learned from novel subjects, experimental
designs and studies. These results are consistent with a tripartite theory of pain
representation (R. Melzack and Casey 1968) which entails a pain “neuromatrix”
distributed across sensory, limbic and prefrontal brain areas, but build on prior studies by
formalizing both the scope of information representation and its configuration across a
diverse collection of task conditions while generalizing to heterogeneous evoked pain
experiences. We thus demonstrate evoked pain is represented preferentially by specific

brain areas but is nevertheless better seen as spanning multiple brain systems.

Unlike traditional univariate approaches which focus on localizing brain activity in
response to a stimulus, the multivariate predictive models we employ are formal models
which map a specific configuration of brain activity to a construct of interest (Kragel et al.
2018). Multivariate modeling has been successfully applied to predict pain intensity,
analgesic drug efficacy (Wager et al. 2013), pain reappraisal (Woo et al. 2015), and
distinguish physical pain from social (Koban et al. 2019) and vicarious pain (Krishnan et
al. 2016), often by making liberal judgments about the spatial extent of pain
representation. We formally define spatial scales largely according to established
biological gradients in anatomy and function (elementary regions, cRSN and fRSN, pain
pathways), or a meta-analytic area representative of the neuroimaging findings of the
field (neurosynth). Preliminary systematic attempts to investigate spatial scale have
suggested pain is distributed throughout the brain (Kragel et al. 2018; Brodersen et al.
2012; Brown et al. 2011), but due to methodological and design limitations do not fairly
compare across spatial scales, especially network or multisystem scales, or allow for
inference to new individuals or diverse experimental conditions. Our application of
MVPA across nested scales in a large dataset, spanning multiple experimental

paradigms, allows us to characterize the architecture of evoked pain in a general sense.
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Despite the strengths of multivariate brain models, this study moves beyond multivariate
modeling to estimate the scope of information content. We operationalize “brain
information content” as what can be learned in general rather than any particular
instance of learning. Focusing on abstract information content benefits from the
strengths of machine learning which is optimized to make accurate predictions by
maximally exploiting available information even when the underlying generative
processes cannot be recovered (Naes and Martens 1988; Geman, Bienenstock, and
Doursat 1992). However, directly generalizing from a particular model’s performance to
new models which might be learned is notoriously problematic (Bengio and Grandvalet
2004). Our mega-analysis yields specific multisystem models which outperform specific
regional and network models when applied to new studies and subjects. Validating these
models through direct application to novel datasets (without model retraining) illustrates
the rigid scope of this and traditional MVPA approaches. We circumvent the problems of
using a model instance to estimate the learning capacity of a class of models by simply
examining performance of independent models retrained for each study separately (i.e.
42 different models, 6 hypotheses, 7 studies), following precedent established in
machine learning (Dietterich 1998; Boulesteix et al. 2015), and applications in genomics
(de Souza, de Carvalho, and Soares 2010). Variability in model performances across
studies informs the performance of new unseen models trained on unseen new subjects
in new studies, and quantifies the information content which can be recovered at each
scale across experimental contexts in a practical sense. We successfully validate these
estimates and illustrate the broader nature of this claim by training new models in new
studies on new subjects and obtaining an identical performance hierarchy favoring
multisystem models. This provides a blueprint for exploiting large heterogeneous
datasets to practically quantify information content in the brain, one which can just as

readily be applied to other brain phenomena besides pain.

Although our work primarily supports a multisystem representation of pain, local
perspectives have also been advanced, and our findings support the notion that specific
regions have a privileged role in pain representation. Different subregions of mostly
ACC, insula, midbrain and cerebellum significantly predict pain on their own. Previously
some of these areas have been suggested to be pain specific (a24pr) (Lieberman and

Eisenberger 2015) or “fundamental” to pain (OP1) (Segerdahl et al. 2015b) (regions
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labeled using the scheme of (Glasser et al. 2016)). Substantial evidence indicates
cingulate and insular cortex represent parallel pain pathways mediating distinct
dimensions of pain experience. Cingulate cortex receives nociceptive afferents from
medial dorsal thalamus (Meda et al. 2019; Sikes and Vogt 1992; Yamamura et al. 1996)
(predictive here with p = 0.02, uncorrected, fails correction for multiple comparisons),
has a history of neurosurgical use in relieving pain affect (Foltz and White 1962; Hurt
and Ballantine 1974) and responds preferentially to affective experimental pain
manipulations (Rainville et al. 1997; Vogt, Berger, and Derbyshire 2003). Conversely,
posterior insula has traditionally been associated with sensory-discriminative dimensions
of pain. It receives nociceptive afferents from VPM thalamus (Craig 2014) (significantly
pain predictive here), evokes pain upon intracranial stimulation (Mazzola et al. 2012) and
insular lesions increase pin-prick pain thresholds (Greenspan, Lee, and Lenz 1999).
Convergence between our results and prior studies primarily concerned with regional
hypotheses allows our findings to put such studies in a quantified context. We show
many brain regions may predict pain with high sensitivity depending on the experimental
conditions and sample of subjects observed, but there is substantial unique information
elsewhere in the brain (24% more in the full brain vs. best elementary region) which

regional interpretations of pain fail to capture.

Resting state network modules also predict pain intensity, especially somatomotor,
salience and attention networks. Salience networks respond to painful stimuli (Seeley et
al. 2007; Downar et al. 2000; Legrain et al. 2011; Mouraux et al. 2011), leading to
interpretations of pain as an orienting response (Baliki and Apkarian 2015). Consistent
with this view, we also find default mode network (DMN) deactivation is additionally
selected to predict pain across cRSN cross validation folds. The DMN comprises brain
areas that are active at rest and implicated in internal monitoring (Andrews-Hanna 2012;
Raichle et al. 2001), but proportionally deactivated in response to tasks which engage
attention, including pain (Loggia et al. 2012). These results echo network level
interpretations of pain, but our brain network parcels of pain are no more pain predictive
than elementary region models, correlate with regional pattern maps, and the salience
and somatomotor regions selected most frequently show substantial overlap with

individually predictive insular and cingulate elementary regions. This indicates that the
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best a salience network (or any other network) model of pain can hope for is to

recapitulate the information already present in the best constituent elementary region.

Multisystem and full brain patterns are the most pain predictive in this study, and provide
the greatest model learning capacities. This advantage suggests pain is represented by
independent multisystem brain signals, likely constrained to the conjunction of
multisystem and full brain models since the full brain shows no unique predictive
advantage. Mediation analysis of the full brain predictions indicates mechanisms of
temperature and expectation modulation of pain may offer additional guidance.
Converging evidence implicates anterolateral, midbrain and cerebellar brain systems in
cognitive evaluation, more posterolateral areas in detection of physical stimulus
properties, and thalamic and frontal midline regions in both cognitive and physical
evaluation of painful stimuli (Kong et al. 2006; Ploner et al. 2011; Ernst et al. 2019;
Keltner et al. 2006; Rainville et al. 1997; Seminowicz, Mikulis, and Davis 2004; Ji et al.
2010; Wager et al. 2004; Atlas et al. 2012; Woo et al. 2015), with specific evidence of a
double dissociation of expectation and stimulus intensity effects along the
anteroposterior axis of the insula (Geuter et al. 2017; Frot, Faillenot, and Mauguiére
2014). Although characterizing the diversity of pain information in the brain exceeds the
scope of this study, this was precisely the scope of (Atlas et al. 2010) and (Atlas et al.
2014) who use Study 2 and Study 5 (respectively) to identify expectation mediators in
dorsolateral PFC, amygdala, pons, and dorsal striatum, thermal stimulus mediators in
somatomotor areas and cerebellum, and mediators of both components in dorsal ACC,
anterior insula and thalamus. This illustrates the spatial distribution of multidimensional
pain signals in our dataset broadly consistent with theoretical conceptions of a pain
“neuromatrix”, and lends support to the notion that multisystem models subsume,

integrate and expand upon a diverse constellation of unique regional signals.

Several studies suggest traditional methods of functional localization may miss subtle
representations within and across brain areas, and that pain representations might be
embedded in areas typically associated with unrelated processes (Haxby et al. 2001;
Liang et al. 2013). We hoped the full brain hypothesis space would allow our models to
capture traditionally overlooked signals, but the failure of full brain models to outperform
multisystem models suggests any such exotic signals are redundant with what’s already

captured by the multisystem representations. However, capturing full brain
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representations necessarily requires the greatest model complexity, and therefore is
most sensitive to sample size. Additionally, our approach was not optimized to recover
fine grained signals which are often obscured by functional heterogeneity across
individuals (Haxby et al. 2011). Thus, we cannot rule out the ability of different analytic
approaches or larger samples to better leverage full brain information. Whether evoked
pain is represented throughout the brain rather than across a multisystem subset of

areas remains an open question.

We use MVPA models of pain representation at six spatial scales, estimate their
performance, and validate these estimates to show multisystem models best represent
pain. We then generalize our conclusions to novel models trained in novel studies, and
validate these conclusions as well. In the face of current gyrations between local and
global perspectives of pain, our results illustrate the extent to which the neural basis of
pain can be localized, that it is best captured by distributed signals spanning multiple
brain systems, and provide a blueprint for quantifying information content in the brain

across diverse neural phenomena.
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Study participants overview
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(BMRK4) 2016)

Study 2 17 9F* 255 (Atlas et al. 2010)
(EXP)

Study 3 16 9F 25.9 (10.0) (Jepma et al.

(IE2) 2018)

Study 4 29 16F* 20.4(3.3)* (Woo et al. 2017)
(ILCP)

Study 5 26 9F 27.8 (Wager et al. 2013;
(NSF) Atlas et al. 2014)
Study 6 30 30F 24.5 (6.7) (Lopez-Sola et al.
(Romantic 2019)
Pain)

Study 7 25 11F 27.4 (8.8) (Koban et al. 2019)
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Study V2 45 25F 24.7 (7.1) (Roy et al. 2014)
(IE)

Study V3 40 OF 26 [19,40]*** (Geuter et al.
(Placebo) 2013)

* gender of one participant unknown, ** age of one participant unknown. ***standard
deviation unavailable, range provided instead
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Table 2.
Study stimuli overview
Stimulus Stimulus | Stimulus | Thermode | Trials Other experimental
Intensity Duration | Location Size per manipulations
(°C) (mm?) Subject
Study 1 44 5-48.5* | 11s L forearm, | 16 81 Learned
(BMRK4) L foot heat-predictive
visual cues
Study 2 41.1-471 | 11s L forearm | 16 64 Learned
(EXP) heat-predictive
auditory cues
Study 3 48, 49 1s L forearm | 27 70 Learned
(IE2) heat-predictive
visual cues
Study 4 45, 47 10s L forearm | 16 64 Perceived control,
(ILCP) learned
heat-predictive
visual cues
Study 5 40.8-47.0 |11s L forearm | 16 48 Masked emotional
(NSF) faces
Study 6 47 11s L forearm | 16 16 Romantic partner
(Romantic handholding
Pain)
Study 7 48,49,50 |2s R calf 27 96 Unlearned visual
(SCEBL) expectation cue
Study V1 | 44.3,45.3, [ 12.5s L forearm | 16 97 Cognitive
(BMRK3) [46.3,47.3, self-regulation of
48.3,49.3 pain (reappraisal)
Study V2 | 47.4* 4s L forearm | 16 48 Learned
(IE) heat-predictive
visual cues,
placebo
Study V3 | 46.4* 20s L forearm | 30 60 unlearned visual
(Placebo) cues placebo

*Variable across participants. Mean across subjects shown
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Table 3.

Study behavioral factors overview. Regression model coefficients (Figure 1B) shown.

T Sens./Habit. Cognitive
Study wii b/t Expect. | Social | Hand- | Perceive | Placebo | Placebo
Site Site Cue Cue | holding | d Control value
Study 1-7 [ 1.009 |[-0.369 |ns 0.203 |0.176 [ns -0.153
Aggregate | (0.06) | (0.06) (0.03) |(0.03) (0.07)
Study 1 | 0.826 |ns ns ns
(0.04)
Study 2 | 0.386 |-0.137 |ns 0.648
(0.10) |(0.03) (0.07)
Study 3 | 0.239 |ns ns 0.489
(0.06) (0.06)
Study 4" | 0.774 |-0.345 | ns ns ns

(0.05) | (0.04)

Study 5 [ 1.178 |ns 0.113

(0.05) (0.04)
Study 6 ns ns -0.169
(0.07)
Study 7 | 0.532 |ns ns 0.437
(0.05) (0.05)
Study V1* [0.840 |ns -0.183
(0.06) (0.05)
Study V2 [0.576 |[ns ns ns ns
(0.03)
Study V3 0.540 |ns -0.375 -0.159
(0.05) (0.05) (0.05)

Standardized coefficients (s.e.m.), regression of quartiled pain report with (unlisted)
subject fixed effects. b/t, between. w/i, within. p < 0.05, all effects shown. ns,
nonsignificant, excluded from model. blank cell, invariant or absent factor."*Unique

unlisted non-significant factors (fmasked emotional facies, *cognitive self regulation)
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Table 4.
Model and learner performance across hypothesis spaces (figure 5a-b)
Model performance Learner performance
Hypothesis r-value' [Cl, o] df r-value’ [Cl, o] df
Space
Region 0.507 6.58 0.636 6.42
[0.31, 0.67] [0.37, 0.81]
fRSN 0.413 6.70 0.641 6.01
[0.18, 0.60] [0.28, 0.84]
cRSN 0.545 6.24 0.701 6.23
[0.24, 0.76] [0.82, 0.86]
Pain Pathways | 0.623 6.17 0.773 6.12
[0.34, 0.80] [0.49, 0.91]
Neurosynth 0.661 6.08 0.806 6.18
[0.31, 0.85] [0.54, 0.93]
Full Brain 0.718 6.13 0.788 6.25
[0.43, 0.87] [0.54,0.91]

TCross validated model performance (Pearson-r) within-subject is normalized by z-fisher
transformation and modeled using a mixed effects design (random subject intercept,
random study intercept and slope). Inverse z-Fisher transformed model coefficients and
Cl shown. Cl, 45, 95% Confidence Intervals. df, degrees of freedom estimated using

Satterthwaite's correction.
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Table 5.
Contrasts of hypotheses spaces across model and learner performances (figure 5a-b)
Contrast’ | Model performance contrast Learner performance contrast
z(r)* df p-value z(r)* df p-value
(s.e.m.) (s.e.m.)
multisys - | 0.272 6.88 0.006* 0.275 6.13 0.022*
local (0.07) (0.09)
brain - 0.141 18.63 0.059 -0.004 9.79 0.959
(NS & (0.07) (0.08)
PP)
NS - PP 0.065 13.36 0.459 0.088 13.22 0.325
(0.09) (0.09)
cRSN - 0.173 10.51 0.088 0.111 6.86 0.293
fRSN (0.09) (0.10)
region - 0.034 6.45 0.713 -0.063 6.17 0.607
c/fRSN (0.09) (0.12)
brain - 0.344 7.92 0.008* 0.316 5.23 0.034*
region (0.10) (0.11)
(post-hoc)

TPerformance contrasts are modeled using a mixed effects design (random subject
intercept, random study intercept and slope). *z-fisher transformation of cross validated
model performance (within-subject Pearson-r). df, degrees of freedom estimated using

Satterthwaite's correction. NS, neurosynth; PP, pain pathways. *p < 0.05
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Table 6.

Mediation model (standardized) coefficients and 95% confidence intervals (Figure 6)

Factor Using Full Brain Model Prediction | Using Full Brain Learner Prediction

a B a*B a B a’B

Temperature | 0.346* 0.463* 0.065* 0.508" 0.429" 0.129"
[.21,.49] | [.38,.57] | [03,.11] | [40, .61] | [.35, .51] | [.09, .17]

Habituation -0.10* -0.182* | -0.019* | -0.078" | -0.149t | -0.020
[-.21,-.00] | [-.26,-.11] | [-.05, -.00] | [-.16, -.01] | [-.21, -.09] | [-.04, -.00]

Expectation 0.16* 0.226* 0.030* 0.111f 0.192 0.028"
[.05,.27] | [15,.30] | [.01,.06] | [.01,.21] | [12,.26] | [.00, .05]

Control 0.042 -0.073* 0.008 -0.007 -0.060 -0.002
[-.09, .14] | [-.16,-.01] | [-.02,.03] | [-.10, .07] | [-.13, .01] | [-.03, .02]

Social 0.04 0.208* 0.000 0.037 0.221 0.009
[-.08,.07] | [17,.26] | [-.01,.02] | [.01,.09] | [19, .25] | [-.00, .03]

Brain - 0.187* - - 0.254" -

[.11, .27] [.19, .32]

*Tp < 0.05, bias-corrected bootstrap confidence interval, 5000 repetitions. Factors
included based on statistical significance in multiple regression on pain (t-test, p < 0.05).

All parameters and statistics estimated while modeling subject fixed effects (not shown).
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Figure 1 Study design. (A) Each experimental design involves a succession of thermal
boxcar stimuli delivered at variable but finite intervals over a succession of fMRI
sessions. A cue or task designed to affect pain intensity precedes the stimulus in many
designs, for example a pain predictive cue designed to heighten or reduce pain
experience. Thermal stimuli vary in intensity and are mostly delivered to the left ventral
forearm as illustrated. Cues vary across studies and are uncorrelated with stimulus
intensity. After each stimulus subjects rate their pain intensity using a visual scale. For
details on each design, refer to Table 2. (B) Pain ratings reflect a variety of influences on
pain experience. Wedges show the proportion of variance explained by each factor for
each study individually and across all studies (excluding validation studies, balancing
subjects across studies). Since fMRI data is quartiled for computational tractability, and
z-scored for between study normalization, this data is also quartiled and (in the
aggregated data) z-scored prior to regression analyses. The sum of wedges equals
model variance explained. Residual model error is not shown, but would merely
complete the circles. We do not model subject fixed effects for MVPA but we display
them here to better characterize non-experimental sources of pain variability. See Table
3 for standardized regression coefficients. lllustrated arm adapted from Da Vinci’s

Vitruvian man (da Vinci ¢ 1492).

Figure 2 We test six different hypotheses regarding the scope of pain representation
using cross validated principal component regression (PCR). (A) Three hypotheses (top
row) test whether the BOLD signal of a single functionally homogeneous area best
represents pain, and propose three homogenous area parcellations. Three additional
hypotheses (bottom row) contend the BOLD signal of a set of distributed and functionally
heterogeneous areas best represents pain. Proposed areas are illustrated. (B) We test
each hypothesis based on cross validated MVPA predictions of pain intensity. We use
principal component regression (PCR) to learn a model from hypothesized areas. We
estimate model performance using 5-fold cross validation, training models on data
averaged within pain intensity quartiles (smallest squares) for each subject (4x squares
and one color per subject). Subject data is not fragmented across folds (shown), and
studies are balanced across folds (not shown). We estimate model performance using

within subject Pearson correlation of predicted and observed ratings. (C) The model
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fitting algorithm selects optimal model hyperparameters to minimise mean squared error,
which it estimates using nested cross validation folds. In the case of multiarea
hypotheses (A, top row), the algorithm treats region selection as a hyperparameter, and
identifies a single best region for each outer fold (folds illustrated in B). This region may
differ across outer cross validation folds. Principal component regression dimensionality
is optimized by estimating expected mean squared error in an additional innermost cross
validation loop (3 levels of nested folds). In the case of distributed area hypotheses (A,
bottom row), the algorithm only performs the latter step (2 levels of nested folds). PCR

hyperparameter optimization folds are not illustrated.

Figure 3 Numerous brain areas yield models with significant pain decoding capabilities,
but prediction accuracy varies considerably across participants (s.e.m. whiskers shown,
n = 112). Predictions from 51 elementary regions, 7 fRSN and 4 cRSN correlate
significantly with pain report (shown; a = 0.05, twice repeated 5-fold cross validated
predictions modeled with random subject and random study effects, Sidak correction for
multiple comparisons, effective p < 10e-4). This means the “best” region, cRSN or fRSN
will be highly dependent on the subject sample examined (and will differ across folds in a
cross validation scheme). Regions color coded by contiguous areas. cRSN and fRSN

colored by individual network parcels.

Figure 4 Machine learning yields brain models of pain response which can be
interpreted as nested models which draw on increasing amounts of unique information.
Modular hypotheses (regional, fRSN and cRSN) vary in region selection across folds.
Bar graphs illustrate area selection incidence, which is highly variable across folds,
consistent with a large number of highly predictive regions and network parcels.
Bootstrap corrected maps are computed for all regions to characterize pattern stability
across folds, since patterns will vary even if different folds select the same region
(although most modules are only selected once). Representative maps are shown.
Wedge plots summarize maps in terms of net pattern weight of bootstrap corrected
maps (red: positive vs. blue: negative) and percent of pattern that survives bootstrap
correction (wedge radius; gray: highly unstable patterns, no significant bootstrap voxels).
Multisystem and full brain patterns are summarized only in terms of bootstrap corrected
maps. While the relatively low number of significant weights suggests low model stability

with respect to subject samplings, a pattern spatial similarity matrix illustrates the
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relatively high stability of weights across model families (only conjunction of bootstrap
corrected voxels considered). Across all six model families we commonly observe frontal
midline deactivations, and cingulate, insular and cerebellar activations, supporting a
nested hypothesis space interpretation. 5008 bootstraps, voxel-wise p < 0.05,

uncorrected. Outlines illustrate unthresholded model boundaries.

Figure 5 Multisystem and full brain representations of pain perform better than modular
representations of pain in a 2x5 repeated cross validation test of generalization
performance. We Fisher z-transform within subject correlation coefficient (predicted vs.
observed) to quantify performance. (A) All obtained models show significant predictive
performance (p < 0.004, random subject and study intercept, random study effect), and
the specific models obtained here to predict pain using distributed sets of brain areas will
outperform the models trained on individual modules (planned comparison,
mean(PainPathway, Neurosynth, FullBrain) - mean(regions, fRSN, cRSN) = 0.272(0.07),
F. 60 =14.9, p=0.0064). We confirm the nullity of remaining planned contrasts (Bayes
factor, BF > 10 favoring the null). Post-hoc comparison shows a full brain model
outperforms the best single region (FullBrain — Regions = 0.34(0.10), F,;,,=12.35,p =
0.008). Models are trained after pooling data across seven datasets, yielding 90 subjects
per training fold. (B) We retrain cross-validated models separately for each study to infer
whether findings generalize to new PCR models trained on new datasets. All obtained
models show significant predictive performance (p < 0.001, random subject and study
intercept, random study effect), but comparison of performance across models from
each study shows that distributed representations will continue to outperform modular
representations (planned comparison, mean(PainPathway, Neurosynth, FullBrain) -
mean(regions, fRSN, cRSN) = 0.27(0.09), F, ;, = 9.04, p = 0.022). Remaining planned
contrasts are null (BF > 10). Post-hoc comparison shows training on the full brain will
result in better performance than training on elementary regions (FullBrain — Regions =
0.32(0.11), F, 5, = 7.96, p = 0.034). Training set sizes = {22, 14, 13, 23, 21, 24, 20}
subjects, resp. All effects estimated with subject-wise repeated measures and random
study effects. Mean within study effects overlaid as colored dots. Gray brackets:
nonsignificant planned comparisons; black bracket: significant planned comparison;

dashed bracket: significant post-hoc comparison. Contrasts enumerated across
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brackets. *p < 0.05, *p < 0.01, “confirmed null. Mixed effect degrees of freedom

estimated using Satterthwaite’s approximation. s.e.m error bars.

Figure 6 Multisystem models capture brain correlates of both sensory (red, orange) and
cognitive (blue) influences on pain report. Five experimental factors show significant
effects on pain report: temperature, habituation, perceived control (control), expectation
and social cues (multivariate regression, fixed subject effects, p < 0.05). However, the
cross validated (CV) full brian model predictions also significantly correlate with pain
outcome (scatter plot), and temperature, habituation and expectation in turn significantly
correlate with these full brain model predictions (a, standardized multivariate regression
coefficients; Model a pie chart show partial-r?, color coded by factor). Finally, the full
brain model continues to significantly predict pain outcome (8) even while controlling for
experimental factors (7). This suggests temperature, habituation and expectation effects
are captured by the full brain model. Multivariate mediation analysis supports this
explanation showing both significant indirect (mediated, a*(), and direct (1) effects on
pain report, with additional significant direct effects from perceived control and social
cues. Together, these factors and the full brain model predictions explain 72% of pain
variance (Model b r?, subdivided by color coded categories in pie chart; gray: brain
model predictions). Of the 10% of variance explained apportioned to the brain
predictions in multivariate analysis (model b pie chart), 7% represents mediated
temperature, expectation and habituation effects (a*@ pie chart insert, subdivisions
rounded to nearest percent), however brain model predictions also explain some unique
variance (residual gray wedge in insert). Together these results show multisystem brain
models capture a multidimensional pain experience. Nearly identical conclusions are
supported by full brain learner predictions (, table 6). Standardized path coefficients
shown. All parameter estimates computed after removing subject fixed effects. *p < 0.05,
in models using full brain model predictions (shown). Tp < 0.05 in models using full brain
learner predictions. Bias corrected bootstrap test for non-zero a, 8, 1, and a*@. For

details refer to table 6.

Figure 7 Distributed representations continue to outperform modular representations in
validation datasets, consistent with obtained estimates of generalization performance.
(A) All models fit to the 7 study dataset significantly predict pain in novel data, except for

3 models in 3/21 cases (p < 0.05, left, only non significant results labeled, Holm-Sidak
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corrected). Performance in validation data continues to be significantly better for
multisystem and full models relative to modular models in validation studies 1 and 2
(mixed effects model, random subject intercept, F, = 12.6, p < 10e-3; F, ,,, = 11.8, p <
10e-3; resp.) as well as overall (mixed effects model, random subject intercept, fixed
study effects, F, 5,5 = 11.9, p < 1e-3), however the full brain model does not show better
performance than the best elementary region model specifically (BF = 3.3e4 in favor of
null; right, only significant results indicated). (B) Nevertheless, retraining all six families of
algorithms in novel data reproduces both findings that full brain and multisystem
representations predict more pain than modular representations and the finding that a
full brain model specifically will outperform any single best region. In a 2x5 repeated
cross validation scheme all models separately retrained for each study successfully
predict pain, except for 2/21, specifically in validation Study 1 (left, only non significant
results labeled, Holm-Sidak corrected), however full brain and multisystem models
significantly outperform modular models in validation Studies 1 and 2 (mixed effects,
random subject intercept, F, ,;, = 15.0, p = 0.0002; F, ,,, = 28.4, p < 1e-6; resp.) and
overall (mixed effects, random subject intercept, fixed study effects, F, ., = 38.1, p <
1e-8 ). Additionally, the full brain models specifically outperform the best elementary
region models in Study 2 (mixed effects, random subject intercept, F, ,,=10.1, p =
0.0027) and overall (mixed effects, random subject intercept, fixed study effects, F, s =
5.59, p = 0.020; right, only significant results indicated). BF, Bayes factor. *p > 0.05 (not
significant), *p < 0.05, **p < 0.01, ***p < 0.001, “BF > 10, “strong” evidence of null. Gray
bars previously shown in figure 4. Error bars: SEM, random subject intercepts, random

study (gray bars) or fixed study (otherwise).
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Figure 1
A. Example Design B. Studies capture heterogeneity in pain experience
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Figure 2

A. Hypothesis Spaces
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Figure 3

Region prediction vs. observed pain
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Figure 4

Models share spatial pattern similarities across hypothesis spaces
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Figure 5

A. Model performance estimate
Main effect: F(5,11) = 11.12, p =0.021
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Figure 6

Full Brain Model Prediction
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Figure 7

A Validation of model performance estimates and hierarchy
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