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1 Summary

Gene regulation involves synergistic interactions between transcription factors (TFs). Classical
thermodynamic models offer a biophysical understanding of synergy based on binding cooperativ-
ity and regulated recruitment of RNA polymerase. However, transcription requires polymerase to
transition through multiple states. Accordingly, recent work has suggested that ”kinetic synergy”
can arise through TFs differentially regulating distinct steps of the transcription cycle. Disentan-
gling both sources of synergy has been challenging. Here, we combine theory and experiment to
analyze TFs binding to a single shared site, thereby removing simultaneous specific DNA binding.
Using the graph-based linear framework, we integrate TF binding with regulation of the transcrip-
tion cycle, and reveal a complex kinetic synergy landscape dependent on TF concentration, DNA
binding and transcriptional activity. We exploit synthetic zinc-finger TF fusions to experimen-
tally interrogate these predictions. Our results confirm that transcription cycle regulation must be
integrated with recruitment for a quantitative understanding of transcriptional control.

2 Keywords

gene regulation; synergy; transcription cycle; synthetic biology; mathematical modelling; linear
framework.

3 Introduction

The regulation of transcription is a finely controlled process central to biology, biomedicine and
bioengineering applications. At its core are transcription factors (TFs), proteins that bind spe-
cific sites on the DNA and directly or indirectly modulate the binding and activity of the RNA
polymerase complex. In eukaryotes, multiple TFs, of the same and distinct types, collaborate
to drive transcription through binding to gene regulatory regions called enhancers and promoters
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2z (Field and Adelman, 2020). Such ”combinatorial control” enables binding and response specificity
2o (Wunderlich and Mirny, 2009; Georges et al., 2010), and expands the regulatory capabilities of
»  the finite set of TFs encoded by an organism. A wealth of studies have characterised TF bind-
2 ing sites and binding profiles in model genes, genomes and random sequences (e.g. Smith et al.,
2 2013; Vandel et al., 2019; Inukai et al., 2017). In turn, a long-standing goal of biomedicine and
;s synthetic biology has been to exploit this type of information to anticipate the effect of mutations
2 on cell regulation, to develop new and more refined pharmacological interventions, and to design
s next-generation synthetic circuits with more precise and robust functions. However, this is still a
a1 difficult task, in part because of the non-independent effects of the TFs that control a given gene
» (Ouyang et al., 2009; de Boer et al., 2020; Reiter et al., 2017; King et al., 2020; Nie et al., 2020).

;3 When TFs interact to regulate transcription, the response to a combination of TFs is often not
u  simply predicted by the responses to each of the TFs alone. Some models indicate that in the
s absence of interactions between TFs or sites, their combined effect should just be the addition of the
s individual outputs, and ”synergy” has been used to refer to deviation from this additive expectation
w (Carey et al., 1990; Herschlag and Johnson, 1993; Scholes et al., 2017). Under other models,
38 ’synergy” is manifested as multiplicativity in the response (Bintu et al., 2005a). Alternatively,
s the term ”"synergy” has been used to refer to nonlinear response to increasing TF concentrations
w (Carey, 1998), binding cooperativity (below), or a special form of it (Veitia, 2003; Michida et al.,
s 2020). Here we use the term ”synergy” to refer to an increase in the expression output under two
2 TFs in comparison to their individual effects, quantified by a functional, model-agnostic measure
.3 proposed in the Results section.

w  Synergy has commonly been understood through the lens of recruitment models of transcription,
»s where the role of TFs is to regulate the binding of the RNA polymerase to the gene (Ptashne,
s 2005). Thermodynamic models of gene regulation offer a biophysical grounding for this view
« (Ackers et al., 1982; Bintu et al., 2005b,a). These models assume that TFs and polymerase bind to
s the DNA under thermodynamic equilibrium conditions. The free energy of each state determines
1 its steady-state probability according to the Boltzmann distribution, and the transcription rate is
so treated as a function of the states of binding of the system. Synergy then emerges from direct or
51 indirect cooperative binding interactions, where TFs enhance or reduce each other’s binding and
2 that of the RNA polymerase to the DNA (e.g. Vashee et al., 1998; Ambrosetti et al., 2000; Spitz and
53 Furlong, 2012; Frank et al., 2012; Goldstein et al., 2017; Estrada et al., 2016). Mechanistically, this
s« can result from direct protein-protein interactions between adjacently-bound molecules, indirect
s interactions through a shared molecule or complex like Mediator (Carey et al., 1990; Malik and
ss  Roeder, 2010; Bashor et al., 2019) or through allosteric mechanisms (Biddle et al., 2021) mediated
sv by nucleosomes (Mirny, 2010) or by DNA (Narasimhan et al., 2015).

s Beyond recruitment of RNA polymerase to the gene, it is well known that eukaryotic transcription
5o is a multi-step process that is tightly regulated at many points. Accordingly, it has been suggested
0 that transcriptional regulation should be understood in terms of a transcription cycle (Fuda et al.,
s 2009), involving for example the displacement of nucleosomes at the start site, post-translational
2 modification of histones (Mao et al., 2010; Hansen and O’Shea, 2013; Cui et al., 2020), assembly of
&3 the transcriptional machinery, and post-translational modifications that regulate its activity and
s« elongation rate (Jonkers and Lis, 2015; Core and Adelman, 2019). In agreement with this view,
ss  RNA polymerase has been found to be already bound on many inactive genes, suggesting that under
6 certain scenarios activation does not rely on regulating polymerase recruitment, but modulating a
o subsequent step (Oven et al., 2007). Besides moving the focus away from the recruitment of the
¢ RNA polymerase, this view also implies non-equilibrium behaviour, given that ATP-dependent
¢ nucleosome remodelling and post-translational modifications involve energy dissipation. In this
7 case, the steady-state behaviour of the system is determined by the individual rates of the various
7 transitions. This is in contrast to the equilibrium situation of thermodynamic models, where only
72 the ratios between the forward and backward rates matter for determining the steady-state of the
7z system (Wong and Gunawardena, 2020).

72 Under this kinetic view, the possibility of ”kinetic synergy” was theoretically proposed. Imagine the
7 simplest case where transcription is regulated by two steps, and two TFs have different biochemical
7 functions such that one TF can preferentially enhance one step and the other TF can preferentially
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77 enhance the other. Then, when the two TFs are present together they can enhance each other’s
78 effect and thus generate synergy (Herschlag and Johnson, 1993; Scholes et al., 2017). Importantly,
7o this would enable synergy to emerge even in the absence of cooperative binding between TFs on
so  the DNA; the TFs would not even need to be simultaneously present at the regulatory site.

s Multiple lines of evidence make kinetic synergy very plausible. First, experimental work has shown
& that transcriptional activators can increase gene expression by different mechanisms. Blau et al.
&2 (1996) found that TF activation domains can either stimulate transcription initiation, elongation,
s or both, and more recent studies have continued to reveal that TFs use diverse mechanisms to
s regulate transcription and affect distinct steps of the transcription cycle (e.g. Fu et al., 2004; Rahl
ss et al., 2010; Baluapuri et al., 2019). Along the same lines, Danko et al. (2013) reported differences
gz in RNA polymerase II pausing depending upon treatment with E2 or TNF-alpha signals, which
s were attributed to the TFs downstream (ERa and NF-xB) acting on different transitions that
s regulate their target genes. Moreover, comparisons between regulation driven by homogeneous or
w heterogeneous sets of TFs have shown that heterogeneous sets often drive higher expression levels
o (Smith et al., 2013; Vanhille et al., 2015; Singh et al., 2021). In line with this, Keung et al. (2014)
o found evidence of synergistic activation between the viral activator VP16 and selected chromatin
e regulators in a reporter system. Similarly, the activity of many Drosophila TFs and cofactors
o was found to be highly context-dependent (Stampfel et al., 2015), suggesting that activation may
s require a particular combination of biochemical mechanisms.

s Despite these observations, it is experimentally challenging to assess kinetic synergy given the
o difficulty of disentangling it from cooperative DNA-binding interactions between TFs. On the
e theoretical side, there has been a lack of tools to reason about kinetic synergy on biophysical
o grounds. As a first step, a recent theoretical study by our group showed that in a similar way
o to binding cooperativity, kinetic synergy can implement logical and analog computations (Scholes
et al., 2017), and that it can generate a wide diversity of input/output relationships. However,
102 in a similar way to other modelling work that considers transcription as a multi-step process (e.g
03 Suter et al., 2011; Hansen and O’Shea, 2013; Rybakova et al., 2015), that model did not explicitly
s account for TF binding, and instead represented it indirectly through the effect of the TF's on the
s transition rates of the system. To our knowledge, there have been few attempts to explicitly model
s the interplay between TF binding, polymerase recruitment, and progression over the transcription
w7 cycle. Li et al. (2018) proposed a model that explicitly incorporated binding and transitions over
s the cycle, but assumed a time-scale separation between TF binding and the rest of the processes,
0o with quasi-equilibrium in TF binding. However, both TF residence times and the half-life of certain
1o biochemical steps in the transcription cycle may occur on similar timescales, on the order of several
w1 seconds or a few minutes (Methods, section 6.2), calling for more general models that bring together
12 the binding-centered view of recruitment models with the regulation of the transcription cycle.

us  Here we exploit the graph-based linear framework (below) to propose a model of transcriptional
us  control that explicitly accounts for TF binding and the regulation of polymerase recruitment,
us as well as the progression over the transcription cycle. In order to disentangle kinetic synergy
us from binding cooperativity, we focus on the emergence of synergy between TFs binding to a
uz  single, shared site. This scenario eliminates the possibility of TFs simultaneously bound to the
us  DNA, thus removing cooperative binding between TFs. Experimentally, we build this system
o using engineered TFs where activation domains of a set of functionally diverse mammalian TFs
1o are fused to a computationally designed zinc-finger (ZF) DNA binding domain predicted to bind
21 only to an artificial site upstream of a reporter (Figure 1A) (Khalil et al., 2012; Keung et al.,
122 2014; Park et al., 2019b; Israni et al., 2021). We propose a comprehensive measure of synergy
123 where we compare the expression output when both TFs are present, to that when only one of
124 them is present. By exploring the synergistic behaviour of the model in parameter space, we find
125 that a diversity of behaviors can emerge in this setup, for which we find experimental evidence.
s Our model reveals a complex synergy landscape, shaped by the interplay between the activation
127 effect of the TFs and their binding kinetics. This highlights the relevance of considering genomic
s context, binding and biochemical function together when characterizing TFs, and illuminates how
129 functional interactions between TF's may contribute to eukaryotic transcriptional control.
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Figure 1: A model for kinetic synergy between two TFs sharing a site. A) Cartoon schematiz-
ing the strategy of this work to examine kinetic synergy: two synthetic TFs regulate a reporter
(not shown) through a shared binding site. As an example, TF A controls the first step in the
transcription cycle, and TF B controls the second step. B) Model used in this work. The graph
product of a binding graph A, and a 3-state polymerase cycle graph P, gives rise to the complete
linear framework graph of the system (A x P). Only a subset of nodes and edges are labelled,
for clarity. The horizontal edges from the central cycle to the outer cycles denote binding of each
of the TFs, and the reverse edges denote unbinding. The three cycles allow us to account for
the effect of the TFs, since the rates can be different depending upon the state of the binding
site. As an example, the darker arrows denote the activator effect of A and B on the first and
second transitions, respectively (ki1 4 > ki1 g, k2, > kop). C) Schema of the full graph, as used in
Figure 2.

w» 4 Results

= 4.1 Mathematical model

12 We study how kinetic synergy emerges in a scenario where two TFs bind to a shared site in a
133 regulatory sequence, such that only one TF can be specifically bound at any given time. Figure 1A
134 schematizes this situation for a general 3-state transcription cycle, where TF A promotes the first
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135 step (illustrated as the assembly of the RNA polymerase complex), and TF B promotes a process
s downstream.

17 In order to model this system, we exploit the linear framework formalism, a graph-based approach
138 to Markov Processes that can be used to model a diversity of biological processes in a biophysically
1o realistic and mathematically tractable way (Gunawardena, 2012; Ahsendorf et al., 2014). We
1o have previously applied this framework to study how binding interactions between TFs modulate
w1 gene expression by implicitly averaging over the states of the polymerase cycle (Estrada et al.,
w2 2016; Biddle et al., 2019; Park et al., 2019a). In contrast, in a previous study of kinetic synergy,
13 we modelled the effect of TFs on a detailed transcription cycle but effectively combined their
1 binding with their enzymatic effects (Scholes et al., 2017). Here we propose a model that unifies
us both approaches and doesn’t make assumptions about the binding reactions being on a different
us timescale than the polymerase cycle reactions, improving previous approaches in the literature (Li
w et al., 2018) (Methods, 6.1).

us The system is represented by a graph (Figure 1B, N x P), whose vertices are the biological
uo states of interest, and the edges are the transitions between them, assumed to follow Markovian
150 dynamics with infinitesimal transition rates corresponding to the graph edge labels. Structurally
51 (i.e. ignoring edge labels) the graph for the complete system is the graph product between two
12 simpler graphs: a binding graph and a polymerase cycle graph. The binding graph for our sys-
153 tem of interest is represented in Figure 1B (Binding graph (A)), and consists of a binding site
15« that can either be empty, bound by TF A, or bound by TF B. For the polymerase cycle (Fig-
155 ure 1B, Polymerase cycle graph (P)), we consider the simplest cycle, with 3 states (labelled 1,2,3).
156 The first transition is assumed to be reversible, and the other two irreversible in agreement with
157 the macroscopic irreversibility of posttranslational modifications like phosphorylation, or the syn-
155 thesis of mRNA. mRNA is assumed to be produced when the system transitions from state 3 to
50 state 1. This simple graph can be interpreted in terms of empty transcription start site (TSS),
1o assembled RNA polymerase, and C-terminal phosphorylated or elongating polymerase, although
11 mapping onto specific states isn’t required to interpret the results. Given these two graphs, tak-
1 ing all pairwise combinations of their vertices (graph product) gives the complete graph A x P
63 (Figure 1B).

1« TF binding on-rates (ky, x, X € {A, B}, horizontal from the central cycle to the right and left) have
165 dimensions of (concentration x time)™!, and binding off rates (k, x, X € {4, B}) have dimensions
w6 of (time)~!. The genomic context is modeled by the values of the basal rates over the polymerase
67 cycle in the absence of TFs (central cycle). To incorporate the effect of a TF on a given transition,
s we assume that the TF only has effect while it is bound. The effect is then incorporated into the
6o edge label (parameter value) for that transition, making it different for the cycle where the TF is
wo bound than for the basal cycle. As an example, the darker arrows on the left and right cycles in
i Figure 1B, N/ x P, represent the activating effect of A and B on the first and second transitions,
12 respectively. In this case, k1 4 > ki g, and kg g > kg g. Similarly, repression could be included as
3 well by a smaller value for a transition rate than the corresponding basal rate. For simplicity here
e we examine synergy between ”pure” activators only, defined by not decreasing the clockwise rates
s (kix > k19, ko, x > kag, k3, x > k39, X € {A, B}) and not increasing the counterclockwise rate
w6 (kaa < kag, kap < kap).

w We interpret the system in probabilistic terms, and assume each vertex of the graph holds the
s probability of the system being in that state. The transition rates then determine the time-
o evolution of the probabilities according to the Master Equation, which eventually reach a steady
o state (Methods, 6.1). Moreover, we assume first-order mRNA degradation. By taking the mRNA
w1 degradation rate as a constant that normalises the transition rates, the steady-state mRNA at a
1,2 given concentration of A and B (m(A, B)*) is given by:

m(A, B)* = ks 0P o(A, B) + ks a5 a(A, B) + k. Py (A, B) (1)

18« Wwhere P:,i@(A7 B), P; 4(A, B), P; g(A, B) are the steady-state probabilities of state 3y, 34, 3p at
15 concentrations A and B of the TFs, and the rates are normalised by the mRNA degradation rate
s (Methods, 6.1). Given that we only consider the steady-state behaviour of the system, we use the
17 same symbols to refer to the original rates and the normalised rates in order to avoid excessive
18 notation. In the remainder of the paper, the rates will always be normalised.
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189 The focus of the analysis is to compare this quantity when both TFs are present to that when
wo only one is present and the other is at concentration 0 (synergy, below). Note that when only one
11 or none of the TFs is present, m* can be computed in the same way. In that case, the steady-
12 state probabilities for those states corresponding to the absent TF being bound will be 0, and
103 the rest will be redistributed according to the parameter values. The value of m* in the absence
e of TFs (m*(0,0)) corresponds to basal expression. For simplicity, the absence of a TF from the
s mathematical expressions below means it is at concentration 0.

ws 4.2 A measure of synergy

17 Our interest is to understand how synergy emerges in this system. As shown by Scholes et al. (2017),
108 if two TF's act on more than one step in the cycle, the overall effect may not be greater than additive
o even if they interact kinetically. This exemplifies that considering addition as a null expectation
20 against which to define synergy, as has often been done in the literature, is model-specific. In order
20 to provide a model-agnostic definition of synergy, here we consider a two-dimensional quantity that
22 compares the steady-state expression when both TFs are present (m*(A, B)) to the steady-state
203 expression when either of them is alone, but at twice as much concentration (m*(24), m*(2B)). In
204 this way, the total concentration of TF is the same in the combined as in the individual situation.
205 Enhanced expression in combination with respect to the strongest TF (the TF with a higher level
206 of expression on its own), or reduced with respect to the weakest, must arise as a result of the
27 functional interactions of the TF's over the cycle.

28 Positive synergy corresponds to higher expression in combination as compared to individually,
200 and can be regarded as ”canonical” synergy in the sense of enhanced expression in combination:
20 expression is greater than that of the strongest TF even if half the molecules are substituted
au by those of a weaker TF. We note however that the output does not have to be greater than
a2 additive to be considered positive synergy. Negative synergy corresponds to lower expression in
a3 combination, with expression lower than that of the weakest TF alone. Asymmetric synergy results
ae - when expression is increased only with respect to the weakest TF. In this case, it may be unclear
25 whether there are any synergistic interactions. Potentially, these can still be detected depending on
25 the extent to which the expression is reduced or increased with respect to the strongest or weakest
a7 TF, respectively. Thus, we propose to quantify synergy as a point in 2D, by comparing the effects
zs  of adding one TF to the other. This is quantified by S4 g (effect of B on A) and Sp 4 (the effect
20 of A on B) as follows:

S =togy ("2 ) 2)
5o =togy () 3)

2 If A is taken to be the strongest TF, positive (green), asymmetric (blue) and negative (red) synergy
223 map to 3 quadrants of a two-dimensional synergy space, as depicted in Figure 2A.

» 4.3 Positive, negative or asymmetric synergy can theoretically emerge
25 from two activators

26 We begin by exploring the theoretically possible synergistic behaviours between two activators
21 (kix > kig, ka,x > kaog, k3 x > ksg, kax < kyp, X € {A,B}). In line with our experimen-
»s tal system where TFs are comprised of the same binding domain (below), we assume that both
20 TFs have the same binding kinetics (given by a binding rate k; and an unbinding rate k,) but
20 different activation capabilities (given by the k; x, ¢ € {1,2,3,4}, X € {4, B}). We assume the
2 concentration unit is incorporated in the binding on-rates, such that both A and B are present at
22 a concentration of 1 arbitrary unit each when they are both present together, and at concentration
23 2 when they are alone. In order to define the boundaries of the synergy space region that can
24 be covered by the model under biologically-plausible parameter values and constraints (Methods,
2 6.2), we numerically sampled the parameter space using a biased sampling algorithm (Methods,
2 6.3). We explored the synergy space when TFs act on the same step, exclusively complementary
a7 steps, or all steps (Figure 2B).
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Figure 2: Positive, negative or asymmetric synergy emerge in the model depending upon pa-
rameter values. A) Synergy space. See text for details. B) Regions of the synergy space spanned
by 3 regulatory strategies. Top: A and B act on the first step exclusively. Middle: A on one of
the first two steps, B on the other one. Bottom: A and B act on any step (to various degrees).
Constraints for the boundary search (Methods, 6.2, 6.3): parameter values between 1 and 10*, TF
rates at most 1000 times larger than the basal rates for the clockwise (k1, k2, k3) or 0.001 times
smaller for k4. Fold change in m* for each TF individually (at concentration 2) with respect to the
basal condition with no TF between 1 and 10. Figure S1B shows the results for more constrained
parameters. (continued on next page)
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Figure 2 (previous page): C) Distribution of TF activity distances per synergy quadrant for a
random sample of parameter sets under the same constraints as in the bottom panel in B (synergies
are plotted as a scatterplot in Figure S1C). D) The two most prevalent dominant flux paths for the
points used in the analysis in C. The arrow diagrams represent the model states and transitions,
as schematized in Figure 1C; arrow greyscale intensity denotes the average probability net flux for
that transition over all the parameter sets that share the dominant path highlighted in magenta.
Note that reversible edges may appear in both directions if some parameter sets have net flux
in one direction and others in the other. The distributions underneath show contours for the
two-dimensional histogram of synergy values corresponding to those parameter sets that share the
same dominant path. See also Figure S2.

28 As a control, we first explored the case where both TFs enhance the first step. Figure 2B-top
20 shows that as expected, only asymmetric synergy appears in this case. Intuitively, if TF A drives
a0 stronger expression than TF B but both act on the same step, then mixing A with B can only
2 reduce expression with respect to the strongest one, and increase it with respect to the weakest.

a2 Next, we explored the case where TFs have complementary activities, with each TF enhancing
23 either the first or second transition. Figure 2B-middle shows that this control strategy mostly
24 results in positive synergy, but also covers a region of the asymmetric synergy quadrant (notice
us  that the result is restricted to the upper diagonal region of the positive quadrant due to the
26 definition of TF A as the strongest of the pair). A very similar result is obtained for any other pair
27 of complementary rates (Figure S1A). The appearance of asymmetric synergy in this case shows
28 that even if TFs have complementary activities, that may not be enough to enhance expression
29 beyond that of the strongest TF when half of its concentration is substituted by the weaker TF.

0 TFs are often found to interact with a wide range of cofactors and regulators (Dingar et al., 2015;
s Kim et al., 2017; Carnesecchi et al., 2020), and it is therefore likely that they modulate multiple
2 processes albeit with different strengths. Hence, we next considered a more general scenario where
53 each TF can enhance any of the transitions to different extents (Figure 2B, bottom). In this case, a
»s4  slightly higher region of the positive and asymmetric synergy quadrants are occupied, and slightly
s negative synergy can also emerge. We interpret this as an indication that under some parameter
6 values, TFs can interfere with each other’s action and reduce the expression as compared to when
»s7  only one of them is present.

s For all these cases, the synergy space region that can be spanned by the model becomes smaller
9 for more constrained parameter values, representing the assumption that the system has a smaller
20 basal expression and TFs are weaker (Figure S1B).

xw 4.4 The activity of the TFs over the cycle is not the only determinant
262 of synergy

%3 The original proposition of kinetic synergy stemmed from the assumption that synergy would
¢ emerge from TFs acting on different rate-limiting steps in transcription (Herschlag and Johnson,
265 1993). In the case of TFs with potentially overlapping effects, to what extent is positive synergy
x6 linked to TFs working exclusively, or nearly exclusively, on separate steps, so that they complement
»7  each other to enhance the cycle? In order to address this question, we looked at the correspondence
%8 between parameter values and synergy. For this, we generated a random sample of points that span
20 a wide region of the synergy space (plotted in Figure S1C, Methods, 6.4). In order to quantify the
a0 degree of complementarity between the pair of TFs in a given parameter set, we use the following
on measure, which we call TF activity distance: the sum, over all the polymerase cycle transitions,
a2 of the absolute differences between the logarithms of the transition rates associated to each TF
os (Figure 2C). Similar TF parameter values result in a small distance value, whereas TFs with big
o differences in their rates, and therefore more divergent in their functions, result in a larger distance.
a5 As shown in Figure 2C, positive synergy tends to emerge at higher distances than asymmetric and
a6 negative synergies, suggesting more divergent functions is indeed linked to higher complementarity
27 and thus higher positive synergy.
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s However, the distances that lead to asymmetric synergy and those that lead to positive synergy
a9 overlap, suggesting that the different functions of the TF's are not the only determinants of synergy
20 output. When binning the distributions by the basal expression (steady state m* in the absence
21 of TFs) and binding and unbinding rates, these factors appear to be important as well: higher
22 basal expression and higher binding and unbinding rates correlate with less distant TF's producing
23 positive synergy (Figure S1D). In addition, the basal expression and binding rates also modulate
x4 the correlation between the distance of two TFs and the extent of positive synergy that they exhibit
s (Figure S1E).

26 Intuitively, for positive synergy to emerge, we would expect that each of the TFs binds and unbinds
27 appropriately as to be able to exert its effect and not interfere with the binding and the effect of
28  the other TF. In order to test the extent to which this is indeed linked to synergy, we looked at
20 the steady-state probability fluxes in the graph. Given the irreversible nature of the transitions of
20 the polymerase cycle, a net probability flux remains even when the system is at steady state. The
20 flux of probability of the system is intimately linked to the production of mRNA, since mRNA is
22 produced as the system transitions through the polymerase cycle. Formally, the flux from node ¢
23 to node j, Jj; is given by J; ; = k;; P;, with k; ; the transition rate between ¢ and j, and F; the
24 probability of node i. In the case of irreversible edges, this equals the net flux. In the case of
25 reversible edges, the net flux J; ; can be defined as J; ; = J; j — Jj4, with J; ; > J; ;.

25 For the same sample of points (parameter sets) as in Figure 2C, we computed the net fluxes in
27 the presence of A and B. Then, for each point, by starting at the polymerase-empty state with
2 no TF bound (state 1,0 in Fig 1B, N x P) we followed the transition with a higher net flux, and
20 repeated the same iteratively until reaching state 1, ) again or any other node already encountered.
s0  This generates what we call the dominant path of net fluxes over the graph. After computing the
sn  dominant path for each of the paramater sets, we quantified how many parameter sets share the
s same dominant path. For this analysis, we pulled together those pairs of paths that are mirror
w3 images of each other, since they are equivalent.

;4 Out of all the parameter sets sampled, the majority correspond to one of either two paths, repre-
s sented in Figure 2D. The most predominant involves the binding of one TF, transition over the
ws first step (binding of polymerase), unbinding of the TF, and reversion to the empty state. The
a7 two-dimensional density plot below the flux diagram shows that the majority of the points with
w8  this dominant path of fluxes correspond to asymmetric synergy. In contrast, the second most fre-
0 quent dominant path involves cycling over the whole graph, with the first two transitions occurring
s under one TF, and the last occurring under the other. In this case, the majority of the points
su  are associated with positive synergy. The rest of the dominant paths that make up to 90% of
sz all the dominant paths in the sample of points are shown in Figure S2. The density plots show
sz that dominant paths are not uniquely associated to individual synergy classes, but there are clear
s biases, with positive synergy being mostly associated to dominant paths that traverse the whole
a5 graph, and asymmetric synergy linked to dominant paths that show nonproductive cycling. This
s agrees with the expectation that positive synergy should emerge when TFs act productively to
sz enhance progression over the polymerase cycle, but also suggests that an intricate balance between
ais  all the transitions in the system is required for positive synergy to emerge.

2 4.5 Experimental evidence of kinetic synergy using a synthetic platform

20 The modelling results in the previous sections suggest that kinetic synergy can be observed from this
31 single binding site circuit. In order to experimentally test this idea, we developed a reporter system
322 in which synthetic TF fusions are recruited to a single binding site integrated into a mammalian
2 HEK293 cell line (Methods, 6.6,6.8) (Khalil et al., 2012; Park et al., 2019b; Israni et al., 2021).
;24 We selected five activation domains of mammalian TFs with a described diversity of functions in
w5 the literature. SP1 is a ubiquitous mammalian transcription factor whose mechanism of action
»s has classically been linked to the recruitment of the transcriptional machinery (O’Connor et al.,
27 2016). cMyc is also a ubiquitous regulator. It interacts with a diverse range of proteins, but
18 its mechanism of action has been predominantly linked to processes downstream the recruitment
2o of the transcriptional machinery, including pause-release (Rahl et al., 2010) and elongation via
;0 interaction with the elongation factor Spt5 (Baluapuri et al., 2019). BRD4 has also been described
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31 to have elongating activity, through the interaction with positive transcription elongation factor
s b (pTEF-b) (Yang et al., 2005; Moon et al., 2005). In addition, it has been involved in phase-
s separation at super-enhancers (Vasile et al., 2018), suggesting that BRD4 may also regulate other
s steps in the transcription cycle. Finally we chose the activation domain of HSF1, which has been
a5 described to have both initiating and pause-release stimulating activity, and a mutant version of
s it, which we call HSF1-m. This mutant was described to be elongation-deficient (Brown et al.,
s 1998). Accordingly, these TFs can be broadly classified into either initiating (if they influence the
s recruitment of RNA polymerase) or elongating factors (if they influence a process downstream),
as depicted in Figure 3A.
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Figure 3: Experimental observation of kinetic synergy between 2 transcriptional activators on a
synthetic platform. A) Schema of the synthetic TFs. B) Expression upon transfection with either
10 (1X) or 20 (2X) ng of one TF, or the ZF binding domain alone (grey). Error bars denote
the 95% confidence interval for the mean GFP fold change, obtained from bootstrapping the mean
GFP fold change values from all the experiments (biological replicates) for each condition. At least
3 biological replicates per condition, with 2-4 technical replicates each. C) Experimental synergy
between two activators, defined as in Eqgs. 2-3 (logs of the ratio of average fold-change expression
when 10 ng of each TF is transfected, over the average fold-change expression when 20 ng of one
is transfected). TF A is the strongest of the pair in the single TF expression, as shown in the 2X
conditions of panel B. Error bars denote ranges from at least three biological replicates, with 2-4
technical replicates each. Barplots corresponding to this data are shown in Figure S3F, and the
synergy between each TF and the empty ZF is shown in Figure S3E.

339

a0 We engineered synthetic TFs (synTFs) composed of an activation domain from the above-described
sn TFs fused to a synthetic zinc finger (ZF) DNA binding domain (Methods, 6.6), designed to target
s a 20-bp binding site that does not natively exist in the mammalian genome sequence (Figure 1A,
ss Figure 3A) (Khalil et al., 2012; Park et al., 2019b; Israni et al., 2021). This allows us to specif-
saaically recruit the activation domains to a reporter to assess their effects on transcription, while
xs  minimizing confounding effects from native TF's acting on the reporter. We then stably integrated
us into HEK293FT cells a reporter, composed of a single target binding site upstream of a minimal
7 CMV (minCMV) promoter driving the expression of a destabilized EGFP (d2EGFP) (Methods,
s 6.8). Given its rapid turnover (Li et al., 1998), destabilized EGFP serves as a convenient genomic
a0 reporter of the mRNA expression level (Raj et al., 2006). The expression of the synTFs was in-
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s0 duced by transient transfection of the synTFs, whose expression level can be controlled by the
31 amount of the plasmids transfected (Figure S3A). We chose to transfect synTFs at either 10 or 20
32 ng to ensure that the concentration (i.e. expression level) of synTF is the limiting factor. Reporter
353 expression outcome was assessed by quantifying GFP fluorescence using flow cytometry 48 hours
s« later (Methods, 6.9, 6.10).

s Figure 3B shows reporter activation by each of the synTFs. We observed similar activation
6 strengths varying from about 1.5 fold change in GFP fluorescence to 4 fold change, with slight in-
37 creases upon doubling the amount of TF transfected for most TFs. Such fold change up-regulation
3 is in the range of physiological induction in mammalian signalling pathways (Strasen et al., 2018;
0 Wong et al., 2019; Friedrich et al., 2019). A similar dose-dependent increase in reporter signal is
30 also observed at the mRNA level (Figure S3B), supporting the use of GFP fluorescence to report
1 on mRNA.

w2 In order to assess the extent of synergy between pairs of TFs, we compared the fold-change in
3 GFP fluorescence when TFs were transfected in pairs at 10 ng each, to that when only one is
e transfected at 20 ng. We used quantitative immunofluorescence targeting the HA-tag of the synTFs
s to verify that transient transfection of 20 ng of coding plasmids for a single synTF results in a
w6 similar synTF abundance distribution as when transfecting two TFs in combination at 10 ng each,
57 despite some variability inherent to the transfection procedure (Figure S3C,D) (Methods, 6.13).
s Under these conditions, Figure 3C shows that both positive and asymmetric synergy appears (See
w0 Figure S3F for details). Consistent with the correlation in the model between TF activity distance
s and synergy class, the pairs exhibiting positive synergy (Fig 3C, green quadrant) correspond to
sn those where each TF predominantly has been described to have either initiating or elongating
s factor activities. No TF was capable of increasing the expression from that driven by HSF1, which
s13  is the strongest synTF in the set and is described to have both initiating and elongating activities
s (Brown et al., 1998). However, different TFs reduced its expression to different extents, suggesting
s some functional interactions are occurring (e.g. compare the S4 p coordinate for SP1-HSF1 and
w cMyc-HSF1 in Figure 3C). For the pairs of TFs described to predominantly act upon the same
s step, almost no synergy was detected (SP1-HSF1m, cMyc-BRD4).

s Figure 3B shows a very modest activation effect from the ZF alone (no TF activation domain) case.
s However, the combination with a full synTF only leads to asymmetric synergy (Figure S3E), with
s all TFs except HSF1 being reduced by the same extent, and HSF1 being reduced even further.
1 This suggests that although the ZF may have a small effect perhaps by increasing the ability of
2 the basal transcriptional machinery to bind, the positive synergy observed between pairs of TFs
;3 is most likely due to their activation domains, since the ZF only reduces expression when mixed
;s with any of the TFs.

ss These results show that positive synergy can emerge experimentally even when the TFs share
;6 the same binding site. However, the effects are small. One potential reason is that the TFs are
s weak, in agreement with the model (Figure S1B). Moreover, the distributions of Figure S1D-E
s and the analysis of the dominant flux paths in Figure 2 point to binding and unbinding kinetics
s as important contributors to synergy as well. We now focus on this point.

w 4.6 Kinetic synergy depends upon the binding and unbinding kinetics

s We explored how the synergy exhibited by a pair of TFs changes in the model as a function of
sz either the unbinding or the binding rate. We began by examining the effect of the unbinding rate.
53 To this end, we randomly sampled parameter sets for the basal rates over the polymerase cycle
o0 (K19, k2g, k39, ka9) and binding and unbinding (ks, k,,). For each of these basal sets, we sampled
ws parameter values for pairs of TFs (k1. 4, k2 4, k3,4, ka4, k1,8, k2B, k3.5, ka,B). For each pair,
w6 we varied the unbinding rate k, over a 2 order magnitude range, 10 fold up and down the basal
sor - value, and tracked the corresponding behavior over the synergy space. Given that the unbinding
s rate changes expression from each TF alone, we only considered those parameter sets where the
s0  strongest TF is the same across the unbinding rates considered, so that synergy is consistently
wo defined throughout. Further details of this procedure are given in Methods, 6.5.

a1 To classify the behavior over the synergy space systematically, we considered that the binding and
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Figure 4: Synergy between a pair of TFs depends upon the binding and unbinding kinetics.
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Figure 4 (previous page): A) Model examples for 5 sets of parameter values demonstrating
the diversity in how synergy changes as a function of the unbinding rate. For each example, the
top-left plot shows the fold change in expression as compared to no TF present, for each of the
TFs at concentration 2 (black, gray), or both TFs at concentration 1 (maroon), as a function of
the unbinding rate. The top-right plot shows the corresponding behavior in synergy space. The
circles on the bottom of the top-left plot and those on the top-right plot correspond to the same
values of synergy. Marker size is related to binding affinity (smallest marker: smallest affinity,
highest unbinding rate). Shown below are the diagrams depicting the net fluxes (grey colormap)
and dominant flux path (magenta) for the two extreme k, values. All examples share the same
basal parameter values: k; g = 4.288, kg g = 11.023, k3 ¢ = 3.414, ky 9 = 10.362. k, = 180.19. TF
associated parameter values are as follows: pndd : ki 4 = 120.985, k3 4 = 154.358, k3 4 = 4.561,
kaa = 2.854, k1 p = 5.007, k. p = 25.685, k3 p = 15.086, ks p = 2.083; pndi : k4 = 6.317,
ko a4 = 517.659, ks a4 = 1433.877, ka.a = 1.095, k1 p = 11.275, ko p = 326.127, k3 p = 15.328,
ks,p = 10.223; npii : k1,4 = 4.844, ko 4 = 6345.641, ks 4 = 151.500, ks 4 = 7.354, k1, p = 4.504,
]432,3 = 17.664, kg,B = 2601.429, k‘47B = 3.088; npid : kLA = 6.784, kQ,A = 740850, k‘37A = 56.4367
kya = 2.010, k1 p = 4.821, kg p = 11.997, k3 p = 909.506, k4 p = 8.354; ppii : k1,4 = 937.265,
ko a = 8084.904, k3 a4 = 5.392, kg a = 1.982, k1. p = 9.945, ko p = 18.372, k3 p = 2047.513,
ksp = 8.447; See also Figure S4. B) Quantification of the change in dominant path in the
presence of both TFs, from the smallest to the largest S4 g. The parameter values were obtained
from a rejection based sampling algorithm, as explained in section 6.5. The number of parameter
sets analysed for each class are as follows: npii: 13103 parameter sets, corresponding to 214 basal
parameter sets. npid: 4461, corresponding to 264 basal parameter sets. pndd: 2833, corresponding
to 87 basal parameter sets. pndi: 2215, corresponding to 132 basal parameter sets. C) Region
of the synergy space spanned by the model under parameter constraints determining weak basal
expression and weak TFs: basal expression parameter values between 1-100 for clockwise rates,
100-1000 for k4. TF parameter values at most 100X greater (0.01X smaller for k4). Fold change
from each TF alone at 2X concentration limited to 5. k, and k, are either same for both TF's
(dotted line), or different (solid line). For the case of same binding, it is the same result as the
dotted line in Figure S1B, right.

w2 unbinding rate are related to affinity by K, = ky[TF]/ky, and we used the relationship between
w3 changes in synergy and affinity so that the same criteria can be used to analyse the results when
ws  perturbing either the binding or the unbinding rate. We focused on the positive and asymmetric
ws  synergy behaviors, and used a 4-bit string that captures the behaviour at the affinity extremes:
ws the first position denotes if S4 p is positive (p) or negative (n) at highest affinity, and the second
w7 position denotes the sign at the lowest affinity. The third and fourth positions denote whether
ws Sa pand Sp 4 increase (i) or decrease (d), respectively. We disregard those situations where there
w0 is no change. As a result, there are theoretically 12 possible behaviors. We found that for some
a0 basal sets of parameters, changing the unbinding rate could result in all 12 possible behaviors,
a1 depending on the pair of TF parameter values. One such example is shown in Figure S4A, and
a2 selected examples are shown in Figure 4A. Similar results were found when modulating the binding
a3 on-rate kp (Figure S4B), which can be interpreted as modulating the baseline concentration of the
ae  TFs at 1X concentration.

a5 As expected from typical occupancy-based hypotheses, we found instances where increasing affinity
a6 led to an increase in synergy (Figure 4A, more affinity-more synergy), changing from asymmetric
a7 to positive. In contrast, we also found examples where even if the expression from the individual
s and combined TF's decreases with less affinity, synergy increases and can change from asymmetric
a9 to positive as affinity is reduced (Figure 4A, less affinity-more synergy). As seen in Figure S4 and
w20 depicted at the bottom of Figure 4A, we found many instances of nonmonotonic behaviour, where
21 synergy was maximal at intermediate affinities.

22 To examine the relationship between the change in synergy class and the cycling over the system
23 promoted by the TFs, we determined the dominant paths of net fluxes at steady state for parameter
w24 sets where synergy changes between asymmetric and positive or vice-versa as a function of the
«2s unbinding rate. We calculated the dominant path for the lowest and highest S p in the presence
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26  of both TFs. For each dominant path, we assessed whether it spanned nodes in each of the three
w7 binding configurations of the system (”full path”) or not ("restricted path”), as depicted for the
w28 corresponding examples of Figure 4A. Then, for each parameter set, we assessed whether the
w29 path type changed between the smallest and largest S4 p value, and plotted the quantification
0 in Figure 4B. As expected, and in line with the examples in Figure 4A, the barplot shows that
s in the majority of the cases, the change from smallest to highest S4 p value correlates with a
.2 transition from a restricted to a full dominant path. For the case where increasing the unbinding
.3 rate causes synergy to increase only with respect to TF A (npid), we found many instances with
s no change of path class, and a small set where the relationship was reversed. This result aligns
a5 well with those of the previous sections, which show that the synergy of a pair of TFs ultimately
a6 depends on the overall system behaviour and the intricate balance between all the transitions.
a7 However, a major contributor to the synergistic behaviour of the TFs is the productive cycling
a3 over the system, with each TF binding and unbinding appropriately to allow the other to exert its
a0 effect. Therefore, we hypothesized that by combining pairs with different activation domains and
wo  affinities, synergy might be further enhanced. In agreement with this, the synergy space covered
by the model expands slightly when weak TFs have different binding and unbinding rates, as
a2 compared to when their binding parameters are the same as we have considered in the previous
w3 analyses (Figure 4C). This suggests a scenario where the combinatorial effect of TFs can be flexibly
ws  tuned by the combined effect of their biochemical activities and binding.

« 9 Discussion

ws  In eukaryotic transcription, combinatorial control occurs at multiple scales, with many TFs binding
wr to a given enhancer, and many enhancers controlling the activity of a gene (Spitz and Furlong,
us  2012). Here we have focused on the first scale, and have investigated how synergy between TFs
o can emerge as a result of the kinetics of the system. Though kinetic synergy was theoretically
0 proposed almost 30 years ago (Herschlag and Johnson, 1993), its experimental demonstration has
1 been challenging, largely due to the confound of cooperative binding interactions. To circumvent
w2 this limitation, we have focused on a scenario where only one TF can be specifically bound at
3 any given time. By forcing the TFs to act separately in time, their functional interactions can be
s revealed. In order to reason about this scenario, we have proposed a minimal biophysical model
w5 that explicitly accounts for the kinetics of the binding as well as the functional effects of the
w6 transcription factors over the transcription cycle. The model reveals that synergy between a pair
w7 of TFs is not an intrinsic feature of the pair, but depends upon the balance between their binding
ss  and their functional effects. This work gives yet another example of the power of synthetic biology
w0 to answer fundamental biological questions (Crocker et al., 2017; Park et al., 2019a; Bashor et al.,
wo  2019).

w1 A measure of synergy

w2 In order to quantify synergy, it has been common to measure the deviation from additivity, under
w3 the assumption that if TFs do not interact, then their combined effect should be the sum of the
ws  effects obtained when each TF is present alone (Carey, 1998). Multiplicativity has also been taken
ws as a measure of synergy (Bintu et al., 2005a). However, in Scholes et al. (2017) we showed that
w6 when TFs interact functionally on a 2-step cycle, additivity or multiplicativity is only expected
w7 under very restricted circumstances. In order to provide a model-agnostic measure of synergy,
w8 here we propose to compare expression when both TFs are present together, to expression when
w0 only one of them is present, under the same total TF concentration. By having the same total
a0 TF concentration in both cases, changes in the expression when there are two TF's as compared to
an only one must be due to their functional interactions, and therefore provides evidence of synergy.
a2 In addition to positive synergy, we define asymmetric and negative synergy. This enables the
a3 quantitative characterization of the synergy between a pair of TFs as a function of a variable of
an the system, by looking at the corresponding trajectory in synergy space. Although this measure
a5 is particularly suited for the single binding site scenario explored here, we suggest it could also be
w6 used to quantitatively characterize the response to combinations of TFs in a more natural scenario
an where each TF binds to distinct sites.
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a3 A model that explicitly accounts for the interplay between TF binding and polymerase
a9 activity

w0 In order to reason about the single binding site experiment, we have developed a model with details
a1 of both the binding of the TFs and the progression over the polymerase cycle. This model brings
s together the two main modelling frameworks of transcription in the literature, where either the
w3 binding is taken implicitly (e.g. Scholes et al., 2017), or the polymerase cycle is not detailed (e.g.
s Estrada et al., 2016). In contrast to other attempts in the literature (Li et al., 2018), we don’t
s make assumptions about the timescales of the binding and unbinding of the TFs with respect to
s those of the biochemical transitions over the polymerase cycle. This provides greater generality.
7 In addition, the model can easily be extended to include more polymerase states and more binding
w8 sites for other TFs or coregulators, if such details become relevant in future studies. One of the
w0 simplifying assumptions of the model is that TFs only exert their effect while they are bound. We
w0 note that this doesn’t necessarily have to be the case, since they may act through other cofactors
a1 that can remain bound even if the TF unbinds. This could be easily incorporated at the expense of
w2 more states and parameters. However, we think it wouldn’t fundamentally change our conclusions,
103 since there would also be an interplay between the binding kinetics of these other components and
sa  the kinetic effects on the cycle.

a5 We have explored the behavior of the model in parameter space under the assumption that the
w6 system is at steady state. This is a widely used assumption and reasonable for our experimental
w7 setup, given the time between transfection and measurement of mRNA levels. However, one of the
w8 contexts where combinatorial control is most relevant is development, and many developmental
w0 processes may be too fast to allow for a steady state to be reached. In this case, it may become
s0 important to explicitly incorporate the time delay that emerges from polymerase travelling along
so the gene body, which we have not accounted for. Although at steady state this is likely to be
sie  effectively incorporated by the parameter of the last transition rate in the polymerase cycle, it
s could have important implications when considering how synergy emerges in transient regimes,
se and will be a relevant point to consider in future studies.

ss Kinetic synergy can emerge when two TFs time-share a binding site

s We have found that extensive positive synergy is theoretically possible in the case where two ac-
sov  tivators bind to the same site on DNA. Our analysis shows that this is due to TFs productively
s enhancing the polymerase cycle when acting in combination, by binding and unbinding appropri-
soo ately to allow each TF to exert its effect. We note that the extent of positive synergy experimentally
si0 observed is small compared to the regions covered by the model. In the model, we have found
su  that the region of the synergy space is reduced as more constraints on the parameters are imposed,
sz especially when constraining the extent to which a TF can enhance a given rate, and the expression
si3 fold change that it causes. Therefore, the small synergy experimentally observed suggests that the
su - synTFs have relatively weak effects, in agreement with the small fold-change activation that they
si5 produce.

sie  According to the model, synergy between a pair of TFs is strongly influenced by their binding
siz kinetics. Theoretically, both the binding on-rate and off-rate can modulate the synergy exhibited
sis by a pair of TFs, and lower affinity can increase the synergy observed for a pair of TFs, even
sio  if this reduces expression from the TFs acting individually. In some cases, the compromise is
s0 evidenced as a nonmonotonic effect of affinity upon synergy. ZFs with different binding affinities
s can be obtained by introducing mutations in the ZF scaffold that are known to mediate non-
s» specific interactions with DNA (Khalil et al., 2012). In future work, synTF variants can be used to
s23  systematically explore the role of binding affinity on synergy. Given the small effects of individual
s« synTFs on transcription, which may be weakened further by affinity mutations, it will be critical
sss to have fine control over synTF expression, and dynamic measurements in single cells are likely to
s be informative.

s7 - Our previous analyses had suggested that assessing synergy might be a way to elucidate the
s mechanism of action of TFs (Scholes et al., 2017). However, the current analysis shows that this
20 is confounded by the effect of the binding kinetics. Moreover, parameter constraints that generate
s30  positive synergy in the model also generate asymmetric synergy. In this case, even if TFs may have
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531 complementary activities, their binding patterns may be imbalanced and may not allow productive
s interaction. In the case where either of the TFs works exclusively on one of two complementary
53 steps, this contrasts with the finding of exclusively greater-than-additive behaviour by Scholes et al.
s (2017), highlighting the importance to account for the binding kinetics.

s The model also shows that when TFs have overlapping activities, negative synergy can emerge
s3  even if individually they act to enhance the cycle. Again, this arises due to an imbalance between
s the timescales of their binding and functional effects, where in combination they interfere with
s3s each other. However, the extent of this effect is small and requires very fine tuned parameter sets,
539  as evidenced by the low numbers of points in this region obtained from pure random sampling. In
s0  agreement with this, we did not robustly observe negative synergy experimentally.

s Implications for gene regulation in natural scenarios

s22  In endogenous enhancers, some TFs do have overlapping binding sites as in our setup (Han et al.,
ses 1998; Pan and Nussinov, 2011; Cheng et al., 2013). However, most typically, each TF has its
s own binding site. Even in this case, binding kinetics may still be important. The residence time
sis  of the TF on the DNA must be long enough for it to be able to exert its function. However, it
ss6 1S plausible that there could be interference either directly or through recruited cofactors, such
se7  that output may be maximized at intermediate affinities. This could be another reason behind
ses  the widespread presence of relatively low-affinity binding sites in eukaryotes (Ramos and Barolo,
se0  2013; Farley et al., 2016; Crocker et al., 2016; Kribelbauer et al., 2019), and the observation of
ss0 fast TF binding kinetics (Paakinaho et al., 2017; Li et al., 2019; Donovan et al., 2019). Moreover,
ssi  tuning binding site affinity might be an effective way to modulate expression beyond fully adding
s2  or removing a binding site, which could have evolutionary implications (Kurafeiski et al., 2019).
553 Along the same lines, kinetic synergy relaxes the need for strict arrangements between binding
s« sites, another typical feature of eukaryotic transcriptional control (Kulkarni and Arnosti, 2003;
55 Junion et al., 2012; Smith et al., 2013).

sss LF activity has often been considered to be modular. In this view, the activity of the activation
ss7  domain is independent of that of the binding domain, which is assumed to be important only
s to target the TF to specific sites on the genome (Ptashne, 1988). Evidence against this model
sso includes allosteric interactions between the DNA binding domain and the activation domain (Li
soo et al., 2017), and the observation that the activation domain may be involved in DNA recognition
s (Brodsky et al., 2020). Adding to this, our work highlights the importance of considering TF's as
s2 a unit, where the binding and activation domains together dictate the effect of the TF. Our study
s3 emphasizes the value of considering an integrated view of transcriptional control, where the effect
sss  of a TF has to be understood in terms of the other components of the system.

« 6 Methods

s 6.1 Modelling details and the linear framework

ss7  In this work we have used the linear framework formalism to model the interplay between the
ss TF binding and their effects on the transcription cycle. This framework was introduced in (Gu-
se0o nawardena, 2012) and we have previously exploited it to study other problems in gene regulation.
so  Ahsendorf et al. (2014); Estrada et al. (2016); Biddle et al. (2019, 2021) can be consulted for
sn details. We outline the main features here.

s» A biological system is represented by a finite, directed, labelled graph G with labelled edges
s3 and no self-loops. The graph represents a coarse-grained version of the system of interest, with
sz the nodes being the states of interest, and the edges the transitions between them. The edge
sis labels are the infinitesimal transition rates for the underlying Markov process, with dimensions
s of (time)~!, and they include terms that specify the interactions between the graph and the
sz surrounding environment. For example, the transitions that represent the binding of a TF have
ss edge labels that include the TF concentration, which is assumed to remain constant over time
so (i.e. TF is sufficiently in excess that, to a good approximation, binding does not reduce the
se0  concentration of free TF available for binding).
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sss  The graph defines the time-evolution of the probability for each state of the system (vertex) as
se2 follows. Assume that each edge is a chemical reaction that follows mass-action kinetics with the
ss3  edge label as the rate. Since each edge has only one source vertex, the resulting dynamics is linear
ssa  and is described by a matrix equation,
dP _

ss6  Here, P is the column vector of state probabilities at time ¢, with dimension n, and £(G) is the
se7  Laplacian matrix of the graph . Eq. 4 is the master equation, or Kolmogorov forward equation, of
sss  the underlying Markov process.

ss9  For a strongly connected graph, the system has a unique steady state, where dpP /dt = 0. The
s steady-state probability values for each state are computed by summing over the products of the
sn rate labels for each of the spanning trees rooted at that state, and normalising appropriately (see
s Estrada et al. (2016) for details).

s The mRNA concentration m is assumed to evolve according to:

dm
504 T k3 oPsg+ k3 aPsa+k3pPsp—0mm (5)
sss where the Ps x are the probabilities of states 3y, 34, 3p at a given time (Figure 1B). By assuming
sos steady state, setting dm/dt = 0, and dividing by d,,, we obtain the expression for the steady state
sv  mRNA (* denotes steady state):

k k k

mt = SRy + AP+ P (6)
§m ’ 6m ’ 57n ’

599 m* = KVOP;,V) + kg,AP:;:A + k3,BP§:B (7)

so This gives Eq. 1 of the main text, where the overbars are dropped for simplicity. In the parameter
s exploration, we directly sample on the normalised rates.

«» 6.2 Biologically plausible ranges for parameter values

s03 We considered a biologically plausible range for the normalised parameter values to be between 1
s and 10%, according to the following reasoning:

o0s The events from the binding of the polymerase complex until the production of an mRNA molecule
06 involve many biochemical reactions, including the binding interactions associated with the assembly
v of the pre-initiation complex, the phosphorylation of the C-terminal domain of RNA polymerase
s and other post-translational modifications (Schroder et al., 2013), as well as the biochemistry
00 associated to elongation. Our 3-state cycle is therefore a coarse-grained representation of all
s10  these processes. In order to determine biologically plausible parameter ranges, we searched for
s measurements of reaction rates for these processes, and normalised those to typical rates of mRNA
sz degradation, taken to have typical half-lives between 10 min (0.00116 s~!) and 5 h (3.85 x 10~°
13 s 1) (Sharova et al., 2009; Chan et al., 2018).

ss  For a reaction at a rate of 0.7 s~ (~1 s half-life), normalizing by the mRNA degradation rates
e1s  would result into a normalised range of 600-18000.

s For a rate of 0.07 s=1 (~10 s half-life), the normalised range would be 60-1800.
e7  For a rate of 0.016 s~! (~1 min half-life), the normalised range would be 10-300.
ss  And for a rate of 0.00116 s~! (~10 min half-life) the normalised range would be 1-30.

s0  These values are consistent with measurements of various transcription-associated biochemical
e20 reactions: the in witro rate of pre-initiation complex assembly was found to vary over ranges on
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e the order 1072 s~1 (Ferguson et al., 2001) to 0.1 s~!(Kugel and Goodrich, 1998), and the rate
2 of promoter opening/escape was reported to be 0.002 s~! (Kugel and Goodrich, 1998). Pause
o3  stability is estimated to be from 3 s to 20 min (Wissink et al., 2019). And the TF residence time
e can be from just a few seconds to a few minutes (Paakinaho et al., 2017; Mehta et al., 2018).

s Therefore, we took a range of 1-10* for our parameter values. We note that we also checked the
o6 results with smaller ranges, around slower rates for the polymerase cycle, but found that it didn’t
ez affect the results qualitatively, only reduced the synergy region as shown in Figure S1B.

2 6.3 Synergy space boundary for a regulatory strategy

s In order to determine the region of the synergy space that can be spanned by a given regulatory
s  strategy, we used a biased random sampling algorithm, modified from that in Estrada et al. (2016).
e Parameters were chosen from a given range of normalised rate values, and TFs were assumed to
2 at most modify the basal rates by a certain factor (see figure captions for the values corresponding
13 to each figure). A maximum fold change for expression in the presence of one TF alone (at 2X
% concentration) was also pre-specified, such that parameter sets that generate expression outside
635 this range were discarded. The steps of the algorithm are as follows:

636 1. Define constraints and two-dimensional grid of synergy values. Initialize with the hyperpa-
637 rameters (below).

638 2. Randomly sample parameter values from their range (in log scale) until 10 points are found
639 that fall in different cells of the grid.

640 3. Until convergence: at each iteration, search the surrounding parameter space of each bound-
641 ary point (see below) and keep the new parameter sets that generate synergy values not
642 already found (empty cells). Convergence is determined by 3000 iterations where no new
643 points occupying empty cells are found.

sa In order to search the surrounding parameter space of a given parameter set (point in synergy
s space), we followed 3 strategies (each point was modified using the 3 strategies at each iteration,
s provided there were sufficient points for steps 2 (10) and 3 (100)):

647 1. Randomly select a few parameter values and modify them.

648 2. 7Pull” towards a target point in the direction determined by the centroid and the point being
649 modified, away from the boundary: for 500 trials or until convergence, slightly modify the
650 parameter set, and keep the new one if it generates a point in synergy space closer to the
651 target.

652 3. ?Pull” in the direction (approximately) perpendicular to the tangent between the point being
653 modified and its neighbor, as in 2.

e« The algorithm depends on various hyperparameters: probability of selecting a parameter value
ess for mutation (0.2, 0.5), probability of replacing an already-existing boundary parameter (0.2,0.6),
s width of the interval around a parameter value to sample for new parameter values (in log (base
o7 10) scale: [-2,2],[-1.5,1.5],[-1,1]). Searches were run for all 12 combinations of hyperparameters,
s and results were merged together.

9 The boundary search code is available at https://github.com/rosamc/GeneRegulatoryFunctions.
so The rest of the code to reproduce the calculations and figures in the paper is available at https:
s1 //github.com/rosamc/kinsyn-2021.

«« 6.4 Random sample of points in synergy space

63 In order to randomly sample parameter values in the synergy space we followed a rejection sam-
e« pling approach. Parameters were sampled logarithmically from its predefined range (1-10%). The
s constraints on the maximum fold change effect on the polymerase cycle rates by the TFs were
ss checked, as well as the constraint on the expression fold change by each of the TFs at 2X. We
e7 collected 1 million parameter sets that satisfied the constraints. Then, in order to have a more
es uniform distribution of points over the synergy space, we binned the synergy space into a grid with

18


https://github.com/rosamc/GeneRegulatoryFunctions
https://github.com/rosamc/kinsyn-2021
https://github.com/rosamc/kinsyn-2021
https://github.com/rosamc/kinsyn-2021
https://doi.org/10.1101/2020.08.31.276261
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.276261; this version posted November 29, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

o bins every 0.025 S4 p and Sp 4, and kept one parameter set per bin. We repeated the procedure
so 10 times. The resulting points are those in Figure S1C.

o 6.5 Exploration of synergy as a function of binding or unbinding rate

ez In order to explore how synergy depends upon the binding and unbinding rates, we generated sets
ez of basal parameters by randomly sampling on a logarithmic scale the basal rates between 1 and 104,
e and the binding and unbinding rates between 1015 and 103. For each of these basal parameter
o5 sets, we generated parameter sets corresponding to the TF-associated parameters, and we kept
e 1000 such parameter sets that satisfy the following constraints: i) TF-associated parameter values
er  at most 1000X the respective basal ones (0.001X for counterclockwise rate ky); ii) fold change in
s expression by each TF individually at 2X concentration between 1 and 5; iii) TF A is consistently
e79  the strongest of the pair when the binding or unbinding rate is changed by a factor f, where f
0 spans 10 logarithmically spaced values between 0.1 and 10. For each parameter set that satisfied
e1 the constraints, we determined the class of behaviour in synergy space as a function of the change
2 in the binding or unbinding rate over this two-order magnitude range, and saved for downstream
ss3 analysis those parameter sets where the absolute value of the change in both S4 5 and Sp 4 was
s at least 0.05.

s 6.6 Construct design and cloning

s The reporter construct consists of a single synthetic zinc finger binding site (CGGCGTAGC-
ser CGATGTCGCGC) upstream of a minimal CMV promoter (taggcgtgtacggtgggaggectatataagea-
s gagctegtttagtgaaccgtcagategectgga) driving dA2EGFP (EGFP destabilized with signal peptide for
0 fast degradation (fusion with aa 422-461 of mouse ornithine decarboxylase)).

so synTF fusion proteins containing an activation domain of interest fused to an N-terminal zinc-finger
s binding domain with a GGGGS flexible linker were driven under control of a ubiquitin promoter
s2 and contain a 5’ sv40 nuclear localization sequence, C-terminal HA and rabbit globin polyA 3’
03  UTR. Genome-orthogonal zinc fingers were previously developed to target 20-bp sequences that
s« minimize identity with the reference human genome (Israni et al., 2021; Park et al., 2019b). The
s following protein domains were selected and conjugated as respective activation domains according
e tO previous studies:

697

os  SP1 (Residues 263 — 499) [PMID: 8278363]

0o NITLLPVNSVSAATLTPSSQAVTISSSGSQESGSQPVTSGTTISSASLVSSQASSSSFFTNANSY
w STTTTTSNMGIMNFTTSGSSGTNSQGQTPQRVSGLQGSDALNIQQNQTSGGSLQAGQQKE
o GEQNQQTQQQQILIQPQIVQGGQALQALQAAPLSGQTFTTQAISQETLQNLQLQAVPNSGP
» TIRTPTVGPNGQVSWQTLQLQNLQVQNPQAQTITLAPMQGVSLGQTSSSN

703

70 cMye (Residues 1-70) [PMID: 12177005]
s MDFFRVVENQQPPATMPLNVSFTNRNYDLDYDSVQPYFY
% CDEEENFYQQQQQSELQPPAPSEDIWKKFEL

707

0 BRD4 (Residues 1308-1362) [PMID: 24860166]
w PQAQSSQPQSMLDQQORELARKREQERRRREAMAATIDMNFQSDLLSIFEENLF

710

1 HSF1 (Residues 370-529) [PMID: 9606196]

72 PEKCLSVACLDKNELSDHLDAMDSNLDNLQTMLSSHGFSVDTSALLDLFSPSVTVPDMSLP
ns - DLDSSLASIQELLSPQEPPRPPEAENSSPDSGKQLVHYTAQPLFLLDPGSVDTGSNDLPVLF
e ELGEGSYFSEGDGFAEDPTISLLTGSEPPKAKDPTVS

715

76 HSF1 mutant (Residues 370-529, F418A, F492A, F500A) [PMID: 9606196]
7 PEKCLSVACLDKNELSDHLDAMDSNLDNLQTMLSSHGFSVDTSALLDLASPSVTVPDMS
ns  LPDLDSSLASIQELLSPQEPPRPPEAENSSPDSGKQLVHYTAQPLFLLDPGSVDTGSNDLP
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7o VLAELGEGSYASEGDGFAEDPTISLLTGSEPPKAKDPTVS

720

= 6.7 Cell culture

72 HEK293FT cells (Thermo Fisher Scientific) were used as a background cell line in this study.
73 Cells were cultured in DMEM with L-glutamine, 4.5¢/L Glucose and Sodium Pyruvate (Thermo
7« Fisher Scientific) supplemented with 10% FBS (Clontech), GlutaMAX supplement (Thermo Fisher
75  Scientific), MEM Non-Essential Amino Acids solution (Thermo Fisher Scientific) and 1% penicillin-
76 streptomycin (Thermo Fisher Scientific). Cells were maintained at 37°C with 5% CO2 in a hu-
7z midified incubator, with splitting every 2-3 days.

» 6.8 Genomic integration of reporter constructs

29 Reporter lines were generated by site-specific integration of reporter constructs into HEK293FT
70 cells using CRISPR/Cas9 mediated homologous recombination into the AAVS1 (PPP1R2C) locus
7 as previously described (Park et al., 2019b). Briefly, 60,000 cells were plated in a 48-well plate
72 and transfected the following day by PEI with a mixture of the following: 70ng of gRNA_AAVS1-
713 T2 plasmid (Addgene 41820), 70 ng of VP12 humanSpCas9-Hf1 plasmid (Addgene 72247), and
74 175 ng of donor reporter plasmid. Donor reporter plasmids contain flanking arms homologous to
s the AAVS]1 locus, a puromycin resistance cassette, and constitutive mCherry expression. After
72 transfection, cells were cultured in 2 mg/mL puromycin selection for at least 2 weeks with splitting
7w 1:10 every 3 days. Monoclonal populations for reporter cell lines were isolated by sorting single
78 cells from this population into a 96-well plate and growing cell lines from each well. A minimum
70 of 6 monoclonal cell lines that express high level of mCherry protein were transiently transfected
720 with a strong synTF activator (HSF1 or VP16) and a monoclonal cell line to be used going forward
m  was selected based on the fold-change of GFP expression relative to basal GFP level.

#w 6.9 Transient transfection

3 Stable reporter cell lines were transfected with synTF plasmid constructs using polyethylenimine
7 (PEI, Polysciences) as described in (Park et al., 2019b). 60,000-100,000 cells/well were plated in
ns  48-well plates and transfected the following day with a total of 10ng per synTF, unless otherwise
76 noted, with single stranded filler DNA (Thermo Fisher Scientific) up to 200ng total. 50ng of
w pCAG-iRFP720 (Addgene, #89687) was used as a transfection control plasmid. Two days after
s transfection, cells were collected and prepared for flow cytometry, unless otherwise noted.

w 6.10 Flow cytometry and data analysis

50 For each measurement, cells were harvested and run on an Attune NxT (Thermo Fisher Scientific)
7 or LSR IT (BD) Flow Cytometer equipped with a high-throughput auto-sampler. A minimum of
2 10,000 events were collected for each well and were gated by forward and side scatter for live cells
753 and single cells, as described in (Park et al., 2019b). Cells were then gated by iRFP for transfection-
74 positive populations. The geometric mean of GFP fluorescence distribution was calculated in
s FlowJo (Treestar Software). GFP expression fold-change was determined by normalizing with
76 mean GFP intensity of the reporter only control. Flow cytometer laser/filter configurations used
757 in this study were: EGFP (488 nm, 510/10), mCherry (561 nm, 615/25), iRFP-720 (638 nm,
s 720/30). All flow cytometry measurements were performed in technical replicates. Considering
0 together all replicates from all experiments with the same transfection condition, we checked for
w0 consistency and discarded technical errors. This removed the cMyc 2X condition in one of the
1 experiments since it yielded an aberrantly low fold change. Moreover, we removed 4 additional
72 replicates, each from a different condition, that had a fold change that was above/below two
73 standard deviations from the mean considering all replicates for that condition together.
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w 6.11 Western blotting

76s A reporter cell line was transfected with indicated amounts of ZF-HSF1 (0, 10, 20, 50, 100, 150,
766 200ng) in a 48-well plate at a cell density of 1x105 per well. After 2 days, cells were rinsed with PBS
77 and lysed with 200 pL of NuPAGE LDS sample buffer (Thermo Fisher Scientific), followed by 5
s seconds of sonication. Whole cell lysates were mixed with NuPAGE Sample Reducing agent (10X,
760 Thermo Fisher Scientific) at 95°C for 5 minutes. Samples were then loaded into a 4-12% NuPAGE
70 Bis-Tris Mini Protein precast gel (Thermo Fisher Scientific) and were run at 200V for 30 minutes
m  in NuPAGE MES SDS Running Buffer. Separated proteins were transferred to a PVDF membrane
7 using PO protocol of iBlot2 system (Thermo Fisher Scientific). Membranes were blocked for 1hr at
73 room temperature in blocking solution (5% w/v nonfat dry milk in 1X PBST) with gentle rocking.
772 The membranes were probed with anti-HA (1:4000; Abcam ab9110) and anti-GAPDH (1:1000;
75 Abcam ab9485) antibodies at room temperature for 1 hour with gentle rocking. The membranes
e were washed in PBST three times for 5 minutes each, and incubated with a goat anti-rabbit IgG-
7 HRP antibody (1:2000; Abcam ab6721). The target proteins were visualized by chemiluminescence
78 using SuperSignal West Pico PLUS substrate (Thermo Fisher Scientific) and an iBright Western
79 Blot Imaging Systems (Thermo Fisher Scientific). Quantification of band intensities was carried
70 out using FIJI (Schindelin et al., 2012).

= 6.12 Quantitative Real-Time PCR

722 1 x 10° Hek293 reporter cells were seeded one day prior to transfection in 6cm culture dishes.
73 Transfection was performed with the indicated amounts of synTF plasmid as described above
78 for flow cytometry experiments using polyethylenimine (PEI) (polyscience) or Lipofectamine 3000
75 (Thermo Fisher Scientific). Two days post transfected, cell pellets were harvested and mRNA
76 was extracted using the RNeasy Mini Kit (Qiagen). 500 ng extracted total RNA was reverse
77 transcribed into cDNA for each sample. Reverse transcription was performed using Protoscript 11
78 reverse transcriptase (New England Biolabs) and oligo-dT primers (New England Biolabs). Quan-
7 titative real-time PCR was performed in triplicates using iTaq™™ Universal SYBR®Green reagent
0 (Bio-Rad) on a CFX96 PCR machine (Bio-Rad). Primers were used in a final concentration of
o 243.2 nM. B-actin expression was used as a reference gene for relative quantification of RNA levels.
792 Used primer sequences are (5'-3"):

793 Actin_fwd: GGCACCCAGCACAATGAAGATCAA;

74 Actin_rev: TAGAAGCATTTGCGGTGGACGATG;

795 eGFP_fwd: AAGTTCATCTGCACCACCG;

96 eGFP_rev: TCCCTTGAAGAAGATGGTGCG;

797

» 6.13 Comparison of synTF distribution across transfection conditions
709 using quantitative immunofluorescence

so 6.13.1 Immunostaining

s 0.5 x 10° cells were seeded on poly-Lysine coated high-precision glass coverslips (18 mm round,
s #1.5) in 12-well culture plates one day prior to transfection. Transfection was performed as
g3  described for flow cytometry experiments. A total amount of 200 ng DNA (20 ng synTFs and
se 180 ng ssDNA) was used for transfection experiments. PEI was scaled to 12-well plate volume of
ss 100 uL total transfection mix. 48 h post transfection, cells were washed with 1x PBS, fixed with
ss 2% PFA (Fisher Scientific) and blocked for 30 min with 10% Goat serum (VWR) in 1x PBS after
sr  washing. Immunodetection was performed with HA-tag (6E2) mouse antibody (Cell Signaling)
s 1:1000 in 1%BSA/PBS overnight. Cell were washed with 0.1% Triton X-100 and incubated with
s0 anti-mouse IgG Alexa Fluor 488 (#4408, Cell Signaling) antibody 1:1000 in 1%BSA/PBS for
s 1h. After washing with 0.1% Triton X-100, nuclei were stained with 2 ug/mL Hoechst-33342
su  (Thermo Fisher Scientific) and mounted on glass slides using Prolong Gold Antifade (Thermo
sz Fisher Scientific). Image acquisition was performed at least 16 h after mounting slides.
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sz 6.13.2 Fluorescence microscopy

s Images were acquired as single-plane multipoint positions on a Nikon Ti2 inverted microscope
a5 upon illumination by a Lumencor Sola 395 Light Engine and a Plan Apo VC 20x objective (NA
ss  0.75). The following filter sets were used. Alexa Fluor 488: excitation FF01-466/40, emission
sz FF03-525/50, dichroic FF495-Di03 (all Semrock); Hoechst-33342: excitation ET395/25x, emission
s ET460/50m, dichroic ET425lp (all Chroma). Detection was performed with a Hamamatsu ORCA
sio Flash 4.0 LT camera. NIS elements software for image acquisition was used.

s20 6.13.3 Image Processing

s21  Images were extracted from nd?2 files, separated as .tif-files per channel and field of view. CellPro-
g2 filer 4.0 (McQuin et al., 2018) was used for image segmentation and measuring nuclear fluorescence
223 intensity. A pipeline was customized based on the pipeline for Human cells provided by the Cell-
s2a  Profiler project. Nuclei segmentation was performed based on Hoechst-33342 staining using Otsu
225 thresholding and a nuclear diameter range of 15 — 50 pixels. Objects outside that range and touch-
226 ing the border of images were excluded. Touching objects were distinguished based on fluorescence
sz intensity and object intensity was calculated for the segmented nuclear area in all channels.

28 6.13.4 Data analysis

220 The integrated fluorescence intensity (FI) calculated per nucleus for anti-HA-488 staining (detect-
s ing HA-tagged synTF) was used for further data analysis using custom scripts in Matlab for data
s processing. In case of multiple datasets of the same condition, FI distributions were joined. Back-
g2 ground fluorescence was defined based on nuclear fluorescence intensity in untransfected controls.
g3 Data was normalized to the 5th-95th percentile to remove outliers from imperfect segmentation
s« due to clumping of nuclei. The median was calculated and a threshold of 2.5 fold of the median was
s determined to identify positive transfected cells (Figure S3C). Nuclei with FI above this threshold
s were considered as positive transfected with any synTF condition described (Figure S3D). Dis-
g7 tributions are plotted as probability density functions (PDF) using ksdensity function in Matlab.
sss  The 5th-95th percentile of values above threshold for each condition was taken to remove outliers
s for each condition to compare the distributions of synTF abundance in each dataset (Figure S3C).
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Figure S1 Characterization of the model behavior in synergy space. (caption on next page)
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(from previous page) A) Region of the synergy space spanned by the model when each TF
acts uniquely on one of two steps, indicated in the title of each plot. The first plot is the same
as in Figure 2B middle. Parameter values in the range between 1 and 10*. Parameters for the
TFs at most 1000 times larger than the basal parameters for the clockwise rates (k1,k2, k3) or
0.001 times smaller for k4. Fold change in m* for each TF individually with respect to the basal
condition with no TF bound between 1 and 10. B) Region of the synergy space from each of the
3 regulatory strategies in Figure 2B for more constrained parameters, representing weaker TF's:
parameter values for the transitions over polymerase states in the range between 1 and 100 for
the clockwise rates, 100-10000 for k, y; parameters for the TFs at most 100 times larger than the
basal parameters for the clockwise rates (k1, ko, k3) or 0.01 times smaller for k4. Fold change
in m* for each TF individually with respect to the basal condition with no TF bound between 1
and 10 (solid line) or 1 and 5 (dashed line). C) Random sample of points where both TFs act on
any step, randomly sampled under the same constraints as in Figure 2B bottom (Methods, 6.4)
and used for the distributions in Figure 2C and panels D and E of this Figure. D) Distribution
of TF activity distances as a function of synergy class, binned by basal expression (expression
in the absence of TFs, left), binding on-rate (middle), binding off-rate (right), for the points in
panel C. E) Distribution of synergy values as a function of TF activity distance and binned by
basal expression, binding on-rate or binding off-rate for the points with positive synergy in panel
C (green points).
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Figure S2 Top 90% net flux dominant paths for each parameter set in Figure S1C. For each path,
the representation is as in Figure 2D. The top diagram shows the dominant path (magenta arrows)
and the arrow greyscale shade encodes the average net flux for the transitions. The lower plot
shows the distribution of synergy values that correspond to that dominant path. For each of the
two groups, dominant paths are sorted according to their frequency, indicated on top of each. Note
that the first path of each group corresponds to the plot in Figure 2D.
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Figure S3 Experimental observation of synergy between a pair of TFs. (continued on next page)
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(from previous page) A) Western Blot and corresponding quantification of the ZF-HSF1 protein
as a function of ng of plasmid transfected (Methods, 6.11). B) Normalised GPF expression as
measured by qPCR in response to SP1 synTF. The concentrations of plasmid used are scaled by
the number of cells (Methods, 6.12) so that 125 and 250 ng are approximately equivalent to 10
and 20 ng in the flow cytometry experiments. Error bars denote SEM from technical replicates.
C) Distribution of integrated Fluorescence intensity (FI) in arbitrary units (a.u.) as quantified
from segmented nuclei for the control (gray, no synTF) and transfected samples using quantitative
immunofluorescence targeting the HA-tag of synTFs. Data falling within the 5th-95th percentiles
is shown for each dataset. Dashed line: background threshold defined as 2.5x median of control
FI. SP1, c-Myc and SP1/c-Myc curves represent the 5th-95th percentile of values above threshold.
(See Methods, 6.13 for details) D) Bargraph showing the percentage of positive transfected cells
determined based on the background threshold shown in panel C. n is the number of quantified
cells for each dataset above threshold. E) The combination of a synTF with the ZF alone only
generates asymmetric synergy, where expression is between that of the ZF and that of the full
TF. Error bars denote the ranges of the data. At least 3 biological replicates per combination,
with 2-4 technical replicates each. F) Details of the fold change in expression for the conditions
that generate the synergy plot in Figure 3C. Error bars denote the 95% confidence interval for
the mean GFP fold change, obtained from bootstrapping the mean GFP fold change values from
all the experiments for each condition. At least 3 biological replicates per combination, with 2-4
technical replicates each.
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Figure S4 Synergy between a pair of TFs depends upon the binding and unbinding kinetics.
(continued on next page)
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(from previous page) A) Example of the 12 possible changes in synergy when the unbinding
rate (k) is modulated, for a common set of basal parameter values and different TFs. The biggest
marker denotes highest affinity (lowest unbinding rate), and the smallest marker denotes lowest
affinity (highest unbinding rate). The subplot titles indicate the behaviour as the unbinding rate
is increased: both S4 p and Sp 4 decrease: nndd, ppdd, pndd. S4, g decreases but Sg, 4 increases:
nndi, pndi, ppdi. Sa,p increases but Sp 4 decreases: nnid, npid, ppid. Both increase: nnii, npii,
ppii. All lines share the same set of basal and binding/unbinding rates, but each corresponds
to a given set of TF parameter values. Results have been selected out of all those found from
a rejection-based sampling random search of parameter values. B) Example of the 12 possible
changes in synergy when the binding rate (k;) is modulated. As in A, each line corresponds to
a pair of TF parameter values, but all of them share the same basal and binding and unbinding
rates. The biggest marker denotes highest affinity (largest binding rate), and the smallest marker
denotes lowest affinity (lowest binding rate). See Methods 6.5 for details.
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