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Abstract 28 

While human gut microbiome research often focuses on western populations or nonwestern 29 

agriculturalist and hunter-gatherer societies, most of the world’s population resides between 30 

these extremes. We present the first study evaluating gut microbiome composition in 31 

transitioning South African populations using short- and long-read sequencing. We analyzed 32 

stool samples from adult females (age 40 - 72) living in rural Bushbuckridge municipality 33 

(n=117) or urban Soweto (n=51) and find that these microbiomes are intermediate between those 34 

of western industrialized and previously studied non-industrialized African populations. We 35 

demonstrate that reference collections are incomplete for nonwestern microbiomes, resulting in 36 

within-cohort beta diversity patterns that are in some cases reversed compared to reference-37 

agnostic sequence comparison patterns. To improve reference databases, we generated complete 38 

genomes of undescribed taxa, including Treponema, Lentisphaerae, and Succinatimonas species. 39 

Our results suggest that South Africa’s transitional lifestyle and epidemiological conditions are 40 

reflected in gut microbiota compositions, and that these populations contain microbial diversity 41 

that remains to be described.  42 
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Introduction 43 

Comprehensive characterization of the full diversity of the healthy human gut microbiota 44 

is essential to contextualize studies of the microbiome in disease. To date, substantial resources 45 

have been invested in describing the microbiome of individuals living in the global ‘west’ 46 

(United States, northern and western Europe), including efforts by large consortia such as the 47 

Human Microbiome Project (Human Microbiome Project Consortium, 2012) and metaHIT (Qin 48 

et al., 2010). Though these projects have yielded valuable descriptions of human gut microbial 49 

ecology, they survey only a small portion of the world’s citizens at the extreme of industrialized, 50 

urbanized lifestyle. It is unclear to what extent these results are generalizable to non-western and 51 

non-industrialized populations across the globe. 52 

At the other extreme, a relatively smaller number of studies have characterized the gut 53 

microbiome composition of non-western individuals practicing traditional lifestyles (Brewster et 54 

al., 2019; Gupta et al., 2017), including communities in Venezuela and Malawi (Yatsunenko et 55 

al., 2012), hunter-gatherer communities in Tanzania (Fragiadakis et al., 2018; Rampelli et al., 56 

2015; Schnorr et al., 2014; Smits et al., 2017), non-industrialized populations in Tanzania and 57 

Botswana (Hansen et al., 2019), and agriculturalists in Peru (Obregon-Tito et al., 2015) and 58 

remote Madagascar (Pasolli et al., 2019). However, these cohorts are not representative of how 59 

most of the world lives either. Many of the world’s communities lead lifestyles between the 60 

extremes of an urbanized, industrialized lifestyle and traditional practices. It is a scientific and 61 

ethical imperative to include these diverse populations in biomedical research, yet dismayingly 62 

many of these intermediate groups are underrepresented or absent from the published 63 

microbiome literature. 64 

This major gap in our knowledge of the human gut microbiome leaves the biomedical 65 

research community ill-poised to relate microbiome composition to human health and disease 66 

across the breadth of the world’s population. Worldwide, many communities are currently 67 

undergoing a transition of diet and lifestyle practice, characterized by increased access to 68 

processed foods, diets rich in animal fats and simple carbohydrates, and more sedentary lifestyles 69 

(Vangay et al., 2018). This has corresponded with an epidemiological transition in which the 70 

burden of disease is shifting from predominantly infectious diseases to include increasing 71 

incidence of noncommunicable diseases like obesity and diabetes (Collinson et al., 2014). The 72 

microbiome has been implicated in various noncommunicable diseases (Griffiths and 73 

Mazmanian, 2018; Helmink et al., 2019; Turnbaugh et al., 2009) and may mediate the efficacy of 74 
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medical interventions including vaccines (Ciabattini et al., 2019; Hagan et al., 2019), but we 75 

cannot evaluate the generalizability of these findings without establishing baseline microbiome 76 

characteristics of communities that practice diverse lifestyles and by extension, harbor diverse 77 

microbiota. These understudied populations offer a unique opportunity to examine the 78 

relationship between lifestyle (including diet), disease, and gut microbiome composition, and to 79 

discover novel microbial genomic content. 80 

A few previous studies have begun to probe the relationship between lifestyle and 81 

microbiome composition in transitional communities (de la Cuesta-Zuluaga et al., 2018; Gupta et 82 

al., 2017; Jha et al., 2018; Ou et al., 2013). However, substantial gaps remain in our description 83 

of the microbiome in transitional communities. In particular, knowledge of the gut microbiota on 84 

the African continent is remarkably sparse. In fact, of 60 studies surveying the gut microbiome in 85 

African populations as of mid-2020 (Table S1), 34 (57%) have focused entirely on on children or 86 

infants, whose disease risk profile and gut microbiome composition can vary considerably from 87 

adults (Lim et al., 2012; Yatsunenko et al., 2012). Additionally, 52 of 60 (87%) of studies of the 88 

gut microbiome in Africans employed 16S rRNA gene sequencing or qPCR, techniques which 89 

amplify only a tiny portion of the genome and therefore lack genomic resolution to describe 90 

species or strains which may share a 16S rRNA sequence but differ in gene content or genome 91 

structure. To our knowledge, only five published studies to date have used shotgun 92 

metagenomics to describe the gut microbiome of adult populations living in Africa (Campbell et 93 

al., 2020; Lokmer et al., 2019; Pasolli et al., 2019; Rampelli et al., 2015; Smits et al., 2017). 94 

To address this major knowledge gap, we designed and performed the first research study 95 

applying short- and long-read DNA sequencing to study the gut microbiomes of South African 96 

individuals for whom 16S rRNA gene sequence data has recently been reported (Oduaran et al., 97 

2020). South Africa is a prime example of a country undergoing rapid lifestyle and 98 

epidemiological transition. With the exception of the HIV/AIDS epidemic in the mid-1990s to 99 

the mid-2000s, over the past three decades South Africa has experienced a steadily decreasing 100 

mortality from infectious disease and an increase in noncommunicable disease (Kabudula et al., 101 

2017a; Santosa and Byass, 2016). Concomitantly, increasingly sedentary lifestyles and changes 102 

in dietary habits, including access to calorie-dense processed foods, contribute to a higher 103 

prevalence of obesity in many regions of South Africa (Kabudula et al., 2017a), a trend which 104 

disproportionately affects women (Ajayi et al., 2016; NCD Risk Factor Collaboration (NCD-105 

RisC) – Africa Working Group, 2017). 106 
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This study represents the largest shotgun metagenomic dataset of African adults in the 107 

published literature to date. In this work, we describe microbial community-scale similarities 108 

between urban and rural communities in South Africa, as well as distinct hallmark taxa that 109 

distinguish each community. Additionally, we place South Africans in context with microbiome 110 

data from other populations globally, revealing the transitional nature of gut microbiome 111 

composition in the South African cohorts. We demonstrate that metagenomic assembly of short 112 

reads yields novel strain and species draft genomes. Finally, we apply Oxford Nanopore long-113 

read sequencing to samples from the rural cohort and generate complete and near-complete 114 

genomes. These include genomes of species that are exclusive to, or more prevalent in, 115 

traditional populations, including Treponema and Prevotella species. As long-read sequencing 116 

enables more uniform coverage of AT-rich regions compared to short-read sequencing with 117 

transposase-based library preparation, we also generate complete metagenome-assembled AT-118 

rich genomes from less well-described gut microbes including species in the phylum 119 

Melainabacteria, the class Mollicutes, and the genus Mycoplasma. 120 

Taken together, the results herein offer a more detailed description of gut microbiome 121 

composition in understudied transitioning populations, and present complete and contiguous 122 

reference genomes that will enable further studies of gut microbiota in nonwestern populations. 123 

Importantly, this study was developed with an ethical commitment to engaging both rural and 124 

urban community members to ensure that the research was conducted equitably (more details in 125 

Supplemental Information). This work underscores the critical need to broaden the scope of 126 

human gut microbiome research and include understudied, nonwestern populations to improve 127 

the relevance and accuracy of microbiome discoveries to broader populations.  128 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.05.18.099820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.18.099820
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 
 

Results 129 

 130 

Cohorts and sample collection 131 

We enrolled 190 women aged between 40-72, living in rural villages in the 132 

Bushbuckridge Municipality (31.26°E, 24.82°S, n=132) and urban Soweto, Johannesburg 133 

(26.25°S, 27.85°E, n=58) and collected a one-time stool sample, as well as point of care blood 134 

glucose and blood pressure measurements and a rapid HIV test. Only samples from HIV-135 

negative individuals were analyzed further (n=117 Bushbuckridge, n=51 Soweto). Participants 136 

spanned a range of BMI from healthy to overweight; the most common comorbidity reported 137 

was hypertension, and many patients reported taking anti-hypertensive medication (18 of 117 138 

(15%) in Bushbuckridge, 15 of 51 (29%) in Soweto) (Table 1, Table S2). Additional medications 139 

are summarized in Table S2. We extracted DNA from each stool sample and conducted 150 base 140 

pair (bp) paired-end sequencing on the Illumina HiSeq 4000 platform. A median of 34.5 million 141 

(M) raw reads were generated per sample (range 11.4 M - 100 M), and a median of 11.2 M reads 142 

(range 3.2 M - 29.3 M) resulted after pre-processing including de-duplication, trimming, and 143 

human read removal (Table S3). 144 

 145 

Gut microbial composition 146 

We taxonomically classified sequencing reads against a comprehensive custom reference 147 

database containing all microbial genomes in RefSeq and GenBank at scaffold quality or better 148 

as of January 2020 (177,626 genomes total). Concordant with observations from 16S rRNA gene 149 

sequencing of the same samples (Oduaran et al., 2020), we find that Prevotella, 150 

Faecalibacterium, and Bacteroides are the most abundant genera in most individuals across both 151 

study sites (Figure 1A, Figure S1, Table S4; species-level classifications in Table S5). 152 

Additionally, in many individuals we observe taxa that are uncommon in western microbiomes, 153 

including members of the VANISH (Volatile and/or Associated Negatively with Industrialized 154 

Societies of Humans) taxa (families Prevotellaceae, Succinovibrionaceae, Paraprevotellaceae, 155 

and Spirochaetaceae) (Fragiadakis et al., 2018) such as Prevotella, Treponema, and 156 

Succinatimonas, which have been demonstrated to be higher in relative abundance in 157 

communities practicing traditional lifestyles compared to westerners (Fragiadakis et al., 2018; 158 

Sonnenburg and Sonnenburg, 2019) (Figure 1B, Table S4). The mean relative abundance of each 159 

VANISH genus is higher in Bushbuckridge than Soweto, though the difference is not statistically 160 
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significant for Prevotella, Paraprevotella, or Alkalispirochaeta (Figure 1B, Wilcoxon rank-sum 161 

test). Within the Bushbuckridge cohort, we observe a bimodal distribution of the genera 162 

Succinatimonas, Succinivibrio, and Treponema (Figure S2A). While we do not identify any 163 

participant metadata that associate with this distribution, we observe that VANISH taxa are 164 

weakly correlated with one another in metagenomes from both Bushbuckridge and Soweto 165 

(Figure S2B-C). 166 

Intriguingly, we observed that an increased proportion of reads aligned to the human 167 

genome during pre-processing in samples from Soweto compared to Bushbuckridge (Figure S3, 168 

Wilcoxon rank sum test p < 0.0001). This could potentially indicate higher inflammation and 169 

immune cell content or sloughing of intestinal epithelial cells in the urban Soweto cohort 170 

compared to rural Bushbuckridge. 171 

 172 

Rural and urban microbiomes cluster distinctly in MDS 173 

We hypothesized that lifestyle differences of those residing in rural Bushbuckridge 174 

versus urban Soweto might be associated with demonstrable differences in gut microbiome 175 

composition. Bushbuckridge and Soweto differ markedly in their population density (53 and 176 

6,357 persons per km2 respectively as of the 2011 census) as well as in lifestyle variables 177 

including the prevalence of flush toilets (6.8 vs 91.6% of dwellings) and piped water (11.9 vs 178 

55% of dwellings) (additional site demographic information  in Table S6) (Statistics South 179 

Africa, 2012). Soweto is highly urbanized and has been so for several generations, while 180 

Bushbuckridge is classified as a rural community, although it is undergoing rapid 181 

epidemiological transition. Bushbuckridge also sees circular rural/urban migrancy typified by 182 

some (mostly male) members of a rural community working and living for extended periods in 183 

urban areas, while keeping their permanent rural home (Ginsburg et al., 2016). Although our 184 

participants all live in Bushbuckridge, this migrancy in the community helps make the boundary 185 

between rural and urban lifestyles more fluid. Comparing the two study populations at the 186 

community level, we find that samples from the two sites have distinct centroids 187 

(PERMANOVA p < 0.001, R2 = 0.037) but overlap (Figure 2A), though we note that the 188 

dispersion of the Soweto samples is greater than that of the Bushbuckridge samples 189 

(PERMDISP2 p < 0.001). Across the study population we observe a gradient of Bacteroides and 190 

Prevotella relative abundance (Figure S4). This is likely a result of differences in diet across the 191 
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study population at both sites, as Bacteroides and Prevotella have been proposed as biomarkers 192 

of diet and lifestyle (De Filippo et al., 2010; Gorvitovskaia et al., 2016; Yatsunenko et al., 2012). 193 

To determine if medication usage was associated with gut microbiome composition, we 194 

included each participant’s self-reported concomitant medications (summarized in Table S2) to 195 

re-visualize the microbiome composition of samples in MDS by class of medication (Figure 196 

S5A,B). We find that self-reported medication is not significantly correlated with community 197 

composition in this cohort (PERMANOVA p > 0.05, Figure S5C) except for in the case of 198 

proton pump inhibitors (PPIs) (PERMANOVA p = 0.026, R2 = 0.0136). We note that PPIs are 199 

one of several drug classes previously found to associate with changes in gut microbiome 200 

composition (Maier and Typas, 2017); as only two participants self-report taking PPIs at the time 201 

of sampling, additional data is required to evaluate the robustness of this finding in these South 202 

African populations. 203 

 204 

Rural and urban microbiomes differ in Shannon diversity and species composition 205 

Gut microbiome alpha diversity of individuals living traditional lifestyles has been 206 

reported to be higher than those living western lifestyles (De Filippo et al., 2010; Obregon-Tito 207 

et al., 2015; Schnorr et al., 2014). In keeping with this general trend, we find that alpha diversity 208 

(Shannon) is significantly higher in individuals living in rural Bushbuckridge than urban Soweto 209 

(Figure 2B; Wilcoxon rank-sum test, p < 0.01). Using DESeq2 to identify microbial genera that 210 

are differentially abundant across study sites, we find that genera including Bacteroides, 211 

Bifidobacterium, and Staphylococcus are more abundant in individuals living in Soweto (Figure 212 

2C, Table S7, species shown in Figure S6). Interestingly, we find microbial genera enriched in 213 

gut microbiomes of individuals living in Bushbuckridge that are common to both the 214 

environment and the gut, including Streptomyces and Pseudomonas (Table S7). Typically a soil-215 

associated organism, Streptomyces encode a variety of biosynthetic gene clusters and can 216 

produce numerous immunomodulatory and anti-inflammatory compounds such as rapamycin 217 

and tacrolimus, and it has been suggested that decreased exposure to Streptomyces is associated 218 

with increased incidence of inflammatory disease and colon cancer in western populations 219 

(Bolourian and Mojtahedi, 2018). In addition, we find enrichment of genera in Bushbuckridge 220 

that have been previously associated with nonwestern microbiomes including Succinatimonas, a 221 

relatively poorly-described bacterial genus with only one type species, and Elusimicrobia, a 222 

phylum which has been detected in the gut microbiome of rural Malagasy (Pasolli et al., 2019). 223 
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Additionally, Bushbuckridge samples are enriched for Cyanobacteria as well as Candidatus 224 

Melainabacter, a phylum closely related to Cyanobacteria that in limited studies has been 225 

described to inhabit the human gut (Di Rienzi et al., 2013; Soo et al., 2014) 226 

We find that Bushbuckridge samples have an increased number of bacteriophages (506.1 227 

± 71.7) compared to samples from Soweto (201.5 ±  39.4; p = 8.606e-10). Interestingly, we 228 

identify the bacteriophage crAssphage and related crAss-like phages (Guerin et al., 2018), which 229 

have recently been described as prevalent constituents of the gut microbiome globally (Edwards 230 

et al., 2019), in 32 of 51 participants (63%) in Soweto and 84 of 117 (72%) in Bushbuckridge 231 

(difference in prevalence between cohorts not significant, p = 0.28 Fisher’s exact test) using 650 232 

sequence reads or roughly 1X coverage of the 97 kb genome as a threshold for binary 233 

categorization of crAss-like phage presence or absence. Prototypical crAssphage has been 234 

hypothesized to infect Bacteroides species and a crAss-like phage has been demonstrated to 235 

infect Bacteroides intestinalis. Though crAss-like phages do not differ between cohorts in terms 236 

of prevalence (presence/absence), we observe that both crAss-like phages and Bacteroides are 237 

enriched in relative abundance in the gut microbiome of individuals living in Soweto compared 238 

to Bushbuckridge (Figure 2C). 239 

 240 

No strong signals of interaction between human DNA variation and microbiome content 241 

detected 242 

We have a very small sample size to assess interaction between human genetic variation 243 

and microbiome population. However, as our study is one of the relatively few with both human 244 

and microbiome DNA characterized, we performed association tests between key microbiome 245 

genera abundance levels and the human DNA. After correcting for multiple testing there were 246 

only a few SNPs with borderline statistically significant association with genera abundance 247 

levels (Table S8). They occur in genomic regions with no obvious impact on the gut microbiome 248 

(see Methods/Supplementary Information). Additionally, we do not observe that samples cluster 249 

by self-reported ethnicity of the participant (Figure S7). 250 

 251 

South African gut microbiomes share taxa with western and nonwestern populations yet 252 

harbor distinct features 253 

To place the microbiome composition of South African individuals in global context with 254 

metagenomes from healthy adults living in other parts of the world, we compared publicly 255 
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available data from four cohorts (Figure 3A, Table S9) comprising adult individuals living in the 256 

United States (Human Microbiome Project Consortium, 2012), northern Europe (Sweden) 257 

(Bäckhed et al., 2015), rural Madagascar (Pasolli et al., 2019), as well as the Hadza hunter-258 

gatherers of Tanzania (Rampelli et al., 2015). We note the caveat that these samples were 259 

collected at different times using different approaches, and that there is variation in DNA 260 

extraction, sequencing library preparation and sequencing, all of which may contribute to 261 

variation between studies. Recognizing this limitation, we observe that South African samples 262 

cluster between western and nonwestern populations1 in MDS (Figure 3B) as expected, and that 263 

the first axis of MDS correlates well with geography and lifestyle (Figure 3C). Additionally, the 264 

relative abundance of Streptomycetaceae, Spirochaetaceae, Succinivibrionaceae, and 265 

Bacteroidaceae are most strongly correlated with the first axis of MDS (Spearman’s rho > 0.8): 266 

Bacteroidaceae decreases with MDS 1 while Streptomycetaceae, Spirochaetaceae, 267 

Succinivibrionaceae increase (Figure 3B). These observations suggest that the transitional 268 

lifestyle of South African individuals is reflected in their gut microbiome composition. We 269 

observe a corresponding pattern of decreasing relative abundance of VANISH taxa across 270 

lifestyle and geography (Figure S8). 271 

The two South African cohorts also have distinct differences from both nonwestern and 272 

western populations, as evidenced by displacement along the second axis of MDS (Figure 3B). 273 

To identify the taxa that drive this separation, we analyzed datasets grouped by lifestyle into the 274 

general categories of “nonwestern” (Tanzania, Madagascar), “western” (USA, Sweden), and 275 

South African (Bushbuckridge and Soweto). We performed statistical analysis using DESeq2 to 276 

identify microbial genera that differed significantly in the South African cohort compared to both 277 

nonwestern and western categories (with the same directionality of effect in each comparison, 278 

e.g. enriched in South Africans compared to both western and nonwestern groups) (Figure S9). 279 

We observe that taxa including Escherichia, Lactobacillus, and Lactococcus are lower in relative 280 

abundance in South Africans compared to both western and nonwestern categories. Conversely, 281 

unclassified bacteria of the phylum Verrucomicrobia are enriched in South Africans. 282 

Intriguingly, in this analysis we observe that two crAssphage clades, alpha and delta (Guerin et 283 

al., 2018), are lower in abundance in South African participants relative to all other cohorts. This 284 

 
1 We use the term “western” to denote western/industrialized populations and “nonwestern” to 
describe populations not living in the geographic west, as in this case “non-industrialized” does 
not accurately describe urban Soweto. 
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may suggest a non-uniform geographic distribution of crAssphage clades and/or crAssphage 285 

hosts. 286 

 287 

Decreased sequence classifiability in nonwestern populations 288 

Given previous observations that gut microbiome alpha diversity is higher in individuals 289 

practicing traditional lifestyles (Gupta et al., 2017; Smits et al., 2017; Sonnenburg and 290 

Sonnenburg, 2018) and that immigration from a nonwestern nation to the United States is 291 

associated with a decrease in gut microbial alpha diversity (Vangay et al., 2018), we 292 

hypothesized that alpha diversity would be higher in nonwestern populations including South 293 

Africans. We observe that Shannon diversity of the Tanzanian hunter-gatherer cohort is 294 

uniformly higher than all other populations (Figure 3D; p < 0.01 for all pairwise comparisons; 295 

FDR-adjusted Wilcoxon rank sum test) and that alpha diversity is lower in individuals living in 296 

the United States compared to all other cohorts (Figure 3D; p < 0.0001 for all pairwise 297 

comparisons; FDR-adjusted Wilcoxon rank sum test). Surprisingly, we observe comparable 298 

Shannon diversity between Madagascar, Bushbuckridge, and Sweden (ns, Wilcoxon rank sum 299 

test). However, this could be an artifact of incomplete representation of diverse microbes in 300 

existing reference collections. 301 

Classification of metagenomic sequences from nonwestern gut microbiomes with 302 

existing reference collections is known to be limited (Nayfach et al., 2019; Pasolli et al., 2019), 303 

and we observe decreased sequence classifiability in nonwestern populations (Figure 4A). 304 

Therefore, we sought orthogonal validation of our observation that South African microbiomes 305 

represent a transitional state between traditional and western microbiomes and employed a 306 

reference-independent method to evaluate the nucleotide composition of sequence data from 307 

each metagenome. We used the sourmash workflow (Brown and Irber, 2016) to compare 308 

nucleotide k-mer composition of sequencing reads in each sample and ordinated based on 309 

angular distance, which accounts for k-mer abundance. Using a k-mer length of 31 (k-mer 310 

similarity at k=31 correlates with species-level similarity (Koslicki and Falush, 2016)), we 311 

observe clustering reminiscent of the species ordination plot shown in Fig. 3, further supporting 312 

the hypothesis that South African microbiomes are transitional (Figure 4B). 313 

Previous studies have reported a pattern of higher alpha diversity but lower beta diversity 314 

in nonwestern populations compared to western populations (Martínez et al., 2015; Schnorr et 315 

al., 2014). Hypothesizing that alpha and beta diversity may be underestimated for populations 316 
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whose gut microbes are not well-represented in reference collections, we compared beta 317 

diversity (distributions of within-cohort pairwise distances) calculated via species Bray-Curtis 318 

dissimilarity as well as nucleotide k-mer angular distance (Figure 4C-E). Of note, beta diversity 319 

is highest in Soweto irrespective of distance measure (Figure 4C). Intriguingly, in some cases we 320 

observe that the relationship of distributions of pairwise distance values changes depending on 321 

whether species or nucleotide k-mers are considered. For instance, considering only species 322 

content, Bushbuckridge has less beta diversity than Sweden, but this pattern is reversed when 323 

considering nucleotide k-mer content (Figure 4D). Further, the same observation is true for the 324 

relationship between Madagascar and the United States (Figure 4E). Additionally, we compared 325 

species and nucleotide beta diversity within each population using Jaccard distance, which is 326 

computed based on shared and distinct features irrespective of abundance. In nucleotide k-mer 327 

space, all nonwestern populations have greater beta diversity than each western population 328 

(Figure S10), though this is not the case when only species are considered. This indicates that gut 329 

microbiomes in these nonwestern cohorts have a longer “tail” of lowly abundant organisms 330 

which differ between individuals. 331 

These observations are critically important to our understanding of beta diversity in the 332 

gut microbiome in western and nonwestern communities, as it suggests against the generalization 333 

of an inverse relationship between alpha and beta diversity, and in some cases may represent an 334 

artifact of limitations in reference databases used for sequence classification. 335 

 336 

Improving reference collections via metagenomic assembly 337 

Classification of metagenomic sequencing reads can be improved by assembling 338 

sequencing data into metagenomic contigs and grouping these contigs into draft genomes 339 

(binning), yielding metagenome-assembled genomes (MAGs). The majority of publications to 340 

date have focused on creating MAGs from short-read sequencing data (Almeida et al., 2019; 341 

Nayfach et al., 2019; Pasolli et al., 2019), but generation of high-quality MAGs from long-read 342 

data from stool samples has been recently reported (Moss et al., 2020). To better characterize the 343 

genomes present in our samples, we assembled and binned shotgun sequencing reads from South 344 

African samples into MAGs (Figure S11). We generated 3312 MAGs (43 high-quality, 1510 345 

medium-quality, and 1944 low-quality) (Bowers et al., 2017) from 168 metagenomic samples, 346 

which yielded a set of 1192 non-redundant medium-quality or better representative strain 347 

genomes when filtered for completeness greater than 50%, and contamination less than 10% and 348 
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de-replicated at 99% average nucleotide identity (ANI). This collection of de-replicated genomes 349 

includes VANISH taxa including Prevotella, Treponema, and Sphaerochaeta species (Figure 350 

S12, Table S10). 351 

Interestingly, many MAGs within this set represent organisms that are uncommon in 352 

Western microbiomes or not easily culturable, including organisms from the genera Treponema  353 

and Vibrio. As short-read MAGs are typically fragmented and exclude mobile genetic elements, 354 

we explored methods to create more contiguous genomes, with a goal of trying to better 355 

understand these understudied taxa. We performed long-read sequencing on three samples from 356 

participants in Bushbuckridge with an Oxford Nanopore MinION sequencer (taxonomic 357 

composition of the three samples shown in Figure S13). Samples were chosen for nanopore 358 

sequencing on the basis of molecular weight distribution and total mass of DNA (see Methods). 359 

One flow cell per sample generated an average 19.71 Gbp of sequencing with a read N50 of 360 

8,275 bp after basecalling. From our three samples, we generated 741 nanopore MAGs 361 

(nMAGs), which yielded 35 non-redundant genomes when filtered for completeness greater than 362 

50% and contamination less than 10%, and de-replicated at 99% ANI (Table 2, Figure S11, 363 

Table S11). All of the de-replicated nMAGs contained at least one full length 16S sequence, and 364 

the contig N50 of 28 nMAGs was greater than 1 Mbp (Table S11).  365 

We compared assembly statistics between all MAGs and nMAGs, and found that while 366 

nMAGs were typically evaluated as less complete by CheckM, the contiguity of nanopore 367 

medium- and high-quality MAGs was an order of magnitude higher (mean nMAG N50 of 260.5 368 

kb compared to mean N50 of medium- and high-quality MAGs of 15.1 kb) at comparable levels 369 

of average coverage (Figure S11, Figure S14). We expect that CheckM under-calculates the 370 

completeness of nanopore MAGs due to the homopolymer errors common in nanopore 371 

sequencing, which result in frameshift errors when annotating genomes. Indeed, we observe that 372 

nanopore MAGs with comparable high assembly size and low contamination to short-read 373 

MAGs are evaluated by CheckM as having lower completeness (Figure S14).  374 

 375 

Novel genomes generated through nanopore sequencing 376 

When comparing the de-replicated medium- and high-quality nMAGs with the 377 

corresponding short-read MAG for the same organism, we find that nMAGs typically include 378 

many mobile genetic elements and associated genes that are absent from the short-read MAG, 379 

such as transposases, recombinases, phages, and antibiotic resistance genes (Figure 5A). 380 
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Additionally, a number of the nMAGs are among the first contiguous genomes in their clade. For 381 

example, we assembled two single contig, megabase-scale genomes from the genus Treponema, 382 

a clade that contains various commensal and pathogenic species and is uncommon in the gut 383 

microbiota of western individuals (Obregon-Tito et al., 2015; Schnorr et al., 2014). The first of 384 

these genomes is a single-contig Treponema succinifaciens genome. The type strain of T. 385 

succinifaciens, isolated from the swine gut (Han et al., 2011), is the only genome of this species 386 

currently available in public reference collections. Our T. succinifaciens genome is the first 387 

complete genome of this species from the gut of a human. We assembled a second Treponema 388 

sp. (Figure S15), which contains an aryl polyene biosynthetic gene cluster and shares 92.1% ANI 389 

with T. succinifaciens. Additionally, we assembled a 5.08 Mbp genome for Lentisphaerae sp., 390 

which has been shown to be significantly enriched in traditional populations (Angelakis et al., 391 

2019). This genome also contains an aryl polyene biosynthetic gene cluster and multiple beta-392 

lactamases, and shares 94% 16S rRNA identity with Victivallis vadensis, suggesting a new 393 

species or genus of the family Victivallaceae and representing the second closed genome for the 394 

phylum Lentisphaerae.  395 

Other nMAGs represent organisms that are prevalent in western individuals but 396 

challenging to assemble due to their genome structure. Despite the prevalence of Bacteroides in 397 

western microbiomes, only three closed B. vulgatus genomes are available in RefSeq. We 398 

assembled a single contig, 2.68 Mbp Bacteroides vulgatus genome that is 65.0% complete and 399 

2.7% contaminated and contains at least 16 putative insertion sequences, which may contribute 400 

to the lack of contiguous short-read assemblies for this species. Similarly, we assembled a single-401 

contig genome for Catabacter sp., a member of the order Clostridiales; the most contiguous 402 

Catabacter genome in GenBank is in five scaffolded contigs (Parks et al., 2017). The putative 403 

Catabacter sp. shares 85% ANI with the best match in GenBank, suggesting that it represents a 404 

new species within the Catabacter genus or a new genus entirely, and it contains a sactipeptide 405 

biosynthetic gene cluster. Additionally, we assembled a 3.6 Mbp genome for Prevotella sp. (N50 406 

= 1.87 Mbp), a highly variable genus that is prevalent in nonwestern microbiomes and associated 407 

with a range of effects on host health (Scher et al., 2013). Notably, the first closed genomes of P. 408 

copri, a common species of Prevotella, were only recently assembled with nanopore sequencing 409 

of metagenomic samples; one from a human stool sample (Moss et al., 2020) and the other from 410 

cow rumen (Stewart et al., 2019). P. copri had previously evaded closed assembly from short-411 

read sequence data due to the dozens of repetitive insertion sequences within its genome (Moss 412 
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et al., 2020). Notably, this Prevotella assembly contains cephalosporin and beta-lactam 413 

resistance genes, as well as an aryl polyene biosynthetic gene cluster. 414 

We observed that many long-read assembled genomes were evaluated to be of low 415 

completeness despite having contig N50 values greater than 1 Mbp. In investigating this 416 

phenomenon, we discovered that many of these genomes had sparse or uneven short-read 417 

coverage, leading to gaps in short-read polishing that would otherwise correct small frameshift 418 

errors. To polish genomic regions that were not covered with short-reads, we performed long-419 

read polishing on assembled contigs from each sample, and re-binned polished contigs. Long-420 

read polishing improved the completeness of many organisms that are not commonly described 421 

in the gut microbiota, due perhaps to their low relative abundance in the average human gut, or 422 

to biases in shotgun sequencing library preparation that limit their detection (Figure S16, Figure 423 

S17). For example, we generated a 2 Mbp genome that is best classified as a species of the 424 

phylum Melainabacteria. Melainabacteria is a non-photosynthetic phylum closely related to 425 

Cyanobacteria that has been previously described in the gut microbiome and is associated with 426 

consuming a vegetarian diet (Di Rienzi et al., 2013). Melainabacteria have proven difficult to 427 

isolate and culture, and the only complete, single-scaffold genome existing in RefSeq was 428 

assembled from shotgun sequencing of a human fecal sample (Di Rienzi et al., 2013). 429 

Interestingly, our Melainabacteria genome has a GC content of 30.9%, and along with 430 

assemblies of a Mycoplasma sp. (25.3% GC) and Mollicutes sp. (28.1% GC) (Figure S18), 431 

represent AT-rich organisms that can be underrepresented in shotgun sequencing data due to the 432 

inherent GC bias of transposon insertion and amplification-based sequencing approaches (Sato et 433 

al., 2019) (Figure S17). Altogether, these three genomes increased in completeness by an 434 

average of 28.5% with long-read polishing to reach an overall average of 70.9% complete. While 435 

these genomes meet the accepted standards to be considered medium-quality, it is possible that 436 

some or all of these highly contiguous, megabase scale assemblies are complete or near-complete 437 

yet underestimated by CheckM due to incomplete polishing.  438 

Altogether, we find that de novo assembly approaches are capable of generating 439 

contiguous, high-quality assemblies for novel organisms, offering potential for investigation into 440 

the previously unclassified matter in the microbiomes of these nonwestern communities. In 441 

particular, nanopore sequencing was able to produce contiguous genomes for organisms that are 442 

difficult to assemble due to repeat structures (Prevotella sp., Bacteroides vulgatus), as well as for 443 

organisms that exist on the extreme ends of the GC content spectrum (Mollicutes sp., 444 
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Melainabacteria sp.). We observe that long-reads are able to capture a broader range of taxa both 445 

at the read and assembly levels when compared to short-read assemblies, and that short- and 446 

long-read polishing approaches are able to yield medium-quality or greater draft genomes for 447 

these organisms. This illustrates the increased visibility that de novo assembly approaches lend to 448 

the study of the full array of organisms in the gut microbiome.  449 
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Discussion 450 

Together with Oduaran et al. (Oduaran et al., 2020), we provide the first description of 451 

gut microbiome composition in Soweto and Bushbuckridge, South Africa, and to our knowledge, 452 

the first effort utilizing shotgun and nanopore sequencing in South Africa to describe the gut 453 

microbiome of adults. In doing so, we increase global representation in microbiome research and 454 

provide a baseline for future studies of disease association with the microbiome in South African 455 

populations, and in other transitional populations. 456 

We find that gut microbiome composition differs demonstrably between the 457 

Bushbuckridge and Soweto cohorts, further highlighting the importance of studying diverse 458 

communities with differing lifestyle practices. Interestingly, even though gut microbiomes of 459 

individuals in Bushbuckridge and Soweto share many features and are more similar to each other 460 

than to other global cohorts studied, we do observe hallmark taxa associated with westernization 461 

are enriched in microbiomes in Soweto. These include Bacteroides and Bifidobacterium, which 462 

have been previously associated with urban communities (Gupta et al., 2017), consistent with 463 

Soweto’s urban locale in the Johannesburg metropolitan area.  464 

We also observe enrichment in relative abundance of crAssphage and crAss-like viruses 465 

in Soweto relative to Bushbuckridge, with relatively high prevalence in both cohorts yet lower 466 

abundance on average of crAssphage clades alpha and delta compared to several other 467 

populations. This furthers recent work which revealed that crAssphage is prevalent across many 468 

cohorts globally (Edwards et al., 2019), but found relatively fewer crAssphage sequences on the 469 

African continent, presumably due to paucity of available shotgun metagenomic data. Just as 470 

shotgun metagenomic sequence data enables the study of viruses, it also enables us to assess the 471 

relative abundance of human cells or damaged human cells in the stool. Surprisingly, we observe 472 

a high relative abundance of human DNA in the raw sequencing data, which was unexpected. 473 

We find a statistically significantly higher relative abundance of human DNA in samples from 474 

Soweto compared to those from Bushbuckridge. Future research may help illuminate the 475 

potential reason for this finding, which may include a higher proportion of epithelium disrupting, 476 

invasive bacteria or parasites in Soweto vs. Bushbuckridge, and in South Africa, in general, 477 

compared to other geographic settings. Alternatively, this may also be attributable to a higher 478 

baseline of intestinal inflammation and fecal shedding of leukocytes. Without additional 479 

information, it is difficult to speculate as to the reason for this finding. 480 
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We find that individuals in Bushbuckridge are enriched in VANISH taxa including 481 

Succinatimonas, which has been recently reported to associate with microbiomes from 482 

individuals practicing traditional lifestyles (Pasolli et al., 2019). Intriguingly, several VANISH 483 

taxa (Succinatimonas, Succinivibrio, Treponema) display bimodal distributions in the 484 

Bushbuckridge cohort. We hypothesize that this bimodality could be caused by differences in 485 

lifestyle and/or environmental factors including diet, history of hospitalization or exposure to 486 

medicines, physical properties of the household dwelling, differential treatment of drinking water 487 

across the villages comprising Bushbuckridge. Additionally this pattern may be explained by 488 

participation in migration to and from urban centers (or sharing a household with a migratory 489 

worker). A higher proportion of men in the community engage in this pattern of rural-urban 490 

migration (Ginsburg et al., 2016), but it is possible that sharing a household with a cyclical 491 

worker could influence gut microbiome composition via horizontal transmission (Brito et al., 492 

2019). 493 

Despite the fact that host genetics explain relatively little of the variation in microbiome 494 

composition (Rothschild et al., 2018), we do observe a small number of taxa that associate with 495 

host genetics in this population. Future work is required for replication and to determine whether 496 

these organisms are interacting with the host and whether they are associated with host health. 497 

Additionally, we demonstrate marked differences between South African cohorts and 498 

other previously studied populations living on the African continent and western countries. 499 

Broadly, we find that South African microbiomes reflect the transitional nature of their 500 

communities in that they overlap with western and nonwestern populations. Tremendous human 501 

genetic diversity exists within Africa, and our work reveals that there is a great deal of as yet 502 

unexplored microbiome diversity as well. In fact, we find that microbiome beta diversity within 503 

communities may be systematically underestimated by incomplete reference databases: taxa that 504 

are unique to individuals in nonwestern populations are not present in reference databases and 505 

therefore not included in beta diversity calculations. Though it has been reported that nonwestern 506 

and traditional populations tend to have higher alpha diversity but lower beta diversity compared 507 

to western populations, we show that this pattern is not universally upheld when reference-508 

agnostic nucleotide comparisons are performed. By extension, we speculate that previous claims 509 

that beta diversity inversely correlates with alpha diversity may have been fundamentally limited 510 

by study design in some cases. Specifically, the disparity between comparing small, homogenous 511 

African populations with large, heterogenous western ones constitutes a significant statistical 512 
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confounder, potentially preventing a valid assessment of beta diversity between groups. 513 

Furthermore, alpha and beta diversity comparisons based on species-level taxonomic assignment 514 

may be further confounded due to the presence of polyphyletic clades in organisms like 515 

Prevotella copri (Parks et al., 2020; Tett et al., 2019) which are highly abundant in gut 516 

microbiomes of nonwestern individuals. 517 

Through a combination of short-read and long-read sequencing, we successfully 518 

assembled contiguous, complete genomes for many organisms that are underrepresented in 519 

reference databases, including genomes that are commonly considered to be enriched in or 520 

limited to populations with traditional lifestyles including members of the VANISH taxa (e.g., 521 

Treponema sp., Treponema succinifaciens). The phylum Spirochaetes, namely its constituent 522 

genus Treponema, is considered to be a marker of traditional microbiomes and has not been 523 

detected in high abundance in human microbiomes outside of those communities (Angelakis et 524 

al., 2019; Obregon-Tito et al., 2015). Here, we identify Spirochaetes in the gut microbiome of 525 

individuals in urban Soweto, demonstrating that this taxon is not exclusive to traditional, rural 526 

populations, though we observe that relative abundance is higher on average in traditional 527 

populations. Generation of additional genomes of VANISH taxa and incorporation of these 528 

genomes into reference databases will allow for increased sensitivity to detect these organisms in 529 

metagenomic data. Additionally, these genomes facilitate comparative genomics of understudied 530 

gut microbes and allow for functional annotation of potentially biologically relevant functional 531 

pathways. We note that many of these genomes (e.g., Melainabacteria, Succinatimonas) are 532 

enriched in the gut microbiota of Bushbuckridge participants relative to Soweto, highlighting the 533 

impact of metagenomic assembly to better resolve genomes present in rural populations. 534 

We produced genomes for organisms that exist on the extremes of the GC content 535 

spectrum, such as Mycoplasma sp., Mollicutes sp., and Melainabacteria sp. We find that these 536 

organisms are sparsely covered by short-read sequencing, illustrating the increased range of non-537 

amplification based sequencing approaches, such as nanopore sequencing. Interestingly, these 538 

assemblies are evaluated as only medium-quality by CheckM despite having low measurements 539 

of contamination, as well as genome lengths and gene counts comparable to reference genomes 540 

from the same phylogenetic clade. We hypothesize that sparse short-read coverage leads to 541 

incomplete polishing and therefore retention of small frameshift errors, which are a known 542 

limitation of nanopore sequencing (Tyler et al., 2018). Further evaluation of 16S or long-read 543 
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sequencing of traditional and western populations can identify whether these organisms are 544 

specific to certain lifestyles, or more prevalent but poorly detected with shotgun sequencing. 545 

While we find that the gut microbiome composition of the two South African cohorts 546 

described herein reflects their lifestyle transition, we acknowledge that these cohorts are not 547 

necessarily representative of all transitional communities in South Africa or other parts of the 548 

world which differ in lifestyle, diet, and resource access. Hence, further work remains to describe 549 

the gut microbiota in detail of other such understudied populations. This includes a detailed 550 

characterization of parasites present in microbiome sequence data, an analysis that we did not 551 

undertake in this study but would be of great interest. These organisms have been detected in the 552 

majority of household toilets in nearby KwaZulu-Natal province (Trönnberg et al., 2010), and 553 

may interact with and influence microbiota composition (Leung et al., 2018).   554 

Our study has several limitations. Although the publicly available sequence data from 555 

other global cohorts were generated with similar methodology to our study, it is possible that 556 

batch effects exist between datasets generated in different laboratories that may explain some 557 

percentage of the global variation we observe. Additionally, while nanopore sequencing is able 558 

to broaden our range of investigation, we illustrate that our ability to produce well-polished 559 

genomes at GC content extremes is limited. This may affect our ability to accurately call gene 560 

lengths and structures, although iterative long-read polishing improves our confidence in these 561 

assemblies. Future investigation of these communities using less biased, higher coverage short-562 

read approaches or more accurate long-read sequencing approaches, such as PacBio circular 563 

consensus sequencing, may improve assembly qualities. Additionally, long-read sequencing of 564 

samples from a wider range of populations can identify whether the genomes identified herein 565 

are limited to traditional and transitional populations, or more widespread. Further, future 566 

improvements in error rate of long-read sequencing may obviate the need for short-read 567 

polishing altogether.  568 

Taken together, our results emphasize the importance of generating sequence data from 569 

diverse transitional populations to contextualize studies of health and disease in these 570 

individuals. To do so with maximum sensitivity and precision, reference genomes must be 571 

generated to classify sequencing reads from these metagenomes. Herein, we demonstrate the 572 

discrepancies in microbiome sequence classifiability across global populations and highlight the 573 

need for more comprehensive reference collections. Recent efforts have made tremendous 574 

progress in improving the ability to classify microbiome data through creating new genomes via 575 
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metagenomic assembly (Almeida et al., 2019; Nayfach et al., 2019; Pasolli et al., 2019), and here 576 

we demonstrate the application of short- and long-read metagenomic assembly techniques to 577 

create additional genome references. Our application of long-read sequencing technology to 578 

samples from South African individuals has demonstrated the ability to generate highly 579 

contiguous MAGs and shows immense potential to expand our reference collections and better 580 

describe microbiomes throughout diverse populations globally. In the future, microbiome studies 581 

may utilize a combination of short- and long-read sequencing to maximize information output, 582 

perhaps performing targeted Nanopore sequencing of samples that are likely to contain the most 583 

novelty on the basis of short-read data. 584 

The present study was conducted in close collaboration between site staff and researchers 585 

in Bushbuckridge and Soweto as well as microbiome experts both in South Africa and the United 586 

States, and community member feedback was considered at multiple phases in the planning and 587 

execution of the study (see Oduaran et al. 2020 for more information). Tremendous research 588 

efforts have produced detailed demographic and health characterization of individuals living in 589 

both Bushbuckridge and Soweto (Kabudula et al., 2017a, 2017b; Ramsay et al., 2016; Richter et 590 

al., 2007) and it is our hope that microbiome data can be incorporated into this knowledge 591 

framework in future studies to uncover disease biomarkers or microbial associations with other 592 

health and lifestyle outcomes. More broadly, we feel that this is an example of a framework for 593 

conducting microbiome studies in an equitable manner, and we envision a system in which 594 

future studies of microbiome composition can be carried out to achieve detailed characterization 595 

of microbiomes globally while maximizing benefit to all participants and researchers involved.  596 
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Methods 597 

Cohort selection 598 

Stool samples were collected from women aged 40-72 years in Soweto, South Africa and 599 

Bushbuckridge Municipality, South Africa. Participants were recruited on the basis of 600 

participation in AWI-Gen (Ramsay et al., 2016), a previous study in which genotype and 601 

extensive health and lifestyle survey data were collected. Human subjects research approval was 602 

obtained (Stanford IRB 43069, University of the Witwatersrand Human Research Ethics 603 

Committee M160121, Mpumalanga Provincial Health Research Committee MP_2017RP22_851) 604 

and informed consent was obtained from participants for all samples collected. Stool samples 605 

were collected and preserved in OmniGene Gut OMR-200 collection kits (DNA Genotek). 606 

Samples were frozen within 60 days of collection as per manufacturer's instructions, followed by 607 

long-term storage at -80°C. As the enrollment criteria for our study included previous 608 

participation in a larger human genomics project (Ramsay et al., 2016), we had access to self-609 

reported ethnicity for each participant (BaPedi, Ndebele, Sotho, Tsonga, Tswana, Venda, Xhosa, 610 

Zulu, Other, or Unknown). Samples from participants who tested HIV-positive or who did not 611 

consent to an HIV test were not analyzed.  612 

Metagenomic sequencing of stool samples 613 

DNA was extracted from stool samples using the QIAamp PowerFecal DNA Kit 614 

(QIAGEN) according to the manufacturer’s instructions except for the lysis step, in which 615 

samples were lysed using the TissueLyser LT (QIAGEN) (30 second oscillations/3 minutes at 616 

30Hz). DNA concentration of all DNA samples was measured using Qubit Fluorometric 617 

Quantitation (DS DNA High-Sensitivity Kit, Life Technologies). DNA sequencing libraries were 618 

prepared using the Nextera XT DNA Library Prep Kit (Illumina). Final library concentration was 619 

measured using Qubit Fluorometric Quantitation and library size distributions were analyzed 620 

with the Bioanalyzer 2100 (Agilent). Libraries were multiplexed and 150 base pair paired-end 621 

reads were generated on the HiSeq 4000 platform (Illumina). Samples with greater than 622 

approximately 300 ng remaining mass and a peak fragment length of greater than 19,000 bp 623 

(with minimal mass under 4,000 bp) as determined by a TapeStation 2200 (Agilent 624 

Technologies, Santa Clara, CA) were selected for nanopore sequencing. Nanopore sequencing 625 

libraries were prepared using the 1D Genomic DNA by Ligation protocol (ONT, Oxford UK) 626 
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following standard instructions. Each library was sequenced with a full FLO-MIN106D R9 627 

Version Rev D flow cell on a MinION sequencer for at least 60 hours.  628 

Computational methods 629 

R code for analysis and figure generation will be made available on Github upon publication. 630 
 631 
Preprocessing 632 

Stool metagenomic sequencing reads were trimmed using TrimGalore v0.5.0 (Krueger), a 633 

wrapper for CutAdapt v1.18 (Martin, 2011), with a minimum quality score of 30 for trimming (--634 

q 30) and minimum read length of 60 (--length 60). Trimmed reads were deduplicated to remove 635 

PCR and optical duplicates using seqtk rmdup v1.3-r106 with default parameters. Reads aligning 636 

to the human genome (hg19) were removed using BWA v0.7.17-r1188 (Li and Durbin, 2009). 637 

To assess the microbial composition of our short-read sequencing samples, we used the Kraken 638 

v2.0.8-beta taxonomic sequence classifier with default parameters (Wood and Salzberg, 2014) 639 

and a comprehensive custom reference database containing all bacterial and archaeal genomes in 640 

GenBank assembled to “complete genome,” “chromosome,” or “scaffold” quality as of January 641 

2020. Bracken v2.0.0 was then used to re-estimate abundance at each taxonomic rank (Lu et al., 642 

2017). 643 

 644 

Additional data 645 

Published data from additional populations were downloaded via the NCBI Sequence 646 

Read Archive (SRA) or European Nucleotide Archive (Table S9) and preprocessed and 647 

taxonomically classified as described above. For datasets containing longitudinal samples from 648 

the same individual, one unique sample per individual was chosen (the first sample from each 649 

individual was chosen from the United States Human Microbiome Project cohort). 650 

 651 

K-mer sketches 652 

K-mer sketches were computed using sourmash v2.0.0 (Brown and Irber, 2016). Low 653 

abundance k-mers were trimmed using the “trim-low-abund.py” script from the khmer package 654 

(Crusoe et al., 2015) with a k-mer abundance cutoff of 3 (-C 3) and trimming coverage of 18 (-Z 655 

18). Signatures were computed for each sample using the command “sourmash compute” with a 656 

compression ratio of 1000 (--scaled 1000) and k-mer lengths of 21, 31, and 51 (-k 21,31,51). 657 

Two signatures were computed for each sample - one signature tracking k-mer abundance (--658 
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track-abundance flag) for angular distance comparisons, and one without this flag for Jaccard 659 

distance comparisons. Signatures at each length of k were compared using “sourmash compare” 660 

with default parameters and the correct length of k specified with the -k flag. 661 

 662 

Statistical analysis and plotting 663 

Statistical analyses were performed using R v4.0.0 (R Core Team, 2019) with packages 664 

MASS v7.3-51.5 (Venables and Ripley, 2002), stats (R Core Team, 2019), ggsignif v0.6.0 665 

(Ahlmann-Eltze, 2019), and ggpubr v0.2.5 (Kassambara, 2020). Alpha and beta diversity were 666 

calculated using the vegan package v2.5-6 (Oksanen et al., 2019). Wilcoxon rank-sum tests were 667 

used to compare alpha and beta diversity between cohorts. Count data were normalized via 668 

cumulative sum scaling and log2 transformation (Paulson et al., 2013) prior to MDS. Data 669 

separation in MDS was assessed via PERMANOVA (permutation test with pseudo F ratios) 670 

using the adonis function from the vegan package. Differential microbial features between 671 

individuals living in Soweto and Bushbuckridge were identified from unnormalized count data 672 

output from kraken2 classification and bracken abundance re-estimation and filtered for 20% 673 

prevalence and at least 1000 sequencing reads using DESeq2 (Love et al., 2014). Plots were 674 

generated in R using the following packages: cowplot v1.0.0 (Wilke, 2019), DESeq2 v1.24.0 675 

(Love et al., 2014), dplyr v0.8.5 (Wickham et al., 2020), genefilter v1.66.0 (Gentleman et al., 676 

2019), ggplot2 v3.3.0 (Wickham, 2016), ggpubr v0.2.5, ggrepel v0.8.2 (Slowikowski, 2020), 677 

ggsignif v0.6.0, gtools v3.8.2 (Warnes et al., 2020), harrietr v0.2.3 (Gonçalves da Silva, 2017), 678 

MASS v7.3-51.5, reshape2 v1.4.3 (Wickham, 2007), and vegan v2.5-6. 679 

 680 

Genome assembly, binning, and evaluation 681 

Short-read metagenomic data were assembled with MEGAHIT v1.1.3 (Li et al., 2016) 682 

and binned into draft genomes as previously described (Bishara et al., 2018). Briefly, short reads 683 

were aligned to assembled contigs with BWA v0.7.17 (Li and Durbin, 2009) and contigs were 684 

subsequently binned into draft genomes with MetaBAT v2:2.13 (Kang et al., 2015). Bins were 685 

evaluated for size, contiguity, completeness, and contamination with QUAST v5.0.0 (Gurevich 686 

et al., 2013), CheckM v1.0.13 (Parks et al., 2015), Prokka v1.13 (Seemann, 2014), Aragorn 687 

v1.2.38 (Laslett and Canback, 2004), and Barrnap v0.9 (https://github.com/tseemann/barrnap/). 688 

We referred to published guidelines to designate genome quality (Bowers et al., 2017). 689 

Individual contigs from all assemblies were assigned taxonomic classifications with Kraken 690 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.05.18.099820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.18.099820
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 
 

v2.0.8 (Bowers et al., 2017; Wood and Salzberg, 2014). Genome sets were filtered for 691 

completeness greater than 50% and contamination less than 10% as evaluated by CheckM, and 692 

de-replicated using dRep v2.5.4 (Olm et al., 2017) with ANI threshold to form secondary clusters 693 

(-sa) at 0.99 (strain-level) or 0.95 (species-level). 694 

Long-read data were assembled with Lathe (Moss et al., 2020) as previously described. 695 

Briefly, Lathe implements basecalling with Guppy v2.3.5, assembly with Flye v2.4.2 (Lin et al., 696 

2016), short-read polishing with Pilon v1.23 (Walker et al., 2014), and circularization with 697 

Circlator (Hunt et al., 2015) and Encircle (Moss et al., 2020). Binning, classification, and de-698 

replication were performed as described above. Additional long-read polishing was performed 699 

using four iterations of polishing with Racon v1.4.10 (Vaser et al., 2017) and long-read 700 

alignment using minimap2 v2.17-r941 (Li, 2018), followed by one round of polishing with 701 

Medaka v0.11.5 (https://github.com/nanoporetech/medaka).  702 

Direct comparisons between nMAGs and corresponding MAGs were performed by de-703 

replicating high- and medium-quality nMAGs with MAGs assembled from the same sample. 704 

MAGs sharing at least 99% ANI with an nMAG were aligned to the nMAG regions using 705 

nucmer v3.1 and uncovered regions of the nMAG were annotated with prokka 1.14.6, 706 

VIBRANT v1.2.1, and ResFams v1.2. Taxonomic trees were plotted with Graphlan v1.1.3 707 

(Asnicar et al., 2015). 708 

 To construct phylogenetic trees, reference 16S sequences were downloaded from the 709 

Ribosomal Database Project (Release 11, update 5, September 30, 2016) (Cole et al., 2014) and 710 

16S sequences were identified from nanopore genome assemblies using Barrnap v0.9 711 

(https://github.com/tseemann/barrnap/). Sequences were aligned with MUSCLE v3.8.1551 712 

(Edgar, 2004) with default parameters. Maximum-likelihood phylogenetic trees were constructed 713 

from the alignments with FastTree v2.1.10 (Edgar, 2004; Price et al., 2010) with default settings 714 

(Jukes-Cantor + CAT model). Support values for branch splits were calculated using the 715 

Shimodaira-Hasegawa test with 1,000 resamples (default). Trees were visualized with FigTree 716 

v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/). 717 

Data availability 718 

All shotgun sequence data generated by this study, as well as metagenome-assembled 719 

genome sequences, will be deposited in a publicly available reference database (NCBI Sequence 720 

Read Archive or European Nucleotide Archive) and released upon publication. 721 
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Participant-level metadata (age, BMI, blood pressure measurements, and concomitant 722 

medications) and human genetic data will be deposited in the European Genome-phenome 723 

Archive and released upon publication. 724 
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Main Tables 758 

Table 1. Participant characteristics 759 

 Site Mean Standard deviation Range 

Age Bushbuckridge 55.52 7.79 43 - 72 

Soweto 54.1 5.86 43 - 64 

BMI Bushbuckridge 32.35 8.00 21.2 - 59* 

Soweto 36.05 9.25 20.42 - 58.62 

Systolic blood 
pressure 

Bushbuckridge 137 18.28 101 - 189 

Soweto 134 22.54 96 - 193 

Diastolic blood 
pressure 

Bushbuckridge 84 12.12 54 - 119 

Soweto 90 14.37 58 - 119 

*One participant’s BMI measurement was excluded on the basis of the recorded value being too low to be 760 
physiologically possible and deemed to have been recorded in error. We could not validate the correct BMI for this 761 
participant and thus have omitted them from the BMI summary statistics.  762 
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Table 2. Medium- and high-quality genomes assembled from nanopore sequencing 763 

Classification 
Size 
(Mb) 

% 
GC 

N50 
(Mb) Quality 16S 

Antibiotic 
Resistance 

Genes Phages 
Transposas

es 
Biosynthetic Gene 

Clusters Polishing 
Alistipes putredinis 1.91 53.1 1.91 Medium 2 1 1 1 0 Short 

Anaerotruncus sp. 2.04 43.7 2.04 Medium 2 2 2 4 1 Short 

Bacilli bacterium 1.46 26.2 1.46 Medium 1 0 2 1 1 Short 

Bacteroidales bacterium 2.67 47.3 1.80 High 3 0 4 16 0 Short 

Bacteroidales bacterium 2.79 49.8 2.79 High 4 3 0 29 0 Short 

Bacteroidales bacterium 1.7 56.6 1.70 Medium 1 1 0 6 0 Short 

Bacteroides sp. 2 48.2 1.59 High 3 1 0 7 0 Short 

Bacteroides sp. 2.82 43.3 2.00 Medium 6 1 3 31 0 Short 

Bacteroides vulgatus 2.68 42.7 2.68 Medium 3 0 0 14 0 Short 

Candidatus Melainabacteria 2 30.9 2.00 Medium 1 0 4 0 0 Long and Short 

Catabacter sp. 1.65 46.4 1.65 Medium 1 2 1 0 1 Long and Short 

Clostridiales bacterium 2.03 57.9 0.60 Medium 4 2 2 6 1 Short 

Clostridiales bacterium 1.53 47.3 1.53 Medium 1 1 1 1 1 Short 

Clostridiales bacterium 1.95 49.6 0.73 Medium 3 5 2 1 1 Short 

Clostridiales bacterium 2.24 48.7 0.58 Medium 2 3 3 12 1 Short 

Clostridiales bacterium 2.65 42.8 2.65 Medium 3 0 3 6 2 Short 

Clostridiales bacterium 1.32 45.2 0.79 Medium 1 3 2 4 1 Short 

Clostridiales bacterium 1.61 46.9 1.61 Medium 1 1 2 0 0 Short 

Clostridium sp. 1.53 25.2 1.53 Medium 1 0 2 1 0 Short 

Clostridium sp. 1.3 46.9 1.30 Medium 1 2 1 0 0 Short 

Clostridium sp. 2.01 28.8 2.01 Medium 3 2 3 3 0 Short 

Clostridium sp. 1.14 29.1 1.14 Medium 1 0 1 0 0 Short 

Clostridium sp. 2.44 52.5 2.23 High 3 6 3 1 3 Short 

Eubacterium 2 44.5 0.63 Medium 2 1 1 5 0 Short 

Lachnospiraceae bacterium 3.38 43.6 1.94 Medium 4 7 2 10 0 Short 

Lachnospiraceae bacterium 3.81 43.6 2.83 Medium 4 6 2 28 2 Short 

Lentisphaeria bacterium 5.08 57.5 5.08 Medium 3 3 4 84 1 Long and Short 

Mollicutes bacterium 1.68 28.1 1.49 Medium 2 1 1 2 0 Long and Short 

Mycoplasma sp. 1.17 25.3 1.12 Medium 2 2 0 1 0 Long and Short 

Oscillibacter sp. 1.13 57.4 0.17 Medium 1 0 2 2 0 Short 

Porphyromonadaceae bacterium 2.97 47.4 2.97 Medium 5 1 1 9 0 Short 

Prevotella sp. 3.29 43.6 1.14 Medium 6 3 2 17 1 Long and Short 

Ruminococcaceae bacterium 1.95 38.4 0.80 Medium 4 0 1 8 0 Short 

Ruminococcaceae bacterium 2.27 51.4 2.27 High 3 4 2 4 1 Short 

Ruminococcaceae bacterium 1.78 58.3 1.78 Medium 3 3 0 9 0 Short 

Treponema sp. 2.06 41.6 2.06 Medium 3 0 2 2 1 Short 

Treponema succinifaciens 2.55 39.1 2.55 High 4 0 0 15 0 Short 

uncultured Ruminococcus 1.59 44.0 1.34 Medium 2 2 0 2 1 Short 

uncultured Ruminococcus 2.08 46.9 2.08 Medium 5 2 6 8 1 Short 
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Figures 764 

 765 
Figure 1. Taxonomic composition of South African study participants 766 
Sequence data were taxonomically classified using Kraken2 with a database containing all genomes in GenBank of 767 
scaffold quality or better as of January 2020. 768 
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 (A) Top 20 genera by relative abundance for samples from participants in Bushbuckridge and Soweto, sorted by 769 
decreasing Prevotella abundance. Prevotella, Faecalibacterium, and Bacteroides are the most prevalent genera 770 
across both study sites. 771 
 (B) Relative abundance of VANISH genera by study site, grouped by family. A pseudocount of 1 read was added to 772 
each sample prior to relative abundance normalization in order to plot on a log scale, as the abundance of some 773 
genera in some samples is zero. Relative abundance values of most VANISH genera are higher on average in 774 
participants from Bushbuckridge than Soweto (Wilcoxon rank-sum test, significance values denoted as follows: (*) 775 
p < 0.05, (**) p < 0.01, (***) p < 0.001, (****) p < 0.0001, (ns) not significant). Upper and lower box plot whiskers 776 
represent the highest and lowest values within 1.5 times the interquartile range, respectively.  777 
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 778 
Figure 2. Comparison of Bushbuckridge and Soweto microbiomes 779 
 (A) Multidimensional scaling of pairwise Bray-Curtis distance between samples (CSS-normalized counts). Samples 780 
from Soweto have greater dispersion than samples from Bushbuckridge (PERMDISP2 p < 0.001). 781 
 (B) Shannon diversity calculated on species-level taxonomic classifications for each sample. Samples from 782 
Bushbuckridge are higher in alpha diversity than samples from Soweto (Wilcoxon rank-sum test, p < 0.001). Upper 783 
and lower box plot whiskers represent the highest and lowest values within 1.5 times the interquartile range, 784 
respectively. 785 
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 (C) DESeq2 identifies microbial genera that are differentially abundant in rural Bushbuckridge compared to the 786 
urban Soweto cohort. Features with log2 fold change greater than one are plotted (full results in Table S7). 787 
  788 
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 789 
Figure 3. Community-level comparison of global microbiomes 790 
Comparisons of South African microbiome data to microbiome sequence data from four publicly available cohorts 791 
representing western (United States, Sweden) and nonwestern (Hadza hunter-gatherers of Tanzania, rural 792 
Madagascar) populations. 793 
 (A) Number of participants per cohort. 794 
 (B) Multidimensional scaling of pairwise Bray-Curtis distance between samples from six datasets of healthy adult 795 
shotgun microbiome sequencing data. Western populations (Sweden, United States) cluster away from African 796 
populations practicing a traditional lifestyle (Madagascar, Tanzania) while transitional South African microbiomes 797 
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overlap with both western and nonwestern populations. Shown below are scatterplots of relative abundance of the 798 
top four taxa most correlated with MDS 1 (Spearman’s rho, Streptomycetaceae 0.853, Spirochaetaceae 0.850, 799 
Succinivibrionaceae 0.845, Bacteroidaceae -0.801) against MDS 1 on the x axis. 800 
(C) Boxplot of the first axis of MDS (MDS 1) which correlates with geography and lifestyle, and the second axis of 801 
MDS (MDS 2) where South African populations display a shift relative to other cohorts. 802 
(D) Shannon diversity across cohorts. Shannon diversity was calculated from data rarefied to the number of 803 
sequence reads of the lowest sample.  804 
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Figure 4. Comparison of beta diversity between communities calculated by taxonomy versus nucleotide k-mer 806 
composition 807 
 (A) Percentage of reads classified at any taxonomic rank, by cohort, based on a reference database of all scaffold or 808 
higher quality reference genomes in GenBank and RefSeq as of January 2020. Western microbiomes have a higher 809 
percentage of classifiable reads compared to nonwestern microbiomes (Wilcoxon rank-sum test p < 0.001). 810 
 (B) Nucleotide sequences of microbiome sequencing reads were compared using k-mer sketches. This reference-811 
free approach is not constrained by comparison to existing genomes and therefore allows direct comparison of 812 
sequences. Briefly, a hash function generates signatures at varying sequence lengths (k) and k-mer sketches can be 813 
compared between samples. Data shown here are generated from comparisons at k=31 (approx. species-814 
level)(Koslicki and Falush, 2016). Non-metric multidimensional scaling (NMDS) of angular distance values 815 
computed between each pair of samples. 816 
 (C-E) Comparison of pairwise beta diversity within communities assessed by Bray-Curtis distance based on 817 
species-level classifications and angular distance of nucleotide k-mer sketches. (C) All populations. (D) South 818 
African populations (Bushbuckridge and Soweto) compared to the Swedish cohort. Beta diversity measured by 819 
Bray-Curtis distance is higher in Soweto but lower in Bushbuckridge compared to the United States. However, 820 
reference-independent k-mer comparisons indicate that nucleotide dissimilarity is higher within both South African 821 
populations compared to the Swedish cohort. (E) Species-based Bray-Curtis distance indicates that there is more 822 
beta diversity within the United States cohort compared to Malagasy, but k-mer distance indicates an opposite 823 
pattern. 824 
Significance values for Wilcoxon rank sum tests denoted as follows: (*) p < 0.05, (**) p < 0.01, (***) p < 0.001, 825 
(****) p < 0.0001.  826 
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827 
Figure 5. Complete and contiguous genomes of South African microbiota 828 
 (A) Number of genomic elements present in medium- and high-quality nanopore MAGs that are absent in 829 
corresponding short-read MAGs for the same organism.  830 
 (B) Taxonomic classification of de-replicated medium- and high-quality nanopore MAGs. Larger circles represent 831 
nanopore MAGs, at the highest level of taxonomic classification. 832 
 (C) A selection of MAGs assembled from long-read sequencing (green) of three South African samples compared 833 
contigs assembled from corresponding short read data (grey). Outer light grey ring indicates contig scale, with ticks 834 
at 100kb intervals. Breaks in circles represent different contigs.  835 
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Supplementary Figures 836 

837 
Supplementary Figure 1. Most abundant species and genera 838 
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Most abundant taxa by mean relative abundance (total sum scaling) shown for samples from 839 

Bushbuckridge (n=117) and Soweto (n=51). Taxa are plotted in decreasing order of mean 840 

relative abundance calculated across both cohorts combined. Upper and lower box plot whiskers 841 

represent the highest and lowest values within 1.5 times the interquartile range, respectively. 842 

 (A) The most abundant species are Prevotella copri, Faecalibacterium prausnitzii, and a 843 

bacterium from the family Ruminococcaceae. 844 

 (B) Prevotella, Bacteroides, and Faecalibacterium are the most abundant genera across both 845 

study sites.  846 
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 847 
Supplementary Figure 2. Bimodal distribution of three VANISH taxa 848 

 (A) Succinatimonas, Succinivibrio, and Treponema relative abundance values follow a bimodal 849 

distribution in Bushbuckridge. 850 
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Across all South African samples, several VANISH families (B) and genera (C) are correlated, 851 

with the exception of Prevotella and genera of the family Spirochaetaceae which are not 852 

correlated with Prevotella (Treponema) or weakly anti-correlated with Prevotella (Spirochaeta, 853 

Sphaerochaeta, Sediminispirochaeta).  854 
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 855 
Supplementary Figure 3. Abundance of human reads in metagenomic sequencing 856 

 (A) Histogram and (B) box and whisker plots indicating that the proportion of human reads 857 

removed after deduplication was found to be higher in the Soweto cohort compared to 858 

Bushbuckridge. 859 

 860 
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 861 
Supplementary Figure 4. Bacteroides/Prevotella gradient across study population 862 

Multidimensional scaling ordination of Bray-Curtis distance calculated from species 863 

classifications in South African microbiome samples colored by log2 ratio of the relative 864 

abundance of the genera Bacteroides Prevotella. Bacteroides and Prevotella are major axes of 865 

variation across study samples. 866 

  867 
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Supplementary Figure 5: Concomitant medications do not substantially impact community 869 

composition 870 

Multidimensional scaling ordination of Bray-Curtis distance calculated from species 871 
classifications. Circles indicate participants from Bushbuckridge, triangles indicate participants 872 
from Soweto. 873 
(A) Points are colored red if the participant was taking a medication of the corresponding class, 874 
patients not taking a medication of that class are shown in gray. 875 
(B) Specific antibiotics taken by participants. Points are colored according to the antibiotic or 876 
combination of antibiotics reported. 877 
(C) PERMANOVA R2 values and p-values for the variation explained by each drug class. 878 
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 879 
Supplementary Figure 6. Differentially abundant species between Bushbuckridge and 880 

Soweto 881 

Differentially abundant microbial species between rural Bushbuckridge and urban Soweto 882 

samples identified by DESeq2. Features with log2 fold change greater than one are shown (full 883 
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results in Table S7). Note that differentially abundant microbial genera are presented in Figure 884 

2c.  885 
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 886 
Supplementary Figure 7. South African microbiomes do not cluster by self-reported 887 

ethnicity 888 

Multidimensional scaling ordination of Bray-Curtis distance with samples are colored by self-889 

reported ethnicity. Samples do not cluster by self-reported ethnicity.  890 
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 891 
Supplementary Figure 8. Relative abundance of VANISH taxa in global cohort 892 

Relative abundance of VANISH genera from the families Prevotellaceae, Spirochaetaceae, and 893 
Succinivibrionaceae. A pseudocount of 1 read was added to each sample prior to relative 894 
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abundance normalization in order to plot on a log scale. Relative abundance values for most 895 
genera trend toward decreasing from nonwestern cohorts to western cohorts.  896 
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 897 
Supplementary Figure 9. Microbial genera which distinguish Bushbuckridge and Soweto 898 

Samples were grouped by geographic region into “western” (USA, Sweden), “nonwestern” 899 
(Tanzania, Madagascar) and “South African” (Bushbuckridge, Soweto) and taxa which 900 
distinguish the South African group from the western and nonwestern groups were determined 901 
separately using DESeq2. Results with the same directionality of log2 fold change with respect 902 
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to South Africa in both comparisons, with a minimum log2 fold change of 2 in each comparison, 903 
are shown. A pseudo-count was added to zero values for plotting.  904 
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 905 
Supplementary Figure 10. Cohort-wise beta diversity computed via Jaccard distance 906 

Comparison of pairwise beta diversity within each cohort based on Jaccard distance between 907 

species abundance counts and nucleotide k-mer sketches. Nonwestern populations have greater 908 

beta diversity than western populations considering nucleotide k-mer composition.  909 
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910 
Supplementary Figure 11. Summary statistics for Illumina and nanopore MAGs generated 911 

from all samples. 912 

 (A) Number of low-, medium-, and high-quality genomes as evaluated with Bowers et al. 913 

standards  914 

 (B) Distribution of MAG percent completeness as determined by CheckM. 915 

 (C) Distribution of MAG percent contamination as determined by CheckM. 916 

 (D) Distribution of MAG N50. 917 
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 918 
Supplementary Figure 12. Taxonomy of de-replicated Illumina MAGs from all samples 919 

Taxonomic classification of de-replicated medium- and high-quality Illumina MAGs, where 920 

black dots indicate a MAG assembled at that level of taxonomic classification. Multiple MAGs 921 

at the same classification level are collapsed into single points.   922 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.05.18.099820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.18.099820
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

57 
  923 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.05.18.099820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.18.099820
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

58 
 

Supplementary Figure 13. Taxonomic composition for samples selected for nanopore 924 

sequencing 925 

Short-read sequencing-based taxonomic classifications for the three samples selected for 926 

Nanopore sequencing, showing (A) genus-level and (B) species-level classifications. Top thirty 927 

taxa by relative abundance shown in each plot. Symbols indicate whether a medium- or high-928 

quality short-read (*) or nanopore MAG (†) was assembled from the corresponding genus or 929 

species  930 
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 931 

 932 
Supplementary Figure 14. Summary statistics of nanopore and short read MAGs generated 933 

for three Bushbuckridge samples 934 

 (A) MAG short read or long-read coverage versus MAG N50. 935 

 (B) MAG total size versus MAG N50. Grey line indicates where genome N50 equals total 936 

genome size. 937 
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 938 
Supplementary Figure 15. Phylogeny of Treponema 16S rRNA sequences 939 

Phylogeny of 16S rRNA sequences from species of the genus Treponema show that the 940 

Treponema sp. assembled via Nanopore sequencing is most related to T. succinifaciens, but is 941 

phylogenetically distinct. The nanopore genome is highlighted in red font. Branch labels indicate 942 

Shimodaira-Hasegawa support values for splits.  943 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.05.18.099820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.18.099820
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

61 
 

 944 

 945 
Supplementary Figure 16. GC content of MAGs and nMAGs generated from three 946 

Bushbuckridge samples 947 

(A) GC content range of MAGs and nMAGs. 948 

(B) nMAGs with contig N50 values greater than one megabase. GC content of low-quality 949 

nMAGs is lower than the GC content of high-quality nMAGs, despite nMAGs of all quality 950 

having N50 values of higher than one megabase. * = p ≤ 0.05, Wilcoxon rank sum test.  951 
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952 
Supplementary Figure 17. GC content of nanopore and Illumina sequencing reads 953 

generated from three Bushbuckridge samples 954 

GC content was calculated for all processed Illumina reads (average length of 126 bp) and for 955 

126 bp windows of all nanopore reads. GC content distribution was subsampled to 100,000 956 

measurements per method. 957 
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Supplementary Figure 18. Phylogeny of Mollicutes 16S rRNA sequences 959 

Phylogeny of 16S rRNA sequences from species of the class Mollicutes showing the Mollicutes 960 

and Mycoplasma genomes assembled via nanopore sequencing. Nanopore genomes are 961 

highlighted in red font. Branch labels indicate Shimodaira-Hasegawa support values for splits.962 
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