

1 **Queen pheromone modulates the expression of epigenetic modifier genes in the brain of**
2 **honeybee workers**

3
4 Carlos Antônio Mendes Cardoso-Junior^{1,2*}, Isobel Ronai², Klaus Hartfelder¹, Benjamin P.
5 Oldroyd²

6
7 ¹ Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de
8 Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.

9
10 ² Behaviour, Ecology and Evolution (BEE) laboratory, Macleay Building A12, University of
11 Sydney, Sydney NSW 2006, Australia.

12 * **Corresponding author:** carloscardoso.bio@usp.br

13 **Contact Information**

14 Carlos A. M. Cardoso-Júnior – carloscardoso.bio@usp.br; Phone: +55 16 3315 3063

15 Isobel Ronai – isobel.ronai@sydney.edu.au

16 Klaus Hartfelder – klaus@fmrp.usp.br

17 Benjamin Oldroyd – benjamin.oldroyd@sydney.edu.au

18 **Running title:** Epigenetics in honeybee pheromone communication

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41 **Abstract**

42 Pheromones are used by many insects to mediate social interactions. In the highly eusocial
43 honeybee (*Apis mellifera*) queen mandibular pheromone (QMP) is involved in the regulation
44 of reproduction and behaviour of workers. The molecular mechanisms by which QMP acts
45 are largely unknown. Here we investigate how genes responsible for epigenetic modifications
46 to DNA, RNA and histones respond to the presence of QMP. We show that several of these
47 genes are upregulated in the honeybee brain when workers are exposed to QMP. This
48 provides a plausible mechanism by which pheromone signalling may influence gene
49 expression in the brain of honeybee workers. We propose that pheromonal communication
50 systems, such as those used by social insects, evolved to respond to environmental signals by
51 making use of existing epigenomic machineries.

52

53 **Keywords:** DNMT, HAT, HDAC, SIRT, honey bee

54

55

56

57 **1. Introduction**

58 The transition to social living in the eusocial insects required that the reproductive interests of
59 individual workers be subsumed by the collective interests of the colony [1–3]. In particular,
60 workers are functionally sterile, whereas queens are highly fecund [4]. For such systems to
61 evolve it was also necessary that tasks can be distributed among workers in ways that
62 enhance colony-level productivity [5–8]. Both, the regulation of worker fertility and the
63 efficient allocation of tasks among workers required the evolution of effective inter- and
64 intra-caste communication systems that can rapidly respond to the changing needs of the
65 colony. Communication between nestmates most often occurs via pheromones [9,10],
66 chemical signals that are produced by one individual, and cause changes in the behaviour or
67 physiology of another [11,12].

68 In the western honeybee (*Apis mellifera*) a key pheromone is the queen mandibular
69 pheromone (QMP), which is a blend of fatty acids secreted by the head glands of the queen.
70 It affects several important traits of workers, including their reproduction [13], retinue
71 response to queens [14,15], learning capacity [16], nestmate recognition [17] and age at onset
72 of foraging [18]. Phenotypic variation in these traits is associated with differential gene
73 expression in the brains of workers [19,20]. Nonetheless, little is known about the
74 intermediate steps between QMP production and release by the queen, the regulation of gene
75 expression in workers, and changes in their behaviour [21–24].

76 Epigenetic mechanisms are a likely mediator between a worker's social environment
77 and global gene expression responses [25]. Several classes of epigenetic mechanism
78 described in honeybees are potentially associated with environmental cues [26–29]. For
79 example, DNA methylation, a reversible chemical modification of cytosines in CpG contexts,
80 is associated with behavioural maturation in the brains of honeybee nurses and foragers
81 [30,31]. DNA methylation is catalysed and maintained by the DNA methyltransferase
82 (DNMT) family of enzymes [32,33]. Interestingly, in honeybees, the expression of genes
83 associated with the maintenance of DNA methylation levels after DNA replication (*Dnmt1a*
84 and *Dnmt1b*) are modulated by different social stimuli to *Dnmt3*, an enzyme that establishes
85 DNA methylation patterns *de novo* [25,34–36]. In addition, the expression of *Dnmt2* (also
86 called *Trdmt1*), a gene whose enzyme product methylates RNA substrates [37], is affected by
87 different social contexts [25,30]. These studies suggest that epigenetic machineries associated
88 with nucleotide modification are affected by several environmental cues.

89 Another epigenetic mechanism, histone post-translational modifications (HPTMs),
90 change chromatin structure by altering the physicochemical affinity between DNA and
91 histones and thereby affect gene expression [38]. HPTMs are catalysed by histone modifier
92 proteins [33], which can be divided into three functional classes: writers, erasers and readers.
93 “Writer” enzymes add chemical radicals to histone tails by covalent modification. For
94 example, lysine acetyltransferases (KATs) promote acetylation of lysine residues [33], which
95 reduces the affinity between DNA and nucleosomes. Histone acetylation induces chromatin
96 relaxation and is often associated with increased gene expression [39]. In contrast, “Eraser”
97 enzymes remove such chemical radicals from histone tails. Classical eraser enzymes are the
98 histone deacetylases (HDACs) and Sirtuins, which remove acetyl groups from lysine
99 residues, resulting in chromatin compaction and, consequently, inhibition of gene expression
100 [33,40]. Finally, “Reader” enzymes recognise epigenetic modifications and induce chromatin
101 remodelling through the recruitment of protein complexes [33]. A honey bee proteome study
102 [27] has shown that histone tails are extensively modified by epigenetic marks, indicating
103 that writer, eraser and reader enzymes are present in the honey bee. Furthermore, differential
104 accumulation of HPTMs has been associated with caste differentiation and behaviour in bees
105 and ants [27,41–44].

107 Given that QMP affects behaviours in honey bee workers [14,15,18,45] we
108 hypothesised that the expression of genes associated with epigenetic modification to
109 nucleotide and histones would respond to QMP exposure in the brain of honey bee workers.
110 These epigenetic mechanisms can, thus, serve as proxies to understand the regulation of
111 global changes in gene expression in a complex social environment.
112

113 **2. Material and Methods**

114

115 **(a) Biological material**

116 To obtain age-matched adult workers we collected brood frames from four queenright *A. m.*
117 *ligustica* source colonies and kept them in an incubator overnight at 34.5 °C. From each
118 source colony, workers were randomly allocated to two cages (n = 150 bees per cage, eight
119 cages in total). One cage from each colony (QMP⁺) was furnished with a 0.5 queen
120 equivalent per day QMP strip (Phero Tech Inc. Canada), which is an effective queen mimic
121 in cage experiments with young workers [21,46]. The other cage from each colony (QMP⁻)
122 contained no QMP strip. Pollen, honey and water were provided *ad libitum*. Food was
123 replenished when necessary, and the number of dead workers was recorded each day, which
124 was nearly the same in the QMP⁺ and QMP⁻ cages (data not shown). Cages were kept in an
125 incubator at 34.5 °C for four days. Workers were collected on dry ice at Day 0 (directly from
126 the brood comb), Day 1 and Day 4. Day 1 was chosen to identify genes with a quick response
127 to the QMP treatment, and Day 4 was chosen to identify the genes that are still influenced by
128 the QMP exposure after prolonged exposure. We then dissected the brains of the workers on
129 dry ice [47].
130

131

132 **(b) Identification of the honeybee DNA methyltransferases and histone modifiers**

133 We identified the nucleotide and histone modifier genes in the honey bee genome (Amel_4.5)
134 [48], searching manually for the names of each epigenetic gene in GenBank (NCBI
135 Resources Coordinators 2018) (Table S1) based on a large list of histone-modifier genes
136 present in eukaryotes [50,51]. We filtered this list by selecting those associated with
137 acetylation and deacetylation processes. From this list we identified the proteins that are
138 predicted to reside in the nucleus using ProtComp v9.0 (Softberry, Inc.). The genes and their
139 respective proteins were characterised following a previously described workflow [13].
140

141 **(c) Gene expression quantification and bioinformatics analysis**

142 Each sample consisted of a single brain. We extracted total RNA from the brain through
143 maceration in TRIzol (Invitrogen) and a Direct-zol™ RNA Miniprep kit (Zymo Research).
144 The RNA was treated with Turbo DNase (Thermo Fisher Scientific) and quantified with a
145 Qubit 2.0 Fluorometer (Invitrogen). cDNA was synthesised from 600 ng of RNA using a
146 SuperScript™ III Reverse Transcriptase Kit (Invitrogen) with oligo(dT) primer and
147 suspended in ultrapure water (5 ng cDNA/µL).

148 The expression of four nucleotide modifier genes and 11 histone modifier genes
149 (Table S1) was quantified by reverse transcription quantitative real-time PCR (RT-qPCR)
150 [46,52]. Assays were set up with 2.5 µL SsoAdvanced™ Universal SYBR® Green Supermix
151 (Bio Rad), 1.25 pmol of each primer, 1 µL diluted cDNA (5 ng) in a total volume of 5 µL
152 using a CFX384 Real-Time System (Bio-Rad). For each experimental sample (four source
153 colonies, three ages and two treatments) three technical replicates were conducted. Cycle
154 conditions were as follows: 95 °C for 10 min followed by 40 cycles of 95 °C for 10 s, 60 °C
155 for 10 s and 72 °C for 15 s. At the end of the RT-qPCR protocol a melting curve analysis was
156 run to confirm a single amplification peak. Primer efficiencies (Table S2) were calculated
157 based on an amplification curve of 10 points obtained through serial dilution of mixed cDNA

157 samples. The expression of the genes of interest was normalised against the expression of two
158 reference genes (*Rpl32* and *Ef1 α*), whose expression was found stable according to
159 *BestKeeper* [53]. Relative expression levels were calculated [52], using a formula that
160 normalises gene expression to the reference genes taking into account the efficiency of each
161 primer set. The genes, primer sequences and efficiencies are listed in Table S2.

162

163 **(d) Statistical analysis**

164 To compare the expression of the QMP $^+$ and QMP $^-$ treatments at Day 1 and Day 4 we used a
165 generalised linear mixed model (GLMM) with 'colony' as random effect and 'treatment' and
166 'age' as fixed effects. To model the gene expression data, we used link = identity, family =
167 Gaussian. Where necessary, a transformation \log_{10} function was applied (see Table S3 for
168 details). We used Day-0 data as a baseline for gene expression. GLMM analyses were
169 performed in R [54] loading the packages lme4, car and emmeans. An adjusted *p*-value
170 (Tukey correction for each gene) lower than 0.05 was considered significant for all statistical
171 tests.

172

173 **3. Results**

174 Using the protein sequences of the 15 genes studied, we first acquired *in-silico* evidence (e.g.
175 subcellular location, predicted domains and homology with other species) that each gene was
176 a *bona fide* epigenetic modifier of DNA, RNA or histones (Table S1). In 1-day old workers
177 the expression of twelve genes associated with epigenetic processes (*Dnmt1b*, *Dnmt2*,
178 *Dnmt3*, *Kat2a*, *Kat3b*, *Kat6b*, *Kat8*, *Hdac1*, *Hdac3*, *Sirt1*, *Sirt7* and *Rcs1*) was affected by
179 exposure to QMP (GLMM, *p* < 0.05, Figures 1 and 2, Table S3). However, only four genes
180 (*Dnmt1b*, *Dnmt2*, *Kat3b* and *Sirt7*) continued to be differentially expressed at the age of four
181 days (GLMM, *p* < 0.05, Figures 1 and 2, Table S3). Age was statistically significant for 13 of
182 the 15 genes (GLMM, *p* < 0.05, Figure 1 and Table S3), the exceptions being *Kat 7* and
183 *Dnmt3*. A significant interaction between treatment and age was found for three genes:
184 *Hdac1*, *Sirt1* and *Kat6b* (*p* < 0.05, Table S3).

185

186 **4. Discussion**

187 Our study shows that QMP affects the expression of 12 of 15 genes that are associated with
188 epigenetic processes in the brain of honeybee workers. As predicted, our data indicates that
189 epigenetic mechanisms are likely mediators between queen pheromone signalling and the
190 regulation of worker gene expression. Given that QMP alters worker behaviour
191 [14,15,18,45], we suggest that pheromonal communication evolved by making use of existing
192 epigenetic mechanisms that orchestrate transcriptomic changes necessary to propagate
193 pheromonal information.

194

195 Some expression responses are particularly worthy of note. For instance, the
196 expression of *Dnmt3*, the *de novo* methylator of DNA, is regulated by queen pheromones in
197 brains of honeybee workers (this study) and whole-body RNA extracts of honeybee workers
198 [35] and two ant species (*Lasius flavus* and *Lasius niger*) [55]. Expression of *Kat 8* is
199 upregulated in the brains of QMP-treated honeybee workers. This gene is differentially
200 spliced in *L. flavus* ants treated with queen pheromone [55]. Together, these results suggest
201 an evolutionary conservation in the epigenetic pathways responsive to queen pheromones in
social insects.

202

203 We detected that several histone modifiers genes associated with
204 acetylation/deacetylation processes are differentially expressed in the brains of adult workers.
205 This finding suggests that queen signals influence the modification of histones to promote
206 chromatin reorganisation and thereby altering gene expression in worker brains. In line with
this hypothesis, histone acetylation contributes to the regulation of foraging behaviour in ants

207 [43]. Interestingly, it was recently shown that honeybee queens regulate worker fertility
208 through polycomb repressive complex 2 (PRC2) activity and differential histone methylation
209 marks [56]. We propose that queens, via QMP, influence modifications to histones to
210 regulate behavioural plasticity in the brains of honeybee workers, just as they do in ovaries.

211 Pheromonal modulation of gene expression in honeybee workers changes over time
212 [19,20]. Gene expression in QMP⁺ workers is relatively stable from Day 0 to Day 1 when
213 compared to QMP⁻ workers, suggesting QMP *actively* promotes expression of several
214 epigenetic modifier genes already within 24 hours. Only four of these continued to be
215 differentially expressed after 4 days of QMP exposure, indicating that the expression of the
216 majority epigenetic modifiers is dynamically switched on and off [19].

217 Our study provides evidence that many genes associated with epigenetic modification
218 are differentially expressed in the brains of honeybee workers in response to the presence of
219 queen pheromone. These changes wrought by the genes studied here likely drive changes in
220 gene expression in the brains of adult workers, providing a plausible mechanism by which a
221 queen can influence both the rate of behavioural maturation and reproductive behaviour of
222 her workers. This property of QMP would explain why it acts both as a short-term ‘releaser’
223 pheromone that merely indicates queen presence, as well as a long-term ‘primer’ pheromone
224 that regulates behavioural maturation and reproductive behaviour.

225

226 **Data accessibility**

227 The data that support this study are available in the supplementary material.

228

229 **Authors’ contributions**

230 CAM designed the study, carried out the cage experiments, dissections, performed molecular
231 lab work, analysed data and wrote the manuscript draft. IR carried out the protein
232 characterisation and wrote the manuscript. BPO and KH supervised the work and revised the
233 manuscript. All authors gave final approval for publication.

234

235 **Competing interests**

236 The authors declare no conflict of interests.

237

238 **Funding**

239 This research was funded by the Australian Research Council DP180101696 and Fundação
240 de Amparo à Pesquisa do Estado de São Paulo (FAPESP - #2016/15881-0 and 2017/09269-3
241 to CAM). The funders had no role in study design, data collection and analysis, decision to
242 publish, or preparation of the manuscript.

243

244

245

246 **Figure 1.** Relative expression of four nucleotide modifier (DNA methyltransferase) genes in
247 the brains of 0-, 1- and 4-days old honeybee workers, exposed to queen mandibular
248 pheromone (QMP⁺) or not (QMP⁻). Each box shows the interquartile range (25th-75th
249 percentiles) and the median (line), while whiskers represent the farthest points of 2.5th-97.5th
250 percentiles. Relative expression was calculated for each gene at all three ages. Day 0 was
251 used as the baseline for gene expression. Statistical information: GLMM test with Tukey
252 correction for multiple pairwise comparisons, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, N=32;
253 N=8 from each of the four colonies).

254

255 **Figure 2.** Relative expression of 11 histone modifier genes in the brains of 0-, 1- and 4-days
256 old honey bee workers, exposed to queen mandibular pheromone (QMP⁺) or not (QMP⁻). (a)

257 Relative expression of histone acetyltransferases genes (writer enzymes). (b) Relative
258 expression of histone deacetylases and Sirtuin genes (eraser enzymes). (c) Relative
259 expression of the *Rsc1* gene (reader enzyme). Each box shows the interquartile range (25th-
260 75th percentiles) and the median (line), while whiskers represent the farthest points of 2.5th-
261 97.5th percentiles. Relative expression was calculated for each gene at all three ages. Day 0
262 was used as the baseline for gene expression. Statistical information is as in figure 1.
263
264

265 References

266

- 267 1. Ratnieks FLW, Foster KR, Wenseleers T. 2006 Conflict resolution in insect societies. *Annu. Rev. Entomol.* **51**, 581–608. (doi:10.1146/annurev.ento.51.110104.151003)
- 268 2. Ratnieks FLW. 1988 Reproductive harmony via mutual policing by workers in
269 eusocial Hymenoptera. *Am. Nat.* **132**, 217–236. (doi:10.1086/284846)
- 270 3. Maynard-Smith J, Szathmáry E. 1995 *The major transitions in evolution*. Oxford:
271 Oxford University Press.
- 272 4. Ronai I, Vergoz V, Oldroyd BP. 2016 The mechanistic, genetic, and evolutionary basis
273 of worker sterility in the social Hymenoptera. *Adv. Study Behav.* **48**, 251–317.
274 (doi:10.1016/bs.asb.2016.03.002)
- 275 5. Gordon DM. 1996 The organization of work in social insect colonies. *Nature* **380**,
276 121–124. (doi:10.1038/380121a0)
- 277 6. Page RE. 1997 The evolution of insect societies. *Endeavour* **21**, 114–120.
278 (doi:10.1016/S0160-9327(97)80220-7)
- 279 7. Bonabeau E, Theraulaz G, Deneubourg JL, Aron S, Camazine S. 1997 Self-
280 organization in social insects. *Trends Ecol. Evol.* **12**, 188–193. (doi:10.1016/S0169-
281 5347(97)01048-3)
- 282 8. Visscher PK. 2003 How self-organization evolves. *Nature* **421**, 799–800.
283 (doi:10.1038/421799a)
- 284 9. Free JB. 1987 *Pheromones of social bees*. London: Chapman and Hall.
- 285 10. Meer RKV, Preston CA. 2008 Social insect pheromones. In *Encyclopedia of
286 Entomology*, pp. 223–262. Springer, Dordrecht. (doi:<https://doi.org/10.1007/978-1-4020-6359-6>)
- 287 11. Holman L. 2010 Queen pheromones. *Commun. Integr. Biol.* **3**, 558–560.
288 (doi:10.4161/cib.3.6.12976)
- 289 12. Billen J, Morgan ED. 1998 *Pheromone communication in social insects: sources and
290 secretions*. Westview Press.
- 291 13. Ronai I, Oldroyd BP, Vergoz V. 2016 Queen pheromone regulates programmed cell
292 death in the honey bee worker ovary. *Insect Mol. Biol.* **25**, 646–652.
293 (doi:10.1111/imb.12250)
- 294 14. Slessor KN, Kaminski LA, King GGS, Borden JH, Winston ML. 1988 Semiochemical
295 basis of the retinue response to queen honey bees. *Nature* **332**, 354–356.
296 (doi:10.1038/332354a0)
- 297 15. Keeling CI, Slessor KN, Higo HA, Winston ML. 2003 New components of the honey
298 bee (*Apis mellifera* L.) queen retinue pheromone. *Proc. Natl. Acad. Sci. U. S. A.* **100**,
299 4486–4491. (doi:10.1073/pnas.0836984100)
- 300 16. Vergoz V, Schreurs HA, Mercer AR. 2007 Queen pheromone blocks aversive learning
301 in young worker bees. *Science* **317**, 384–386. (doi:10.1126/science.1142448)
- 302 17. Fan Y, Richard FJ, Rouf N, Grozinger CM. 2010 Effects of queen mandibular
303 pheromone on nestmate recognition in worker honeybees, *Apis mellifera*. *Anim.
304 Behav.* **79**, 649–656. (doi:10.1016/j.anbehav.2009.12.013)

307 18. Pankiw T, Winston ML, Huang Z, Robinson GE. 1998 Queen mandibular gland
308 pheromone influences worker honey bee (*Apis mellifera* L.) foraging ontogeny and
309 juvenile hormone titers. *J. Insect Physiol.* **44**, 685–692. (doi:10.1016/S0022-
310 1910(98)00040-7)

311 19. Grozinger CM, Sharabash NM, Whitfield CW, Robinson GE. 2003 Pheromone-
312 mediated gene expression in the honey bee brain. *Proc. Natl. Acad. Sci. U. S. A.* **100**
313 **Suppl**, 14519–14525. (doi:10.1073/pnas.2335884100)

314 20. Fussnecker BL, McKenzie AM, Grozinger CM. 2011 cGMP modulates responses to
315 queen mandibular pheromone in worker honey bees. *J. Comp. Physiol. A* **197**, 939–
316 948. (doi:10.1007/s00359-011-0654-5)

317 21. Ronai I, Barton DA, Oldroyd BP, Vergoz V. 2015 Regulation of oogenesis in honey
318 bee workers via programed cell death. *J. Insect Physiol.* **81**, 36–41.
319 (doi:10.1016/j.jinsphys.2015.06.014)

320 22. Ronai I, Oldroyd BP, Barton DA, Cabanes G, Lim J, Vergoz V. 2016 Anarchy is a
321 molecular signature of worker sterility in the honey bee. *Mol. Biol. Evol.* **33**, 134–142.
322 (doi:10.1093/molbev/msv202)

323 23. Huang ZY, Plettner E, Robinson GE. 1998 Effects of social environment and worker
324 mandibular glands on endocrine-mediated behavioral development in honey bees. *J.*
325 *Comp. Physiol. - A Sensory, Neural, Behav. Physiol.* **183**, 143–152.
326 (doi:10.1007/s003590050242)

327 24. Brockmann A, Brückner D, Crewe RM. 1998 The EAG response spectra of workers
328 and drones to queen honeybee mandibular gland components: The evolution of a
329 social signal. *Naturwissenschaften* **85**, 283–285. (doi:10.1007/s001140050500)

330 25. Cardoso-Junior CAM, Eyer M, Dainat B, Hartfelder K, Dietemann V. 2018 Social
331 context influences the expression of DNA methyltransferase genes in the honeybee.
332 *Sci. Rep.* **8**, 11076. (doi:10.1038/s41598-018-29377-8)

333 26. Wang Y, Jorda M, Jones PL, Maleszka R, Ling X, Robertson HM, Mizzen CA,
334 Peinado MA, Robinson GE. 2006 Functional CpG methylation system in a social
335 insect. *Science* **314**, 645–647. (doi:10.1126/science.1135213)

336 27. Dickman MJ, Kucharski R, Maleszka R, Hurd PJ. 2013 Extensive histone post-
337 translational modification in honey bees. *Insect Biochem. Mol. Biol.* **43**, 125–137.
338 (doi:10.1016/j.ibmb.2012.11.003)

339 28. Yan H, Simola DF, Bonasio R, Liebig J, Berger SL, Reinberg D. 2014 Eusocial insects
340 as emerging models for behavioural epigenetics. *Nat. Rev. Genet.* **15**, 677–688.
341 (doi:10.1038/nrg3787)

342 29. Yan H, Bonasio R, Simola DF, Liebig J, Berger SL, Reinberg D. 2015 DNA
343 Methylation in social insects: how epigenetics can control behavior and longevity.
344 *Annu. Rev. Entomol.* **60**, 435–452. (doi:10.1146/annurev-ento-010814-020803)

345 30. Herb BR, Wolschin F, Hansen KD, Aryee MJ, Langmead B, Irizarry R, Amdam G V,
346 Feinberg AP. 2012 Reversible switching between epigenetic states in honeybee
347 behavioral subcastes. *Nat. Neurosci.* **15**, 1371–1373. (doi:10.1038/nn.3218)

348 31. Lockett GA, Kucharski R, Maleszka R. 2012 DNA methylation changes elicited by
349 social stimuli in the brains of worker honey bees. *Genes, Brain Behav.* **11**, 235–242.
350 (doi:10.1111/j.1601-183X.2011.00751.x)

351 32. Bestor TH. 2000 The DNA methyltransferases of mammals. *Hum Mol Genet* **9**, 2395–
352 2402.

353 33. Allis CD, Jenuwein T. 2016 The molecular hallmarks of epigenetic control. *Nat. Rev.*
354 *Genet.* **17**, 487–500. (doi:10.1038/nrg.2016.59)

355 34. Cardoso-Júnior CAM, Guidugli-Lazzarini KR, Hartfelder K. 2018 DNA methylation
356 affects the lifespan of honey bee (*Apis mellifera* L.) workers – Evidence for a

357 regulatory module that involves vitellogenin expression but is independent of juvenile
358 hormone function. *Insect Biochem. Mol. Biol.* **92**, 21–29.
359 (doi:10.1016/j.ibmb.2017.11.005)

360 35. Holman L, Trontti K, Helanterä H. 2016 Queen pheromones modulate DNA
361 methyltransferase activity in bee and ant workers. *Biol Lett* **12**, 20151038.
362 (doi:10.1098/rsbl.2015.1038)

363 36. Kucharski R, Maleszka J, Foret S, Maleszka R. 2008 Nutritional control of
364 reproductive status in honeybees via DNA methylation. *Science* **319**, 1827–1830.
365 (doi:10.1126/science.1153069)

366 37. Jeltsch A, Ehrenhofer-Murray A, Jurkowski TP, Lyko F, Reuter G, Ankri S, Nellen W,
367 Schaefer M, Helm M. 2016 Mechanism and biological role of *Dnmt2* in nucleic acid
368 methylation. *RNA Biol* **14**, 1108–1123.

369 38. Allis DC, Caparros M-L, Jenuwein T, Reinberg D. 2007 Overview and concepts. In
370 *Epigenetics*, pp. 47–116. Cold Spring Harbor Laboratory Press.

371 39. Albaugh BN, Arnold KM, Denu JM. 2011 KAT(ching) metabolism by the tail: Insight
372 into the links between lysine acetyltransferases and metabolism. *ChemBioChem* **12**,
373 290 – 298. (doi:10.1002/cbic.201000438)

374 40. Pasyukova EG, Vaiserman AM. 2017 HDAC inhibitors: A new promising drug class
375 in anti-aging research. *Mech. Ageing Dev.* **166**, 6–15. (doi:10.1016/j.mad.2017.08.008)

376 41. Simola DF, Ye C, Mutti NS, Dolezal K, Bonasio R, Liebig J, Reinberg D, Berger SL.
377 2013 A chromatin link to caste identity in the carpenter ant *Camponotus floridanus*.
378 *Genome Res.* **23**, 486–496. (doi:10.1101/gr.148361.112)

379 42. Cardoso-Júnior CAM, Fujimura PT, Santos-Júnior CD, Borges NA, Ueira-Vieira C,
380 Hartfelder K, Goulart LR, Bonetti AM. 2017 Epigenetic modifications and their
381 relation to caste and sex determination and adult division of labor in the stingless bee
382 *Melipona scutellaris*. *Genet. Mol. Biol.* **40**, 61–68. (doi:10.1590/1678-4685-GMB-
383 2016-0242)

384 43. Simola DF *et al.* 2016 Epigenetic (re)programming of caste-specific behavior in the
385 ant *Camponotus floridanus*. *Science* **351**, aac6633. (doi:10.1126/science.aac6633)

386 44. Wojciechowski M, Lowe R, Maleszka J, Conn D, Maleszka R, Hurd PJ. 2018
387 Phenotypically distinct female castes in honey bees are defined by alternative
388 chromatin states during larval development. *Genome Res.* **28**, 1532–1542.
389 (doi:10.1101/gr.236497.118)

390 45. Beggs KT, Glendining KA, Marechal NM, Vergoz V, Nakamura I, Slessor KN,
391 Mercer AR. 2007 Queen pheromone modulates brain dopamine function in worker
392 honey bees. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 2460–2464.
393 (doi:10.1073/pnas.0608224104)

394 46. Cardoso-Júnior CAM, Oldroyd B, Ronai I. 2019 Vitellogenin expression in the ovaries
395 of adult honeybee workers provides insights into the evolution of reproductive and
396 social traits. *BioRxiv Prepr.* (doi:10.1101/547760)

397 47. Vergoz V, Lim J, Duncan M, Cabanes G, Oldroyd BP. 2012 Effects of natural mating
398 and CO₂ narcosis on biogenic amine receptor gene expression in the ovaries and brain
399 of queen honey bees, *Apis mellifera*. *Insect Mol. Biol.* **21**, 558–567.
400 (doi:10.1111/j.1365-2583.2012.01159.x)

401 48. Elsik CG *et al.* 2014 Finding the missing honey bee genes: Lessons learned from a
402 genome upgrade. *BMC Genomics* **15**. (doi:10.1186/1471-2164-15-86)

403 49. Coordinators R. 2018 Database resources of the National Center for Biotechnology
404 Information. *Nucleic Acids Res.* **46**, D8–D13. (doi:10.1093/nar/gkn741)

405 50. Jęško H, Wencel P, Strosznajder RP, Strosznajder JB. 2017 Sirtuins and their roles in
406 brain aging and neurodegenerative disorders. *Neurochem. Res.* **42**, 876–890.

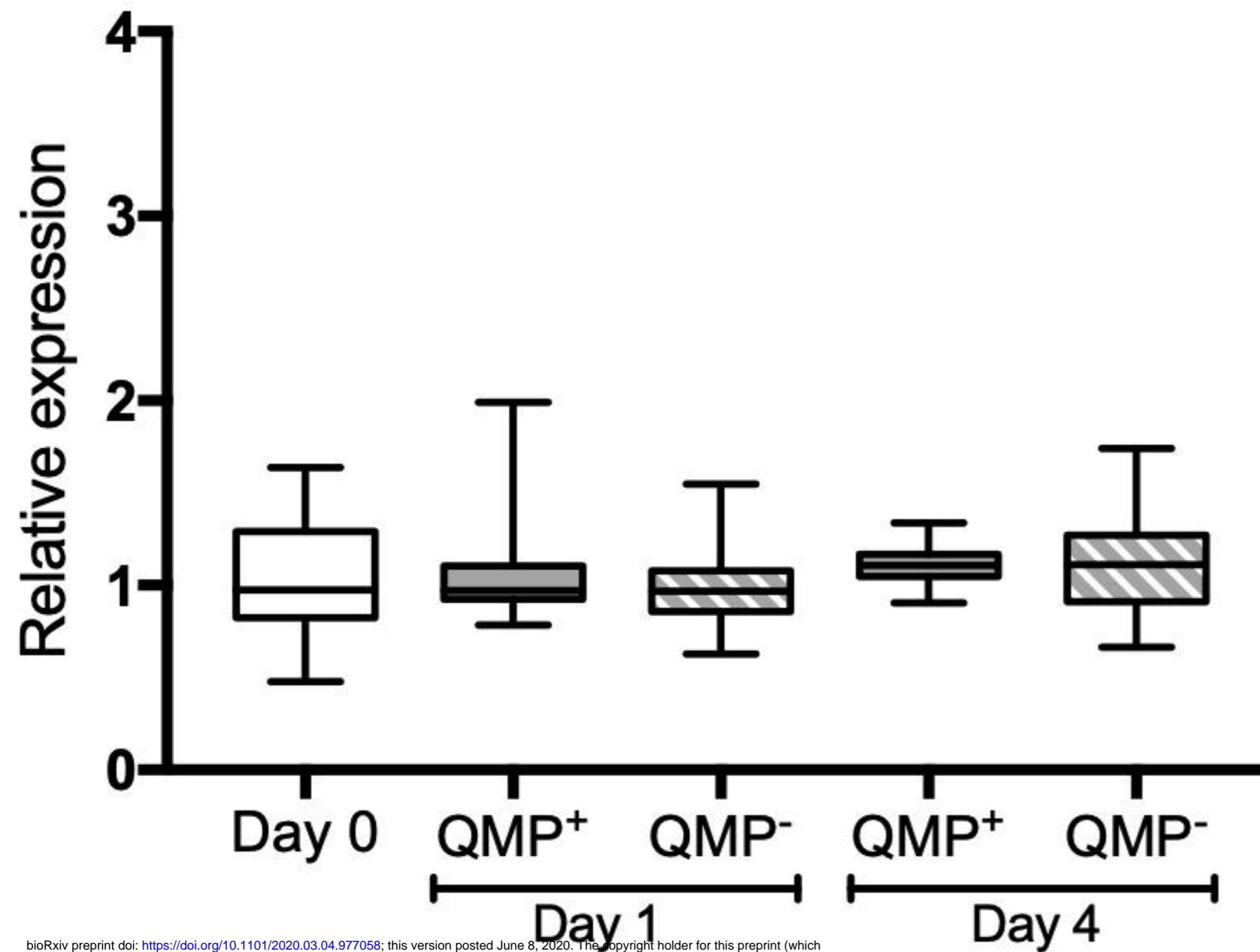
407 (doi:10.1007/s11064-016-2110-y)

408 51. Yun M, Wu J, Workman JL, Li B. 2011 Readers of histone modifications. *Cell Res* **21**,
409 564–578. (doi:10.1038/cr.2011.42)

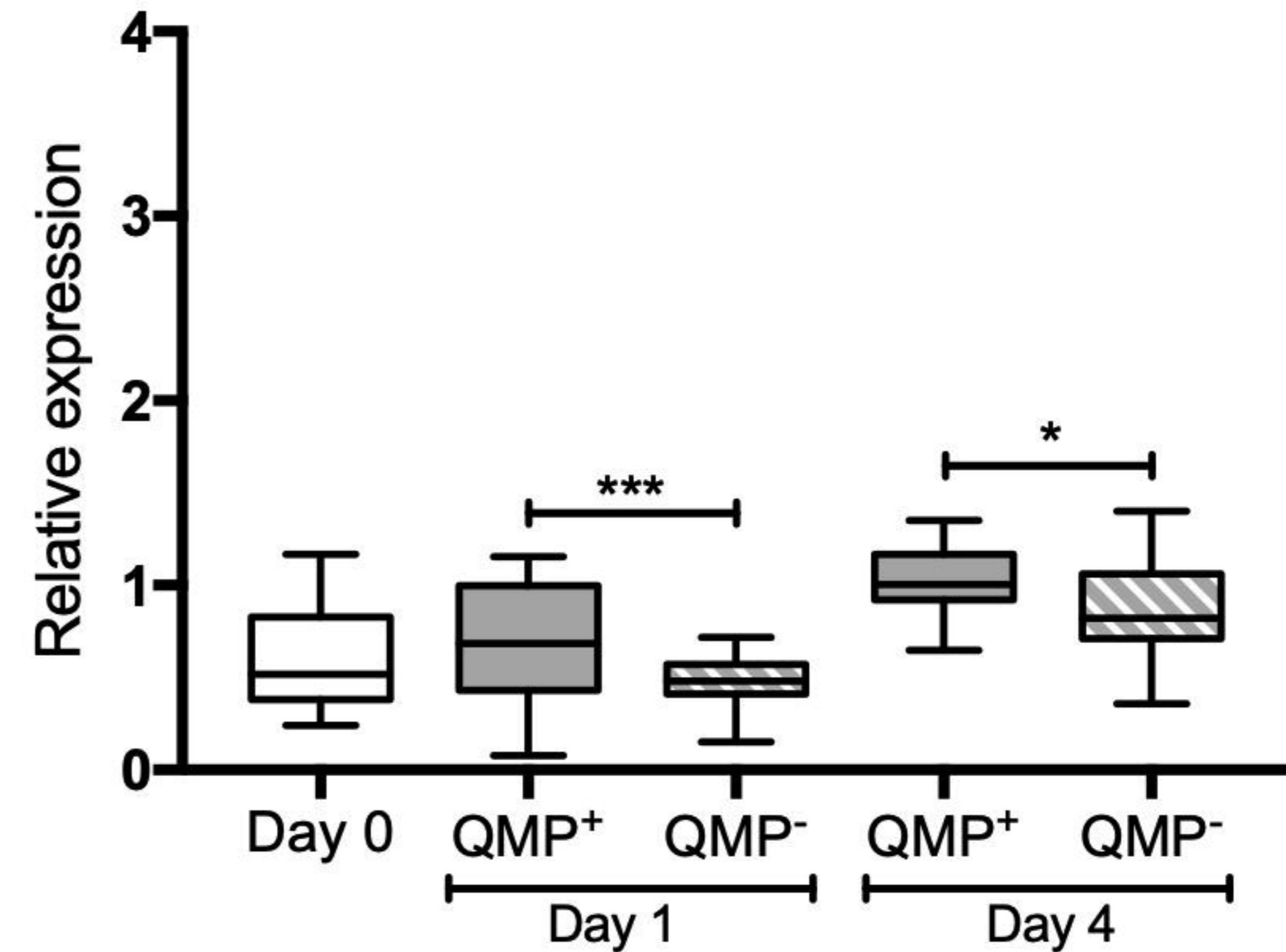
410 52. Brito RM, McHale M, Oldroyd BP. 2010 Expression of genes related to reproduction
411 and pollen foraging in honey bees (*Apis mellifera*) narcotized with carbon dioxide.
Insect Mol. Biol. **19**, 451–461. (doi:10.1111/j.1365-2583.2010.01003.x)

412 53. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. 2004 Determination of stable
413 housekeeping genes, differentially regulated target genes and sample integrity:
414 BestKeeper - Excel-based tool using pair-wise correlations. *Biotechnol. Lett.* **26**, 509–
415 515. (doi:10.1023/B:BILE.0000019559.84305.47)

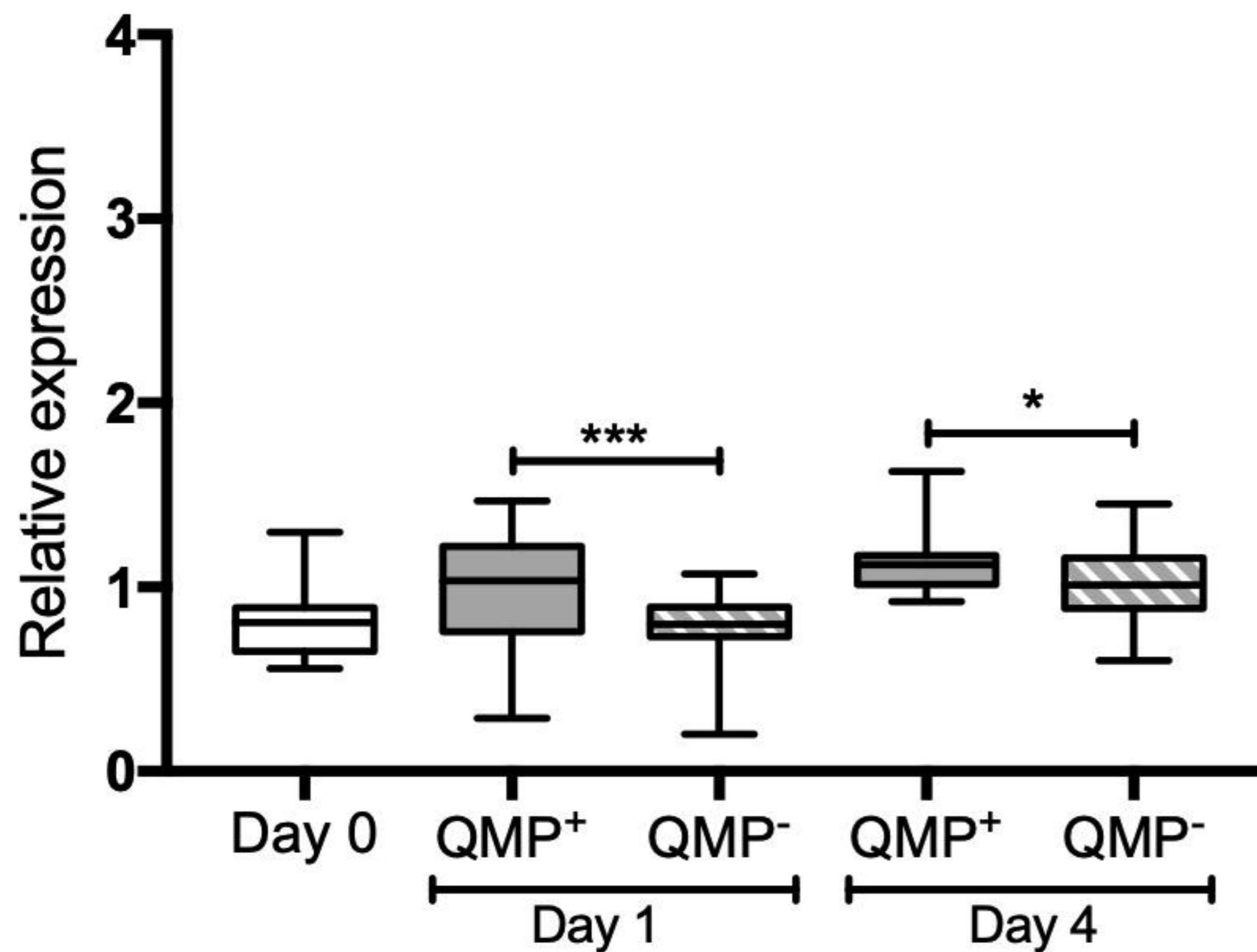
416 54. Team RC. 2018 R: A language and environment for statistical computing. R
417 foundation for statistical computing, Vienna, Austria. URL: <http://www.R-project.org/>.

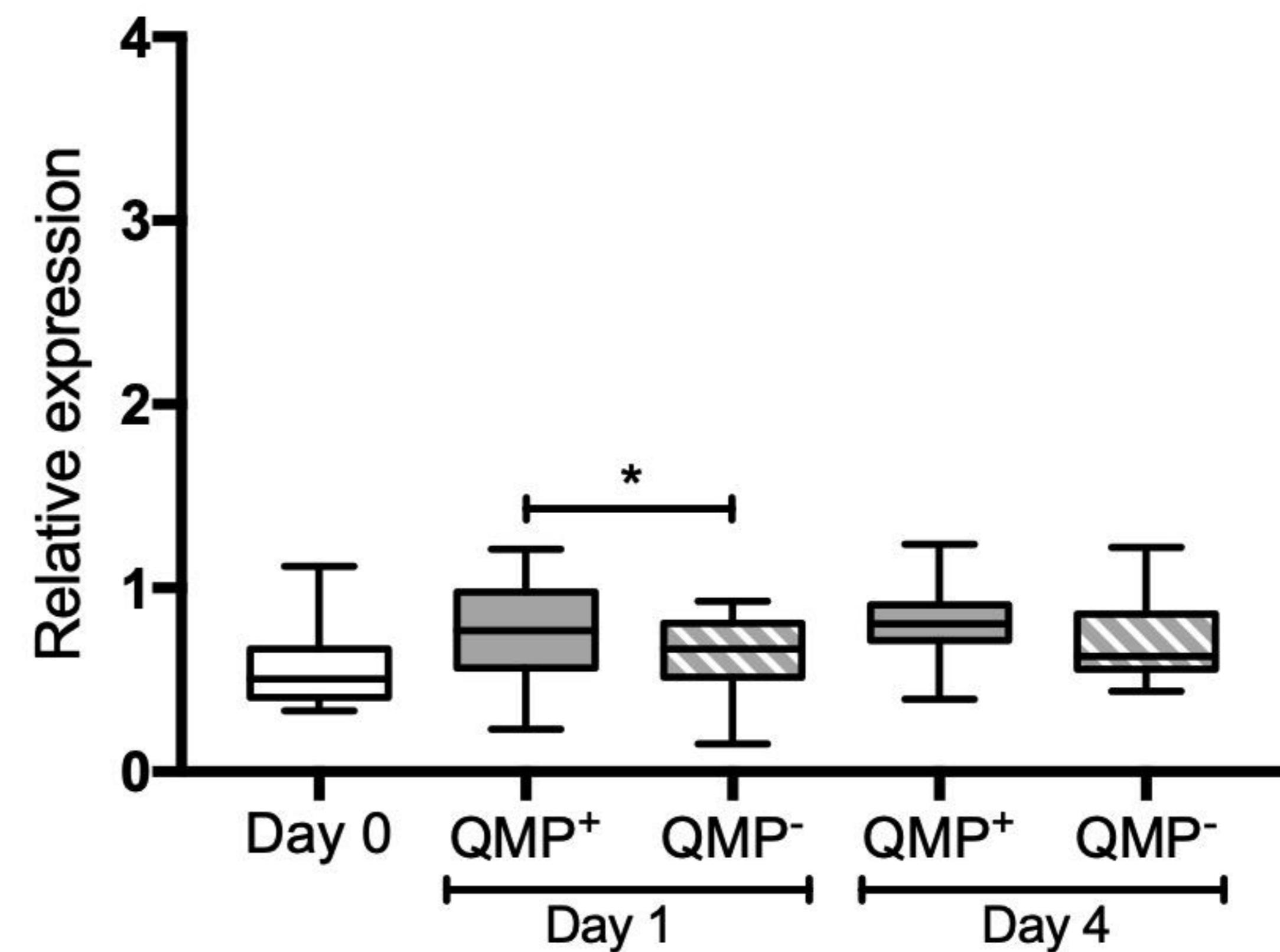

418 55. Holman L, Helanterä H, Trontti K, Mikheyev AS. 2019 Comparative transcriptomics
419 of social insect queen pheromones. *Nat. Commun.* **10**, 1593. (doi:10.1038/s41467-019-
420 09567-2)

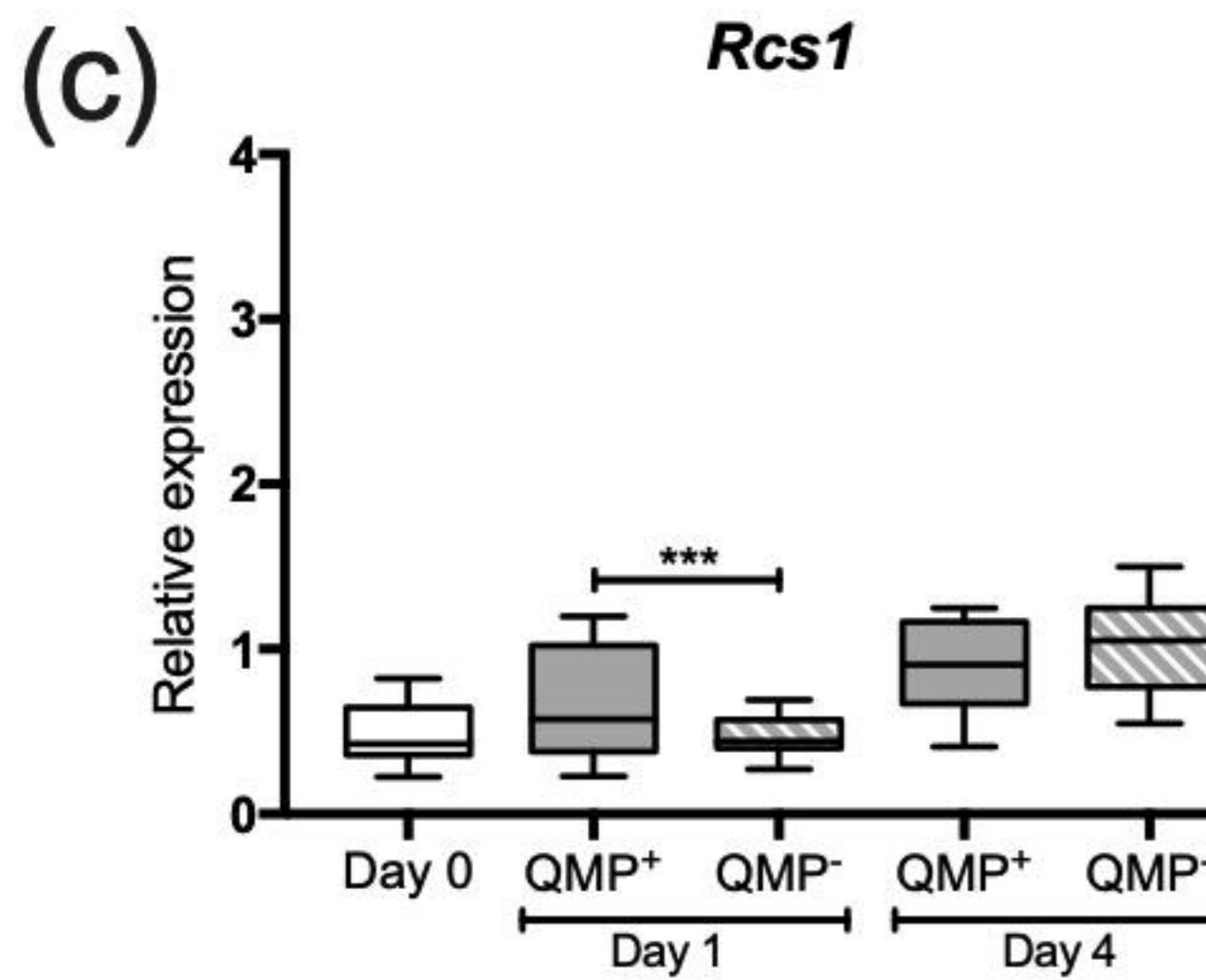
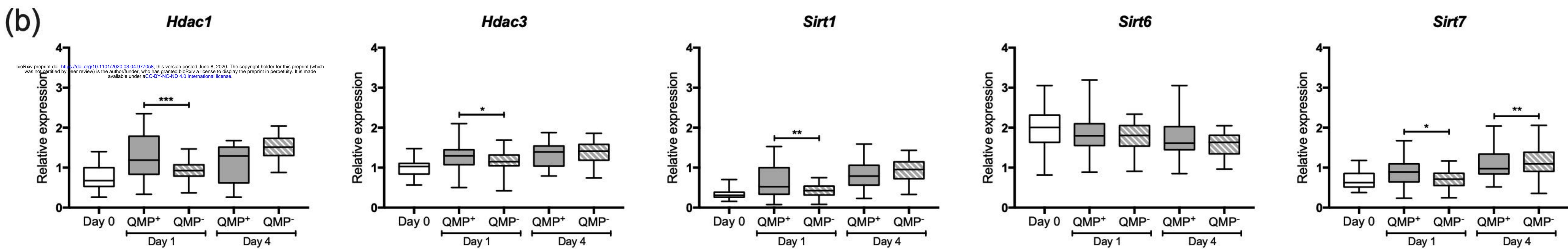
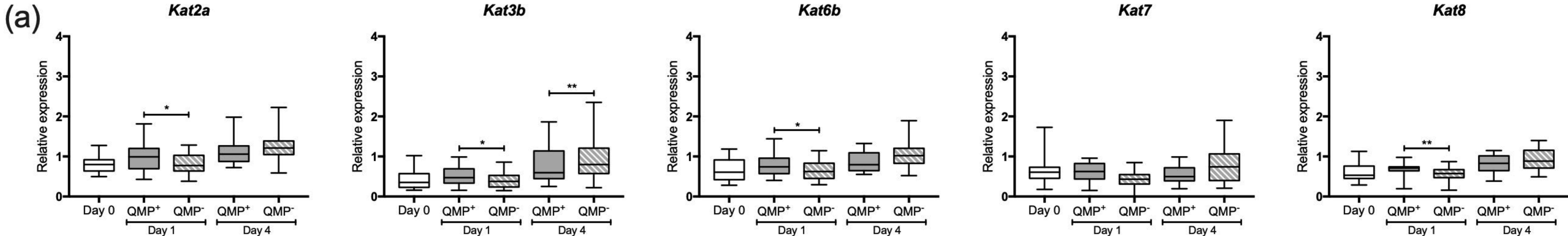
421 56. Duncan EJ, Leask MP, Dearden PK. 2020 Genome architecture facilitates phenotypic
422 plasticity in the honeybee (*Apis mellifera*). *Mol. Biol. Evol.* **[Epub]**.
423 (doi:10.1093/molbev/msaa057)


424

425


Dnmt1a


Dnmt1b




Dnmt2

Dnmt3

bioRxiv preprint doi: <https://doi.org/10.1101/2020.03.04.977058>; this version posted June 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

