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Abstract 41 

Pheromones are used by many insects to mediate social interactions. In the highly eusocial 42 

honeybee (Apis mellifera) queen mandibular pheromone (QMP) is involved in the regulation 43 

of reproduction and behaviour of workers. The molecular mechanisms by which QMP acts 44 

are largely unknown. Here we investigate how genes responsible for epigenetic modifications 45 

to DNA, RNA and histones respond to the presence of QMP. We show that several of these 46 

genes are upregulated in the honeybee brain when workers are exposed to QMP. This 47 

provides a plausible mechanism by which pheromone signalling may influence gene 48 

expression in the brain of honeybee workers. We propose that pheromonal communication 49 

systems, such as those used by social insects, evolved to respond to environmental signals by 50 

making use of existing epigenomic machineries. 51 
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1. Introduction 57 

The transition to social living in the eusocial insects required that the reproductive interests of 58 

individual workers be subsumed by the collective interests of the colony [1–3]. In particular, 59 

workers are functionally sterile, whereas queens are highly fecund [4]. For such systems to 60 

evolve it was also necessary that tasks can be distributed among workers in ways that 61 

enhance colony-level productivity [5–8]. Both, the regulation of worker fertility and the 62 

efficient allocation of tasks among workers required the evolution of effective inter- and 63 

intra-caste communication systems that can rapidly respond to the changing needs of the 64 

colony. Communication between nestmates most often occurs via pheromones [9,10], 65 

chemical signals that are produced by one individual, and cause changes in the behaviour or 66 

physiology of another [11,12].  67 

In the western honeybee (Apis mellifera) a key pheromone is the queen mandibular 68 

pheromone (QMP), which is a blend of fatty acids secreted by the head glands of the queen. 69 

It affects several important traits of workers, including their reproduction [13], retinue 70 

response to queens [14,15], learning capacity [16], nestmate recognition [17] and age at onset 71 

of foraging [18]. Phenotypic variation in these traits is associated with differential gene 72 

expression in the brains of workers [19,20]. Nonetheless, little is known about the 73 

intermediate steps between QMP production and release by the queen, the regulation of gene 74 

expression in workers, and changes in their behaviour [21–24].  75 

Epigenetic mechanisms are a likely mediator between a worker’s social environment 76 

and global gene expression responses [25]. Several classes of epigenetic mechanism 77 

described in honeybees are potentially associated with environmental cues [26–29]. For 78 

example, DNA methylation, a reversible chemical modification of cytosines in CpG contexts, 79 

is associated with behavioural maturation in the brains of honeybee nurses and foragers 80 

[30,31]. DNA methylation is catalysed and maintained by the DNA methyltransferase 81 

(DNMT) family of enzymes [32,33]. Interestingly, in honeybees, the expression of genes 82 

associated with the maintenance of DNA methylation levels after DNA replication (Dnmt1a 83 

and Dnmt1b) are modulated by different social stimuli to Dnmt3, an enzyme that establishes 84 

DNA methylation patterns de novo [25,34–36]. In addition, the expression of Dnmt2 (also 85 

called Trdmt1), a gene whose enzyme product methylates RNA substrates [37], is affected by 86 

different social contexts [25,30]. These studies suggest that epigenetic machineries associated 87 

with nucleotide modification are affected by several environmental cues. 88 

Another epigenetic mechanism, histone post-translational modifications (HPTMs), 89 

change chromatin structure by altering the physicochemical affinity between DNA and 90 

histones and thereby affect gene expression [38]. HPTMs are catalysed by histone modifier 91 

proteins [33], which can be divided into three functional classes: writers, erasers and readers. 92 

“Writer” enzymes add chemical radicals to histone tails by covalent modification. For 93 

example, lysine acetyltransferases (KATs) promote acetylation of lysine residues [33], which 94 

reduces the affinity between DNA and nucleosomes. Histone acetylation induces chromatin 95 

relaxation and is often associated with increased gene expression [39]. In contrast, “Eraser” 96 

enzymes remove such chemical radicals from histone tails. Classical eraser enzymes are the 97 

histone deacetylases (HDACs) and Sirtuins, which remove acetyl groups from lysine 98 

residues, resulting in chromatin compaction and, consequently, inhibition of gene expression 99 

[33,40]. Finally, “Reader” enzymes recognise epigenetic modifications and induce chromatin 100 

remodelling through the recruitment of protein complexes [33]. A honey bee proteome study 101 

[27] has shown that histone tails are extensively modified by epigenetic marks, indicating 102 

that writer, eraser and reader enzymes are present in the honey bee. Furthermore, differential 103 

accumulation of HPTMs has been associated with caste differentiation and behaviour in bees 104 

and ants [27,41–44]. 105 

 106 
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Given that QMP affects behaviours in honey bee workers [14,15,18,45] we 107 

hypothesised that the expression of genes associated with epigenetic modification to 108 

nucleotide and histones would respond to QMP exposure in the brain of honey bee workers. 109 

These epigenetic mechanisms can, thus, serve as proxies to understand the regulation of 110 

global changes in gene expression in a complex social environment.  111 

 112 

2. Material and Methods 113 

 114 

(a) Biological material 115 

To obtain age-matched adult workers we collected brood frames from four queenright A. m. 116 

ligustica source colonies and kept them in an incubator overnight at 34.5 °C. From each 117 

source colony, workers were randomly allocated to two cages (n = 150 bees per cage, eight 118 

cages in total). One cage from each colony (QMP+) was furnished with a 0.5 queen 119 

equivalent per day QMP strip (Phero Tech Inc. Canada), which is an effective queen mimic 120 

in cage experiments with young workers [21,46]. The other cage from each colony (QMP-) 121 

contained no QMP strip. Pollen, honey and water were provided ad libitum. Food was 122 

replenished when necessary, and the number of dead workers was recorded each day, which 123 

was nearly the same in the QMP+ and QMP- cages (data not shown). Cages were kept in an 124 

incubator at 34.5 °C for four days. Workers were collected on dry ice at Day 0 (directly from 125 

the brood comb), Day 1 and Day 4. Day 1 was chosen to identify genes with a quick response 126 

to the QMP treatment, and Day 4 was chosen to identify the genes that are still influenced by 127 

the QMP exposure after prolonged exposure. We then dissected the brains of the workers on 128 

dry ice [47]. 129 

 130 

(b) Identification of the honeybee DNA methyltransferases and histone modifiers 131 

We identified the nucleotide and histone modifier genes in the honey bee genome (Amel_4.5) 132 

[48], searching manually for the names of each epigenetic gene in GenBank (NCBI 133 

Resources Coordinators 2018) (Table S1) based on a large list of histone-modifier genes 134 

present in eukaryotes [50,51]. We filtered this list by selecting those associated with 135 

acetylation and deacetylation processes. From this list we identified the proteins that are 136 

predicted to reside in the nucleus using ProtComp v9.0 (Softberry, Inc.). The genes and their 137 

respective proteins were characterised following a previously described workflow [13]. 138 

 139 

(c) Gene expression quantification and bioinformatics analysis 140 

Each sample consisted of a single brain. We extracted total RNA from the brain through 141 

maceration in TRIzol (Invitrogen) and a Direct-zolTM RNA Miniprep kit (Zymo Research). 142 

The RNA was treated with Turbo DNase (Thermo Fisher Scientific) and quantified with a 143 

Qubit 2.0 Fluorometer (Invitrogen). cDNA was synthesised from 600 ng of RNA using a 144 

SuperScriptTM III Reverse Transcriptase Kit (Invitrogen) with oligo(dT) primer and 145 

suspended in ultrapure water (5 ng cDNA/μL). 146 

The expression of four nucleotide modifier genes and 11 histone modifier genes 147 

(Table S1) was quantified by reverse transcription quantitative real-time PCR (RT-qPCR) 148 

[46,52]. Assays were set up with 2.5 μL SsoAdvanced™ Universal SYBR® Green Supermix 149 

(Bio Rad), 1.25 pmol of each primer, 1 μL diluted cDNA (5 ng) in a total volume of 5 μL 150 

using a CFX384 Real-Time System (Bio-Rad). For each experimental sample (four source 151 

colonies, three ages and two treatments) three technical replicates were conducted. Cycle 152 

conditions were as follows: 95 °C for 10 min followed by 40 cycles of 95 °C for 10 s, 60 °C 153 

for 10 s and 72 °C for 15 s. At the end of the RT-qPCR protocol a melting curve analysis was 154 

run to confirm a single amplification peak. Primer efficiencies (Table S2) were calculated 155 

based on an amplification curve of 10 points obtained through serial dilution of mixed cDNA 156 
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samples. The expression of the genes of interest was normalised against the expression of two 157 

reference genes (Rpl32 and Ef1α), whose expression was found stable according to 158 

BestKeeper [53]. Relative expression levels were calculated [52], using a formula that 159 

normalises gene expression to the reference genes taking into account the efficiency of each 160 

primer set. The genes, primer sequences and efficiencies are listed in Table S2.  161 

 162 

(d) Statistical analysis 163 

 To compare the expression of the QMP+ and QMP- treatments at Day 1 and Day 4 we used a 164 

generalised linear mixed model (GLMM) with ‘colony’ as random effect and ‘treatment’ and 165 

‘age’ as fixed effects. To model the gene expression data, we used link = identity, family = 166 

Gaussian. Where necessary, a transformation log10 function was applied (see Table S3 for 167 

details). We used Day-0 data as a baseline for gene expression. GLMM analyses were 168 

performed in R [54] loading the packages lme4, car and emmeans. An adjusted p-value 169 

(Tukey correction for each gene) lower than 0.05 was considered significant for all statistical 170 

tests. 171 

 172 

3. Results 173 

Using the protein sequences of the 15 genes studied, we first acquired in-silico evidence (e.g. 174 

subcellular location, predicted domains and homology with other species) that each gene was 175 

a  bona fide epigenetic modifier of DNA, RNA or histones (Table S1). In 1-day old workers 176 

the expression of twelve genes associated with epigenetic processes (Dnmt1b, Dnmt2, 177 

Dnmt3, Kat2a, Kat3b, Kat6b, Kat8, Hdac1, Hdac3, Sirt 1, Sirt7 and Rcs1) was affected by 178 

exposure to QMP (GLMM, p < 0.05, Figures 1 and 2, Table S3). However, only four genes 179 

(Dnmt1b, Dnmt2, Kat3b and Sirt7) continued to be differentially expressed at the age of four 180 

days (GLMM, p < 0.05, Figures 1 and 2, Table S3). Age was statistically significant for 13 of 181 

the 15 genes (GLMM, p < 0.05, Figure 1 and Table S3), the exceptions being Kat 7 and 182 

Dnmt3. A significant interaction between treatment and age was found for three genes: 183 

Hdac1, Sirt1 and Kat6b (p < 0.05, Table S3). 184 

 185 

4. Discussion 186 

Our study shows that QMP affects the expression of 12 of 15 genes that are associated with 187 

epigenetic processes in the brain of honeybee workers. As predicted, our data indicates that 188 

epigenetic mechanisms are likely mediators between queen pheromone signalling and the 189 

regulation of worker gene expression. Given that QMP alters worker behaviour 190 

[14,15,18,45], we suggest that pheromonal communication evolved by making use of existing 191 

epigenetic mechanisms that orchestrate transcriptomic changes necessary to propagate 192 

pheromonal information. 193 

 Some expression responses are particularly worthy of note. For instance, the 194 

expression of Dnmt3, the de novo methylator of DNA, is regulated by queen pheromones in 195 

brains of honeybee workers (this study) and whole-body RNA extracts of honeybee workers 196 

[35] and two ant species (Lasius flavus and Lasius niger) [55]. Expression of Kat 8 is 197 

upregulated in the brains of QMP-treated honeybee workers. This gene is differentially 198 

spliced in L. flavus ants treated with queen pheromone [55]. Together, these results suggest 199 

an evolutionary conservation in the epigenetic pathways responsive to queen pheromones in 200 

social insects. 201 

 We detected that several histone modifiers genes associated with 202 

acetylation/deacetylation processes are differentially expressed in the brains of adult workers. 203 

This finding suggests that queen signals influence the modification of histones to promote 204 

chromatin reorganisation and thereby altering gene expression in worker brains. In line with 205 

this hypothesis, histone acetylation contributes to the regulation of foraging behaviour in ants 206 
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[43]. Interestingly, it was recently shown that honeybee queens regulate worker fertility 207 

through polycomb repressive complex 2 (PRC2) activity and differential histone methylation 208 

marks [56]. We propose that queens, via QMP, influence modifications to histones to 209 

regulate behavioural plasticity in the brains of honeybee workers, just as they do in ovaries.  210 

Pheromonal modulation of gene expression in honeybee workers changes over time 211 

[19,20]. Gene expression in QMP- workers is relatively stable from Day 0 to Day 1 when 212 

compared to QMP+ workers, suggesting QMP actively promotes expression of several 213 

epigenetic modifier genes already within 24 hours. Only four of these continued to be 214 

differentially expressed after 4 days of QMP exposure, indicating that the expression of the 215 

majority epigenetic modifiers is dynamically switched on and off [19]. 216 

Our study provides evidence that many genes associated with epigenetic modification 217 

are differentially expressed in the brains of honeybee workers in response to the presence of 218 

queen pheromone. These changes wrought by the genes studied here likely drive changes in 219 

gene expression in the brains of adult workers, providing a plausible mechanism by which a 220 

queen can influence both the rate of behavioural maturation and reproductive behaviour of 221 

her workers. This property of QMP would explain why it acts both as a short-term ‘releaser’ 222 

pheromone that merely indicates queen presence, as well as a long-term ‘primer’ pheromone 223 

that regulates behavioural maturation and reproductive behaviour. 224 

 225 
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 244 

 245 

Figure 1. Relative expression of four nucleotide modifier (DNA methyltransferase) genes in 246 

the brains of 0-, 1- and 4-days old honeybee workers, exposed to queen mandibular 247 

pheromone (QMP+) or not (QMP-). Each box shows the interquartile range (25th-75th 248 

percentiles) and the median (line), while whiskers represent the farthest points of 2.5th-97.5th 249 

percentiles. Relative expression was calculated for each gene at all three ages. Day 0 was 250 

used as the baseline for gene expression. Statistical information: GLMM test with Tukey 251 

correction for multiple pairwise comparisons, * p < 0.05, ** p < 0.01, *** p < 0.001, N=32; 252 

N=8 from each of the four colonies). 253 

 254 

Figure 2. Relative expression of 11 histone modifier genes in the brains of 0-, 1- and 4-days 255 

old honey bee workers, exposed to queen mandibular pheromone (QMP+) or not (QMP-). (a) 256 
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Relative expression of histone acetyltransferases genes (writer enzymes). (b) Relative 257 

expression of histone deacetylases and Sirtuin genes (eraser enzymes). (c) Relative 258 

expression of the Rsc1 gene (reader enzyme). Each box shows the interquartile range (25th-259 

75th percentiles) and the median (line), while whiskers represent the farthest points of 2.5th-260 

97.5th percentiles. Relative expression was calculated for each gene at all three ages. Day 0 261 

was used as the baseline for gene expression. Statistical information is as in figure 1.  262 

 263 

 264 
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