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ABSTRACT

Traditional predictive models for transcriptome-wide association studies (TWAS) consider only single
nucleotide polymorphisms (SNPs) local to genes of interest and perform parameter shrinkage with a
regularization process. These approaches ignore the effect of distal-SNPs or other molecular effects
underlying the SNP-gene association. Here, we outline multi-omics strategies for transcriptome
imputation from germline genetics to allow more powerful testing of gene-trait associations by prioritizing
distal-SNPs to the gene of interest. In one extension, we identify mediating biomarkers (CpG sites,
microRNAs, and transcription factors) highly associated with gene expression and train predictive models
for these mediators using their local SNPs. Imputed values for mediators are then incorporated into the
final predictive model of gene expression, along with local SNPs. In the second extension, we assess
distal-eQTLs (SNPs associated with genes not in a local window around it) for their mediation effect
through mediating biomarkers local to these distal-eSNPs. Distal-eSNPs with large indirect mediation
effects are then included in the transcriptomic prediction model with the local SNPs around the gene of
interest. Using simulations and real data from ROS/MAP brain tissue and TCGA breast tumors, we show
considerable gains of percent variance explained (1-2% additive increase) of gene expression and TWAS
power to detect gene-trait associations. This integrative approach to transcriptome-wide imputation and
association studies aids in identifying the complex interactions underlying genetic regulation within a

tissue and important risk genes for various traits and disorders.
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Transcriptome-wide association studies (TWAS) are a powerful strategy to study gene-trait associations
by integrating genome-wide association studies (GWAS) with gene expression datasets. TWAS increases
study power and interpretability by mapping genetic variants to genes. However, traditional TWAS
consider only variants that are close to a gene and thus ignores important variants far away from the
gene that may be involved in complex regulatory mechanisms. Here, we present MOSTWAS (Multi-Omic
Strategies for TWAS), a suite of tools that extends the TWAS framework to include these distal variants.
MOSTWAS leverages multi-omic data of regulatory biomarkers (transcription factors, microRNAs,
epigenetics) and borrows from techniques in mediation analysis to prioritize distal variants that are around
these regulatory biomarkers. Using simulations and real public data from brain tissue and breast tumors,
we show that MOSTWAS improves upon traditional TWAS in both predictive performance and power to
detect gene-trait associations. MOSTWAS also aids in identifying possible mechanisms for gene
regulation using a novel added-last test that assesses the added information gained from the distal
variants beyond the local association. In conclusion, our method aids in detecting important risk genes for

traits and disorders and the possible complex interactions underlying genetic regulation within a tissue.

Keywords: transcriptome-wide association study; genome-wide association study; expression

guantitative trait loci analysis; multi-omics; mediation analysis

INTRODUCTION

Genomic methods that borrow information from multiple data sources, or “omics” assays, offer
advantages in interpretability, statistical efficiency, and opportunities to understand causal molecular
pathways in disease regulation [1,2]. Transcriptome-wide associations studies (TWAS) aggregate genetic
information into functionally relevant testing units that map to genes and their expression in a trait-
relevant tissue. This gene-based approach combines the effects of many regulatory variants into a single
testing unit that can increase study power and aid in interpretability of trait-associated genomic loci [3,4].
However, traditional TWAS methods, like PrediXcan [3] and FUSION [4], focus on local genetic regulation
of transcription. These methods ignore significant portions of heritable expression that can be attributed to

distal genetic variants that may indicate complex mechanisms contributing to gene regulation.
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Recent work in transcriptional regulation has estimated that distal genetic traits account for up to 70% of
the variance in gene expression [5,6]. These results accord with Boyle et al’'s omnigenic model, proposing
that regulatory networks are so interconnected that a majority of genetic variants in the genome, local or
distal, have indirect effects on the expression level of any particular gene [6,7]. In fact, work by Sinnott-
Armstrong et al showed huge enrichment of significant genetic signal near genes involved in the relevant
pathways for biologically simple traits, even for phenotypes largely thought to be simpler than complex
diseases [8]. Together, these observations suggest that the majority of phenotype variance, even for traits
commonly believed to be simpler than complex diseases like cancer, is not driven by variants in core

genes, but rather from thousands of variants spreading across most of the genome.

Many groups have leveraged the omnigenic model to identify distal expression quantitative loci (eQTLS)
by testing the effect of a distal-eSNP on an gene mediated through a set of genes local to the distal-
eSNP, where the SNP and gene are more than 0.5 Megabases (Mb) away. These studies draw the
conclusion that many distal-eQTLs are often eQTLs for one of more of their local genes [9-15]. It has
been shown previously that distal-eQTLs found in regulatory hotspots are often cell-type specific [9,13,16]
and hence carry biologically relevant signal when studying bulk tissue with heterogeneous cell-types (e.g.
cancerous tumors or the brain). More recently, the concepts of distal-eQTLs residing in or near regulatory
elements have been integrated with multi-omics data and biological priors to reconstruct molecular

networks and hypothesize cell-regulatory mechanisms [17].

Variant-mapping methods have also shown the utility of integrating molecular data beyond
transcriptomics. Deep learning methods have been employed to link GWAS-identified variants to nearby
regulatory mechanisms to generate functional hypotheses for SNP-trait associations [18—20]. These
ideas have been extended to TWAS: the EpiXcan method demonstrates that incorporating epigenetic
information into transcriptomic prediction models generally improves predictive performance and power in
detecting gene-trait associations in local-only TWAS [21]. Wheeler et al have leveraged TWAS imputation

to show that trans-acting genes are often found in transcriptional regulation pathways and are likely to be
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84  associated with complex traits [22]. Thus, it is imperative to prioritize distal variants that are trans-acting to
85  fully capture heritable gene expression that is associated with complex diseases in TWAS.

86

87  To this end, we developed two extensions to TWAS, borrowing information from other omics assays to

88 enrich or prioritize mediator relationships of eQTLs in expression models. Using simulations and data

89  from Religious Orders Study and the Rush Memory and Aging Project (ROS/MAP) [23] and The Cancer
90 Genome Atlas (TCGA) [24], we show considerable improvements in transcriptomic prediction and power
91 to detect gene-trait associations. These Multi-Omic Strategies for Transcriptome-Wide Association

92 Studies are curated in the R package MOSTWAS, available freely at https://bhattacharya-a-

93 bt.github.io/MOSTWAS.

94

95 RESULTS

96  Overview of MOSTWAS

97 MOSTWAS incorporates two methods to include distal-eQTLs in transcriptomic prediction: mediator-

98 enriched TWAS (MeTWAS) and distal-eQTL prioritization via mediation analysis (DePMA). Here, we refer

99 to an eQTL as a SNP with an association with the expression of a gene, and a distal-eQTL is more than
100 0.5 Mb away from the eGene. As large proportions of total heritable gene expression are explained by
101 distal-eQTLs local to regulatory hotspots [6,11,13,14], we used data-driven approaches to either identify
102 mediating regulatory biomarkers (MeTWAS) or distal-eQTLs mediated by local biomarkers (DePMA) to
103 increase predictive power for gene expression and power to detect gene-trait associations. These
104 methods are described in Methods with an algorithmic summary in Supplemental Figure S1.
105
106  Figure 1 provides an example of the biological mechanisms MOSTWAS attempts to leverage in its
107 predictive models for a gene G of interest: here, without loss of generality of the regulatory mechanism,
108 assume a SNP within a regulatory element affects the transcription of gene X that codes for a
109 transcription factor. Transcription factor X then binds to a distal regulatory region and affects the

110 transcription of gene G. Methodologically,
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o MeTWAS first detects the association between the expression of gene X and expression of gene
G. It proceeds upstream in the regulatory pathway to the genetic locus around gene X and builds
a predictive model for the expression of gene X. Imputed expression of gene X (imputed via
cross-validation) is then included as a fixed effect in the predictive model of gene G, along with
the genetic variants local to gene G. This model is fit using a two-stage regression model [25],
first fitting the imputed mediators using least squares regression and then the local genotypes
using elastic net regression [26] or linear mixed modeling [27].

o DePMA first detects the distal-eQTL association between the distal SNP and expression of gene
G. It then proceeds downstream in the regulatory pathway from the distal SNP to identify whether
there is a strong association between the SNP and the expression of the local gene X. Using
mediation analysis, if the indirect effect of the SNP on gene G mediated through gene X is
significantly large, the SNP is included in the final predictive model for the expression of gene G,
fit using elastic net regression [26] or linear mixed modeling [27].

MeTWAS and DePMA can consider any set of regulatory elements as potential mediators (e.g.

transcription factors, microRNAs, CpG methylation sites, chromatin-binding factors, etc.).

If individual genotype data is available in an external GWAS panel, a MeTWAS or DePMA model may be
used to impute tissue-specific expression. If only summary statistics are available in the GWAS panel, the
Imp-G weighted burden testing framework [28] as implemented in FUSION [4] can be applied. We further
implement a permutation test to assess whether the overall gene-trait association is significant,
conditional on the GWAS effect sizes [4] and a novel distal-SNPs added-last test that assesses the added

information from distal-SNPs given the association from the local SNPs (Methods).

Simulation analysis

We first conducted simulations to assess the power to predict gene expression and power to detect gene-
trait associations under various settings for phenotype heritability, local heritability of expression, distal
heritability of expression, and proportion of causal local and distal SNPs for MeTWAS and DePMA (full

simulation details in Methods). Using genetic data from TCGA-BRCA as a reference, we used SNPs
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139 local to the gene ESR1 (Chromosome 6) to generate local eQTLs and SNPs local to FOXA1

140  (Chromosome 14) to generate distal-eQTLs for a 400-sample eQTL reference panel and 1,500-sample
141 GWAS imputation panel. We considered two scenarios for each set of simulation parameters: (1) an ideal
142 case where the leveraged associated between the distal-SNP and gene of interest exists in both the

143 reference and imputation panel, and (2) a “null” case where the leveraged association between the distal-
144  SNP and the gene of interest exists in the reference panel but does not contribute to phenotype

145 heritability in the imputation panel. Though the choice of these loci was arbitrary for constructing the

146  simulation, there is evidence that ESR1 and FOXA1 are highly co-expression in breast tumors, and local-
147 eQTLs of FOXA1 have been shown to be distal-eQTLs of ESR1 [29].

148

149 In these simulation studies, we found that MOSTWAS methods performed well in prediction across

150  different causal proportions and local and distal mMRNA expression heritabilities and generally outperform
151  local-only modelling. Furthermore, across all simulation settings, we observed that MOSTWAS showed
152 greater or nearly equal power to detect gene-trait associations compared to local-only models. We found
153 that, under the setting that distal-eQTLs contributes to trait heritability, the best MOSTWAS model had
154 greater power to detect gene-trait associations than the local-only models, with the advantage in power
155  over local-only models increasing with increased distal expression heritability (Figure 2A). Similarly, we
156  found that as the proportion of total expression heritability attributed to distal variation increased, the

157 positive difference in predictive performance between the best MOSTWAS model and the local-only

158 model increased (Supplemental Figure S2). Under the “null” case that distal variation influences

159 expression only in the reference panel, as expected, we observed that local-only and MOSTWAS models
160 perform similarly. Only at low causal proportions (causal proportion of 0.01) and low trait heritability (trait
161 heritability of 0.2), did local-only models have a modest advantage in TWAS power over MOSTWAS

162 models (Figure 2B and Supplemental Data). This difference was reduced at larger causal proportions
163 and trait heritabilities (Figure 2B). Using these same simulation parameters, we also simulated the false
164 positive rate (FPR), defined as the proportion of positive associations at P < 0.05 under the null, where
165  the phenotype trait in the GWAS panel was permuted 1,000 times across 20 sets of simulations. We

166  found that the FPR was generally around 0.05 for all methods (Supplemental Figure S3).
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167

168  The power of the distal-SNPs added-last test increased significantly as both the sample sizes of the eQTL
169 reference panel and the GWAS imputation panel increased (Supplemental Figure S4). At a sample size
170 of 10,000 in the GWAS panel with summary statistics (a suitably large GWAS) and a sample size greater
171 than 200 in the eQTL panel, MOSTWAS obtained over 65% power to detect significant distal significant
172 associations (Supplemental Figure S4). Overall, these results demonstrated the advantages of

173 MOSTWAS methods for modeling the complex genetic architecture of transcriptomes, especially when
174  distal variation has a large effect on the heritability of both the gene and trait of interest. Full simulation

175 results are provided in Supplemental Data, accessible at https://zenodo.org/record/3755919 [30]. The

176 MOSTWAS package also contains functions for replicating this simulation framework.

177

178 Real data applications in brain tissue

179  We applied MOSTWAS to multi-omic data derived from samples of prefrontal cortex, a tissue that has
180 been used previously in studying neuropsychiatric traits and disorders with TWAS [44,45]. There is ample
181 evidence from studies of brain tissue, especially the prefrontal cortex, that non-coding variants may

182 regulate distal genes [44,46,47]; in fact, an eQTL analysis by Sng et al found that approximately 20-40%
183 of detected eQTLs in the frontal cortex can be considered trans-acting [48]. Thus, the prefrontal cortex in
184  the context of neuropsychiatric disorders provides a prime example to assess MOSTWAS.

185

186 Using ROS/MAP data on germline SNPs, tumor mRNA expression, CpG DNA methylation, and miRNA
187  expression (N = 370), we trained MeTWAS, DePMA, and traditional local-only predictive models for the
188  tumor expression of all genes with significant non-zero heritability. Estimates of gene expression

189 heritability were considerably larger when we considered distal variation with MOSTWAS (Supplemental
190 Table S1). We also found that MeTWAS and DePMA performed better in cross-validation R? than local-
191  only models (Figures 3A-C). Mean predictive R? for local-only models was 0.029 (25% to 75% inter-

192 guartile interval (0.0,0.015)), for MeTWAS models was 0.079 (0.019, 0.082), and for DePMA models was
193 0.045 (0.013, 0.037).

194
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195 We used 87 samples in ROS/MAP with genotype and mRNA expression data that were not used in

196 model training to test portability of MOSTWAS models in independent cohorts. As shown in Figure 4A
197 and Supplemental Figure S5, DePMA models obtained the highest predictive adjusted R? in the external
198 cohort (0.042 (0.009, 0.057)), with MeTWAS (0.040 (0.010, 0.054)) also outperforming local-only models
199 (0.031 (0.007, 0.039)). Overall, among genes with cross-validation adjusted R? > 0.01, 187 out of 267
200 genes achieved external predictive R? > 0.01 using local-only models, 683 out of 911 using MeTWAS,
201 and 2,135 out of 2,934 using DePMA (Figure 3A-C).

202

203  We next conducted association tests for known Alzheimer’s disease risk loci using local-only and the best
204 MOSTWAS model (selected by comparing MeTWAS and DePMA cross-validation R?) trained in

205  ROS/MAP and summary-level GWAS data from the International Genomics of Alzheimer’s Project (IGAP)
206 [49]. From literature, we identified 14 known common and rare loci of late-onset Alzheimer’s disease that
207 have been mapped to genes [49-52], 11 of which had MOSTWAS models with cross-validation R? >

208 0.01. Five of these 11 loci (APOE, CLU, PLCG2, SORL1, ZCWPW1) showed significant association at
209 FDR-adjusted P < 0.05 (Supplemental Table S2). We also compared these 11 associations to those
210 identified by local-only models (PrediXcan [3] and TIGAR [53]), with raw P-values of association shown in
211 Figure 4B. MOSTWAS showed stronger associations at 8 of these loci than both local-only and DPR

212 models. We followed up on the 5 significantly associated loci using the permutation and added-last tests
213 (Methods and Supplemental Methods). Three of these loci (APOE, SORL1, ZCWPW1) showed

214 significant associations, conditional on variants with large GWAS effect sizes (permutation test significant
215 at FDR-adjusted P < 0.05). These three loci also showed significant associations with distal variants,

216 above and beyond the association with local variants, at FDR-adjusted P < 0.05 (Supplemental Table
217 S2).

218

219  We then conducted a transcriptome-wide association study for risk of major depressive disorder (MDD)
220 using summary statistics from the Psychiatric Genomics Consortium (PGC) genome-wide meta-analysis
221  that excluded data from the UK Biobank and 23andMe [54]. QQ-plots for TWAS Z-statistics and P-values

222 are provided in Supplemental Figure S7 and Supplemental Figure S8 for both local-only and
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223 MOSTWAS models, showing earlier departure from the null using local-only models compared to

224 MOSTWAS. Overall, using all heritable genes with cross-validation R? with the best MOSTWAS model in
225 ROS/MAP, we identified 102 MDD risk-associated loci with FDR-adjusted P < 0.05 that persisted when
226 subjected to permutation testing at FDR-adjusted P < 0.05 (colored red in Figure 4C). We downloaded
227 genome-wide association study by proxy (GWAX) summary statistics from the UK Biobank [55] for

228  replication analysis of loci identified using PGC summary statistics. We found 7 of these 102 loci (labeled
229  in Figure 4C and listed in Supplemental Table S3) also showed an association in UK Biobank GWAS
230 that was in the same direction as in PGC. In comparison, using local-only models, we identified 11 genes
231 with significant association with MDD risk at FDR-adjusted P < 0.05 that persisted after permutation

232  testing; none of these loci showed significant associations in the UK Biobank GWAX in the same direction
233  asin PGC. These replication rates between MOSTWAS and local-only models were similar (accounting
234  for the total number of associations), highlighting that the inclusion of distal variation does not hinder the
235 replicability of MOSTWAS associations in comparison to local-only models [55,56]. Local-only results are
236 provided in Supplemental Data. It is important to note here that the UK Biobank dataset is not a GWAS
237 dataset as it defined a case of MDD as any subject who has the disorder or a first-degree relative with
238 MDD. Hence, the study forfeits study power to detect gene-trait associations for MDD [55,56].

239 Nonetheless, we believe that strong prediction in independent cohorts and TWAS results across two

240 independent cohorts provided an example of the robustness of MOSTWAS models.

241

242 In summary, we observed that MOSTWAS models generally had higher predictive R? than local-only

243 models both in training and independent cohorts. We also found that MOSTWAS recapitulated 5 known
244  Alzheimer's risk loci that were not detected by local-only modeling (both PrediXcan [3] and TIGAR [53]), 3
245 of which had significant distal associations above and beyond the information in local variants using our
246  added-last test. We also illustrated that some MDD-risk-associated loci detected by MOSTWAS in a

247 GWAS cohort were replicable in an independent GWAX cohort [54,55].

248

249 Real data applications in breast cancer tumors
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250  We applied MOSTWAS using breast tumor multi-omics and disease outcomes, motivated by recent

251 GWAS and TWAS for breast cancer-specific survival [31-35]. Previous breast tumor eQTL studies have
252 revealed several significant distal-eQTLs in trait-associated loci, many of which are in regulatory or

253 epigenetic hotspots [35,36], motivating our application of MOSTWAS in breast tumor expression

254 modeling.

255

256 Using TCGA-BRCA [24] datasets for germline SNPs, tumor mRNA expression, CpG DNA methylation,
257 and miRNA expression (N = 563), we trained MeTWAS, DePMA, and traditional local-only predictive
258 models for the mMRNA expression of all genes with significant non-zero germline heritability at P < 0.05.
259 Estimates of heritability for genes were 2-4 times larger when we considered distal variation using

260 MOSTWAS methods (Supplemental Table S1). We also found that MeTWAS and DePMA performed
261  better in cross-validation R?, with larger numbers of models at R? > 0.01 and significant germline

262 heritability using MOSTWAS models than local-only models (Figures 3D-F). Mean predictive R? for local-
263 only models was 0.011 (25% to 75% inter-quatrtile interval (0.0,0.013)), for MeTWAS models was 0.028
264 (0.013, 0.032), and for DePMA models was 0.051 (0.019, 0.068).

265

266 In addition to cross-validation, we used 351 samples in TCGA-BRCA with only genotype and mRNA

267 expression data, which were not used in model training, to test the portability of MOSTWAS models in
268  independent external cohorts. As shown in Figure 4A and Supplemental Figure S5, DePMA models
269 obtained the highest predictive adjusted R? in the external cohort (mean 0.016, 25% to 75% inter-quartile
270 interval (0.003,0.018)), with MeTWAS models (0.011, (0.002,0.014)) performing on par with local-only
271 models (0.010, (0.001, 0.015)), considering only genes that showed significant heritability and cross-

272  validation adjusted R? > 0.01 using a given method. Overall, among genes with cross-validation adjusted
273 R? > 0.01, 37 out of 280 achieved external predictive R? > 0.01 using local-only models, 89 out of 709
274 using MeTWAS, and 787 out of 1,185 using DePMA (Figure 3D-F).

275

276 Lastly, we conducted association studies for breast cancer-specific survival using local-only and the

277 MOSTWAS model with largest R? trained in TCGA-BRCA and summary-level GWAS data from iCOGs
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278  [34]. Here, we constructed the weight burden test, as described above and in Pasaniuc et al and Gusev
279 et al [4,28]. We prioritized genes with Benjamini-Hochberg (BH) [37] adjusted P < 0.05 for permutation
280 testing. Of the 122 genes that had cross-validation R? > 0.01 in TCGA-BRCA using both local-only and
281 MOSTWAS models, we found 2 survival associations with the same loci at BH FDR-adjusted P < 0.05,
282  with the strength of association marginally larger with the MOSTWAS model in each case (Supplemental
283 Figure S6). Furthermore, 115 of these loci showed larger strengths of association with survival using the
284 MOSTWAS model than the local-only model (Supplemental Figure S6). QQ-plots for TWAS Z-statistics
285 (Supplemental Figure S7) and P-values (Supplemental Figure S8) showed earlier departure from the
286  null using local-only models. These results in TCGA-BRCA demonstrated the improved transcriptomic
287 prediction and power to detect gene-trait associations using MOSTWAS over local-only modeling.

288

289 Functional hypothesis generation with MOSTWAS

290 We next conducted TWAS for breast cancer-specific survival using all genes with significant germline

291 heritability at P < 0.05 with the most predictive MOSTWAS model (i.e. MeTWAS or DePMA model with
292  the larger cross-validation R? greater than 0.01) . We identified 21 survival-associated loci at Benjamini-
293 Hochberg FDR-adjusted P < 0.05. Of these 21 loci, 11 persisted when subjected to permutation testing
294  at a significance threshold of FDR-adjusted P < 0.05 (colored red in Figure 4D and Supplemental

295 Table S4).

296

297  An advantage of MOSTWAS is its ability to aid in functional hypothesis generation for mechanistic follow-
298 up studies. The distal-SNP added-last test allows for identification of genes where trait association from
299 distal variation is significant, above and beyond the contribution of the local component. For 8 of the

300 TWAS-associated 11 loci, at FDR-adjusted P < 0.05, we found significant distal variation added-last

301 associations (see Supplemental Methods and Supplemental Table S4), suggesting that distal variation
302 may contribute to the gene-trait associations. All 8 of these loci showed distal association with the gene of
303 interest mediated through a set of four transcription factors (NAA50, ATP6V1A, ROCK2, USF3), all highly
304 interconnected within the MAPK pathway, known to be involved in breast cancer proliferation [38—43].

305  These regulatory sites serve as an example of how distal genomic regions can be prioritized for functional
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306  follow-up studies to elucidate the mechanisms underlying the SNP-gene-trait associations. These results
307  showed the strength of MOSTWAS to detect and prioritize gene-trait associations that are influenced by
308 distal variation and to aid in generating functional hypotheses for these distal relationships.

309

310 Comparison of computation time

311  To assess the difference in computational burden between local-only, MeTWAS, and DePMA modeling,
312  we randomly selected a set of 50 genes that are heritable across all three models from TCGA-BRCA and
313 computed per-gene time for fitting models using a 24-core, 3.0 GHz processor. We found that MeTWAS
314 (average of 225 seconds per gene) and DePMA (average 312 seconds per gene) took approximately 6-
315 10 times longer to fit than a traditional local-only model (average 36 seconds), as shown in

316 Supplemental Figure S9. Model-fitting here includes heritability estimation, estimating the SNP-

317  expression weights, and cross-validation. We have implemented parallelized methods to train an

318  expression model for a single gene in MOSTWAS. We also recommend fitting an entire set of genes from
319 an RNA-seq panel via a batch computing approach [57-59]. Using a parallel implementation with 5 cores
320 and batch computing, we trained MOSTWAS expression models for 15,568 genes from TCGA-BRCA in
321 approximately 28 hours.

322

323  DISCUSSION

324  Through simulation analysis and real applications using two datasets [23,24], we demonstrated that multi-
325 omic methods that prioritize distal variation in TWAS have higher predictive performance and power to
326 detect tissue-specific gene-trait associations [9,13,60], especially when distal variation contributes

327 substantially to trait heritability. We proposed two methods (MeTWAS and DePMA) for identifying and
328 including distal genetic variants in gene expression prediction models. We have provided

329 implementations of these methods in MOSTWAS (Multi-Omic Strategies for Transcriptome-Wide

330  Association Studies) R package, available freely on GitHub. MOSTWAS contains functions to train

331 expression models with both MeTWAS and DePMA and outputs models with 5-fold cross-validation R? >
332 0.01 and significant non-zero germline heritability. The package also contains functions and

333 documentation for simulation analysis [61], the weighted burden test for gene-trait associations [28] and


https://doi.org/10.1101/2020.04.17.047225
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.047225; this version posted June 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

334  follow-up permutation [4] and distal-SNPs added-last tests for TWAS using GWAS summary statistics.
335  We also provide guidelines for parallelization to distribute computational across cores.

336

337 Not only does MOSTWAS improve transcriptomic imputation both in- and out-of-sample, it also provides a
338 test for the identification of heritable mediators that affect eventual transcription of the gene of interest.
339  These identified mediators can provide insight into the underlying mechanisms for SNP-gene-trait

340  associations to improve detection of gene-trait associations and to prioritize biological units for functional
341  follow-up studies. TWAS using MOSTWAS models was able to recapitulate 5 out of 14 known

342 Alzheimer's disease risk loci in IGAP GWAS summary statistics [49], which were not recoverable with

343 local-only models. We showed the utility of the distal-SNPs added-last test to prioritize significant distal
344 SNP-gene-trait associations for follow-up mechanistic studies, which could not be identified using

345 traditional local-only TWAS. In PGC GWAS summary-level data for major depressive disorder [54], we
346  found 102 risk loci, 7 of which were replicated in independent GWAX summary statistics from the UK

347 Biobank [55]. Three of these seven loci (SYT1, CACNA2D3, ADAD2) encode important proteins involved
348 in synaptic transmission in the brain and RNA editing. Studies have shown that variation

349 at these loci may lead to loss of function at synapses and RNA editing that lead to psychiatric disorders
350 [65—-69]. Using MOSTWAS and iCOGs summary-level GWAS statistics for breast cancer-specific survival
351 [34], we identified 11 survival-associated loci that are enriched for p53 binding and oxidoreductase activity
352 pathways [62,63]. These loci include two genes (MAP3K6 and MAP4K5) encoding

353 mitogen-activated protein kinases, which are signaling transduction molecules involved in the progression
354 of aggressive breast cancer hormone subtypes [64]. None of the risk- or survival-associated loci

355 identified by MOSTWAS were detected using local-only models.

356

357 A considerable limitation of MOSTWAS is the increased computational burden over local-only modeling,
358 especially in DePMA's permutation-based mediation analysis for multiple genome-wide mediators. By
359 making some standard distributional assumptions on the SNP-mediator effect size and mediator-gene
360 effect size vectors (e.g. effect sizes following a correlated multivariate Normal distribution), we believe a

361 Monte-Carlo resampling method to estimate the null distribution of the product of these two effect size
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362 vectors may decrease computational time without significant loss in statistical power [70]. Nevertheless,
363  we believe that MOSTWAS's gain in predictive performance and power to detect gene-trait associations
364  outweighs the added computational cost. Another concern with the inclusion of distal variants is that

365 RNA-sequencing alignment errors can lead to false positives in distal-eQTL detection [71], and in turn,
366 bias the mediation modeling. Cross-mapping estimation, as described by Saha et al, can be used to flag
367 potential false positive distal-QTLs that are detected in the first step of MeTWAS and DePMA. Another
368 limitation of MOSTWAS is the general lack of rich multi-omic panels, like ROS/MAP and TCGA-BRCA,
369 that provide a large set of mediating biomarkers that may be mechanistically involved in gene regulation.
370 However, the two-step regression framework outlined in MeTWAS allows for importing mediator intensity
371 models trained in other cohorts to estimate the germline portion of total gene expression from distal

372 variants. Importing mediator models from an external cohort can also reduce the testing burden in the
373 preliminary QTL analysis in MeTWAS and DePMA.

374

375 MOSTWAS provides a user-friendly and intuitive tool that extends transcriptomic imputation and

376 association studies to include distal regulatory genetic variants. We demonstrate that the methods in

377 MOSTWAS based on two-step regression and mediation analysis generally out-perform local-only models
378 in both transcriptomic prediction and TWAS power without signs of inflated false positive rates, though at
379  the cost of longer computation time. MOSTWAS enables users to utilize rich reference multi-omic

380 datasets for enhanced gene mapping to better understand the genetic etiology of polygenic traits and
381 diseases with more direct insight into functional follow-up studies.

382

383 MATERIALS AND METHODS

384  We first outline the two methods proposed in this work: (1) mediator-enriched TWAS (MeTWAS) and (2)
385 distal-eQTL prioritization via mediation analysis (DePMA). MeTWAS and DePMA are combined in the

386 MOSTWAS R package, available at www.github.com/bhattacharya-a-bt/MOSTWAS. Full mathematical

387 details are provided in Supplemental Methods.
388

389  Transcriptomic prediction using MeTWAS


http://www.github.com/bhattacharya-a-bt/MOSTWAS
https://doi.org/10.1101/2020.04.17.047225
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.047225; this version posted June 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

390 Across all samples in the training dataset and for a single gene of interest, MeTWAS, an adaptation of
391  two-step regression, takes in a vector of gene expression, the matrix of genotype dosages local to the
392 gene of interest (default of 0.5 Megabases around the gene), and a set of mediating biomarkers that are
393 estimated to be significantly associated with the expression of the gene of interest through a QTL

394  analysis. In accord with previous studies that use penalized regression methods [35,72,73], we only

395  select the most significant gene-associated mediators as adding too many potentially redundant features
396 often leads to poorer predictive performance. This feature selections also limits computational time.

397  Through simulations, we observed that including all SNPs local to the mediators results in lower

398 predictive R? compared to the two-step regression method in MeTWAS (Supplemental Figure S10), and
399 the discrepancy between these methods is larger in practice (results not shown). These mediating

400 biomarkers can be DNA methylation sties, microRNAs, transcription factors, or any molecular feature that
401 may be genetically heritable and affect transcription.

402

403  Transcriptome prediction in MeTWAS draws from two-step regression, as summarized in Supplemental
404 Figure S1. Using the genotype local to these mediators, MeTWAS first trains a predictive model for their
405 intensities (i.e. expression, methylation, etc.) using either elastic net [26] or linear mixed modeling [27]. In
406 practice, we found that a simpler, one-step procedure of including all variants local to both the gene and
407  to potential mediators led to the distal SNP effects being estimated as zero during the regularization

408 process, even in simulations when the true distal SNP effects were nonzero (see Methods). We then use
409  these predictive models to estimate the genetically regulated intensity (GRIn) of each mediator in the

410 training set, through cross-validation. The GRIns for each mediator is then included in a matrix of fixed
411 effects. The effect sizes of the GRIns on the expression of the gene of interest are estimated using

412  ordinary least squares regression, and then the expression vector is residualized for these effect sizes.
413 Effect sizes of variants local to the gene of interest are then estimated using elastic net or linear mixed
414 modeling [26,27] on the residualized gene expression quantity. Details are provided in Supplemental
415 Methods.

416

417  Transcriptomic prediction using DePMA
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418 Expression prediction in DePMA hinges on prioritizing distal-eSNPs via mediation analysis for inclusion in
419  the final DePMA predictive model, adopting methods from previous studies [11,12,14]. A multi-omic

420 dataset with gene expression, SNP dosages, and potential mediators is first split into training-testing

421 subsets. Based on the minor allele frequencies of SNPs and total sample size, we recommend a low

422 number of splits (less than 5).

423

424 In the training set, we identify mediation test triplets that consist of (1) a gene of interest, (2) a distal-

425 eSNP associated with the expression of the gene (default of P < 107°), and (3) a set of mediating

426 biomarkers local to and associated with the distal-eSNP (default of FDR-adjusted P < 0.05). We estimate
427 the total indirect mediation effect (TME) of the distal-eSNP on the gene of interest mediated through the
428  set of these mediators, as defined by Sobel [74]. We assess the magnitude of this indirect effect using a
429 two-sided permutation test to obtain a permutation P-value, as more direct methods of computing

430 standard errors for the estimated TME are often biased [14,75]. We also provide an option to estimate an
431 asymptotic approximation to the standard error of the TME and conduct a Wald-type test. This asymptotic
432 option is significantly faster at the cost of inflated false positives (see Supplemental Methods and

433 Supplemental Figure S11). Distal-eSNPs with significantly large absolute TMEs are included with the
434  local SNPs for the gene of interest in a predictive model, fit using elastic net or linear mixed modeling

435 [26,27]. These SNP effect sizes can then be exported for imputation in external GWAS cohorts. Details
436 are provided in Supplemental Methods.

437

438 Transcriptomic imputation with MOSTWAS

439 In an external GWAS panel, if individual level genotypes are available, we construct the mediator-

440 enriched genetically regulated expression (GReX) of the gene of interest by multiplying the genotypes in
441  the GWAS panel by the effect sizes estimated in a MOSTWAS model. This GReX quantity represents the
442 component of total expression that is attributed to germline genetics and can be used in downstream

443  TWAS to detect gene-trait associations.

444

445 Tests of association
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If individual level genotypes are not available, then the weighted burden Z-test, proposed by Pasaniuc et
al and employed in FUSION [4,28], can be employed and applied to summary statistics. Briefly, the test
statistic is a linear combination of the Z-scores corresponding to the SNPs included in the MOSTWAS
model for a gene of interest, where each individual GWAS Z-score is weighted by the corresponding
MOSTWAS effect size. The covariance matrix for this weighted burden test statistic is estimated from the
linkage disequilibrium between SNPs in the eQTL panel or some publicly available ancestry-matched
reference panels. This weighted burden test statistic is compared to the standard Normal distribution for

inference.

We implement a permutation test, conditioning on the GWAS effect sizes to assess whether the same
distribution SNP effect sizes could yield a significant association by chance [4]. We permute the effect
sizes 1,000 times without replacement and recompute the weighted burden test statistic to generate

permutation null distribution. This permutation test is only conducted for overall associations at a user-

defined significance threshold (default to FDR-adjusted P < 0.05).

Lastly, we also implement a test to assess the information added from distal-eSNPs in the weighted
burden test beyond what we find from local SNPs. This test is analogous to a group added-last test in
regression analysis, applied here to GWAS summary statistics. Formally, we test whether the weighted
burden test statistic for the distal-SNPs is significantly non-zero given the observed weighted burden test
statistic for the local-SNPs. We draw conclusions from the assumption that these two weighted burden
test statistics follow bivariate Normal distribution. Full details and derivations are given in Supplemental

Methods.

Simulation framework

We first conducted simulations to assess the predictive capability and power to detect gene-trait
associations under various settings for phenotype heritability, local and distal heritability of expression,
and proportion of causal local and distal SNPs. We considered two scenarios: We considered two

scenarios for each set of simulation parameters: (1) an ideal case where the leveraged associated
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474  between the distal-SNP and gene of interest exists in both the reference and imputation panel, and (2) a
475  “null” case where the leveraged association between the distal-SNP and the gene of interest exists in the
476  reference panel but does not contribute phenotype heritability in the imputation panel.

477

478 Using genetic data from TCGA-BRCA as a reference, we used SNPs local to the gene ESR1

479  (Chromosome 6) to generate local eQTLs and SNPs local to FOXAL1 (Chromosome 14) to generate

480 distal-eQTLs for a 400-sample eQTL reference panel and 1,500-sample GWAS imputation panel, as in
481 Mancuso et al's twas_sim protocol [61]. We computed the adjusted predictive R? in the reference panel
482 for the trained MeTWAS and DePMA models and tested the gene-trait association in the GWAS panel
483 using the weighted burden test. The association study power was defined as the proportion of gene-trait
484 associations with P < 2.5 x 107°, the Bonferroni-corrected significance threshold for testing 20,000

485 independent genes. With these simulated datasets, we also assessed the power of the distal added-last
486  test by computing the proportion of significant distal associations, conditional on the local association at
487 FDR-adjusted P < 0.05. Full details are provided in Supplemental Methods.

488

489 Data acquisition

490  Multi-omic data from ROS/MAP

491  We retrieved imputed genotype, RNA expression, miRNA expression, and DNA methylation data from
492  The Religious Orders Study and Memory and Aging Project (ROS/MAP) Study for samples derived from
493 human pre-frontal cortex [23,82,83]. We excluded variants (1) with a minor allele frequency of less than
494 1% based on genotype dosage, (2) that deviated significantly from Hardy-Weinberg equilibrium (P <

495 10~8) using appropriate functions in PLINK v1.90b3 [79,80], and (3) located on sex chromosomes. Final
496 ROS/MAP genotype data was coded as dosages, with reference and alternative allele coding as in

497 dbSNP. We intersected to the subset of samples assayed for genotype (at 4,141,537 variants), RNA-seq
498 (15,857 genes), miRNA-seq (247 miRNAs), and DNA methylation (391,626 CpG sites), resulting in a total
499 of 370 samples. Again, we only considered the autosome in our analyses. We adjusted gene and miRNA
500 expression and DNA methylation by relevant covariates (10 principal components of the genotype

501 age at death, sex, and smoking status).
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502

503 Multi-omic data from TCGA-BRCA

504  We retrieved genotype, RNA expression, miRNA expression, and DNA methylation data for breast cancer
505 indications in The Cancer Genome Atlas (TCGA). Birdseed genotype files of 914 subjects were

506 downloaded from the Genome Data Commons (GDC) legacy (GRCh37/hg19) archive. Genotype

507 files were merged into a single binary PLINK file format (BED/FAM/BIM) and imputed using the October
508 2014 (v.3) release of the 1000 Genomes Project dataset as a reference panel in the standard two-stage
509 imputation approach, using SHAPEIT v2.87 for phasing and IMPUTE v2.3.2 for imputation [76-78]. We
510 excluded variants (1) with a minor allele frequency of less than 1% based on genotype dosage, (2) that
511 deviated significantly from Hardy-Weinberg equilibrium (P < 1078) using appropriate functions in PLINK
512 v1.90b3 [79,80], and (3) located on sex chromosomes. Final TCGA genotype data was coded as

513  dosages, with reference and alternative allele coding as in dbSNP.

514

515  TCGA level-3 normalized RNA-seq expression data, miRNA-seq expression data, and DNA methylation
516 data collected on lllumina Infinium HumanMethylation450 BeadChip were downloaded from the Broad
517 Institute's GDAC Firehose (2016/1/28 analysis archive) via FireBrowse [24,81]. We intersected to the
518 subset of samples assayed for genotype (4,564,962 variants), RNA-seq (15,568 genes), miRNA-seq
519 (1,046 miRNAs), and DNA methylation (485,578 CpG sites), resulting in a total of 563 samples. We only
520 considered the autosome in our analyses. We adjusted gene and miRNA expression and DNA

521 methylation by relevant covariates (10 genotype principal components, tumor stage at diagnosis, and
522 age).

523

524  Summary statistics for downstream association studies

525  We conducted TWAS association tests using relevant GWAS summary statistics for breast cancer-

526  specific survival, risk of late-onset Alzheimer's disease, and risk of major depressive disorder. We

527 downloaded iCOGs GWAS summary statistics for breast cancer-specific survival for women of European

528 ancestry [34]. All studies and funders as listed in Michailidou et al [32,33] and in Guo et al [34] are
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529 acknowledged for their contributions. Furthermore, we downloaded GWAS summary statistics for risk of
530 late-onset Alzheimer's disease from the International Genomics of Alzheimer's Project (IGAP) [49].

531

532  We also downloaded GWAS and genome-wide association by proxy (GWAX) summary statistics for risk
533 of major depressive disorder (MDD) from the Psychiatric Genomics Consortium [54] and the UK Biobank
534 [55], respectively. IGAP is a large two-stage study based on GWAS on individuals of European ancestry.
535 In stage 1, IGAP used genotyped and imputed data on 7,055,881 single nucleotide polymorphisms

536  (SNPs) to meta-analyze four previously-published GWAS datasets consisting of 17,008 Alzheimer's

537 disease cases and 37,154 controls (The European Alzheimer's disease Initiative — EADI, the Alzheimer
538 Disease Genetics Consortium — ADGC, The Cohorts for Heart and Aging Research in Genomic

539 Epidemiology consortium — CHARGE, The Genetic and Environmental Risk in AD consortium - GERAD).
540 In stage 2, 11,632 SNPs were genotyped and tested for association in an independent set of 8,572

541  Alzheimer's disease cases and 11,312 controls. Finally, a meta-analysis was performed combining results
542 from stages 1 and 2.

543

544 Model training and association testing in ROS/MAP and TCGA-BRCA

545 Using both ROS/MAP and TCGA-BRCA multi-omic data, we first identified associations between SNPs
546 and mediators (transcription factor genes, miRNAs, and CpG methylation sites), mediators and gene

547 expression, and SNPs and gene expression using MatrixEQTL [84]. These QTL analyses were adjusted
548 for 10 genotype principal components to account for population stratification, along with other relevant
549 covariates (age, sex, and smoking status for ROS/MAP; tumor stage and age for TCGA-BRCA). For

550 MeTWAS modeling, we considered the top 5 mediators associated with the gene of interest, assessed by
551  the smallest FDR-adjusted P < 0.05. For DePMA models, we considered all distal-SNPs associated with
552 gene expression at raw P < 107° and any local mediators at FDR-adjusted P < 0.05. Local windows for
553  all models were set to 0.5 Mb. For association testing, we considered only genes with significant non-zero
554  estimated total heritability by GCTA-LDMS [85] and cross-validation adjusted R? > 0 across 5 folds. The

555 MeTWAS or DePMA model with larger cross-validation R? was considered as the final MOSTWAS model
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556  for each gene. All other modeling options in MeTWAS and DePMA were set to the defaults provided by
557  the MOSTWAS package.

558

559 Using ROS/MAP models, we first conducted TWAS burden testing in GWAS summary statistics for late-
560 onset Alzheimer's disease risk from IGAP, prioritized 14 known risk loci identified from literature [49-52].
561  We subjected TWAS-identified loci at FDR-adjusted P < 0.05 to permutation testing, and any loci that
562 persisted past permutation testing to distal variation added-last testing. We similarly conducted TWAS
563  for risk of major depressive disorder (MDD) using GWAS summary statistics from PGC (excluding data
564 from 23andMe and the UK Biobank) with the necessary follow-up tests. For any TWAS-identified loci

565 that persisted permutation in PGC, we further conducted TWAS in GWAX summary statistics for MDD
566  risk in the UK Biobank [55] for replication.

567

568 Using TCGA-BRCA models, we conducted TWAS burden testing [4,28] in ICOGs GWAS summary

569 statistics for breast cancer-specific survival in a cohort of women of European ancestry. We subjected
570  TWAS-identified loci at Benjamini-Hochberg [37] FDR-adjusted P < 0.05 to permutation testing, and any
571 locus that persisted past permutation testing to distal variation added-last testing.

572
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FIGURES

Figure 1: Example of a biological mechanism MOSTWAS leverages in its predictive models. Here,
assume a SNP (in green) within a regulatory element affects the transcription of gene X that codes for a
transcription factor. Transcription factor X then binds to a distal regulatory region and affects the
transcription of gene G. The association between the expression of gene X and gene G is leveraged in the
first step of MeTWAS. A distal-eQTL association is also conferred between this distal-SNP and the eGene
G, which is leveraged in the DePMA training process.
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Figure 2: Comparison of TWAS power via simulations using MOSTWAS and local-only models. (A)
Proportion of gene-trait associations at P < 2.5 x 107¢ using local-only (red) and the most predictive
MOSTWAS (blue) models across various local and distal expression heritabilities, trait heritability, and
causal proportions. (B) Proportion of significant gene-trait associations across the same simulation
parameters with no distal effect on the trait in the simulated external GWAS panel.
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Figure 3: Predictive adjusted R? from cross-validation across local-only, MeTWAS, and DePMA models.
If a given gene does not have h? > 0 with P < 0.05, we set the predictive adjusted R? to 0 here for
comparison. The top row compares local-only and MeTWAS, middle row compares local-only and
DePMA, and the bottom row compares MeTWAS and DePMA. The left column has performance in
ROS/MAP, while the right column has performance in TCGA-BRCA. All axes indicate the CV adjusted R?
for different models.
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Figure 4: External validation of MOSTWAS and gene-trait associations using MOSTWAS models. (A)
Median predictive adjusted $R”*2$ in held-out cohorts from TCGA-BRCA and ROS/MAP in local-only,
MeTWAS, and DePMA models that have in-sample significant heritability. The interval shows the 25%
and 75% gquantiles for external cohort predictive R?. (B) Associations with 11 known Alzheimer's risk loci,
as identified in literature, using MOSTWAS, local-only, and TIGAR Dirichlet process regression (DPR).
Loci are labeled with P if the permutation test achieves FDR-adjusted P < 0.05 and D if the added-last
test achieves FDR-adjusted P < 0.05. (C) TWAS associations for major depressive disorder risk using
GWAS summary statistics from PGC. Loci are colored red if the overall association achieves FDR-
adjusted P < 0.05 and the permutation test also achieves FDR-adjusted P < 0.05. We label the 7 loci
that were independently validated with UK Biobank GWAX summary statistics at FDR-adjusted P < 0.05
for both the overall association test and permutation test. (D) TWAS associations for breast cancer-
specific survival using GWAS summary statistics from iCOGs. Loci are colored red and labeled if the
overall association achieves FDR-adjusted P < 0.05.
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