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Abstract

While human gut microbiome research often focuses on western populations or nonwestern
agriculturalist and hunter-gatherer societies, most of the world’s population resides between
these extremes. We present the first study evaluating gut microbiome composition in
transitioning South African populations using short- and long-read sequencing. We analyzed
stool samples from adult females (age 40 - 72) living in rural Bushbuckridge municipality
(n=117) or urban Soweto (n=51) and find that these microbiomes are intermediate between those
of western industrialized and previously studied non-industrialized African populations. We
demonstrate that reference collections are incomplete for nonwestern microbiomes, resulting in
within-cohort beta diversity patterns that are in some cases reversed compared to reference-
agnostic sequence comparison patterns. To improve reference databases, we generated complete
genomes of undescribed taxa, including Treponema, Lentisphaerae, and Succinatimonas species.
Our results suggest that South Africa’s transitional lifestyle and epidemiological conditions are
reflected in gut microbiota compositions, and that these populations contain microbial diversity

that remains to be described.
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Introduction

Comprehensive characterization of the full diversity of the healthy human gut microbiota
1s essential to contextualize studies of the microbiome in disease. To date, substantial resources
have been invested in describing the microbiome of individuals living in the global ‘west’
(United States, northern and western Europe), including efforts by large consortia such as the
Human Microbiome Project (Human Microbiome Project Consortium, 2012) and metaHIT (Qin
et al., 2010). Though these projects have yielded valuable descriptions of human gut microbial
ecology, they survey only a small portion of the world’s citizens at the extreme of industrialized,
urbanized lifestyle. It is unclear to what extent these results are generalizable to non-western and
non-industrialized populations across the globe.

At the other extreme, a relatively smaller number of studies have characterized the gut
microbiome composition of non-western individuals practicing traditional lifestyles (Brewster et
al., 2019; Gupta et al., 2017), including communities in Venezuela and Malawi (Yatsunenko et
al., 2012), hunter-gatherer communities in Tanzania (Fragiadakis et al., 2018; Rampelli et al.,
2015; Schnorr et al., 2014; Smits et al., 2017), non-industrialized populations in Tanzania and
Botswana (Hansen et al., 2019), and agriculturalists in Peru (Obregon-Tito et al., 2015) and
remote Madagascar (Pasolli et al., 2019). However, these cohorts are not representative of how
most of the world lives either. Many of the world’s communities lead lifestyles between the
extremes of an urbanized, industrialized lifestyle and traditional practices. It is a scientific and
ethical imperative to include these diverse populations in biomedical research, yet dismayingly
many of these intermediate groups are underrepresented or absent from the published
microbiome literature.

This major gap in our knowledge of the human gut microbiome leaves the biomedical
research community ill-poised to relate microbiome composition to human health and disease
across the breadth of the world’s population. Worldwide, many communities are currently
undergoing a transition of diet and lifestyle practice, characterized by increased access to
processed foods, diets rich in animal fats and simple carbohydrates, and more sedentary lifestyles
(Vangay et al., 2018). This has corresponded with an epidemiological transition in which the
burden of disease is shifting from predominantly infectious diseases to include increasing
incidence of noncommunicable diseases like obesity and diabetes (Collinson et al., 2014). The
microbiome has been implicated in various noncommunicable diseases (Griffiths and
Mazmanian, 2018; Helmink et al., 2019; Turnbaugh et al., 2009) and may mediate the efficacy of

3
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75  medical interventions including vaccines (Ciabattini et al., 2019; Hagan et al., 2019), but we
76  cannot evaluate the generalizability of these findings without establishing baseline microbiome
77  characteristics of communities that practice diverse lifestyles and by extension, harbor diverse
78  microbiota. These understudied populations offer a unique opportunity to examine the
79  relationship between lifestyle (including diet), disease, and gut microbiome composition, and to
80  discover novel microbial genomic content.
81 A few previous studies have begun to probe the relationship between lifestyle and
82  microbiome composition in transitional communities (de la Cuesta-Zuluaga et al., 2018; Gupta et
83 al., 2017; Jhaetal., 2018; Ou et al., 2013). However, substantial gaps remain in our description
84  of the microbiome in transitional communities. In particular, knowledge of the gut microbiota on
85  the African continent is remarkably sparse. In fact, of 60 studies surveying the gut microbiome in
86  African populations as of mid-2020 (Table S1), 34 (57%) have focused entirely on on children or
87  infants, whose disease risk profile and gut microbiome composition can vary considerably from
88  adults (Lim et al., 2012; Yatsunenko et al., 2012). Additionally, 52 of 60 (87%) of studies of the
89  gut microbiome in Africans employed 16S rRNA gene sequencing or qPCR, techniques which
90  amplify only a tiny portion of the genome and therefore lack genomic resolution to describe
91  species or strains which may share a 16S rRNA sequence but differ in gene content or genome
92  structure. To our knowledge, only five published studies to date have used shotgun
93  metagenomics to describe the gut microbiome of adult populations living in Africa (Campbell et
94  al., 2020; Lokmer et al., 2019; Pasolli et al., 2019; Rampelli et al., 2015; Smits et al., 2017).
95 To address this major knowledge gap, we designed and performed the first research study
96  applying short- and long-read DNA sequencing to study the gut microbiomes of South African
97  individuals for whom 16S rRNA gene sequence data has recently been reported (Oduaran et al.,
98  2020). South Africa is a prime example of a country undergoing rapid lifestyle and
99  epidemiological transition. With the exception of the HIV/AIDS epidemic in the mid-1990s to
100 the mid-2000s, over the past three decades South Africa has experienced a steadily decreasing
101  mortality from infectious disease and an increase in noncommunicable disease (Kabudula et al.,
102 2017a; Santosa and Byass, 2016). Concomitantly, increasingly sedentary lifestyles and changes
103 in dietary habits, including access to calorie-dense processed foods, contribute to a higher
104  prevalence of obesity in many regions of South Africa (Kabudula et al., 2017a), a trend which
105  disproportionately affects women (Ajayi et al., 2016; NCD Risk Factor Collaboration (NCD-
106  RisC) — Africa Working Group, 2017).
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107 This study represents the largest shotgun metagenomic dataset of African adults in the
108  published literature to date. In this work, we describe microbial community-scale similarities
109  between urban and rural communities in South Africa, as well as distinct hallmark taxa that

110  distinguish each community. Additionally, we place South Africans in context with microbiome
111  data from other populations globally, revealing the transitional nature of gut microbiome

112 composition in the South African cohorts. We demonstrate that metagenomic assembly of short
113 reads yields novel strain and species draft genomes. Finally, we apply Oxford Nanopore long-
114  read sequencing to samples from the rural cohort and generate complete and near-complete

115  genomes. These include genomes of species that are exclusive to, or more prevalent in,

116  traditional populations, including Treponema and Prevotella species. As long-read sequencing
117  enables more uniform coverage of AT-rich regions compared to short-read sequencing with
118  transposase-based library preparation, we also generate complete metagenome-assembled AT-
119  rich genomes from less well-described gut microbes including species in the phylum

120  Melainabacteria, the class Mollicutes, and the genus Mycoplasma.

121 Taken together, the results herein offer a more detailed description of gut microbiome
122 composition in understudied transitioning populations, and present complete and contiguous
123 reference genomes that will enable further studies of gut microbiota in nonwestern populations.
124 Importantly, this study was developed with an ethical commitment to engaging both rural and
125  urban community members to ensure that the research was conducted equitably (more details in
126 Supplemental Information). This work underscores the critical need to broaden the scope of
127  human gut microbiome research and include understudied, nonwestern populations to improve

128  the relevance and accuracy of microbiome discoveries to broader populations.
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129 Results

130

131 Cohorts and sample collection

132 We enrolled 190 women aged between 40-72, living in rural villages in the

133 Bushbuckridge Municipality (31.26°E, 24.82°S, n=132) and urban Soweto, Johannesburg

134 (26.25°S, 27.85°E, n=58) and collected a one-time stool sample, as well as point of care blood

135  glucose and blood pressure measurements and a rapid HIV test. Only samples from HIV-

136  negative individuals were analyzed further (n=117 Bushbuckridge, n=51 Soweto). Participants

137  spanned a range of BMI from healthy to overweight; the most common comorbidity reported

138  was hypertension, and many patients reported taking anti-hypertensive medication (18 of 117

139 (15%) in Bushbuckridge, 15 of 51 (29%) in Soweto) (Table 1, Table S2). Additional medications

140  are summarized in Table S2. We extracted DNA from each stool sample and conducted 150 base

141  pair (bp) paired-end sequencing on the [llumina HiSeq 4000 platform. A median of 34.5 million

142 (M) raw reads were generated per sample (range 11.4 M - 100 M), and a median of 11.2 M reads

143 (range 3.2 M - 29.3 M) resulted after pre-processing including de-duplication, trimming, and

144 human read removal (Table S3).

145

146  Gut microbial composition

147 We taxonomically classified sequencing reads against a comprehensive custom reference

148  database containing all microbial genomes in RefSeq and GenBank at scaffold quality or better

149  as of January 2020 (177,626 genomes total). Concordant with observations from 16S rRNA gene

150  sequencing of the same samples (Oduaran et al., 2020), we find that Prevotella,

151  Faecalibacterium, and Bacteroides are the most abundant genera in most individuals across both

152 study sites (Figure 1A, Figure S1, Table S4; species-level classifications in Table S5).

153  Additionally, in many individuals we observe taxa that are uncommon in western microbiomes,

154  including members of the VANISH (Volatile and/or Associated Negatively with Industrialized

155  Societies of Humans) taxa (families Prevotellaceae, Succinovibrionaceae, Paraprevotellaceae,

156  and Spirochaetaceae) (Fragiadakis et al., 2018) such as Prevotella, Treponema, and

157  Succinatimonas, which have been demonstrated to be higher in relative abundance in

158  communities practicing traditional lifestyles compared to westerners (Fragiadakis et al., 2018;

159  Sonnenburg and Sonnenburg, 2019) (Figure 1B, Table S4). The mean relative abundance of each

160  VANISH genus is higher in Bushbuckridge than Soweto, though the difference is not statistically
6
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161  significant for Prevotella, Paraprevotella, or Alkalispirochaeta (Figure 1B, Wilcoxon rank-sum
162  test). Within the Bushbuckridge cohort, we observe a bimodal distribution of the genera

163 Succinatimonas, Succinivibrio, and Treponema (Figure S2A). While we do not identify any

164  participant metadata that associate with this distribution, we observe that VANISH taxa are

165  weakly correlated with one another in metagenomes from both Bushbuckridge and Soweto

166  (Figure S2B-C).

167 Intriguingly, we observed that an increased proportion of reads aligned to the human
168  genome during pre-processing in samples from Soweto compared to Bushbuckridge (Figure S3,
169  Wilcoxon rank sum test p < 0.0001). This could potentially indicate higher inflammation and
170  immune cell content or sloughing of intestinal epithelial cells in the urban Soweto cohort

171  compared to rural Bushbuckridge.

172

173 Rural and urban microbiomes cluster distinctly in MDS

174 We hypothesized that lifestyle differences of those residing in rural Bushbuckridge

175  versus urban Soweto might be associated with demonstrable differences in gut microbiome

176 ~ composition. Bushbuckridge and Soweto differ markedly in their population density (53 and
177 6,357 persons per km? respectively as of the 2011 census) as well as in lifestyle variables

178  including the prevalence of flush toilets (6.8 vs 91.6% of dwellings) and piped water (11.9 vs
179  55% of dwellings) (additional site demographic information in Table S6) (Statistics South

180  Africa, 2012). Soweto is highly urbanized and has been so for several generations, while

181  Bushbuckridge is classified as a rural community, although it is undergoing rapid

182  epidemiological transition. Bushbuckridge also sees circular rural/urban migrancy typified by
183  some (mostly male) members of a rural community working and living for extended periods in
184  urban areas, while keeping their permanent rural home (Ginsburg et al., 2016). Although our
185  participants all live in Bushbuckridge, this migrancy in the community helps make the boundary
186  between rural and urban lifestyles more fluid. Comparing the two study populations at the

187  community level, we find that samples from the two sites have distinct centroids

188 (PERMANOVA p <0.001, R?=0.037) but overlap (Figure 2A), though we note that the

189  dispersion of the Soweto samples is greater than that of the Bushbuckridge samples

190 (PERMDISP2 p <0.001). Across the study population we observe a gradient of Bacteroides and

191  Prevotella relative abundance (Figure S4). This is likely a result of differences in diet across the
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192 study population at both sites, as Bacteroides and Prevotella have been proposed as biomarkers
193  of diet and lifestyle (De Filippo et al., 2010; Gorvitovskaia et al., 2016; Yatsunenko et al., 2012).
194 To determine if medication usage was associated with gut microbiome composition, we
195  included each participant’s self-reported concomitant medications (summarized in Table S2) to
196  re-visualize the microbiome composition of samples in MDS by class of medication (Figure

197  S5A.B). We find that self-reported medication is not significantly correlated with community
198  composition in this cohort (PERMANOVA p > 0.05, Figure S5C) except for in the case of

199  proton pump inhibitors (PPIs) (PERMANOVA p = 0.026, R? = 0.0136). We note that PPIs are
200  one of several drug classes previously found to associate with changes in gut microbiome

201  composition (Maier and Typas, 2017); as only two participants self-report taking PPIs at the time
202  of sampling, additional data is required to evaluate the robustness of this finding in these South
203 African populations.

204

205  Rural and urban microbiomes differ in Shannon diversity and species composition

206 Gut microbiome alpha diversity of individuals living traditional lifestyles has been

207  reported to be higher than those living western lifestyles (De Filippo et al., 2010; Obregon-Tito
208  etal, 2015; Schnorr et al., 2014). In keeping with this general trend, we find that alpha diversity
209  (Shannon) is significantly higher in individuals living in rural Bushbuckridge than urban Soweto
210  (Figure 2B; Wilcoxon rank-sum test, p < 0.01). Using DESeq?2 to identify microbial genera that
211  are differentially abundant across study sites, we find that genera including Bacteroides,

212 Bifidobacterium, and Staphylococcus are more abundant in individuals living in Soweto (Figure
213 2C, Table S7, species shown in Figure S6). Interestingly, we find microbial genera enriched in
214  gut microbiomes of individuals living in Bushbuckridge that are common to both the

215  environment and the gut, including Streptomyces and Pseudomonas (Table S7). Typically a soil-
216  associated organism, Streptomyces encode a variety of biosynthetic gene clusters and can

217  produce numerous immunomodulatory and anti-inflammatory compounds such as rapamycin
218  and tacrolimus, and it has been suggested that decreased exposure to Streptomyces is associated
219  with increased incidence of inflammatory disease and colon cancer in western populations

220  (Bolourian and Mojtahedi, 2018). In addition, we find enrichment of genera in Bushbuckridge
221  that have been previously associated with nonwestern microbiomes including Succinatimonas, a
222 relatively poorly-described bacterial genus with only one type species, and Elusimicrobia, a

223 phylum which has been detected in the gut microbiome of rural Malagasy (Pasolli et al., 2019).
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224 Additionally, Bushbuckridge samples are enriched for Cyanobacteria as well as Candidatus

225  Melainabacter, a phylum closely related to Cyanobacteria that in limited studies has been

226  described to inhabit the human gut (Di Rienzi et al., 2013; Soo et al., 2014)

227 We find that Bushbuckridge samples have an increased number of bacteriophages (506.1
228  +71.7) compared to samples from Soweto (201.5 £ 39.4; p = 8.606e-10). Interestingly, we

229  identify the bacteriophage crAssphage and related crAss-like phages (Guerin et al., 2018), which
230  have recently been described as prevalent constituents of the gut microbiome globally (Edwards
231  etal, 2019), in 32 of 51 participants (63%) in Soweto and 84 of 117 (72%) in Bushbuckridge
232 (difference in prevalence between cohorts not significant, p = 0.28 Fisher’s exact test) using 650
233 sequence reads or roughly 1X coverage of the 97 kb genome as a threshold for binary

234  categorization of crAss-like phage presence or absence. Prototypical crAssphage has been

235  hypothesized to infect Bacteroides species and a crAss-like phage has been demonstrated to

236  infect Bacteroides intestinalis. Though crAss-like phages do not differ between cohorts in terms
237  of prevalence (presence/absence), we observe that both crAss-like phages and Bacteroides are
238  enriched in relative abundance in the gut microbiome of individuals living in Soweto compared
239  to Bushbuckridge (Figure 2C).

240

241  No strong signals of interaction between human DNA variation and microbiome content

242 detected

243 We have a very small sample size to assess interaction between human genetic variation
244  and microbiome population. However, as our study is one of the relatively few with both human
245  and microbiome DNA characterized, we performed association tests between key microbiome
246  genera abundance levels and the human DNA. After correcting for multiple testing there were
247  only a few SNPs with borderline statistically significant association with genera abundance

248  levels (Table S8). They occur in genomic regions with no obvious impact on the gut microbiome
249  (see Methods/Supplementary Information). Additionally, we do not observe that samples cluster
250 by self-reported ethnicity of the participant (Figure S7).

251

252 South African gut microbiomes share taxa with western and nonwestern populations yet

253 harbor distinct features

254 To place the microbiome composition of South African individuals in global context with

255  metagenomes from healthy adults living in other parts of the world, we compared publicly
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256  available data from four cohorts (Figure 3A, Table S9) comprising adult individuals living in the
257  United States (Human Microbiome Project Consortium, 2012), northern Europe (Sweden)

258  (Béckhed et al., 2015), rural Madagascar (Pasolli et al., 2019), as well as the Hadza hunter-

259  gatherers of Tanzania (Rampelli et al., 2015). We note the caveat that these samples were

260  collected at different times using different approaches, and that there is variation in DNA

261  extraction, sequencing library preparation and sequencing, all of which may contribute to

262  variation between studies. Recognizing this limitation, we observe that South African samples
263 cluster between western and nonwestern populations! in MDS (Figure 3B) as expected, and that
264  the first axis of MDS correlates well with geography and lifestyle (Figure 3C). Additionally, the
265 relative abundance of Streptomycetaceae, Spirochaetaceae, Succinivibrionaceae, and

266  Bacteroidaceae are most strongly correlated with the first axis of MDS (Spearman’s rho > 0.8):
267  Bacteroidaceae decreases with MDS 1 while Streptomycetaceae, Spirochaetaceae,

268  Succinivibrionaceae increase (Figure 3B). These observations suggest that the transitional

269 lifestyle of South African individuals is reflected in their gut microbiome composition. We

270  observe a corresponding pattern of decreasing relative abundance of VANISH taxa across

271  lifestyle and geography (Figure S8).

272 The two South African cohorts also have distinct differences from both nonwestern and
273  western populations, as evidenced by displacement along the second axis of MDS (Figure 3B).
274  To identify the taxa that drive this separation, we analyzed datasets grouped by lifestyle into the
275  general categories of “nonwestern” (Tanzania, Madagascar), “western” (USA, Sweden), and
276  South African (Bushbuckridge and Soweto). We performed statistical analysis using DESeq2 to
277  identify microbial genera that differed significantly in the South African cohort compared to both
278  nonwestern and western categories (with the same directionality of effect in each comparison,
279  e.g. enriched in South Africans compared to both western and nonwestern groups) (Figure S9).
280  We observe that taxa including Escherichia, Lactobacillus, and Lactococcus are lower in relative
281  abundance in South Africans compared to both western and nonwestern categories. Conversely,
282  unclassified bacteria of the phylum Verrucomicrobia are enriched in South Africans.

283  Intriguingly, in this analysis we observe that two crAssphage clades, alpha and delta (Guerin et

284  al., 2018), are lower in abundance in South African participants relative to all other cohorts. This

!'We use the term “western” to denote western/industrialized populations and “nonwestern” to
describe populations not living in the geographic west, as in this case “non-industrialized” does

not accurately describe urban Soweto.
10
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285  may suggest a non-uniform geographic distribution of crAssphage clades and/or crAssphage
286  hosts.

287

288  Decreased sequence classifiability in nonwestern populations

289 Given previous observations that gut microbiome alpha diversity is higher in individuals
290  practicing traditional lifestyles (Gupta et al., 2017; Smits et al., 2017; Sonnenburg and

291  Sonnenburg, 2018) and that immigration from a nonwestern nation to the United States is

292  associated with a decrease in gut microbial alpha diversity (Vangay et al., 2018), we

293  hypothesized that alpha diversity would be higher in nonwestern populations including South
294  Africans. We observe that Shannon diversity of the Tanzanian hunter-gatherer cohort is

295  uniformly higher than all other populations (Figure 3D; p < 0.01 for all pairwise comparisons;
296  FDR-adjusted Wilcoxon rank sum test) and that alpha diversity is lower in individuals living in
297  the United States compared to all other cohorts (Figure 3D; p < 0.0001 for all pairwise

298  comparisons; FDR-adjusted Wilcoxon rank sum test). Surprisingly, we observe comparable
299  Shannon diversity between Madagascar, Bushbuckridge, and Sweden (ns, Wilcoxon rank sum
300 test). However, this could be an artifact of incomplete representation of diverse microbes in
301  existing reference collections.

302 Classification of metagenomic sequences from nonwestern gut microbiomes with

303  existing reference collections is known to be limited (Nayfach et al., 2019; Pasolli et al., 2019),
304 and we observe decreased sequence classifiability in nonwestern populations (Figure 4A).

305  Therefore, we sought orthogonal validation of our observation that South African microbiomes
306  represent a transitional state between traditional and western microbiomes and employed a

307  reference-independent method to evaluate the nucleotide composition of sequence data from
308  each metagenome. We used the sourmash workflow (Brown and Irber, 2016) to compare

309 nucleotide i-mer composition of sequencing reads in each sample and ordinated based on

310  angular distance, which accounts for k&~-mer abundance. Using a k-mer length of 31 (k-mer

311  similarity at k=31 correlates with species-level similarity (Koslicki and Falush, 2016)), we

312 observe clustering reminiscent of the species ordination plot shown in Fig. 3, further supporting
313 the hypothesis that South African microbiomes are transitional (Figure 4B).

314 Previous studies have reported a pattern of higher alpha diversity but lower beta diversity
315  in nonwestern populations compared to western populations (Martinez et al., 2015; Schnorr et

316  al., 2014). Hypothesizing that alpha and beta diversity may be underestimated for populations
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317  whose gut microbes are not well-represented in reference collections, we compared beta

318  diversity (distributions of within-cohort pairwise distances) calculated via species Bray-Curtis
319  dissimilarity as well as nucleotide k-mer angular distance (Figure 4C-E). Of note, beta diversity
320 s highest in Soweto irrespective of distance measure (Figure 4C). Intriguingly, in some cases we
321  observe that the relationship of distributions of pairwise distance values changes depending on
322 whether species or nucleotide k-mers are considered. For instance, considering only species

323 content, Bushbuckridge has less beta diversity than Sweden, but this pattern is reversed when
324  considering nucleotide k-mer content (Figure 4D). Further, the same observation is true for the
325  relationship between Madagascar and the United States (Figure 4E). Additionally, we compared
326  species and nucleotide beta diversity within each population using Jaccard distance, which is
327  computed based on shared and distinct features irrespective of abundance. In nucleotide k-mer
328  space, all nonwestern populations have greater beta diversity than each western population

329  (Figure S10), though this is not the case when only species are considered. This indicates that gut
330  microbiomes in these nonwestern cohorts have a longer “tail” of lowly abundant organisms

331  which differ between individuals.

332 These observations are critically important to our understanding of beta diversity in the
333  gut microbiome in western and nonwestern communities, as it suggests against the generalization
334  of an inverse relationship between alpha and beta diversity, and in some cases may represent an
335 artifact of limitations in reference databases used for sequence classification.

336

337  Improving reference collections via metagenomic assembly

338 Classification of metagenomic sequencing reads can be improved by assembling

339  sequencing data into metagenomic contigs and grouping these contigs into draft genomes

340  (binning), yielding metagenome-assembled genomes (MAGs). The majority of publications to
341  date have focused on creating MAGs from short-read sequencing data (Almeida et al., 2019;

342 Nayfach et al., 2019; Pasolli et al., 2019), but generation of high-quality MAGs from long-read
343  data from stool samples has been recently reported (Moss et al., 2020). To better characterize the
344  genomes present in our samples, we assembled and binned shotgun sequencing reads from South
345  African samples into MAGs (Figure S11). We generated 3312 MAGs (43 high-quality, 1510
346  medium-quality, and 1944 low-quality) (Bowers et al., 2017) from 168 metagenomic samples,
347  which yielded a set of 1192 non-redundant medium-quality or better representative strain

348  genomes when filtered for completeness greater than 50%, and contamination less than 10% and
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349  de-replicated at 99% average nucleotide identity (ANI). This collection of de-replicated genomes
350  includes VANISH taxa including Prevotella, Treponema, and Sphaerochaeta species (Figure
351  S12, Table S10).

352 Interestingly, many MAGs within this set represent organisms that are uncommon in

353  Western microbiomes or not easily culturable, including organisms from the genera Treponema
354  and Vibrio. As short-read MAGs are typically fragmented and exclude mobile genetic elements,
355  we explored methods to create more contiguous genomes, with a goal of trying to better

356  understand these understudied taxa. We performed long-read sequencing on three samples from
357  participants in Bushbuckridge with an Oxford Nanopore MinlON sequencer (taxonomic

358  composition of the three samples shown in Figure S13). Samples were chosen for nanopore

359  sequencing on the basis of molecular weight distribution and total mass of DNA (see Methods).
360  One flow cell per sample generated an average 19.71 Gbp of sequencing with a read N50 of

361 8,275 bp after basecalling. From our three samples, we generated 741 nanopore MAGs

362  (nMAGs), which yielded 35 non-redundant genomes when filtered for completeness greater than
363 50% and contamination less than 10%, and de-replicated at 99% ANI (Table 2, Figure S11,

364  Table S11). All of the de-replicated nMAGs contained at least one full length 16S sequence, and
365  the contig N50 of 28 nMAGs was greater than 1 Mbp (Table S11).

366 We compared assembly statistics between all MAGs and nMAGs, and found that while
367 nMAGs were typically evaluated as less complete by CheckM, the contiguity of nanopore

368  medium- and high-quality MAGs was an order of magnitude higher (mean nMAG N50 of 260.5
369 kb compared to mean N50 of medium- and high-quality MAGs of 15.1 kb) at comparable levels
370  of average coverage (Figure S11, Figure S14). We expect that CheckM under-calculates the

371  completeness of nanopore MAGs due to the homopolymer errors common in nanopore

372 sequencing, which result in frameshift errors when annotating genomes. Indeed, we observe that
373  nanopore MAGs with comparable high assembly size and low contamination to short-read

374  MAGs are evaluated by CheckM as having lower completeness (Figure S14).

375

376  Novel genomes generated through nanopore sequencing

377 When comparing the de-replicated medium- and high-quality nMAGs with the

378  corresponding short-read MAG for the same organism, we find that nMAGs typically include
379  many mobile genetic elements and associated genes that are absent from the short-read MAG,

380  such as transposases, recombinases, phages, and antibiotic resistance genes (Figure 5A).
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381  Additionally, a number of the nMAGs are among the first contiguous genomes in their clade. For
382  example, we assembled two single contig, megabase-scale genomes from the genus Treponema,
383  aclade that contains various commensal and pathogenic species and is uncommon in the gut

384  microbiota of western individuals (Obregon-Tito et al., 2015; Schnorr et al., 2014). The first of
385  these genomes is a single-contig Treponema succinifaciens genome. The type strain of 7.

386  succinifaciens, isolated from the swine gut (Han et al., 2011), is the only genome of this species
387  currently available in public reference collections. Our 7. succinifaciens genome is the first

388  complete genome of this species from the gut of a human. We assembled a second Treponema
389  sp. (Figure S15), which contains an aryl polyene biosynthetic gene cluster and shares 92.1% ANI
390  with T. succinifaciens. Additionally, we assembled a 5.08 Mbp genome for Lentisphaerae sp.,
391  which has been shown to be significantly enriched in traditional populations (Angelakis et al.,
392 2019). This genome also contains an aryl polyene biosynthetic gene cluster and multiple beta-
393  lactamases, and shares 94% 16S rRNA identity with Victivallis vadensis, suggesting a new

394  species or genus of the family Victivallaceae and representing the second closed genome for the
395  phylum Lentisphaerae.

396 Other nMAGs represent organisms that are prevalent in western individuals but

397  challenging to assemble due to their genome structure. Despite the prevalence of Bacteroides in
398  western microbiomes, only three closed B. vulgatus genomes are available in RefSeq. We

399  assembled a single contig, 2.68 Mbp Bacteroides vulgatus genome that is 65.0% complete and
400  2.7% contaminated and contains at least 16 putative insertion sequences, which may contribute
401  to the lack of contiguous short-read assemblies for this species. Similarly, we assembled a single-
402  contig genome for Catabacter sp., a member of the order Clostridiales; the most contiguous

403  Catabacter genome in GenBank is in five scaffolded contigs (Parks et al., 2017). The putative
404  Catabacter sp. shares 85% ANI with the best match in GenBank, suggesting that it represents a
405  new species within the Catabacter genus or a new genus entirely, and it contains a sactipeptide
406  biosynthetic gene cluster. Additionally, we assembled a 3.6 Mbp genome for Prevotella sp. (N50
407 = 1.87 Mbp), a highly variable genus that is prevalent in nonwestern microbiomes and associated
408  with a range of effects on host health (Scher et al., 2013). Notably, the first closed genomes of P.
409  copri, a common species of Prevotella, were only recently assembled with nanopore sequencing
410  of metagenomic samples; one from a human stool sample (Moss et al., 2020) and the other from
411  cow rumen (Stewart et al., 2019). P. copri had previously evaded closed assembly from short-

412  read sequence data due to the dozens of repetitive insertion sequences within its genome (Moss
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413  etal., 2020). Notably, this Prevotella assembly contains cephalosporin and beta-lactam

414  resistance genes, as well as an aryl polyene biosynthetic gene cluster.

415 We observed that many long-read assembled genomes were evaluated to be of low

416  completeness despite having contig N50 values greater than 1 Mbp. In investigating this

417  phenomenon, we discovered that many of these genomes had sparse or uneven short-read

418  coverage, leading to gaps in short-read polishing that would otherwise correct small frameshift
419  errors. To polish genomic regions that were not covered with short-reads, we performed long-
420  read polishing on assembled contigs from each sample, and re-binned polished contigs. Long-
421  read polishing improved the completeness of many organisms that are not commonly described
422  in the gut microbiota, due perhaps to their low relative abundance in the average human gut, or
423 to biases in shotgun sequencing library preparation that limit their detection (Figure S16, Figure
424 S17). For example, we generated a 2 Mbp genome that is best classified as a species of the

425  phylum Melainabacteria. Melainabacteria is a non-photosynthetic phylum closely related to

426  Cyanobacteria that has been previously described in the gut microbiome and is associated with
427  consuming a vegetarian diet (Di Rienzi et al., 2013). Melainabacteria have proven difficult to
428  isolate and culture, and the only complete, single-scaffold genome existing in RefSeq was

429  assembled from shotgun sequencing of a human fecal sample (Di Rienzi et al., 2013).

430  Interestingly, our Melainabacteria genome has a GC content of 30.9%, and along with

431  assemblies of a Mycoplasma sp. (25.3% GC) and Mollicutes sp. (28.1% GC) (Figure S18),

432  represent AT-rich organisms that can be underrepresented in shotgun sequencing data due to the
433 inherent GC bias of transposon insertion and amplification-based sequencing approaches (Sato et
434 al., 2019) (Figure S17). Altogether, these three genomes increased in completeness by an

435  average of 28.5% with long-read polishing to reach an overall average of 70.9% complete. While
436  these genomes meet the accepted standards to be considered medium-quality, it is possible that
437  some or all of these highly contiguous, megabase scale assemblies are complete or near-complete
438  yet underestimated by CheckM due to incomplete polishing.

439 Altogether, we find that de novo assembly approaches are capable of generating

440  contiguous, high-quality assemblies for novel organisms, offering potential for investigation into
441  the previously unclassified matter in the microbiomes of these nonwestern communities. In

442  particular, nanopore sequencing was able to produce contiguous genomes for organisms that are
443  difficult to assemble due to repeat structures (Prevotella sp., Bacteroides vulgatus), as well as for

444  organisms that exist on the extreme ends of the GC content spectrum (Mollicutes sp.,
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445  Melainabacteria sp.). We observe that long-reads are able to capture a broader range of taxa both
446  at the read and assembly levels when compared to short-read assemblies, and that short- and

447  long-read polishing approaches are able to yield medium-quality or greater draft genomes for
448  these organisms. This illustrates the increased visibility that de novo assembly approaches lend to

449  the study of the full array of organisms in the gut microbiome.
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450 Discussion

451 Together with Oduaran et al. (Oduaran et al., 2020), we provide the first description of
452  gut microbiome composition in Soweto and Bushbuckridge, South Africa, and to our knowledge,
453  the first effort utilizing shotgun and nanopore sequencing in South Africa to describe the gut

454  microbiome of adults. In doing so, we increase global representation in microbiome research and
455  provide a baseline for future studies of disease association with the microbiome in South African
456  populations, and in other transitional populations.

457 We find that gut microbiome composition differs demonstrably between the

458  Bushbuckridge and Soweto cohorts, further highlighting the importance of studying diverse

459  communities with differing lifestyle practices. Interestingly, even though gut microbiomes of
460  individuals in Bushbuckridge and Soweto share many features and are more similar to each other
461  than to other global cohorts studied, we do observe hallmark taxa associated with westernization
462  are enriched in microbiomes in Soweto. These include Bacteroides and Bifidobacterium, which
463  have been previously associated with urban communities (Gupta et al., 2017), consistent with
464  Soweto’s urban locale in the Johannesburg metropolitan area.

465 We also observe enrichment in relative abundance of crAssphage and crAss-like viruses
466  in Soweto relative to Bushbuckridge, with relatively high prevalence in both cohorts yet lower
467  abundance on average of crAssphage clades alpha and delta compared to several other

468  populations. This furthers recent work which revealed that crAssphage is prevalent across many
469  cohorts globally (Edwards et al., 2019), but found relatively fewer crAssphage sequences on the
470  African continent, presumably due to paucity of available shotgun metagenomic data. Just as

471  shotgun metagenomic sequence data enables the study of viruses, it also enables us to assess the
472  relative abundance of human cells or damaged human cells in the stool. Surprisingly, we observe
473 ahigh relative abundance of human DNA in the raw sequencing data, which was unexpected.
474  We find a statistically significantly higher relative abundance of human DNA in samples from
475  Soweto compared to those from Bushbuckridge. Future research may help illuminate the

476  potential reason for this finding, which may include a higher proportion of epithelium disrupting,
477  invasive bacteria or parasites in Soweto vs. Bushbuckridge, and in South Africa, in general,

478  compared to other geographic settings. Alternatively, this may also be attributable to a higher
479  baseline of intestinal inflammation and fecal shedding of leukocytes. Without additional

480  information, it is difficult to speculate as to the reason for this finding.
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481 We find that individuals in Bushbuckridge are enriched in VANISH taxa including

482  Succinatimonas, which has been recently reported to associate with microbiomes from

483  individuals practicing traditional lifestyles (Pasolli et al., 2019). Intriguingly, several VANISH
484  taxa (Succinatimonas, Succinivibrio, Treponema) display bimodal distributions in the

485  Bushbuckridge cohort. We hypothesize that this bimodality could be caused by differences in
486 lifestyle and/or environmental factors including diet, history of hospitalization or exposure to
487  medicines, physical properties of the household dwelling, differential treatment of drinking water
488  across the villages comprising Bushbuckridge. Additionally this pattern may be explained by
489  participation in migration to and from urban centers (or sharing a household with a migratory
490  worker). A higher proportion of men in the community engage in this pattern of rural-urban

491  migration (Ginsburg et al., 2016), but it is possible that sharing a household with a cyclical

492  worker could influence gut microbiome composition via horizontal transmission (Brito et al.,
493  2019).

494 Despite the fact that host genetics explain relatively little of the variation in microbiome
495  composition (Rothschild et al., 2018), we do observe a small number of taxa that associate with
496  host genetics in this population. Future work is required for replication and to determine whether
497  these organisms are interacting with the host and whether they are associated with host health.
498 Additionally, we demonstrate marked differences between South African cohorts and
499  other previously studied populations living on the African continent and western countries.

500  Broadly, we find that South African microbiomes reflect the transitional nature of their

501  communities in that they overlap with western and nonwestern populations. Tremendous human
502  genetic diversity exists within Africa, and our work reveals that there is a great deal of as yet
503  unexplored microbiome diversity as well. In fact, we find that microbiome beta diversity within
504  communities may be systematically underestimated by incomplete reference databases: taxa that
505  are unique to individuals in nonwestern populations are not present in reference databases and
506 therefore not included in beta diversity calculations. Though it has been reported that nonwestern
507 and traditional populations tend to have higher alpha diversity but lower beta diversity compared
508  to western populations, we show that this pattern is not universally upheld when reference-

509  agnostic nucleotide comparisons are performed. By extension, we speculate that previous claims
510 that beta diversity inversely correlates with alpha diversity may have been fundamentally limited
511 by study design in some cases. Specifically, the disparity between comparing small, homogenous

512 African populations with large, heterogenous western ones constitutes a significant statistical
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513  confounder, potentially preventing a valid assessment of beta diversity between groups.

514  Furthermore, alpha and beta diversity comparisons based on species-level taxonomic assignment
515  may be further confounded due to the presence of polyphyletic clades in organisms like

516  Prevotella copri (Parks et al., 2020; Tett et al., 2019) which are highly abundant in gut

517  microbiomes of nonwestern individuals.

518 Through a combination of short-read and long-read sequencing, we successfully

519  assembled contiguous, complete genomes for many organisms that are underrepresented in

520 reference databases, including genomes that are commonly considered to be enriched in or

521  limited to populations with traditional lifestyles including members of the VANISH taxa (e.g.,
522 Treponema sp., Treponema succinifaciens). The phylum Spirochaetes, namely its constituent
523 genus Treponema, is considered to be a marker of traditional microbiomes and has not been

524  detected in high abundance in human microbiomes outside of those communities (Angelakis et
525  al, 2019; Obregon-Tito et al., 2015). Here, we identify Spirochaetes in the gut microbiome of
526  individuals in urban Soweto, demonstrating that this taxon is not exclusive to traditional, rural
527  populations, though we observe that relative abundance is higher on average in traditional

528  populations. Generation of additional genomes of VANISH taxa and incorporation of these

529  genomes into reference databases will allow for increased sensitivity to detect these organisms in
530  metagenomic data. Additionally, these genomes facilitate comparative genomics of understudied
531  gut microbes and allow for functional annotation of potentially biologically relevant functional
532 pathways. We note that many of these genomes (e.g., Melainabacteria, Succinatimonas) are

533  enriched in the gut microbiota of Bushbuckridge participants relative to Soweto, highlighting the
534  impact of metagenomic assembly to better resolve genomes present in rural populations.

535 We produced genomes for organisms that exist on the extremes of the GC content

536  spectrum, such as Mycoplasma sp., Mollicutes sp., and Melainabacteria sp. We find that these
537  organisms are sparsely covered by short-read sequencing, illustrating the increased range of non-
538  amplification based sequencing approaches, such as nanopore sequencing. Interestingly, these
539  assemblies are evaluated as only medium-quality by CheckM despite having low measurements
540  of contamination, as well as genome lengths and gene counts comparable to reference genomes
541  from the same phylogenetic clade. We hypothesize that sparse short-read coverage leads to

542  incomplete polishing and therefore retention of small frameshift errors, which are a known

543  limitation of nanopore sequencing (Tyler et al., 2018). Further evaluation of 16S or long-read
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544  sequencing of traditional and western populations can identify whether these organisms are
545  specific to certain lifestyles, or more prevalent but poorly detected with shotgun sequencing.
546 While we find that the gut microbiome composition of the two South African cohorts
547  described herein reflects their lifestyle transition, we acknowledge that these cohorts are not
548  necessarily representative of all transitional communities in South Africa or other parts of the
549  world which differ in lifestyle, diet, and resource access. Hence, further work remains to describe
550  the gut microbiota in detail of other such understudied populations. This includes a detailed
551  characterization of parasites present in microbiome sequence data, an analysis that we did not
552 undertake in this study but would be of great interest. These organisms have been detected in the
553  majority of household toilets in nearby KwaZulu-Natal province (Tronnberg et al., 2010), and
554  may interact with and influence microbiota composition (Leung et al., 2018).

555 Our study has several limitations. Although the publicly available sequence data from
556  other global cohorts were generated with similar methodology to our study, it is possible that
557  batch effects exist between datasets generated in different laboratories that may explain some
558  percentage of the global variation we observe. Additionally, while nanopore sequencing is able
559  to broaden our range of investigation, we illustrate that our ability to produce well-polished
560  genomes at GC content extremes is limited. This may affect our ability to accurately call gene
561  lengths and structures, although iterative long-read polishing improves our confidence in these
562  assemblies. Future investigation of these communities using less biased, higher coverage short-
563  read approaches or more accurate long-read sequencing approaches, such as PacBio circular
564  consensus sequencing, may improve assembly qualities. Additionally, long-read sequencing of
565  samples from a wider range of populations can identify whether the genomes identified herein
566  are limited to traditional and transitional populations, or more widespread. Further, future

567  improvements in error rate of long-read sequencing may obviate the need for short-read

568  polishing altogether.

569 Taken together, our results emphasize the importance of generating sequence data from
570  diverse transitional populations to contextualize studies of health and disease in these

571  individuals. To do so with maximum sensitivity and precision, reference genomes must be

572  generated to classify sequencing reads from these metagenomes. Herein, we demonstrate the
573  discrepancies in microbiome sequence classifiability across global populations and highlight the
574  need for more comprehensive reference collections. Recent efforts have made tremendous

575  progress in improving the ability to classify microbiome data through creating new genomes via
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576  metagenomic assembly (Almeida et al., 2019; Nayfach et al., 2019; Pasolli et al., 2019), and here
577  we demonstrate the application of short- and long-read metagenomic assembly techniques to

578  create additional genome references. Our application of long-read sequencing technology to

579  samples from South African individuals has demonstrated the ability to generate highly

580  contiguous MAGs and shows immense potential to expand our reference collections and better
581  describe microbiomes throughout diverse populations globally. In the future, microbiome studies
582  may utilize a combination of short- and long-read sequencing to maximize information output,
583  perhaps performing targeted Nanopore sequencing of samples that are likely to contain the most
584  novelty on the basis of short-read data.

585 The present study was conducted in close collaboration between site staff and researchers
586  in Bushbuckridge and Soweto as well as microbiome experts both in South Africa and the United
587  States, and community member feedback was considered at multiple phases in the planning and
588  execution of the study (see Oduaran et al. 2020 for more information). Tremendous research

589  efforts have produced detailed demographic and health characterization of individuals living in
590  both Bushbuckridge and Soweto (Kabudula et al., 2017a, 2017b; Ramsay et al., 2016; Richter et
591  al., 2007) and it is our hope that microbiome data can be incorporated into this knowledge

592  framework in future studies to uncover disease biomarkers or microbial associations with other
593  health and lifestyle outcomes. More broadly, we feel that this is an example of a framework for
594  conducting microbiome studies in an equitable manner, and we envision a system in which

595  future studies of microbiome composition can be carried out to achieve detailed characterization

596  of microbiomes globally while maximizing benefit to all participants and researchers involved.
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597  Methods

598  Cohort selection

599 Stool samples were collected from women aged 40-72 years in Soweto, South Africa and
600  Bushbuckridge Municipality, South Africa. Participants were recruited on the basis of

601  participation in AWI-Gen (Ramsay et al., 2016), a previous study in which genotype and

602  extensive health and lifestyle survey data were collected. Human subjects research approval was
603  obtained (Stanford IRB 43069, University of the Witwatersrand Human Research Ethics

604  Committee M160121, Mpumalanga Provincial Health Research Committee MP_2017RP22 851)
605  and informed consent was obtained from participants for all samples collected. Stool samples
606  were collected and preserved in OmniGene Gut OMR-200 collection kits (DNA Genotek).

607  Samples were frozen within 60 days of collection as per manufacturer's instructions, followed by
608  long-term storage at -80°C. As the enrollment criteria for our study included previous

609  participation in a larger human genomics project (Ramsay et al., 2016), we had access to self-
610  reported ethnicity for each participant (BaPedi, Ndebele, Sotho, Tsonga, Tswana, Venda, Xhosa,
611  Zulu, Other, or Unknown). Samples from participants who tested HIV-positive or who did not

612  consent to an HIV test were not analyzed.

613  Metagenomic sequencing of stool samples

614 DNA was extracted from stool samples using the QIAamp PowerFecal DNA Kit
615  (QIAGEN) according to the manufacturer’s instructions except for the lysis step, in which
616  samples were lysed using the TissueLyser LT (QIAGEN) (30 second oscillations/3 minutes at
617  30Hz). DNA concentration of all DNA samples was measured using Qubit Fluorometric
618  Quantitation (DS DNA High-Sensitivity Kit, Life Technologies). DNA sequencing libraries were
619  prepared using the Nextera XT DNA Library Prep Kit (Illumina). Final library concentration was
620  measured using Qubit Fluorometric Quantitation and library size distributions were analyzed
621  with the Bioanalyzer 2100 (Agilent). Libraries were multiplexed and 150 base pair paired-end
622  reads were generated on the HiSeq 4000 platform (Illumina). Samples with greater than
623  approximately 300 ng remaining mass and a peak fragment length of greater than 19,000 bp
624  (with minimal mass under 4,000 bp) as determined by a TapeStation 2200 (Agilent
625  Technologies, Santa Clara, CA) were selected for nanopore sequencing. Nanopore sequencing
626 libraries were prepared using the 1D Genomic DNA by Ligation protocol (ONT, Oxford UK)
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627  following standard instructions. Each library was sequenced with a full FLO-MIN106D R9
628  Version Rev D flow cell on a MinlON sequencer for at least 60 hours.

629  Computational methods

630 R code for analysis and figure generation will be made available on Github upon publication.

631

632  Preprocessing

633 Stool metagenomic sequencing reads were trimmed using TrimGalore v0.5.0 (Krueger), a

634  wrapper for CutAdapt v1.18 (Martin, 2011), with a minimum quality score of 30 for trimming (--
635 g 30) and minimum read length of 60 (--length 60). Trimmed reads were deduplicated to remove
636  PCR and optical duplicates using seqtk rmdup v1.3-r106 with default parameters. Reads aligning
637  to the human genome (hg19) were removed using BWA v0.7.17-r1188 (Li and Durbin, 2009).
638  To assess the microbial composition of our short-read sequencing samples, we used the Kraken
639  v2.0.8-beta taxonomic sequence classifier with default parameters (Wood and Salzberg, 2014)
640  and a comprehensive custom reference database containing all bacterial and archaeal genomes in

99 <6

641  GenBank assembled to “complete genome,” “chromosome,” or “scaffold” quality as of January
642  2020. Bracken v2.0.0 was then used to re-estimate abundance at each taxonomic rank (Lu et al.,
643  2017).

644

645  Additional data

646 Published data from additional populations were downloaded via the NCBI Sequence
647  Read Archive (SRA) or European Nucleotide Archive (Table S9) and preprocessed and

648  taxonomically classified as described above. For datasets containing longitudinal samples from
649  the same individual, one unique sample per individual was chosen (the first sample from each
650  individual was chosen from the United States Human Microbiome Project cohort).

651

652  K-mer sketches

653 K-mer sketches were computed using sourmash v2.0.0 (Brown and Irber, 2016). Low
654  abundance k-mers were trimmed using the “trim-low-abund.py” script from the khmer package
655  (Crusoe et al., 2015) with a k-mer abundance cutoff of 3 (-C 3) and trimming coverage of 18 (-Z
656  18). Signatures were computed for each sample using the command “sourmash compute” with a

657  compression ratio of 1000 (--scaled 1000) and k-mer lengths of 21, 31, and 51 (-k 21,31,51).

658  Two signatures were computed for each sample - one signature tracking k-mer abundance (--
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659 track-abundance flag) for angular distance comparisons, and one without this flag for Jaccard
660  distance comparisons. Signatures at each length of £ were compared using “sourmash compare”
661  with default parameters and the correct length of & specified with the -k flag.

662

663  Statistical analysis and plotting

664 Statistical analyses were performed using R v4.0.0 (R Core Team, 2019) with packages
665  MASS v7.3-51.5 (Venables and Ripley, 2002), stats (R Core Team, 2019), ggsignif v0.6.0

666  (Ahlmann-Eltze, 2019), and ggpubr v0.2.5 (Kassambara, 2020). Alpha and beta diversity were
667  calculated using the vegan package v2.5-6 (Oksanen et al., 2019). Wilcoxon rank-sum tests were
668  used to compare alpha and beta diversity between cohorts. Count data were normalized via

669  cumulative sum scaling and log2 transformation (Paulson et al., 2013) prior to MDS. Data

670  separation in MDS was assessed via PERMANOVA (permutation test with pseudo F ratios)
671  using the adonis function from the vegan package. Differential microbial features between

672  individuals living in Soweto and Bushbuckridge were identified from unnormalized count data
673  output from kraken2 classification and bracken abundance re-estimation and filtered for 20%
674  prevalence and at least 1000 sequencing reads using DESeq2 (Love et al., 2014). Plots were
675  generated in R using the following packages: cowplot v1.0.0 (Wilke, 2019), DESeq2 v1.24.0
676  (Loveetal., 2014), dplyr v0.8.5 (Wickham et al., 2020), genefilter v1.66.0 (Gentleman et al.,
677  2019), ggplot2 v3.3.0 (Wickham, 2016), ggpubr v0.2.5, ggrepel v0.8.2 (Slowikowski, 2020),
678  ggsignif v0.6.0, gtools v3.8.2 (Warnes et al., 2020), harrietr v0.2.3 (Gongalves da Silva, 2017),
679  MASS v7.3-51.5, reshape2 v1.4.3 (Wickham, 2007), and vegan v2.5-6.

680

681  Genome assembly, binning, and evaluation

682 Short-read metagenomic data were assembled with MEGAHIT v1.1.3 (Li et al., 2016)
683  and binned into draft genomes as previously described (Bishara et al., 2018). Briefly, short reads
684  were aligned to assembled contigs with BWA v0.7.17 (Li and Durbin, 2009) and contigs were
685  subsequently binned into draft genomes with MetaBAT v2:2.13 (Kang et al., 2015). Bins were
686  evaluated for size, contiguity, completeness, and contamination with QUAST v5.0.0 (Gurevich
687 etal., 2013), CheckM v1.0.13 (Parks et al., 2015), Prokka v1.13 (Seemann, 2014), Aragorn

688  v1.2.38 (Laslett and Canback, 2004), and Barrnap v0.9 (https://github.com/tseemann/barrnap/).

689  We referred to published guidelines to designate genome quality (Bowers et al., 2017).

690  Individual contigs from all assemblies were assigned taxonomic classifications with Kraken
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691  v2.0.8 (Bowers et al., 2017; Wood and Salzberg, 2014). Genome sets were filtered for

692  completeness greater than 50% and contamination less than 10% as evaluated by CheckM, and
693  de-replicated using dRep v2.5.4 (Olm et al., 2017) with ANI threshold to form secondary clusters
694  (-sa) at 0.99 (strain-level) or 0.95 (species-level).

695 Long-read data were assembled with Lathe (Moss et al., 2020) as previously described.
696  Briefly, Lathe implements basecalling with Guppy v2.3.5, assembly with Flye v2.4.2 (Lin et al.,
697  2016), short-read polishing with Pilon v1.23 (Walker et al., 2014), and circularization with

698  Circlator (Hunt et al., 2015) and Encircle (Moss et al., 2020). Binning, classification, and de-
699  replication were performed as described above. Additional long-read polishing was performed
700  using four iterations of polishing with Racon v1.4.10 (Vaser et al., 2017) and long-read

701  alignment using minimap2 v2.17-r941 (Li, 2018), followed by one round of polishing with

702  Medaka v0.11.5 (https://github.com/nanoporetech/medaka).

703 Direct comparisons between nMAGs and corresponding MAGs were performed by de-
704  replicating high- and medium-quality nMAGs with MAGs assembled from the same sample.
705  MAGs sharing at least 99% ANI with an nMAG were aligned to the nMAG regions using

706  nucmer v3.1 and uncovered regions of the nMAG were annotated with prokka 1.14.6,

707  VIBRANT v1.2.1, and ResFams v1.2. Taxonomic trees were plotted with Graphlan v1.1.3

708  (Asnicar et al., 2015).

709 To construct phylogenetic trees, reference 16S sequences were downloaded from the
710  Ribosomal Database Project (Release 11, update 5, September 30, 2016) (Cole et al., 2014) and
711 168 sequences were identified from nanopore genome assemblies using Barrnap v0.9

712 (https:/github.com/tseemann/barrnap/). Sequences were aligned with MUSCLE v3.8.1551

713 (Edgar, 2004) with default parameters. Maximum-likelihood phylogenetic trees were constructed
714 from the alignments with FastTree v2.1.10 (Edgar, 2004; Price et al., 2010) with default settings
715 (Jukes-Cantor + CAT model). Support values for branch splits were calculated using the

716  Shimodaira-Hasegawa test with 1,000 resamples (default). Trees were visualized with FigTree

717  v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/).

718  Data availability

719 All shotgun sequence data generated by this study, as well as metagenome-assembled
720  genome sequences, will be deposited in a publicly available reference database (NCBI Sequence

721  Read Archive or European Nucleotide Archive) and released upon publication.
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722 Participant-level metadata (age, BMI, blood pressure measurements, and concomitant
723 medications) and human genetic data will be deposited in the European Genome-phenome

724 Archive and released upon publication.
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758  Main Tables

759  Table 1. Participant characteristics

Site Mean Standard deviation | Range
Age Bushbuckridge 55.52 7.79 43 -72

Soweto 54.1 5.86 43 - 64
BMI Bushbuckridge 32.35 8.00 21.2-59*

Soweto 36.05 9.25 20.42 - 58.62
Systolic blood Bushbuckridge 137 18.28 101 - 189
pressure

Soweto 134 22.54 96 - 193
Diastolic blood Bushbuckridge 84 12.12 54-119
pressure

Soweto 90 14.37 58-119

760 *One participant’s BMI measurement was excluded on the basis of the recorded value being too low to be
761 physiologically possible and deemed to have been recorded in error. We could not validate the correct BMI for this
762 participant and thus have omitted them from the BMI summary statistics.
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763  Table 2. Medium- and high-quality genomes assembled from nanopore sequencing

Classification
Alistipes putredinis
Anaerotruncus sp.
Bacilli bacterium
Bacteroidales bacterium
Bacteroidales bacterium
Bacteroidales bacterium
Bacteroides sp.
Bacteroides sp.
Bacteroides vulgatus
Candidatus Melainabacteria
Catabacter sp.
Clostridiales bacterium
Clostridiales bacterium
Clostridiales bacterium
Clostridiales bacterium
Clostridiales bacterium
Clostridiales bacterium
Clostridiales bacterium
Clostridium sp.
Clostridium sp.
Clostridium sp.
Clostridium sp.
Clostridium sp.
Eubacterium
Lachnospiraceae bacterium
Lachnospiraceae bacterium
Lentisphaeria bacterium
Mollicutes bacterium
Mycoplasma sp.

Oscillibacter sp.

Porphyromonadaceae bacterium

Prevotella sp.
Ruminococcaceae bacterium
Ruminococcaceae bacterium
Ruminococcaceae bacterium
Treponema sp.

Treponema succinifaciens
uncultured Ruminococcus

uncultured Ruminococcus

Size %
(Mb) GC

191 53.1
2,04 437
1.46 262
2,67 473
279 498
1.7 56.6
2 482
282 433
2.68 427
2 309
1.65  46.4
2.03 579
1.53) 473
1.95 496
224 487
265 428
132 452
1.61 469
153 252
13 469
201 288
1.14  29.1
244 525
2 445
338 43.6
3.81 436
508 575
1.68  28.1
1.17) 253
1.13| 574
297 474
329 436
1.95 384
227 514
1.78 583
2.06 41.6
2,55 391
1.59 440
2.08 469

N50
(Mb)

1.91
2.04
1.46
1.80
2.79
1.70
1.59
2.00
2.68
2.00
1.65
0.60
1.53
0.73
0.58
2.65
0.79
1.61
1.53
1.30
2.01
1.14
2.23
0.63
1.94
2.83
5.08
1.49

0.17
2.97

0.80
2.27
1.78
2.06
2.55
1.34
2.08

Quality
Medium
Medium
Medium

High

High
Medium

High
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

High
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

High
Medium
Medium

High
Medium
Medium
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766  Figure 1. Taxonomic composition of South African study participants
767 Sequence data were taxonomically classified using Kraken2 with a database containing all genomes in GenBank of
768  scaffold quality or better as of January 2020.
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769 (A) Top 20 genera by relative abundance for samples from participants in Bushbuckridge and Soweto, sorted by
770 decreasing Prevotella abundance. Prevotella, Faecalibacterium, and Bacteroides are the most prevalent genera

771  across both study sites.

772 (B) Relative abundance of VANISH genera by study site, grouped by family. A pseudocount of 1 read was added to
773 each sample prior to relative abundance normalization in order to plot on a log scale, as the abundance of some

774 genera in some samples is zero. Relative abundance values of most VANISH genera are higher on average in

775  participants from Bushbuckridge than Soweto (Wilcoxon rank-sum test, significance values denoted as follows: (*)
776  p<0.05,(**)p <0.01, (***) p <0.001, (****) p < 0.0001, (ns) not significant). Upper and lower box plot whiskers

777 represent the highest and lowest values within 1.5 times the interquartile range, respectively.
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779 Figure 2. Comparison of Bushbuckridge and Soweto microbiomes

780 (A) Multidimensional scaling of pairwise Bray-Curtis distance between samples (CSS-normalized counts). Samples
781 from Soweto have greater dispersion than samples from Bushbuckridge (PERMDISP2 p < 0.001).

782 (B) Shannon diversity calculated on species-level taxonomic classifications for each sample. Samples from

783 Bushbuckridge are higher in alpha diversity than samples from Soweto (Wilcoxon rank-sum test, p < 0.001). Upper
784  and lower box plot whiskers represent the highest and lowest values within 1.5 times the interquartile range,

785  respectively.
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786 (C) DESeq?2 identifies microbial genera that are differentially abundant in rural Bushbuckridge compared to the

787 urban Soweto cohort. Features with log2 fold change greater than one are plotted (full results in Table S7).
788
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789
790  Figure 3. Community-level comparison of global microbiomes
791 Comparisons of South African microbiome data to microbiome sequence data from four publicly available cohorts
792 representing western (United States, Sweden) and nonwestern (Hadza hunter-gatherers of Tanzania, rural
793  Madagascar) populations.
794 (A) Number of participants per cohort.
795 (B) Multidimensional scaling of pairwise Bray-Curtis distance between samples from six datasets of healthy adult
796 shotgun microbiome sequencing data. Western populations (Sweden, United States) cluster away from African
797 populations practicing a traditional lifestyle (Madagascar, Tanzania) while transitional South African microbiomes
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798 overlap with both western and nonwestern populations. Shown below are scatterplots of relative abundance of the
799 top four taxa most correlated with MDS 1 (Spearman’s rho, Streptomycetaceae 0.853, Spirochaetaceae 0.850,

800  Succinivibrionaceae 0.845, Bacteroidaceae -0.801) against MDS 1 on the x axis.

801 (C) Boxplot of the first axis of MDS (MDS 1) which correlates with geography and lifestyle, and the second axis of
802  MDS (MDS 2) where South African populations display a shift relative to other cohorts.

803 (D) Shannon diversity across cohorts. Shannon diversity was calculated from data rarefied to the number of

804  sequence reads of the lowest sample.
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806 Figure 4. Comparison of beta diversity between communities calculated by taxonomy versus nucleotide k-mer
807  composition

808 (A) Percentage of reads classified at any taxonomic rank, by cohort, based on a reference database of all scaffold or
809 higher quality reference genomes in GenBank and RefSeq as of January 2020. Western microbiomes have a higher
810  percentage of classifiable reads compared to nonwestern microbiomes (Wilcoxon rank-sum test p < 0.001).

811 (B) Nucleotide sequences of microbiome sequencing reads were compared using k-mer sketches. This reference-
812 free approach is not constrained by comparison to existing genomes and therefore allows direct comparison of
813 sequences. Briefly, a hash function generates signatures at varying sequence lengths (k) and A-mer sketches can be
814  compared between samples. Data shown here are generated from comparisons at &=31 (approx. species-

815 level)(Koslicki and Falush, 2016). Non-metric multidimensional scaling (NMDS) of angular distance values

816  computed between each pair of samples.

817 (C-E) Comparison of pairwise beta diversity within communities assessed by Bray-Curtis distance based on

818  species-level classifications and angular distance of nucleotide k&-mer sketches. (C) All populations. (D) South

819  African populations (Bushbuckridge and Soweto) compared to the Swedish cohort. Beta diversity measured by
820  Bray-Curtis distance is higher in Soweto but lower in Bushbuckridge compared to the United States. However,
821 reference-independent k-mer comparisons indicate that nucleotide dissimilarity is higher within both South African
822  populations compared to the Swedish cohort. (E) Species-based Bray-Curtis distance indicates that there is more
823 beta diversity within the United States cohort compared to Malagasy, but k-mer distance indicates an opposite

824  pattern.

825 Significance values for Wilcoxon rank sum tests denoted as follows: (*) p <0.05, (**) p <0.01, (***) p <0.001,
826  (****)p<0.0001.
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Figure 5. Complete and contiguous genomes of South African microbiota

(A) Number of genomic elements present in medium- and high-quality nanopore MAGs that are absent in
830  corresponding short-read MAGs for the same organism.

831 (B) Taxonomic classification of de-replicated medium- and high-quality nanopore MAGs. Larger circles represent
832  nanopore MAGs, at the highest level of taxonomic classification.

833 (C) A selection of MAGs assembled from long-read sequencing (green) of three South African samples compared
834  contigs assembled from corresponding short read data (grey). Outer light grey ring indicates contig scale, with ticks
835

at 100kb intervals. Breaks in circles represent different contigs.
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836 Supplementary Figures
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838  Supplementary Figure 1. Most abundant species and genera
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839  Most abundant taxa by mean relative abundance (total sum scaling) shown for samples from
840  Bushbuckridge (n=117) and Soweto (n=51). Taxa are plotted in decreasing order of mean

841  relative abundance calculated across both cohorts combined. Upper and lower box plot whiskers
842  represent the highest and lowest values within 1.5 times the interquartile range, respectively.
843 (A) The most abundant species are Prevotella copri, Faecalibacterium prausnitzii, and a

844  bacterium from the family Ruminococcaceae.

845 (B) Prevotella, Bacteroides, and Faecalibacterium are the most abundant genera across both

846  study sites.

40


https://doi.org/10.1101/2020.05.18.099820
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.18.099820; this version posted October 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Succinatimonas Spearman's
0.3 Spirochaetaceae- -0.07 0.39 rho
0.2 1 1.0
o1 M -
0.0+ Succinivibrionaceae - 0.39 0.5
Succinivibrio 0.0
?83 Prevotellaceae - 0.34 -0.07 . 05
G 0.11 : : : -1.0
Q 0.0 g 8 8
(0] (0] (0]
Treponema 8 8 &
= c -
1.0 g 2 ¢
00 s 2 3
0.0 +t—m —— & Z =
0 0010 0.0100 0.1000 1.0000 10.0000 8 o
Relative abundance (%) @
Alkalispirochaeta | g 19 016 048 0.22 01 -0.04 0.07 -0.02 0.03 0.03 0.07 0.09
(Spirochaetaceae)
Paraprevotella | ]
(Prevotellaceae) 0.01 0.1 0.05 0.03 0.08 0.05 0.09 0.13 -0.02 0.09
Alloprevotella |
(Prevotellaceae) 0.19 0.33 0.23 0.15 0.21 0.24 0.38 . 0.53 0.07
Prevotellamassilia | 11 023 012 04 018 025 0.39 053 052 0.03
(Prevotellaceae)
Metaprevotella |
(Prevotellaceae) | 013 0-28 it 0.45 048 -0.02 0.03 .
Spearman's
Prevotella | 013 002 rho
(Prevotellaceae) : ‘ 10
Succinivibrio | 009 0.07 . 05
(Succinivibrionaceae) ’ : O-O
Succinatimonas | 0.05 -0.04 ’
(Succinivibrionaceae) : : . -0.5
Ruminobacter | 008 0.1 -1.0
(Succinivibrionaceae) : :
Spirochaeta |
(Spirochaetaceae) 0.03 e
Sphaerochaeta |
(Spirochaetaceae) 0.05 e
Treponema |
(Spirochaetaceae) 0.1 B
Sediminispirochaeta |
(Spirochaetaceae) 04 0.14 0.16 -0.14 0.13 0.11 0.19 0.01 0.19
2o 80 80 80 0 $0 20 80 80 & &0 & &0
O © T 0@ 0@ GO c® 50 00 00 ;8 00 00 O®
28 28 28 28 58 835853058 235858 28
S 08 O & S @ ECE® 26 268 8% 26 =@ O®
St S3 9T 28 25 55 85 23 85 £E3 2T L5 29
=g 90 o0 =0 =2 890 090 Al 52 82 58 88 =
Q- Ec gc Sc ET £T 5% O TO 30 00 @O 2
26 G £06 NG 52 02 2 S 23 03 =3 3 95
£0 o ao o x> 95 S o Lo oo < SO FoO
o = = = = 3= = - = s S F e N =
Ea a®a 5 £a0f £ oo ge o QL Zg
3¢ & & & 3 8 3 = e
@ )
847
848  Supplementary Figure 2. Bimodal distribution of three VANISH taxa
849  (A) Succinatimonas, Succinivibrio, and Treponema relative abundance values follow a bimodal
850  distribution in Bushbuckridge.

41


https://doi.org/10.1101/2020.05.18.099820
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.18.099820; this version posted October 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

851  Across all South African samples, several VANISH families (B) and genera (C) are correlated,
852  with the exception of Prevotella and genera of the family Spirochaetaceae which are not
853  correlated with Prevotella (Treponema) or weakly anti-correlated with Prevotella (Spirochaeta,

854  Sphaerochaeta, Sediminispirochaeta).
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856  Supplementary Figure 3. Abundance of human reads in metagenomic sequencing

857  (A) Histogram and (B) box and whisker plots indicating that the proportion of human reads
858  removed after deduplication was found to be higher in the Soweto cohort compared to

859  Bushbuckridge.

860
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862  Supplementary Figure 4. Bacteroides/Prevotella gradient across study population

863  Multidimensional scaling ordination of Bray-Curtis distance calculated from species

864  classifications in South African microbiome samples colored by log? ratio of the relative

865  abundance of the genera Bacteroides Prevotella. Bacteroides and Prevotella are major axes of
866  variation across study samples.
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Supplementary Figure 5: Concomitant medications do not substantially impact community
composition

Multidimensional scaling ordination of Bray-Curtis distance calculated from species
classifications. Circles indicate participants from Bushbuckridge, triangles indicate participants
from Soweto.

(A) Points are colored red if the participant was taking a medication of the corresponding class,
patients not taking a medication of that class are shown in gray.

(B) Specific antibiotics taken by participants. Points are colored according to the antibiotic or
combination of antibiotics reported.

(C) PERMANOVA R? values and p-values for the variation explained by each drug class.
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880  Supplementary Figure 6. Differentially abundant species between Bushbuckridge and
881  Soweto
882  Differentially abundant microbial species between rural Bushbuckridge and urban Soweto

883  samples identified by DESeq2. Features with log2 fold change greater than one are shown (full
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884  results in Table S7). Note that differentially abundant microbial genera are presented in Figure

885  2c.
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886
887  Supplementary Figure 7. South African microbiomes do not cluster by self-reported

888  ethnicity
889  Multidimensional scaling ordination of Bray-Curtis distance with samples are colored by self-

890  reported ethnicity. Samples do not cluster by self-reported ethnicity.
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892  Supplementary Figure 8. Relative abundance of VANISH taxa in global cohort

893  Relative abundance of VANISH genera from the families Prevotellaceae, Spirochaetaceae, and
894  Succinivibrionaceae. A pseudocount of 1 read was added to each sample prior to relative
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895  abundance normalization in order to plot on a log scale. Relative abundance values for most
896  genera trend toward decreasing from nonwestern cohorts to western cohorts.
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897 B3 Non-western B3 South Africa B3 Western

898  Supplementary Figure 9. Microbial genera which distinguish Bushbuckridge and Soweto
899  Samples were grouped by geographic region into “western” (USA, Sweden), “nonwestern”
900 (Tanzania, Madagascar) and “South African” (Bushbuckridge, Soweto) and taxa which

901  distinguish the South African group from the western and nonwestern groups were determined
902  separately using DESeq2. Results with the same directionality of log2 fold change with respect
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903  to South Africa in both comparisons, with a minimum log2 fold change of 2 in each comparison,
904  are shown. A pseudo-count was added to zero values for plotting.
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905
906  Supplementary Figure 10. Cohort-wise beta diversity computed via Jaccard distance

907  Comparison of pairwise beta diversity within each cohort based on Jaccard distance between
908  species abundance counts and nucleotide k-mer sketches. Nonwestern populations have greater

909  beta diversity than western populations considering nucleotide k-mer composition.
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911  Supplementary Figure 11. Summary statistics for Illumina and nanopore MAGs generated
912 from all samples.

913 (A) Number of low-, medium-, and high-quality genomes as evaluated with Bowers et al.

914  standards

915  (B) Distribution of MAG percent completeness as determined by CheckM.

916  (C) Distribution of MAG percent contamination as determined by CheckM.

917 (D) Distribution of MAG N50.
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918

919  Supplementary Figure 12. Taxonomy of de-replicated Illumina MAGs from all samples
920  Taxonomic classification of de-replicated medium- and high-quality Illumina MAGs, where
921  black dots indicate a MAG assembled at that level of taxonomic classification. Multiple MAGs
922

at the same classification level are collapsed into single points.
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924  Supplementary Figure 13. Taxonomic composition for samples selected for nanopore

925  sequencing

926  Short-read sequencing-based taxonomic classifications for the three samples selected for

927  Nanopore sequencing, showing (A) genus-level and (B) species-level classifications. Top thirty
928  taxa by relative abundance shown in each plot. Symbols indicate whether a medium- or high-
929  quality short-read (*) or nanopore MAG (1) was assembled from the corresponding genus or

930  species

58


https://doi.org/10.1101/2020.05.18.099820
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.18.099820; this version posted October 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

931
A E R B 3 .
r o ®0 0 o4 r °
L % ‘ g: o .c - .%0
1,000,000 ': 1,000,000 + ‘.
o 2 o 8
- [ 4 L4 r [
o) a Low Quality nMAG
=] . = .  Medium Quality \MAG
3 100,000 3 100,000 ¢~ e High Quality nMAG
z - Z E Low Quality MAG
[ [
i Medium Quality MAG
e High Quality MAG
10,000 + 10,000 £
[ (6 o 5 1 evial i iow e
10 100 1,00( 1,000,000 10,000,000
932 Coverage Genome Size (bp)

933  Supplementary Figure 14. Summary statistics of nanopore and short read MAGs generated
934  for three Bushbuckridge samples

935 (A) MAG short read or long-read coverage versus MAG N50.

936  (B) MAG total size versus MAG N50. Grey line indicates where genome N50 equals total

937  genome size.
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NC_015732.1 Treponema caldarium DSM 7334

NC_015577.1 Treponema azotonutricium ZAS-9

NC_015578.1 Treponema primitia ZAS-2

0958 —————— NZ_CP009227.1 Treponema sp. OMZ 838

NC_022097.1 Treponema pedis str. T A4

:r NC_002967.9 Treponema denticola ATCC 35405
0.

955
NZ_CP009228.1 Treponema putidum strain OMZ 758

0.996

NZ_CP042813.1 Treponema phagedenis strain S11.1

0.988 NZ_CP042815.1 Treponema phagedenis strain S2.3

NZ_CP042816.1 Treponema phagedenis strain B31.4

NZ_CP042817.1 Treponema phagedenis strain B36.5

NZ_CP042818.1 Treponema phagedenis strain B43.1

L— 0.586
NC_000919.1 Treponema pallidum subsp. pallidum str. Nichols

NZ_CP003679.1 Treponema pallidum subsp. pallidum str. Sea 81-4

NZ_CP040555.1 Treponema pallidum subsp. pallidum strain X-4
NC_015714.1 Treponema paraluiscuniculi Cuniculi A

NC_015500.1 Treponema brennaborense DSM 12168

0.958

NC_015385.1 Treponema succinifaciens DSM 2489

Nanopore Treponema sp.

0.02

Supplementary Figure 15. Phylogeny of Treponema 16S rRNA sequences

Phylogeny of 16S rRNA sequences from species of the genus Treponema show that the
Treponema sp. assembled via Nanopore sequencing is most related to 7. succinifaciens, but is
phylogenetically distinct. The nanopore genome is highlighted in red font. Branch labels indicate

Shimodaira-Hasegawa support values for splits.
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946  Supplementary Figure 16. GC content of MAGs and nMAGs generated from three
947  Bushbuckridge samples

948  (A) GC content range of MAGs and nMAGs.

949  (B) nMAGs with contig N50 values greater than one megabase. GC content of low-quality
950 nMAG:s is lower than the GC content of high-quality nMAGs, despite nMAGs of all quality
951  having N50 values of higher than one megabase. * = p < 0.05, Wilcoxon rank sum test.
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952
953  Supplementary Figure 17. GC content of nanopore and Illumina sequencing reads

954  generated from three Bushbuckridge samples
955  GC content was calculated for all processed Illumina reads (average length of 126 bp) and for

956 126 bp windows of all nanopore reads. GC content distribution was subsampled to 100,000

957  measurements per method.
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o FR773153.2 Mycoplasma haemofelis str. Langford 1
et CP003199.1 Mycoplasma haemocanis str. lllinois
CP002525.1 Mycoplasma suis str. lllinois
CP006771.1 Mycoplasma parvum str. Indiana
CP003703.1 Mycoplasma wenyonii str. Massachusetts
CP006935.1 Mycoplasma ovis str. Michigan
AE015450.2 Mycoplasma gallisepticum str. R low
L43967.2 Mycoplasma genitalium G37
------ CP010546.1 Mycoplasma pneumoniae FH
CP000942.1 Ureaplasma parvum serovar 3 str. ATCC 27815
CP001184.1 Ureaplasma urealyticum serovar 10 str. ATCC 33699
BA000026.2 Mycoplasma penetrans HF-2 DNA
CP033512.1 Mycoplasma iowae 695
CP006720.1 Spiroplasma mirum ATCC 29335 strain SMCA
CP011855.1 Spiroplasma atrichopogonis strain GNAT3597
CP011856.1 Spiroplasma eriocheiris strain DSM 21848
. . CP005077.1 Spiroplasma chrysopicola DF-1

------------- CP005078.1 Spiroplasma syrphidicola EA-1
CP031088.1 Spiroplasma phoeniceum P40
CP010899.1 Spiroplasma kunkelii CR2-3x
CP013197.1 Spiroplasma citri strain R8-A2
CP006934.1 Spiroplasma sabaudiense Ar-1343
CP031376.1 Spiroplasma alleghenense strain PLHS-1
CP006682.1 Spiroplasma apis B31
CP024870.1 Spiroplasma clarkii strain CN-5
CP006681.1 Spiroplasma culicicola AES-1
CP017015.1 Spiroplasma helicoides strain TABS-2
CP005074.1 Spiroplasma taiwanense CT-1
CP012357.1 Spiroplasma litorale strain TN-1
CP012328.1 Spiroplasma turonicum strain Tab4c
CP022535.1 Spiroplasma corruscae strain EC-1
CP005076.1 Spiroplasma diminutum CUAS-1
CP012622.1 Spiroplasma cantharicola strain CC-1
CP025057.1 Spiroplasma floricola 23-6
CP025543.1 Spiroplasma monobiae MQ-1
s CP023668.1 Mesoplasma lactucae ATCC 49193 strain 831-C4
CP025257.1 Mesoplasma syrphidae strain YJS
CP024968.1 Mesoplasma coleopterae strain BARC 779
CP024969.1 Mesoplasma tabanidae strain BARC 857
AE017263.1 Mesoplasma florum L1 complete genome
CP024411.1 Mesoplasma entomophilum strain TAC
CP024964.1 Entomoplasma melaleucae strain M1
CP023173.1 Mesoplasma chauliocola strain CHPA-2
CP000123.1 Mycoplasma capricolum subsp. capricolum ATCC 27343
CP002108.1 Mycoplasma leachii PG50 clone MU clone A8
LR214938.1 Mycoplasma salivarium strain NCTC10113 genome assembly
CP002107.1 Mycoplasma mycoides subsp. mycoides SC str. Gladysdale MU clone SC5
CP003021.1 Mycoplasma putrefaciens KS1
CP007520.1 Mycoplasma yeatsii GM274B
CP024963.1 Entomoplasma luminosum strain PIMN-1
CP024965.1 Entomoplasma somnilux strain PYAN-1
CP024962.1 Entomoplasma freundtii strain BARC 318
Nanopore Mycoplasma sp.
Nanopore Mollicutes sp.
FO681347.1 complete
CP015149.1 Maize bushy stunt phytoplasma strain M3
CP000061.1 Aster yellows witches'-broom phytoplasma AYWB strain AY-WB
CP035949.1 Catharanthus roseus aster yellows phytoplasma strain De Villa
LR215050.1 Acholeplasma hippikon strain NCTC10172 genome assembly
CP000896.1 Acholeplasma laidlawii PG-8A
LK028559.1 Acholeplasma oculi genome assembly Acholeplasma oculi strain 19L
FO681348.1 complete
LR215048.1 Acholeplasma axanthum strain NCTC10138 genome assembly
AE017308.1 Mycoplasma mobile 163K complete genome
LR214951.1 Mycoplasma neurolyticum strain NCTC10166 genome assembly
CP003914.1 Mycoplasma hyorhinis SK76
CP007229.1 Mycoplasma dispar strain ATCC 27140
CP007585.1 Mycoplasma flocculare ATCC 27399
AE017243.1 Mycoplasma hyopneumoniae J
CP007154.1 Mycoplasma bovoculi M165/69
LR214997.1 Mycoplasma conjunctivae strain NCTC10147 genome assembly
CP008748.1 Mycoplasma hyosynoviae strain M60
LR214940.1 Mycoplasma orale strain NCTC10112 genome assembly
CP030140.1 Mycoplasma anseris strain ATCC 49234
LR215049.1 Mycoplasma cloacale strain NCTC10199 genome assembly
FP236530.1 Mycoplasma hominis ATCC 23114
CP029295.1 Mycoplasma phocidae strain 105
CP033058.2 Mycoplasma phocicerebrale strain 1049
LS991949.1 Mycoplasma alkalescens strain NCTC10135 genome assembly
AP014631.1 Mycoplasma canadense DNA
LR215044.1 Mycoplasma arginini strain NCTC10129 genome assembly
LR215047.1 Mycoplasma arthritidis strain NCTC10162 genome assembly
LR215008.1 Mycoplasma pulmonis strain NCTC10139 genome assembly
LR215042.1 Mycoplasma meleagridis strain NCTC10153 genome assembly
LR214970.1 Mycoplasma bovigenitalium strain NCTC10122 genome assembly
CP007521.1 Mycoplasma californicum strain ST-6
CP034841.1 Mycoplasma phocirhinis strain 852
CP002458.1 Mycoplasma fermentans M64
LR215037.1 Mycoplasma maculosum strain NCTC10168 genome assembly
0 997CU179680.1 Mycoplasma agalactiae PG2

=77 CP002188.1 Mycoplasma bovis PG45 clone MU clone A2
LR215041.1 Mycoplasma columbinum strain NCTC10178 genome assembly
LR215043.1 Mycoplasma columbinasale strain NCTC10184 genome assembly
CP001991.1 Mycoplasma crocodyli MP145
CP017813.1 Mycoplasma pullorum strain B359_6
LR215035.1 Mycoplasma anatis strain NCTC10156 genome assembly
LR215036.1 Mycoplasma citelli strain NCTC10181 genome assembly
LR215039.1 Mycoplasma columborale strain NCTC10179 genome assembly
LR214950.1 Mycoplasma gallinaceum strain NCTC10183 genome assembly
CP011096.1 Mycoplasma synoviae ATCC 25204
AP022325.1 Mycoplasma felis Myco-2 DNA
CP014281.1 Mycoplasma canis PG 14
LR214972.1 Mycoplasma bovirhinis strain NCTC10118 genome assembly
LR214974.1 Mycoplasma cynos strain NCTC10142 genome assembly
LS991951.1 Mycoplasma edwardii strain NCTC10132 genome assembly
LR215024.1 Mycoplasma glycophilum strain NCTC10194 genome assembly
LR215031.1 Mycoplasma gallopavonis strain NCTC10186 genome assembly
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959  Supplementary Figure 18. Phylogeny of Mollicutes 16S rRNA sequences
960  Phylogeny of 16S rRNA sequences from species of the class Mollicutes showing the Mollicutes
961 and Mycoplasma genomes assembled via nanopore sequencing. Nanopore genomes are

962  highlighted in red font. Branch labels indicate Shimodaira-Hasegawa support values for splits.
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