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1 Summary1

Gene regulation involves synergistic interactions between transcription factors (TFs). Classical2

thermodynamic models offer a biophysical understanding of synergy based on binding cooperativ-3

ity and regulated recruitment of RNA polymerase. However, transcription requires polymerase to4

transition through multiple states. Accordingly, recent work has suggested that ”kinetic synergy”5

can arise through TFs differentially regulating distinct steps of the transcription cycle. Disentan-6

gling both sources of synergy has been challenging. Here, we combine theory and experiment to7

analyze TFs binding to a single shared site, thereby removing simultaneous specific DNA binding.8

Using the graph-based linear framework, we integrate TF binding with regulation of the transcrip-9

tion cycle, and reveal a complex kinetic synergy landscape dependent on TF concentration, DNA10

binding and transcriptional activity. We exploit synthetic zinc-finger TF fusions to experimen-11

tally interrogate these predictions. Our results confirm that transcription cycle regulation must be12

integrated with recruitment for a quantitative understanding of transcriptional control.13

2 Keywords14

gene regulation; synergy; transcription cycle; synthetic biology; mathematical modelling; linear15

framework.16

3 Introduction17

The regulation of transcription is a finely controlled process central to biology, biomedicine and18

bioengineering applications. At its core are transcription factors (TFs), proteins that bind spe-19

cific sites on the DNA and directly or indirectly modulate the binding and activity of the RNA20

polymerase complex. In eukaryotes, multiple TFs, of the same and distinct types, collaborate21

to drive transcription through binding to gene regulatory regions called enhancers and promoters22
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(Field and Adelman, 2020). Such ”combinatorial control” enables binding and response specificity23

(Wunderlich and Mirny, 2009; Georges et al., 2010), and expands the regulatory capabilities of24

the finite set of TFs encoded by an organism. A wealth of studies have characterised TF bind-25

ing sites and binding profiles in model genes, genomes and random sequences (e.g. Smith et al.,26

2013; Vandel et al., 2019; Inukai et al., 2017). In turn, a long-standing goal of biomedicine and27

synthetic biology has been to exploit this type of information to anticipate the effect of mutations28

on cell regulation, to develop new and more refined pharmacological interventions, and to design29

next-generation synthetic circuits with more precise and robust functions. However, this is still a30

difficult task, in part because of the non-independent effects of the TFs that control a given gene31

(Ouyang et al., 2009; de Boer et al., 2020; Reiter et al., 2017; King et al., 2020; Nie et al., 2020).32

When TFs interact to regulate transcription, the response to a combination of TFs is often not33

simply predicted by the responses to each of the TFs alone. Some models indicate that in the34

absence of interactions between TFs or sites, their combined effect should just be the addition of the35

individual outputs, and ”synergy” has been used to refer to deviation from this additive expectation36

(Carey et al., 1990; Herschlag and Johnson, 1993; Scholes et al., 2017). Under other models,37

”synergy” is manifested as multiplicativity in the response (Bintu et al., 2005a). Alternatively,38

the term ”synergy” has been used to refer to nonlinear response to increasing TF concentrations39

(Carey, 1998), binding cooperativity (below), or a special form of it (Veitia, 2003; Michida et al.,40

2020). Here we use the term ”synergy” to refer to an increase in the expression output under two41

TFs in comparison to their individual effects, quantified by a functional, model-agnostic measure42

proposed in the Results section.43

Synergy has commonly been understood through the lens of recruitment models of transcription,44

where the role of TFs is to regulate the binding of the RNA polymerase to the gene (Ptashne,45

2005). Thermodynamic models of gene regulation offer a biophysical grounding for this view46

(Ackers et al., 1982; Bintu et al., 2005b,a). These models assume that TFs and polymerase bind to47

the DNA under thermodynamic equilibrium conditions. The free energy of each state determines48

its steady-state probability according to the Boltzmann distribution, and the transcription rate is49

treated as a function of the states of binding of the system. Synergy then emerges from direct or50

indirect cooperative binding interactions, where TFs enhance or reduce each other’s binding and51

that of the RNA polymerase to the DNA (e.g. Vashee et al., 1998; Ambrosetti et al., 2000; Spitz and52

Furlong, 2012; Frank et al., 2012; Goldstein et al., 2017; Estrada et al., 2016). Mechanistically, this53

can result from direct protein-protein interactions between adjacently-bound molecules, indirect54

interactions through a shared molecule or complex like Mediator (Carey et al., 1990; Malik and55

Roeder, 2010; Bashor et al., 2019) or through allosteric mechanisms (Biddle et al., 2021) mediated56

by nucleosomes (Mirny, 2010) or by DNA (Narasimhan et al., 2015).57

Beyond recruitment of RNA polymerase to the gene, it is well known that eukaryotic transcription58

is a multi-step process that is tightly regulated at many points. Accordingly, it has been suggested59

that transcriptional regulation should be understood in terms of a transcription cycle (Fuda et al.,60

2009), involving for example the displacement of nucleosomes at the start site, post-translational61

modification of histones (Mao et al., 2010; Hansen and O’Shea, 2013; Cui et al., 2020), assembly of62

the transcriptional machinery, and post-translational modifications that regulate its activity and63

elongation rate (Jonkers and Lis, 2015; Core and Adelman, 2019). In agreement with this view,64

RNA polymerase has been found to be already bound on many inactive genes, suggesting that under65

certain scenarios activation does not rely on regulating polymerase recruitment, but modulating a66

subsequent step (Oven et al., 2007). Besides moving the focus away from the recruitment of the67

RNA polymerase, this view also implies non-equilibrium behaviour, given that ATP-dependent68

nucleosome remodelling and post-translational modifications involve energy dissipation. In this69

case, the steady-state behaviour of the system is determined by the individual rates of the various70

transitions. This is in contrast to the equilibrium situation of thermodynamic models, where only71

the ratios between the forward and backward rates matter for determining the steady-state of the72

system (Wong and Gunawardena, 2020).73

Under this kinetic view, the possibility of ”kinetic synergy” was theoretically proposed. Imagine the74

simplest case where transcription is regulated by two steps, and two TFs have different biochemical75

functions such that one TF can preferentially enhance one step and the other TF can preferentially76
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enhance the other. Then, when the two TFs are present together they can enhance each other’s77

effect and thus generate synergy (Herschlag and Johnson, 1993; Scholes et al., 2017). Importantly,78

this would enable synergy to emerge even in the absence of cooperative binding between TFs on79

the DNA; the TFs would not even need to be simultaneously present at the regulatory site.80

Multiple lines of evidence make kinetic synergy very plausible. First, experimental work has shown81

that transcriptional activators can increase gene expression by different mechanisms. Blau et al.82

(1996) found that TF activation domains can either stimulate transcription initiation, elongation,83

or both, and more recent studies have continued to reveal that TFs use diverse mechanisms to84

regulate transcription and affect distinct steps of the transcription cycle (e.g. Fu et al., 2004; Rahl85

et al., 2010; Baluapuri et al., 2019). Along the same lines, Danko et al. (2013) reported differences86

in RNA polymerase II pausing depending upon treatment with E2 or TNF-alpha signals, which87

were attributed to the TFs downstream (ERα and NF-κB) acting on different transitions that88

regulate their target genes. Moreover, comparisons between regulation driven by homogeneous or89

heterogeneous sets of TFs have shown that heterogeneous sets often drive higher expression levels90

(Smith et al., 2013; Vanhille et al., 2015; Singh et al., 2021). In line with this, Keung et al. (2014)91

found evidence of synergistic activation between the viral activator VP16 and selected chromatin92

regulators in a reporter system. Similarly, the activity of many Drosophila TFs and cofactors93

was found to be highly context-dependent (Stampfel et al., 2015), suggesting that activation may94

require a particular combination of biochemical mechanisms.95

Despite these observations, it is experimentally challenging to assess kinetic synergy given the96

difficulty of disentangling it from cooperative DNA-binding interactions between TFs. On the97

theoretical side, there has been a lack of tools to reason about kinetic synergy on biophysical98

grounds. As a first step, a recent theoretical study by our group showed that in a similar way99

to binding cooperativity, kinetic synergy can implement logical and analog computations (Scholes100

et al., 2017), and that it can generate a wide diversity of input/output relationships. However,101

in a similar way to other modelling work that considers transcription as a multi-step process (e.g102

Suter et al., 2011; Hansen and O’Shea, 2013; Rybakova et al., 2015), that model did not explicitly103

account for TF binding, and instead represented it indirectly through the effect of the TFs on the104

transition rates of the system. To our knowledge, there have been few attempts to explicitly model105

the interplay between TF binding, polymerase recruitment, and progression over the transcription106

cycle. Li et al. (2018) proposed a model that explicitly incorporated binding and transitions over107

the cycle, but assumed a time-scale separation between TF binding and the rest of the processes,108

with quasi-equilibrium in TF binding. However, both TF residence times and the half-life of certain109

biochemical steps in the transcription cycle may occur on similar timescales, on the order of several110

seconds or a few minutes (Methods, section 6.2), calling for more general models that bring together111

the binding-centered view of recruitment models with the regulation of the transcription cycle.112

Here we exploit the graph-based linear framework (below) to propose a model of transcriptional113

control that explicitly accounts for TF binding and the regulation of polymerase recruitment,114

as well as the progression over the transcription cycle. In order to disentangle kinetic synergy115

from binding cooperativity, we focus on the emergence of synergy between TFs binding to a116

single, shared site. This scenario eliminates the possibility of TFs simultaneously bound to the117

DNA, thus removing cooperative binding between TFs. Experimentally, we build this system118

using engineered TFs where activation domains of a set of functionally diverse mammalian TFs119

are fused to a computationally designed zinc-finger (ZF) DNA binding domain predicted to bind120

only to an artificial site upstream of a reporter (Figure 1A) (Khalil et al., 2012; Keung et al.,121

2014; Park et al., 2019b; Israni et al., 2021). We propose a comprehensive measure of synergy122

where we compare the expression output when both TFs are present, to that when only one of123

them is present. By exploring the synergistic behaviour of the model in parameter space, we find124

that a diversity of behaviors can emerge in this setup, for which we find experimental evidence.125

Our model reveals a complex synergy landscape, shaped by the interplay between the activation126

effect of the TFs and their binding kinetics. This highlights the relevance of considering genomic127

context, binding and biochemical function together when characterizing TFs, and illuminates how128

functional interactions between TFs may contribute to eukaryotic transcriptional control.129
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Figure 1: A model for kinetic synergy between two TFs sharing a site. A) Cartoon schematiz-
ing the strategy of this work to examine kinetic synergy: two synthetic TFs regulate a reporter
(not shown) through a shared binding site. As an example, TF A controls the first step in the
transcription cycle, and TF B controls the second step. B) Model used in this work. The graph
product of a binding graph N , and a 3-state polymerase cycle graph P, gives rise to the complete
linear framework graph of the system (N × P). Only a subset of nodes and edges are labelled,
for clarity. The horizontal edges from the central cycle to the outer cycles denote binding of each
of the TFs, and the reverse edges denote unbinding. The three cycles allow us to account for
the effect of the TFs, since the rates can be different depending upon the state of the binding
site. As an example, the darker arrows denote the activator effect of A and B on the first and
second transitions, respectively (k1,A > k1,∅, k2,B > k2,∅). C) Schema of the full graph, as used in
Figure 2.

4 Results130

4.1 Mathematical model131

We study how kinetic synergy emerges in a scenario where two TFs bind to a shared site in a132

regulatory sequence, such that only one TF can be specifically bound at any given time. Figure 1A133

schematizes this situation for a general 3-state transcription cycle, where TF A promotes the first134
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step (illustrated as the assembly of the RNA polymerase complex), and TF B promotes a process135

downstream.136

In order to model this system, we exploit the linear framework formalism, a graph-based approach137

to Markov Processes that can be used to model a diversity of biological processes in a biophysically138

realistic and mathematically tractable way (Gunawardena, 2012; Ahsendorf et al., 2014). We139

have previously applied this framework to study how binding interactions between TFs modulate140

gene expression by implicitly averaging over the states of the polymerase cycle (Estrada et al.,141

2016; Biddle et al., 2019; Park et al., 2019a). In contrast, in a previous study of kinetic synergy,142

we modelled the effect of TFs on a detailed transcription cycle but effectively combined their143

binding with their enzymatic effects (Scholes et al., 2017). Here we propose a model that unifies144

both approaches and doesn’t make assumptions about the binding reactions being on a different145

timescale than the polymerase cycle reactions, improving previous approaches in the literature (Li146

et al., 2018) (Methods, 6.1).147

The system is represented by a graph (Figure 1B, N × P), whose vertices are the biological148

states of interest, and the edges are the transitions between them, assumed to follow Markovian149

dynamics with infinitesimal transition rates corresponding to the graph edge labels. Structurally150

(i.e. ignoring edge labels) the graph for the complete system is the graph product between two151

simpler graphs: a binding graph and a polymerase cycle graph. The binding graph for our sys-152

tem of interest is represented in Figure 1B (Binding graph (N )), and consists of a binding site153

that can either be empty, bound by TF A, or bound by TF B. For the polymerase cycle (Fig-154

ure 1B, Polymerase cycle graph (P)), we consider the simplest cycle, with 3 states (labelled 1,2,3).155

The first transition is assumed to be reversible, and the other two irreversible in agreement with156

the macroscopic irreversibility of posttranslational modifications like phosphorylation, or the syn-157

thesis of mRNA. mRNA is assumed to be produced when the system transitions from state 3 to158

state 1. This simple graph can be interpreted in terms of empty transcription start site (TSS),159

assembled RNA polymerase, and C-terminal phosphorylated or elongating polymerase, although160

mapping onto specific states isn’t required to interpret the results. Given these two graphs, tak-161

ing all pairwise combinations of their vertices (graph product) gives the complete graph N × P162

(Figure 1B).163

TF binding on-rates (kb,X , X ∈ {A,B}, horizontal from the central cycle to the right and left) have164

dimensions of (concentration × time)−1, and binding off rates (ku,X , X ∈ {A,B}) have dimensions165

of (time)−1. The genomic context is modeled by the values of the basal rates over the polymerase166

cycle in the absence of TFs (central cycle). To incorporate the effect of a TF on a given transition,167

we assume that the TF only has effect while it is bound. The effect is then incorporated into the168

edge label (parameter value) for that transition, making it different for the cycle where the TF is169

bound than for the basal cycle. As an example, the darker arrows on the left and right cycles in170

Figure 1B, N × P, represent the activating effect of A and B on the first and second transitions,171

respectively. In this case, k1,A > k1,∅, and k2,B > k2,∅. Similarly, repression could be included as172

well by a smaller value for a transition rate than the corresponding basal rate. For simplicity here173

we examine synergy between ”pure” activators only, defined by not decreasing the clockwise rates174

(k1,X ≥ k1,∅, k2,X ≥ k2,∅, k3,X ≥ k3,∅, X ∈ {A,B}) and not increasing the counterclockwise rate175

(k4,A ≤ k4,∅, k4,B ≤ k4,∅).176

We interpret the system in probabilistic terms, and assume each vertex of the graph holds the177

probability of the system being in that state. The transition rates then determine the time-178

evolution of the probabilities according to the Master Equation, which eventually reach a steady179

state (Methods, 6.1). Moreover, we assume first-order mRNA degradation. By taking the mRNA180

degradation rate as a constant that normalises the transition rates, the steady-state mRNA at a181

given concentration of A and B (m(A,B)∗) is given by:182

m(A,B)∗ = k3,∅P
∗
3,∅(A,B) + k3,AP

∗
3,A(A,B) + k3,BP

∗
3,B(A,B) (1)183

where P ∗3,∅(A,B), P ∗3,A(A,B), P ∗3,B(A,B) are the steady-state probabilities of state 3∅, 3A, 3B at184

concentrations A and B of the TFs, and the rates are normalised by the mRNA degradation rate185

(Methods, 6.1). Given that we only consider the steady-state behaviour of the system, we use the186

same symbols to refer to the original rates and the normalised rates in order to avoid excessive187

notation. In the remainder of the paper, the rates will always be normalised.188
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The focus of the analysis is to compare this quantity when both TFs are present to that when189

only one is present and the other is at concentration 0 (synergy, below). Note that when only one190

or none of the TFs is present, m∗ can be computed in the same way. In that case, the steady-191

state probabilities for those states corresponding to the absent TF being bound will be 0, and192

the rest will be redistributed according to the parameter values. The value of m∗ in the absence193

of TFs (m∗(0, 0)) corresponds to basal expression. For simplicity, the absence of a TF from the194

mathematical expressions below means it is at concentration 0.195

4.2 A measure of synergy196

Our interest is to understand how synergy emerges in this system. As shown by Scholes et al. (2017),197

if two TFs act on more than one step in the cycle, the overall effect may not be greater than additive198

even if they interact kinetically. This exemplifies that considering addition as a null expectation199

against which to define synergy, as has often been done in the literature, is model-specific. In order200

to provide a model-agnostic definition of synergy, here we consider a two-dimensional quantity that201

compares the steady-state expression when both TFs are present (m∗(A,B)) to the steady-state202

expression when either of them is alone, but at twice as much concentration (m∗(2A), m∗(2B)). In203

this way, the total concentration of TF is the same in the combined as in the individual situation.204

Enhanced expression in combination with respect to the strongest TF (the TF with a higher level205

of expression on its own), or reduced with respect to the weakest, must arise as a result of the206

functional interactions of the TFs over the cycle.207

Positive synergy corresponds to higher expression in combination as compared to individually,208

and can be regarded as ”canonical” synergy in the sense of enhanced expression in combination:209

expression is greater than that of the strongest TF even if half the molecules are substituted210

by those of a weaker TF. We note however that the output does not have to be greater than211

additive to be considered positive synergy. Negative synergy corresponds to lower expression in212

combination, with expression lower than that of the weakest TF alone. Asymmetric synergy results213

when expression is increased only with respect to the weakest TF. In this case, it may be unclear214

whether there are any synergistic interactions. Potentially, these can still be detected depending on215

the extent to which the expression is reduced or increased with respect to the strongest or weakest216

TF, respectively. Thus, we propose to quantify synergy as a point in 2D, by comparing the effects217

of adding one TF to the other. This is quantified by SA,B (effect of B on A) and SB,A (the effect218

of A on B) as follows:219

SA,B = log2

(
m∗(A,B)

m∗(2A)

)
(2)220

SB,A = log2

(
m∗(A,B)

m∗(2B)

)
(3)221

If A is taken to be the strongest TF, positive (green), asymmetric (blue) and negative (red) synergy222

map to 3 quadrants of a two-dimensional synergy space, as depicted in Figure 2A.223

4.3 Positive, negative or asymmetric synergy can theoretically emerge224

from two activators225

We begin by exploring the theoretically possible synergistic behaviours between two activators226

(k1,X ≥ k1,∅, k2,X ≥ k2,∅, k3,X ≥ k3,∅, k4,X ≤ k4,∅, X ∈ {A,B}). In line with our experimen-227

tal system where TFs are comprised of the same binding domain (below), we assume that both228

TFs have the same binding kinetics (given by a binding rate kb and an unbinding rate ku) but229

different activation capabilities (given by the ki,X , i ∈ {1, 2, 3, 4}, X ∈ {A,B}). We assume the230

concentration unit is incorporated in the binding on-rates, such that both A and B are present at231

a concentration of 1 arbitrary unit each when they are both present together, and at concentration232

2 when they are alone. In order to define the boundaries of the synergy space region that can233

be covered by the model under biologically-plausible parameter values and constraints (Methods,234

6.2), we numerically sampled the parameter space using a biased sampling algorithm (Methods,235

6.3). We explored the synergy space when TFs act on the same step, exclusively complementary236

steps, or all steps (Figure 2B).237
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Figure 2: Positive, negative or asymmetric synergy emerge in the model depending upon pa-
rameter values. A) Synergy space. See text for details. B) Regions of the synergy space spanned
by 3 regulatory strategies. Top: A and B act on the first step exclusively. Middle: A on one of
the first two steps, B on the other one. Bottom: A and B act on any step (to various degrees).
Constraints for the boundary search (Methods, 6.2, 6.3): parameter values between 1 and 104, TF
rates at most 1000 times larger than the basal rates for the clockwise (k1, k2, k3) or 0.001 times
smaller for k4. Fold change in m∗ for each TF individually (at concentration 2) with respect to the
basal condition with no TF between 1 and 10. Figure S1B shows the results for more constrained
parameters. (continued on next page)
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Figure 2 (previous page): C) Distribution of TF activity distances per synergy quadrant for a
random sample of parameter sets under the same constraints as in the bottom panel in B (synergies
are plotted as a scatterplot in Figure S1C). D) The two most prevalent dominant flux paths for the
points used in the analysis in C. The arrow diagrams represent the model states and transitions,
as schematized in Figure 1C; arrow greyscale intensity denotes the average probability net flux for
that transition over all the parameter sets that share the dominant path highlighted in magenta.
Note that reversible edges may appear in both directions if some parameter sets have net flux
in one direction and others in the other. The distributions underneath show contours for the
two-dimensional histogram of synergy values corresponding to those parameter sets that share the
same dominant path. See also Figure S2.

As a control, we first explored the case where both TFs enhance the first step. Figure 2B-top238

shows that as expected, only asymmetric synergy appears in this case. Intuitively, if TF A drives239

stronger expression than TF B but both act on the same step, then mixing A with B can only240

reduce expression with respect to the strongest one, and increase it with respect to the weakest.241

Next, we explored the case where TFs have complementary activities, with each TF enhancing242

either the first or second transition. Figure 2B-middle shows that this control strategy mostly243

results in positive synergy, but also covers a region of the asymmetric synergy quadrant (notice244

that the result is restricted to the upper diagonal region of the positive quadrant due to the245

definition of TF A as the strongest of the pair). A very similar result is obtained for any other pair246

of complementary rates (Figure S1A). The appearance of asymmetric synergy in this case shows247

that even if TFs have complementary activities, that may not be enough to enhance expression248

beyond that of the strongest TF when half of its concentration is substituted by the weaker TF.249

TFs are often found to interact with a wide range of cofactors and regulators (Dingar et al., 2015;250

Kim et al., 2017; Carnesecchi et al., 2020), and it is therefore likely that they modulate multiple251

processes albeit with different strengths. Hence, we next considered a more general scenario where252

each TF can enhance any of the transitions to different extents (Figure 2B, bottom). In this case, a253

slightly higher region of the positive and asymmetric synergy quadrants are occupied, and slightly254

negative synergy can also emerge. We interpret this as an indication that under some parameter255

values, TFs can interfere with each other’s action and reduce the expression as compared to when256

only one of them is present.257

For all these cases, the synergy space region that can be spanned by the model becomes smaller258

for more constrained parameter values, representing the assumption that the system has a smaller259

basal expression and TFs are weaker (Figure S1B).260

4.4 The activity of the TFs over the cycle is not the only determinant261

of synergy262

The original proposition of kinetic synergy stemmed from the assumption that synergy would263

emerge from TFs acting on different rate-limiting steps in transcription (Herschlag and Johnson,264

1993). In the case of TFs with potentially overlapping effects, to what extent is positive synergy265

linked to TFs working exclusively, or nearly exclusively, on separate steps, so that they complement266

each other to enhance the cycle? In order to address this question, we looked at the correspondence267

between parameter values and synergy. For this, we generated a random sample of points that span268

a wide region of the synergy space (plotted in Figure S1C, Methods, 6.4). In order to quantify the269

degree of complementarity between the pair of TFs in a given parameter set, we use the following270

measure, which we call TF activity distance: the sum, over all the polymerase cycle transitions,271

of the absolute differences between the logarithms of the transition rates associated to each TF272

(Figure 2C). Similar TF parameter values result in a small distance value, whereas TFs with big273

differences in their rates, and therefore more divergent in their functions, result in a larger distance.274

As shown in Figure 2C, positive synergy tends to emerge at higher distances than asymmetric and275

negative synergies, suggesting more divergent functions is indeed linked to higher complementarity276

and thus higher positive synergy.277
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However, the distances that lead to asymmetric synergy and those that lead to positive synergy278

overlap, suggesting that the different functions of the TFs are not the only determinants of synergy279

output. When binning the distributions by the basal expression (steady state m∗ in the absence280

of TFs) and binding and unbinding rates, these factors appear to be important as well: higher281

basal expression and higher binding and unbinding rates correlate with less distant TFs producing282

positive synergy (Figure S1D). In addition, the basal expression and binding rates also modulate283

the correlation between the distance of two TFs and the extent of positive synergy that they exhibit284

(Figure S1E).285

Intuitively, for positive synergy to emerge, we would expect that each of the TFs binds and unbinds286

appropriately as to be able to exert its effect and not interfere with the binding and the effect of287

the other TF. In order to test the extent to which this is indeed linked to synergy, we looked at288

the steady-state probability fluxes in the graph. Given the irreversible nature of the transitions of289

the polymerase cycle, a net probability flux remains even when the system is at steady state. The290

flux of probability of the system is intimately linked to the production of mRNA, since mRNA is291

produced as the system transitions through the polymerase cycle. Formally, the flux from node i292

to node j, Jij is given by Ji,j = kij Pi, with ki,j the transition rate between i and j, and Pi the293

probability of node i. In the case of irreversible edges, this equals the net flux. In the case of294

reversible edges, the net flux Ji,j can be defined as Ji,j = Ji,j − Jj,i, with Ji,j > Jj,i.295

For the same sample of points (parameter sets) as in Figure 2C, we computed the net fluxes in296

the presence of A and B. Then, for each point, by starting at the polymerase-empty state with297

no TF bound (state 1, ∅ in Fig 1B, N × P) we followed the transition with a higher net flux, and298

repeated the same iteratively until reaching state 1, ∅ again or any other node already encountered.299

This generates what we call the dominant path of net fluxes over the graph. After computing the300

dominant path for each of the paramater sets, we quantified how many parameter sets share the301

same dominant path. For this analysis, we pulled together those pairs of paths that are mirror302

images of each other, since they are equivalent.303

Out of all the parameter sets sampled, the majority correspond to one of either two paths, repre-304

sented in Figure 2D. The most predominant involves the binding of one TF, transition over the305

first step (binding of polymerase), unbinding of the TF, and reversion to the empty state. The306

two-dimensional density plot below the flux diagram shows that the majority of the points with307

this dominant path of fluxes correspond to asymmetric synergy. In contrast, the second most fre-308

quent dominant path involves cycling over the whole graph, with the first two transitions occurring309

under one TF, and the last occurring under the other. In this case, the majority of the points310

are associated with positive synergy. The rest of the dominant paths that make up to 90% of311

all the dominant paths in the sample of points are shown in Figure S2. The density plots show312

that dominant paths are not uniquely associated to individual synergy classes, but there are clear313

biases, with positive synergy being mostly associated to dominant paths that traverse the whole314

graph, and asymmetric synergy linked to dominant paths that show nonproductive cycling. This315

agrees with the expectation that positive synergy should emerge when TFs act productively to316

enhance progression over the polymerase cycle, but also suggests that an intricate balance between317

all the transitions in the system is required for positive synergy to emerge.318

4.5 Experimental evidence of kinetic synergy using a synthetic platform319

The modelling results in the previous sections suggest that kinetic synergy can be observed from this320

single binding site circuit. In order to experimentally test this idea, we developed a reporter system321

in which synthetic TF fusions are recruited to a single binding site integrated into a mammalian322

HEK293 cell line (Methods, 6.6,6.8) (Khalil et al., 2012; Park et al., 2019b; Israni et al., 2021).323

We selected five activation domains of mammalian TFs with a described diversity of functions in324

the literature. SP1 is a ubiquitous mammalian transcription factor whose mechanism of action325

has classically been linked to the recruitment of the transcriptional machinery (O’Connor et al.,326

2016). cMyc is also a ubiquitous regulator. It interacts with a diverse range of proteins, but327

its mechanism of action has been predominantly linked to processes downstream the recruitment328

of the transcriptional machinery, including pause-release (Rahl et al., 2010) and elongation via329

interaction with the elongation factor Spt5 (Baluapuri et al., 2019). BRD4 has also been described330
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to have elongating activity, through the interaction with positive transcription elongation factor331

b (pTEF-b) (Yang et al., 2005; Moon et al., 2005). In addition, it has been involved in phase-332

separation at super-enhancers (Vasile et al., 2018), suggesting that BRD4 may also regulate other333

steps in the transcription cycle. Finally we chose the activation domain of HSF1, which has been334

described to have both initiating and pause-release stimulating activity, and a mutant version of335

it, which we call HSF1-m. This mutant was described to be elongation-deficient (Brown et al.,336

1998). Accordingly, these TFs can be broadly classified into either initiating (if they influence the337

recruitment of RNA polymerase) or elongating factors (if they influence a process downstream),338

as depicted in Figure 3A.
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Figure 3: Experimental observation of kinetic synergy between 2 transcriptional activators on a
synthetic platform. A) Schema of the synthetic TFs. B) Expression upon transfection with either
10 (1X) or 20 (2X) ng of one TF, or the ZF binding domain alone (grey). Error bars denote
the 95% confidence interval for the mean GFP fold change, obtained from bootstrapping the mean
GFP fold change values from all the experiments (biological replicates) for each condition. At least
3 biological replicates per condition, with 2-4 technical replicates each. C) Experimental synergy
between two activators, defined as in Eqs. 2-3 (log2 of the ratio of average fold-change expression
when 10 ng of each TF is transfected, over the average fold-change expression when 20 ng of one
is transfected). TF A is the strongest of the pair in the single TF expression, as shown in the 2X
conditions of panel B. Error bars denote ranges from at least three biological replicates, with 2-4
technical replicates each. Barplots corresponding to this data are shown in Figure S3F, and the
synergy between each TF and the empty ZF is shown in Figure S3E.

339

We engineered synthetic TFs (synTFs) composed of an activation domain from the above-described340

TFs fused to a synthetic zinc finger (ZF) DNA binding domain (Methods, 6.6), designed to target341

a 20-bp binding site that does not natively exist in the mammalian genome sequence (Figure 1A,342

Figure 3A) (Khalil et al., 2012; Park et al., 2019b; Israni et al., 2021). This allows us to specif-343

ically recruit the activation domains to a reporter to assess their effects on transcription, while344

minimizing confounding effects from native TFs acting on the reporter. We then stably integrated345

into HEK293FT cells a reporter, composed of a single target binding site upstream of a minimal346

CMV (minCMV) promoter driving the expression of a destabilized EGFP (d2EGFP) (Methods,347

6.8). Given its rapid turnover (Li et al., 1998), destabilized EGFP serves as a convenient genomic348

reporter of the mRNA expression level (Raj et al., 2006). The expression of the synTFs was in-349
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duced by transient transfection of the synTFs, whose expression level can be controlled by the350

amount of the plasmids transfected (Figure S3A). We chose to transfect synTFs at either 10 or 20351

ng to ensure that the concentration (i.e. expression level) of synTF is the limiting factor. Reporter352

expression outcome was assessed by quantifying GFP fluorescence using flow cytometry 48 hours353

later (Methods, 6.9, 6.10).354

Figure 3B shows reporter activation by each of the synTFs. We observed similar activation355

strengths varying from about 1.5 fold change in GFP fluorescence to 4 fold change, with slight in-356

creases upon doubling the amount of TF transfected for most TFs. Such fold change up-regulation357

is in the range of physiological induction in mammalian signalling pathways (Strasen et al., 2018;358

Wong et al., 2019; Friedrich et al., 2019). A similar dose-dependent increase in reporter signal is359

also observed at the mRNA level (Figure S3B), supporting the use of GFP fluorescence to report360

on mRNA.361

In order to assess the extent of synergy between pairs of TFs, we compared the fold-change in362

GFP fluorescence when TFs were transfected in pairs at 10 ng each, to that when only one is363

transfected at 20 ng. We used quantitative immunofluorescence targeting the HA-tag of the synTFs364

to verify that transient transfection of 20 ng of coding plasmids for a single synTF results in a365

similar synTF abundance distribution as when transfecting two TFs in combination at 10 ng each,366

despite some variability inherent to the transfection procedure (Figure S3C,D) (Methods, 6.13).367

Under these conditions, Figure 3C shows that both positive and asymmetric synergy appears (See368

Figure S3F for details). Consistent with the correlation in the model between TF activity distance369

and synergy class, the pairs exhibiting positive synergy (Fig 3C, green quadrant) correspond to370

those where each TF predominantly has been described to have either initiating or elongating371

factor activities. No TF was capable of increasing the expression from that driven by HSF1, which372

is the strongest synTF in the set and is described to have both initiating and elongating activities373

(Brown et al., 1998). However, different TFs reduced its expression to different extents, suggesting374

some functional interactions are occurring (e.g. compare the SA,B coordinate for SP1-HSF1 and375

cMyc-HSF1 in Figure 3C). For the pairs of TFs described to predominantly act upon the same376

step, almost no synergy was detected (SP1-HSF1m, cMyc-BRD4).377

Figure 3B shows a very modest activation effect from the ZF alone (no TF activation domain) case.378

However, the combination with a full synTF only leads to asymmetric synergy (Figure S3E), with379

all TFs except HSF1 being reduced by the same extent, and HSF1 being reduced even further.380

This suggests that although the ZF may have a small effect perhaps by increasing the ability of381

the basal transcriptional machinery to bind, the positive synergy observed between pairs of TFs382

is most likely due to their activation domains, since the ZF only reduces expression when mixed383

with any of the TFs.384

These results show that positive synergy can emerge experimentally even when the TFs share385

the same binding site. However, the effects are small. One potential reason is that the TFs are386

weak, in agreement with the model (Figure S1B). Moreover, the distributions of Figure S1D-E387

and the analysis of the dominant flux paths in Figure 2 point to binding and unbinding kinetics388

as important contributors to synergy as well. We now focus on this point.389

4.6 Kinetic synergy depends upon the binding and unbinding kinetics390

We explored how the synergy exhibited by a pair of TFs changes in the model as a function of391

either the unbinding or the binding rate. We began by examining the effect of the unbinding rate.392

To this end, we randomly sampled parameter sets for the basal rates over the polymerase cycle393

(k1,∅, k2,∅, k3,∅, k4,∅) and binding and unbinding (kb, ku). For each of these basal sets, we sampled394

parameter values for pairs of TFs (k1,A, k2,A, k3,A, k4,A, k1,B , k2,B , k3,B , k4,B). For each pair,395

we varied the unbinding rate ku over a 2 order magnitude range, 10 fold up and down the basal396

value, and tracked the corresponding behavior over the synergy space. Given that the unbinding397

rate changes expression from each TF alone, we only considered those parameter sets where the398

strongest TF is the same across the unbinding rates considered, so that synergy is consistently399

defined throughout. Further details of this procedure are given in Methods, 6.5.400

To classify the behavior over the synergy space systematically, we considered that the binding and401
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Figure 4: Synergy between a pair of TFs depends upon the binding and unbinding kinetics.
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Figure 4 (previous page): A) Model examples for 5 sets of parameter values demonstrating
the diversity in how synergy changes as a function of the unbinding rate. For each example, the
top-left plot shows the fold change in expression as compared to no TF present, for each of the
TFs at concentration 2 (black, gray), or both TFs at concentration 1 (maroon), as a function of
the unbinding rate. The top-right plot shows the corresponding behavior in synergy space. The
circles on the bottom of the top-left plot and those on the top-right plot correspond to the same
values of synergy. Marker size is related to binding affinity (smallest marker: smallest affinity,
highest unbinding rate). Shown below are the diagrams depicting the net fluxes (grey colormap)
and dominant flux path (magenta) for the two extreme ku values. All examples share the same
basal parameter values: k1,∅ = 4.288, k2,∅ = 11.023, k3,∅ = 3.414, k4,∅ = 10.362. kb = 180.19. TF
associated parameter values are as follows: pndd : k1,A = 120.985, k2,A = 154.358, k3,A = 4.561,
k4,A = 2.854, k1,B = 5.007, k2,B = 25.685, k3,B = 15.086, k4,B = 2.083; pndi : k1,A = 6.317,
k2,A = 517.659, k3,A = 1433.877, k4,A = 1.095, k1,B = 11.275, k2,B = 326.127, k3,B = 15.328,
k4,B = 10.223; npii : k1,A = 4.844, k2,A = 6345.641, k3,A = 151.500, k4,A = 7.354, k1,B = 4.504,
k2,B = 17.664, k3,B = 2601.429, k4,B = 3.088; npid : k1,A = 6.784, k2,A = 740.850, k3,A = 56.436,
k4,A = 2.010, k1,B = 4.821, k2,B = 11.997, k3,B = 909.506, k4,B = 8.354; ppii : k1,A = 937.265,
k2,A = 8084.904, k3,A = 5.392, k4,A = 1.982, k1,B = 9.945, k2,B = 18.372, k3,B = 2047.513,
k4,B = 8.447; See also Figure S4. B) Quantification of the change in dominant path in the
presence of both TFs, from the smallest to the largest SA,B . The parameter values were obtained
from a rejection based sampling algorithm, as explained in section 6.5. The number of parameter
sets analysed for each class are as follows: npii: 13103 parameter sets, corresponding to 214 basal
parameter sets. npid: 4461, corresponding to 264 basal parameter sets. pndd: 2833, corresponding
to 87 basal parameter sets. pndi: 2215, corresponding to 132 basal parameter sets. C) Region
of the synergy space spanned by the model under parameter constraints determining weak basal
expression and weak TFs: basal expression parameter values between 1-100 for clockwise rates,
100-1000 for k4,∅. TF parameter values at most 100X greater (0.01X smaller for k4). Fold change
from each TF alone at 2X concentration limited to 5. kb and ku are either same for both TFs
(dotted line), or different (solid line). For the case of same binding, it is the same result as the
dotted line in Figure S1B, right.

unbinding rate are related to affinity by Ka = kb[TF ]/ku, and we used the relationship between402

changes in synergy and affinity so that the same criteria can be used to analyse the results when403

perturbing either the binding or the unbinding rate. We focused on the positive and asymmetric404

synergy behaviors, and used a 4-bit string that captures the behaviour at the affinity extremes:405

the first position denotes if SA,B is positive (p) or negative (n) at highest affinity, and the second406

position denotes the sign at the lowest affinity. The third and fourth positions denote whether407

SA,B and SB,A increase (i) or decrease (d), respectively. We disregard those situations where there408

is no change. As a result, there are theoretically 12 possible behaviors. We found that for some409

basal sets of parameters, changing the unbinding rate could result in all 12 possible behaviors,410

depending on the pair of TF parameter values. One such example is shown in Figure S4A, and411

selected examples are shown in Figure 4A. Similar results were found when modulating the binding412

on-rate kb (Figure S4B), which can be interpreted as modulating the baseline concentration of the413

TFs at 1X concentration.414

As expected from typical occupancy-based hypotheses, we found instances where increasing affinity415

led to an increase in synergy (Figure 4A, more affinity-more synergy), changing from asymmetric416

to positive. In contrast, we also found examples where even if the expression from the individual417

and combined TFs decreases with less affinity, synergy increases and can change from asymmetric418

to positive as affinity is reduced (Figure 4A, less affinity-more synergy). As seen in Figure S4 and419

depicted at the bottom of Figure 4A, we found many instances of nonmonotonic behaviour, where420

synergy was maximal at intermediate affinities.421

To examine the relationship between the change in synergy class and the cycling over the system422

promoted by the TFs, we determined the dominant paths of net fluxes at steady state for parameter423

sets where synergy changes between asymmetric and positive or vice-versa as a function of the424

unbinding rate. We calculated the dominant path for the lowest and highest SA,B in the presence425
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of both TFs. For each dominant path, we assessed whether it spanned nodes in each of the three426

binding configurations of the system (”full path”) or not (”restricted path”), as depicted for the427

corresponding examples of Figure 4A. Then, for each parameter set, we assessed whether the428

path type changed between the smallest and largest SA,B value, and plotted the quantification429

in Figure 4B. As expected, and in line with the examples in Figure 4A, the barplot shows that430

in the majority of the cases, the change from smallest to highest SA,B value correlates with a431

transition from a restricted to a full dominant path. For the case where increasing the unbinding432

rate causes synergy to increase only with respect to TF A (npid), we found many instances with433

no change of path class, and a small set where the relationship was reversed. This result aligns434

well with those of the previous sections, which show that the synergy of a pair of TFs ultimately435

depends on the overall system behaviour and the intricate balance between all the transitions.436

However, a major contributor to the synergistic behaviour of the TFs is the productive cycling437

over the system, with each TF binding and unbinding appropriately to allow the other to exert its438

effect. Therefore, we hypothesized that by combining pairs with different activation domains and439

affinities, synergy might be further enhanced. In agreement with this, the synergy space covered440

by the model expands slightly when weak TFs have different binding and unbinding rates, as441

compared to when their binding parameters are the same as we have considered in the previous442

analyses (Figure 4C). This suggests a scenario where the combinatorial effect of TFs can be flexibly443

tuned by the combined effect of their biochemical activities and binding.444

5 Discussion445

In eukaryotic transcription, combinatorial control occurs at multiple scales, with many TFs binding446

to a given enhancer, and many enhancers controlling the activity of a gene (Spitz and Furlong,447

2012). Here we have focused on the first scale, and have investigated how synergy between TFs448

can emerge as a result of the kinetics of the system. Though kinetic synergy was theoretically449

proposed almost 30 years ago (Herschlag and Johnson, 1993), its experimental demonstration has450

been challenging, largely due to the confound of cooperative binding interactions. To circumvent451

this limitation, we have focused on a scenario where only one TF can be specifically bound at452

any given time. By forcing the TFs to act separately in time, their functional interactions can be453

revealed. In order to reason about this scenario, we have proposed a minimal biophysical model454

that explicitly accounts for the kinetics of the binding as well as the functional effects of the455

transcription factors over the transcription cycle. The model reveals that synergy between a pair456

of TFs is not an intrinsic feature of the pair, but depends upon the balance between their binding457

and their functional effects. This work gives yet another example of the power of synthetic biology458

to answer fundamental biological questions (Crocker et al., 2017; Park et al., 2019a; Bashor et al.,459

2019).460

A measure of synergy461

In order to quantify synergy, it has been common to measure the deviation from additivity, under462

the assumption that if TFs do not interact, then their combined effect should be the sum of the463

effects obtained when each TF is present alone (Carey, 1998). Multiplicativity has also been taken464

as a measure of synergy (Bintu et al., 2005a). However, in Scholes et al. (2017) we showed that465

when TFs interact functionally on a 2-step cycle, additivity or multiplicativity is only expected466

under very restricted circumstances. In order to provide a model-agnostic measure of synergy,467

here we propose to compare expression when both TFs are present together, to expression when468

only one of them is present, under the same total TF concentration. By having the same total469

TF concentration in both cases, changes in the expression when there are two TFs as compared to470

only one must be due to their functional interactions, and therefore provides evidence of synergy.471

In addition to positive synergy, we define asymmetric and negative synergy. This enables the472

quantitative characterization of the synergy between a pair of TFs as a function of a variable of473

the system, by looking at the corresponding trajectory in synergy space. Although this measure474

is particularly suited for the single binding site scenario explored here, we suggest it could also be475

used to quantitatively characterize the response to combinations of TFs in a more natural scenario476

where each TF binds to distinct sites.477
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A model that explicitly accounts for the interplay between TF binding and polymerase478

activity479

In order to reason about the single binding site experiment, we have developed a model with details480

of both the binding of the TFs and the progression over the polymerase cycle. This model brings481

together the two main modelling frameworks of transcription in the literature, where either the482

binding is taken implicitly (e.g. Scholes et al., 2017), or the polymerase cycle is not detailed (e.g.483

Estrada et al., 2016). In contrast to other attempts in the literature (Li et al., 2018), we don’t484

make assumptions about the timescales of the binding and unbinding of the TFs with respect to485

those of the biochemical transitions over the polymerase cycle. This provides greater generality.486

In addition, the model can easily be extended to include more polymerase states and more binding487

sites for other TFs or coregulators, if such details become relevant in future studies. One of the488

simplifying assumptions of the model is that TFs only exert their effect while they are bound. We489

note that this doesn’t necessarily have to be the case, since they may act through other cofactors490

that can remain bound even if the TF unbinds. This could be easily incorporated at the expense of491

more states and parameters. However, we think it wouldn’t fundamentally change our conclusions,492

since there would also be an interplay between the binding kinetics of these other components and493

the kinetic effects on the cycle.494

We have explored the behavior of the model in parameter space under the assumption that the495

system is at steady state. This is a widely used assumption and reasonable for our experimental496

setup, given the time between transfection and measurement of mRNA levels. However, one of the497

contexts where combinatorial control is most relevant is development, and many developmental498

processes may be too fast to allow for a steady state to be reached. In this case, it may become499

important to explicitly incorporate the time delay that emerges from polymerase travelling along500

the gene body, which we have not accounted for. Although at steady state this is likely to be501

effectively incorporated by the parameter of the last transition rate in the polymerase cycle, it502

could have important implications when considering how synergy emerges in transient regimes,503

and will be a relevant point to consider in future studies.504

Kinetic synergy can emerge when two TFs time-share a binding site505

We have found that extensive positive synergy is theoretically possible in the case where two ac-506

tivators bind to the same site on DNA. Our analysis shows that this is due to TFs productively507

enhancing the polymerase cycle when acting in combination, by binding and unbinding appropri-508

ately to allow each TF to exert its effect. We note that the extent of positive synergy experimentally509

observed is small compared to the regions covered by the model. In the model, we have found510

that the region of the synergy space is reduced as more constraints on the parameters are imposed,511

especially when constraining the extent to which a TF can enhance a given rate, and the expression512

fold change that it causes. Therefore, the small synergy experimentally observed suggests that the513

synTFs have relatively weak effects, in agreement with the small fold-change activation that they514

produce.515

According to the model, synergy between a pair of TFs is strongly influenced by their binding516

kinetics. Theoretically, both the binding on-rate and off-rate can modulate the synergy exhibited517

by a pair of TFs, and lower affinity can increase the synergy observed for a pair of TFs, even518

if this reduces expression from the TFs acting individually. In some cases, the compromise is519

evidenced as a nonmonotonic effect of affinity upon synergy. ZFs with different binding affinities520

can be obtained by introducing mutations in the ZF scaffold that are known to mediate non-521

specific interactions with DNA (Khalil et al., 2012). In future work, synTF variants can be used to522

systematically explore the role of binding affinity on synergy. Given the small effects of individual523

synTFs on transcription, which may be weakened further by affinity mutations, it will be critical524

to have fine control over synTF expression, and dynamic measurements in single cells are likely to525

be informative.526

Our previous analyses had suggested that assessing synergy might be a way to elucidate the527

mechanism of action of TFs (Scholes et al., 2017). However, the current analysis shows that this528

is confounded by the effect of the binding kinetics. Moreover, parameter constraints that generate529

positive synergy in the model also generate asymmetric synergy. In this case, even if TFs may have530
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complementary activities, their binding patterns may be imbalanced and may not allow productive531

interaction. In the case where either of the TFs works exclusively on one of two complementary532

steps, this contrasts with the finding of exclusively greater-than-additive behaviour by Scholes et al.533

(2017), highlighting the importance to account for the binding kinetics.534

The model also shows that when TFs have overlapping activities, negative synergy can emerge535

even if individually they act to enhance the cycle. Again, this arises due to an imbalance between536

the timescales of their binding and functional effects, where in combination they interfere with537

each other. However, the extent of this effect is small and requires very fine tuned parameter sets,538

as evidenced by the low numbers of points in this region obtained from pure random sampling. In539

agreement with this, we did not robustly observe negative synergy experimentally.540

Implications for gene regulation in natural scenarios541

In endogenous enhancers, some TFs do have overlapping binding sites as in our setup (Han et al.,542

1998; Pan and Nussinov, 2011; Cheng et al., 2013). However, most typically, each TF has its543

own binding site. Even in this case, binding kinetics may still be important. The residence time544

of the TF on the DNA must be long enough for it to be able to exert its function. However, it545

is plausible that there could be interference either directly or through recruited cofactors, such546

that output may be maximized at intermediate affinities. This could be another reason behind547

the widespread presence of relatively low-affinity binding sites in eukaryotes (Ramos and Barolo,548

2013; Farley et al., 2016; Crocker et al., 2016; Kribelbauer et al., 2019), and the observation of549

fast TF binding kinetics (Paakinaho et al., 2017; Li et al., 2019; Donovan et al., 2019). Moreover,550

tuning binding site affinity might be an effective way to modulate expression beyond fully adding551

or removing a binding site, which could have evolutionary implications (Kurafeiski et al., 2019).552

Along the same lines, kinetic synergy relaxes the need for strict arrangements between binding553

sites, another typical feature of eukaryotic transcriptional control (Kulkarni and Arnosti, 2003;554

Junion et al., 2012; Smith et al., 2013).555

TF activity has often been considered to be modular. In this view, the activity of the activation556

domain is independent of that of the binding domain, which is assumed to be important only557

to target the TF to specific sites on the genome (Ptashne, 1988). Evidence against this model558

includes allosteric interactions between the DNA binding domain and the activation domain (Li559

et al., 2017), and the observation that the activation domain may be involved in DNA recognition560

(Brodsky et al., 2020). Adding to this, our work highlights the importance of considering TFs as561

a unit, where the binding and activation domains together dictate the effect of the TF. Our study562

emphasizes the value of considering an integrated view of transcriptional control, where the effect563

of a TF has to be understood in terms of the other components of the system.564

6 Methods565

6.1 Modelling details and the linear framework566

In this work we have used the linear framework formalism to model the interplay between the567

TF binding and their effects on the transcription cycle. This framework was introduced in (Gu-568

nawardena, 2012) and we have previously exploited it to study other problems in gene regulation.569

Ahsendorf et al. (2014); Estrada et al. (2016); Biddle et al. (2019, 2021) can be consulted for570

details. We outline the main features here.571

A biological system is represented by a finite, directed, labelled graph G with labelled edges572

and no self-loops. The graph represents a coarse-grained version of the system of interest, with573

the nodes being the states of interest, and the edges the transitions between them. The edge574

labels are the infinitesimal transition rates for the underlying Markov process, with dimensions575

of (time)−1, and they include terms that specify the interactions between the graph and the576

surrounding environment. For example, the transitions that represent the binding of a TF have577

edge labels that include the TF concentration, which is assumed to remain constant over time578

(i.e. TF is sufficiently in excess that, to a good approximation, binding does not reduce the579

concentration of free TF available for binding).580
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The graph defines the time-evolution of the probability for each state of the system (vertex) as581

follows. Assume that each edge is a chemical reaction that follows mass-action kinetics with the582

edge label as the rate. Since each edge has only one source vertex, the resulting dynamics is linear583

and is described by a matrix equation,584

d~P

dt
= L(G)~P . (4)585

Here, ~P is the column vector of state probabilities at time t, with dimension n, and L(G) is the586

Laplacian matrix of the graph . Eq. 4 is the master equation, or Kolmogorov forward equation, of587

the underlying Markov process.588

For a strongly connected graph, the system has a unique steady state, where d~P/dt = 0. The589

steady-state probability values for each state are computed by summing over the products of the590

rate labels for each of the spanning trees rooted at that state, and normalising appropriately (see591

Estrada et al. (2016) for details).592

The mRNA concentration m is assumed to evolve according to:593

dm

dt
= k3,∅P3,∅ + k3,AP3,A + k3,BP3,B − δmm (5)594

where the P3,X are the probabilities of states 3∅, 3A, 3B at a given time (Figure 1B). By assuming595

steady state, setting dm/dt = 0, and dividing by δm, we obtain the expression for the steady state596

mRNA (∗ denotes steady state):597

m∗ =
k3,0
δm

P ∗3,∅ +
k3,A
δm

P ∗3,A +
k3,B
δm

P ∗3,B (6)598

m∗ = k3,0P
∗
3,∅ + k3,AP

∗
3,A + k3,BP

∗
3,B (7)599

This gives Eq. 1 of the main text, where the overbars are dropped for simplicity. In the parameter600

exploration, we directly sample on the normalised rates.601

6.2 Biologically plausible ranges for parameter values602

We considered a biologically plausible range for the normalised parameter values to be between 1603

and 104, according to the following reasoning:604

The events from the binding of the polymerase complex until the production of an mRNA molecule605

involve many biochemical reactions, including the binding interactions associated with the assembly606

of the pre-initiation complex, the phosphorylation of the C-terminal domain of RNA polymerase607

and other post-translational modifications (Schröder et al., 2013), as well as the biochemistry608

associated to elongation. Our 3-state cycle is therefore a coarse-grained representation of all609

these processes. In order to determine biologically plausible parameter ranges, we searched for610

measurements of reaction rates for these processes, and normalised those to typical rates of mRNA611

degradation, taken to have typical half-lives between 10 min (0.00116 s−1) and 5 h (3.85 × 10−5612

s−1) (Sharova et al., 2009; Chan et al., 2018).613

For a reaction at a rate of 0.7 s−1 (∼1 s half-life), normalizing by the mRNA degradation rates614

would result into a normalised range of 600-18000.615

For a rate of 0.07 s−1 (∼10 s half-life), the normalised range would be 60-1800.616

For a rate of 0.016 s−1 (∼1 min half-life), the normalised range would be 10-300.617

And for a rate of 0.00116 s−1 (∼10 min half-life) the normalised range would be 1-30.618

These values are consistent with measurements of various transcription-associated biochemical619

reactions: the in vitro rate of pre-initiation complex assembly was found to vary over ranges on620
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the order 10−3 s−1 (Ferguson et al., 2001) to 0.1 s−1(Kugel and Goodrich, 1998), and the rate621

of promoter opening/escape was reported to be 0.002 s−1 (Kugel and Goodrich, 1998). Pause622

stability is estimated to be from 3 s to 20 min (Wissink et al., 2019). And the TF residence time623

can be from just a few seconds to a few minutes (Paakinaho et al., 2017; Mehta et al., 2018).624

Therefore, we took a range of 1-104 for our parameter values. We note that we also checked the625

results with smaller ranges, around slower rates for the polymerase cycle, but found that it didn’t626

affect the results qualitatively, only reduced the synergy region as shown in Figure S1B.627

6.3 Synergy space boundary for a regulatory strategy628

In order to determine the region of the synergy space that can be spanned by a given regulatory629

strategy, we used a biased random sampling algorithm, modified from that in Estrada et al. (2016).630

Parameters were chosen from a given range of normalised rate values, and TFs were assumed to631

at most modify the basal rates by a certain factor (see figure captions for the values corresponding632

to each figure). A maximum fold change for expression in the presence of one TF alone (at 2X633

concentration) was also pre-specified, such that parameter sets that generate expression outside634

this range were discarded. The steps of the algorithm are as follows:635

1. Define constraints and two-dimensional grid of synergy values. Initialize with the hyperpa-636

rameters (below).637

2. Randomly sample parameter values from their range (in log scale) until 10 points are found638

that fall in different cells of the grid.639

3. Until convergence: at each iteration, search the surrounding parameter space of each bound-640

ary point (see below) and keep the new parameter sets that generate synergy values not641

already found (empty cells). Convergence is determined by 3000 iterations where no new642

points occupying empty cells are found.643

In order to search the surrounding parameter space of a given parameter set (point in synergy644

space), we followed 3 strategies (each point was modified using the 3 strategies at each iteration,645

provided there were sufficient points for steps 2 (10) and 3 (100)):646

1. Randomly select a few parameter values and modify them.647

2. ”Pull” towards a target point in the direction determined by the centroid and the point being648

modified, away from the boundary: for 500 trials or until convergence, slightly modify the649

parameter set, and keep the new one if it generates a point in synergy space closer to the650

target.651

3. ”Pull” in the direction (approximately) perpendicular to the tangent between the point being652

modified and its neighbor, as in 2.653

The algorithm depends on various hyperparameters: probability of selecting a parameter value654

for mutation (0.2, 0.5), probability of replacing an already-existing boundary parameter (0.2,0.6),655

width of the interval around a parameter value to sample for new parameter values (in log (base656

10) scale: [-2,2],[-1.5,1.5],[-1,1]). Searches were run for all 12 combinations of hyperparameters,657

and results were merged together.658

The boundary search code is available at https://github.com/rosamc/GeneRegulatoryFunctions.659

The rest of the code to reproduce the calculations and figures in the paper is available at https:660

//github.com/rosamc/kinsyn-2021.661

6.4 Random sample of points in synergy space662

In order to randomly sample parameter values in the synergy space we followed a rejection sam-663

pling approach. Parameters were sampled logarithmically from its predefined range (1-104). The664

constraints on the maximum fold change effect on the polymerase cycle rates by the TFs were665

checked, as well as the constraint on the expression fold change by each of the TFs at 2X. We666

collected 1 million parameter sets that satisfied the constraints. Then, in order to have a more667

uniform distribution of points over the synergy space, we binned the synergy space into a grid with668
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bins every 0.025 SA,B and SB,A, and kept one parameter set per bin. We repeated the procedure669

10 times. The resulting points are those in Figure S1C.670

6.5 Exploration of synergy as a function of binding or unbinding rate671

In order to explore how synergy depends upon the binding and unbinding rates, we generated sets672

of basal parameters by randomly sampling on a logarithmic scale the basal rates between 1 and 104,673

and the binding and unbinding rates between 101.5 and 103. For each of these basal parameter674

sets, we generated parameter sets corresponding to the TF-associated parameters, and we kept675

1000 such parameter sets that satisfy the following constraints: i) TF-associated parameter values676

at most 1000X the respective basal ones (0.001X for counterclockwise rate k4); ii) fold change in677

expression by each TF individually at 2X concentration between 1 and 5; iii) TF A is consistently678

the strongest of the pair when the binding or unbinding rate is changed by a factor f , where f679

spans 10 logarithmically spaced values between 0.1 and 10. For each parameter set that satisfied680

the constraints, we determined the class of behaviour in synergy space as a function of the change681

in the binding or unbinding rate over this two-order magnitude range, and saved for downstream682

analysis those parameter sets where the absolute value of the change in both SA,B and SB,A was683

at least 0.05.684

6.6 Construct design and cloning685

The reporter construct consists of a single synthetic zinc finger binding site (CGGCGTAGC-686

CGATGTCGCGC) upstream of a minimal CMV promoter (taggcgtgtacggtgggaggcctatataagca-687

gagctcgtttagtgaaccgtcagatcgcctgga) driving d2EGFP (EGFP destabilized with signal peptide for688

fast degradation (fusion with aa 422-461 of mouse ornithine decarboxylase)).689

synTF fusion proteins containing an activation domain of interest fused to an N-terminal zinc-finger690

binding domain with a GGGGS flexible linker were driven under control of a ubiquitin promoter691

and contain a 5’ sv40 nuclear localization sequence, C-terminal HA and rabbit globin polyA 3’692

UTR. Genome-orthogonal zinc fingers were previously developed to target 20-bp sequences that693

minimize identity with the reference human genome (Israni et al., 2021; Park et al., 2019b). The694

following protein domains were selected and conjugated as respective activation domains according695

to previous studies:696

697

SP1 (Residues 263 – 499) [PMID: 8278363]698

NITLLPVNSVSAATLTPSSQAVTISSSGSQESGSQPVTSGTTISSASLVSSQASSSSFFTNANSY699

STTTTTSNMGIMNFTTSGSSGTNSQGQTPQRVSGLQGSDALNIQQNQTSGGSLQAGQQKE700

GEQNQQTQQQQILIQPQLVQGGQALQALQAAPLSGQTFTTQAISQETLQNLQLQAVPNSGP701

IIIRTPTVGPNGQVSWQTLQLQNLQVQNPQAQTITLAPMQGVSLGQTSSSN702

703

cMyc (Residues 1-70) [PMID: 12177005]704

MDFFRVVENQQPPATMPLNVSFTNRNYDLDYDSVQPYFY705

CDEEENFYQQQQQSELQPPAPSEDIWKKFEL706

707

BRD4 (Residues 1308-1362) [PMID: 24860166]708

PQAQSSQPQSMLDQQRELARKREQERRRREAMAATIDMNFQSDLLSIFEENLF709

710

HSF1 (Residues 370-529) [PMID: 9606196]711

PEKCLSVACLDKNELSDHLDAMDSNLDNLQTMLSSHGFSVDTSALLDLFSPSVTVPDMSLP712

DLDSSLASIQELLSPQEPPRPPEAENSSPDSGKQLVHYTAQPLFLLDPGSVDTGSNDLPVLF713

ELGEGSYFSEGDGFAEDPTISLLTGSEPPKAKDPTVS714

715

HSF1 mutant (Residues 370-529, F418A, F492A, F500A) [PMID: 9606196]716

PEKCLSVACLDKNELSDHLDAMDSNLDNLQTMLSSHGFSVDTSALLDLASPSVTVPDMS717

LPDLDSSLASIQELLSPQEPPRPPEAENSSPDSGKQLVHYTAQPLFLLDPGSVDTGSNDLP718
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VLAELGEGSYASEGDGFAEDPTISLLTGSEPPKAKDPTVS719

720

6.7 Cell culture721

HEK293FT cells (Thermo Fisher Scientific) were used as a background cell line in this study.722

Cells were cultured in DMEM with L-glutamine, 4.5g/L Glucose and Sodium Pyruvate (Thermo723

Fisher Scientific) supplemented with 10% FBS (Clontech), GlutaMAX supplement (Thermo Fisher724

Scientific), MEM Non-Essential Amino Acids solution (Thermo Fisher Scientific) and 1% penicillin-725

streptomycin (Thermo Fisher Scientific). Cells were maintained at 37◦C with 5% CO2 in a hu-726

midified incubator, with splitting every 2-3 days.727

6.8 Genomic integration of reporter constructs728

Reporter lines were generated by site-specific integration of reporter constructs into HEK293FT729

cells using CRISPR/Cas9 mediated homologous recombination into the AAVS1 (PPP1R2C) locus730

as previously described (Park et al., 2019b). Briefly, 60,000 cells were plated in a 48-well plate731

and transfected the following day by PEI with a mixture of the following: 70ng of gRNA AAVS1-732

T2 plasmid (Addgene 41820), 70 ng of VP12 humanSpCas9-Hf1 plasmid (Addgene 72247), and733

175 ng of donor reporter plasmid. Donor reporter plasmids contain flanking arms homologous to734

the AAVS1 locus, a puromycin resistance cassette, and constitutive mCherry expression. After735

transfection, cells were cultured in 2 mg/mL puromycin selection for at least 2 weeks with splitting736

1:10 every 3 days. Monoclonal populations for reporter cell lines were isolated by sorting single737

cells from this population into a 96-well plate and growing cell lines from each well. A minimum738

of 6 monoclonal cell lines that express high level of mCherry protein were transiently transfected739

with a strong synTF activator (HSF1 or VP16) and a monoclonal cell line to be used going forward740

was selected based on the fold-change of GFP expression relative to basal GFP level.741

6.9 Transient transfection742

Stable reporter cell lines were transfected with synTF plasmid constructs using polyethylenimine743

(PEI, Polysciences) as described in (Park et al., 2019b). 60,000-100,000 cells/well were plated in744

48-well plates and transfected the following day with a total of 10ng per synTF, unless otherwise745

noted, with single stranded filler DNA (Thermo Fisher Scientific) up to 200ng total. 50ng of746

pCAG-iRFP720 (Addgene, #89687) was used as a transfection control plasmid. Two days after747

transfection, cells were collected and prepared for flow cytometry, unless otherwise noted.748

6.10 Flow cytometry and data analysis749

For each measurement, cells were harvested and run on an Attune NxT (Thermo Fisher Scientific)750

or LSR II (BD) Flow Cytometer equipped with a high-throughput auto-sampler. A minimum of751

10,000 events were collected for each well and were gated by forward and side scatter for live cells752

and single cells, as described in (Park et al., 2019b). Cells were then gated by iRFP for transfection-753

positive populations. The geometric mean of GFP fluorescence distribution was calculated in754

FlowJo (Treestar Software). GFP expression fold-change was determined by normalizing with755

mean GFP intensity of the reporter only control. Flow cytometer laser/filter configurations used756

in this study were: EGFP (488 nm, 510/10), mCherry (561 nm, 615/25), iRFP-720 (638 nm,757

720/30). All flow cytometry measurements were performed in technical replicates. Considering758

together all replicates from all experiments with the same transfection condition, we checked for759

consistency and discarded technical errors. This removed the cMyc 2X condition in one of the760

experiments since it yielded an aberrantly low fold change. Moreover, we removed 4 additional761

replicates, each from a different condition, that had a fold change that was above/below two762

standard deviations from the mean considering all replicates for that condition together.763
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6.11 Western blotting764

A reporter cell line was transfected with indicated amounts of ZF-HSF1 (0, 10, 20, 50, 100, 150,765

200ng) in a 48-well plate at a cell density of 1x105 per well. After 2 days, cells were rinsed with PBS766

and lysed with 200 µL of NuPAGE LDS sample buffer (Thermo Fisher Scientific), followed by 5767

seconds of sonication. Whole cell lysates were mixed with NuPAGE Sample Reducing agent (10X,768

Thermo Fisher Scientific) at 95◦C for 5 minutes. Samples were then loaded into a 4-12% NuPAGE769

Bis-Tris Mini Protein precast gel (Thermo Fisher Scientific) and were run at 200V for 30 minutes770

in NuPAGE MES SDS Running Buffer. Separated proteins were transferred to a PVDF membrane771

using P0 protocol of iBlot2 system (Thermo Fisher Scientific). Membranes were blocked for 1hr at772

room temperature in blocking solution (5% w/v nonfat dry milk in 1X PBST) with gentle rocking.773

The membranes were probed with anti-HA (1:4000; Abcam ab9110) and anti-GAPDH (1:1000;774

Abcam ab9485) antibodies at room temperature for 1 hour with gentle rocking. The membranes775

were washed in PBST three times for 5 minutes each, and incubated with a goat anti-rabbit IgG-776

HRP antibody (1:2000; Abcam ab6721). The target proteins were visualized by chemiluminescence777

using SuperSignal West Pico PLUS substrate (Thermo Fisher Scientific) and an iBright Western778

Blot Imaging Systems (Thermo Fisher Scientific). Quantification of band intensities was carried779

out using FIJI (Schindelin et al., 2012).780

6.12 Quantitative Real-Time PCR781

1 × 105 Hek293 reporter cells were seeded one day prior to transfection in 6cm culture dishes.782

Transfection was performed with the indicated amounts of synTF plasmid as described above783

for flow cytometry experiments using polyethylenimine (PEI) (polyscience) or Lipofectamine 3000784

(Thermo Fisher Scientific). Two days post transfected, cell pellets were harvested and mRNA785

was extracted using the RNeasy Mini Kit (Qiagen). 500 ng extracted total RNA was reverse786

transcribed into cDNA for each sample. Reverse transcription was performed using Protoscript II787

reverse transcriptase (New England Biolabs) and oligo-dT primers (New England Biolabs). Quan-788

titative real-time PCR was performed in triplicates using iTaqTMUniversal SYBR R©Green reagent789

(Bio-Rad) on a CFX96 PCR machine (Bio-Rad). Primers were used in a final concentration of790

243.2 nM. β-actin expression was used as a reference gene for relative quantification of RNA levels.791

Used primer sequences are (5’-3’):792

Actin fwd: GGCACCCAGCACAATGAAGATCAA;793

Actin rev: TAGAAGCATTTGCGGTGGACGATG;794

eGFP fwd: AAGTTCATCTGCACCACCG;795

eGFP rev: TCCCTTGAAGAAGATGGTGCG;796

797

6.13 Comparison of synTF distribution across transfection conditions798

using quantitative immunofluorescence799

6.13.1 Immunostaining800

0.5 × 105 cells were seeded on poly-Lysine coated high-precision glass coverslips (18 mm round,801

#1.5) in 12-well culture plates one day prior to transfection. Transfection was performed as802

described for flow cytometry experiments. A total amount of 200 ng DNA (20 ng synTFs and803

180 ng ssDNA) was used for transfection experiments. PEI was scaled to 12-well plate volume of804

100 µL total transfection mix. 48 h post transfection, cells were washed with 1x PBS, fixed with805

2% PFA (Fisher Scientific) and blocked for 30 min with 10% Goat serum (VWR) in 1x PBS after806

washing. Immunodetection was performed with HA-tag (6E2) mouse antibody (Cell Signaling)807

1:1000 in 1%BSA/PBS overnight. Cell were washed with 0.1% Triton X-100 and incubated with808

anti-mouse IgG Alexa Fluor 488 (#4408, Cell Signaling) antibody 1:1000 in 1%BSA/PBS for809

1h. After washing with 0.1% Triton X-100, nuclei were stained with 2 µg/mL Hoechst-33342810

(Thermo Fisher Scientific) and mounted on glass slides using Prolong Gold Antifade (Thermo811

Fisher Scientific). Image acquisition was performed at least 16 h after mounting slides.812
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6.13.2 Fluorescence microscopy813

Images were acquired as single-plane multipoint positions on a Nikon Ti2 inverted microscope814

upon illumination by a Lumencor Sola 395 Light Engine and a Plan Apo VC 20x objective (NA815

0.75). The following filter sets were used. Alexa Fluor 488: excitation FF01-466/40, emission816

FF03-525/50, dichroic FF495-Di03 (all Semrock); Hoechst-33342: excitation ET395/25x, emission817

ET460/50m, dichroic ET425lp (all Chroma). Detection was performed with a Hamamatsu ORCA818

Flash 4.0 LT camera. NIS elements software for image acquisition was used.819

6.13.3 Image Processing820

Images were extracted from nd2 files, separated as .tif-files per channel and field of view. CellPro-821

filer 4.0 (McQuin et al., 2018) was used for image segmentation and measuring nuclear fluorescence822

intensity. A pipeline was customized based on the pipeline for Human cells provided by the Cell-823

Profiler project. Nuclei segmentation was performed based on Hoechst-33342 staining using Otsu824

thresholding and a nuclear diameter range of 15 – 50 pixels. Objects outside that range and touch-825

ing the border of images were excluded. Touching objects were distinguished based on fluorescence826

intensity and object intensity was calculated for the segmented nuclear area in all channels.827

6.13.4 Data analysis828

The integrated fluorescence intensity (FI) calculated per nucleus for anti-HA-488 staining (detect-829

ing HA-tagged synTF) was used for further data analysis using custom scripts in Matlab for data830

processing. In case of multiple datasets of the same condition, FI distributions were joined. Back-831

ground fluorescence was defined based on nuclear fluorescence intensity in untransfected controls.832

Data was normalized to the 5th-95th percentile to remove outliers from imperfect segmentation833

due to clumping of nuclei. The median was calculated and a threshold of 2.5 fold of the median was834

determined to identify positive transfected cells (Figure S3C). Nuclei with FI above this threshold835

were considered as positive transfected with any synTF condition described (Figure S3D). Dis-836

tributions are plotted as probability density functions (PDF) using ksdensity function in Matlab.837

The 5th-95th percentile of values above threshold for each condition was taken to remove outliers838

for each condition to compare the distributions of synTF abundance in each dataset (Figure S3C).839
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8 Supplementary Figures1125

B) Basal rates between 1-100, TF can modify a rate up to 100x (0.01x)

C)

D)

E)

A) Basal rates between 1-104, TF can modify a rate up to 1000x (0.001x)

Figure S1 Characterization of the model behavior in synergy space.(caption on next page)
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(from previous page) A) Region of the synergy space spanned by the model when each TF
acts uniquely on one of two steps, indicated in the title of each plot. The first plot is the same
as in Figure 2B middle. Parameter values in the range between 1 and 104. Parameters for the
TFs at most 1000 times larger than the basal parameters for the clockwise rates (k1,k2, k3) or
0.001 times smaller for k4. Fold change in m∗ for each TF individually with respect to the basal
condition with no TF bound between 1 and 10. B) Region of the synergy space from each of the
3 regulatory strategies in Figure 2B for more constrained parameters, representing weaker TFs:
parameter values for the transitions over polymerase states in the range between 1 and 100 for
the clockwise rates, 100-10000 for k4,∅; parameters for the TFs at most 100 times larger than the
basal parameters for the clockwise rates (k1, k2, k3) or 0.01 times smaller for k4. Fold change
in m∗ for each TF individually with respect to the basal condition with no TF bound between 1
and 10 (solid line) or 1 and 5 (dashed line). C) Random sample of points where both TFs act on
any step, randomly sampled under the same constraints as in Figure 2B bottom (Methods, 6.4)
and used for the distributions in Figure 2C and panels D and E of this Figure. D) Distribution
of TF activity distances as a function of synergy class, binned by basal expression (expression
in the absence of TFs, left), binding on-rate (middle), binding off-rate (right), for the points in
panel C. E) Distribution of synergy values as a function of TF activity distance and binned by
basal expression, binding on-rate or binding off-rate for the points with positive synergy in panel
C (green points).
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Figure S2 Top 90% net flux dominant paths for each parameter set in Figure S1C. For each path,
the representation is as in Figure 2D. The top diagram shows the dominant path (magenta arrows)
and the arrow greyscale shade encodes the average net flux for the transitions. The lower plot
shows the distribution of synergy values that correspond to that dominant path. For each of the
two groups, dominant paths are sorted according to their frequency, indicated on top of each. Note
that the first path of each group corresponds to the plot in Figure 2D.
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Figure S3 Experimental observation of synergy between a pair of TFs. (continued on next page)
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(from previous page) A) Western Blot and corresponding quantification of the ZF-HSF1 protein
as a function of ng of plasmid transfected (Methods, 6.11). B) Normalised GPF expression as
measured by qPCR in response to SP1 synTF. The concentrations of plasmid used are scaled by
the number of cells (Methods, 6.12) so that 125 and 250 ng are approximately equivalent to 10
and 20 ng in the flow cytometry experiments. Error bars denote SEM from technical replicates.
C) Distribution of integrated Fluorescence intensity (FI) in arbitrary units (a.u.) as quantified
from segmented nuclei for the control (gray, no synTF) and transfected samples using quantitative
immunofluorescence targeting the HA-tag of synTFs. Data falling within the 5th-95th percentiles
is shown for each dataset. Dashed line: background threshold defined as 2.5x median of control
FI. SP1, c-Myc and SP1/c-Myc curves represent the 5th-95th percentile of values above threshold.
(See Methods, 6.13 for details) D) Bargraph showing the percentage of positive transfected cells
determined based on the background threshold shown in panel C. n is the number of quantified
cells for each dataset above threshold. E) The combination of a synTF with the ZF alone only
generates asymmetric synergy, where expression is between that of the ZF and that of the full
TF. Error bars denote the ranges of the data. At least 3 biological replicates per combination,
with 2-4 technical replicates each. F) Details of the fold change in expression for the conditions
that generate the synergy plot in Figure 3C. Error bars denote the 95% confidence interval for
the mean GFP fold change, obtained from bootstrapping the mean GFP fold change values from
all the experiments for each condition. At least 3 biological replicates per combination, with 2-4
technical replicates each.
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Figure S4 Synergy between a pair of TFs depends upon the binding and unbinding kinetics.
(continued on next page)
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(from previous page) A) Example of the 12 possible changes in synergy when the unbinding
rate (ku) is modulated, for a common set of basal parameter values and different TFs. The biggest
marker denotes highest affinity (lowest unbinding rate), and the smallest marker denotes lowest
affinity (highest unbinding rate). The subplot titles indicate the behaviour as the unbinding rate
is increased: both SA,B and SB,A decrease: nndd, ppdd, pndd. SA,B decreases but SB,A increases:
nndi, pndi, ppdi. SA,B increases but SB,A decreases: nnid, npid, ppid. Both increase: nnii, npii,
ppii. All lines share the same set of basal and binding/unbinding rates, but each corresponds
to a given set of TF parameter values. Results have been selected out of all those found from
a rejection-based sampling random search of parameter values. B) Example of the 12 possible
changes in synergy when the binding rate (kb) is modulated. As in A, each line corresponds to
a pair of TF parameter values, but all of them share the same basal and binding and unbinding
rates. The biggest marker denotes highest affinity (largest binding rate), and the smallest marker
denotes lowest affinity (lowest binding rate). See Methods 6.5 for details.
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