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ABSTRACT 8 

Traditional predictive models for transcriptome-wide association studies (TWAS) consider only single 9 

nucleotide polymorphisms (SNPs) local to genes of interest and perform parameter shrinkage with a 10 

regularization process. These approaches ignore the effect of distal-SNPs or other molecular effects 11 

underlying the SNP-gene association. Here, we outline multi-omics strategies for transcriptome 12 

imputation from germline genetics to allow more powerful testing of gene-trait associations by prioritizing 13 

distal-SNPs to the gene of interest. In one extension, we identify mediating biomarkers (CpG sites, 14 

microRNAs, and transcription factors) highly associated with gene expression and train predictive models 15 

for these mediators using their local SNPs. Imputed values for mediators are then incorporated into the 16 

final predictive model of gene expression, along with local SNPs. In the second extension, we assess 17 

distal-eQTLs (SNPs associated with genes not in a local window around it) for their mediation effect 18 

through mediating biomarkers local to these distal-eSNPs. Distal-eSNPs with large indirect mediation 19 

effects are then included in the transcriptomic prediction model with the local SNPs around the gene of 20 

interest. Using simulations and real data from ROS/MAP brain tissue and TCGA breast tumors, we show 21 

considerable gains of percent variance explained (1-2% additive increase) of gene expression and TWAS 22 

power to detect gene-trait associations.  This integrative approach to transcriptome-wide imputation and 23 

association studies aids in identifying the complex interactions underlying genetic regulation within a 24 

tissue and important risk genes for various traits and disorders. 25 

 26 
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Transcriptome-wide association studies (TWAS) are a powerful strategy to study gene-trait associations 28 

by integrating genome-wide association studies (GWAS) with gene expression datasets. TWAS increases 29 

study power and interpretability by mapping genetic variants to genes. However, traditional TWAS 30 

consider only variants that are close to a gene and thus ignores important variants far away from the 31 

gene that may be involved in complex regulatory mechanisms. Here, we present MOSTWAS (Multi-Omic 32 

Strategies for TWAS), a suite of tools that extends the TWAS framework to include these distal variants. 33 

MOSTWAS leverages multi-omic data of regulatory biomarkers (transcription factors, microRNAs, 34 

epigenetics) and borrows from techniques in mediation analysis to prioritize distal variants that are around 35 

these regulatory biomarkers. Using simulations and real public data from brain tissue and breast tumors, 36 

we show that MOSTWAS improves upon traditional TWAS in both predictive performance and power to 37 

detect gene-trait associations. MOSTWAS also aids in identifying possible mechanisms for gene 38 

regulation using a novel added-last test that assesses the added information gained from the distal 39 

variants beyond the local association. In conclusion, our method aids in detecting important risk genes for 40 

traits and disorders and the possible complex interactions underlying genetic regulation within a tissue. 41 

 42 
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 45 

INTRODUCTION 46 

Genomic methods that borrow information from multiple data sources, or “omics” assays, offer 47 

advantages in interpretability, statistical efficiency, and opportunities to understand causal molecular 48 

pathways in disease regulation [1,2]. Transcriptome-wide associations studies (TWAS) aggregate genetic 49 

information into functionally relevant testing units that map to genes and their expression in a trait-50 

relevant tissue. This gene-based approach combines the effects of many regulatory variants into a single 51 

testing unit that can increase study power and aid in interpretability of trait-associated genomic loci [3,4]. 52 

However, traditional TWAS methods, like PrediXcan [3] and FUSION [4], focus on local genetic regulation 53 

of transcription. These methods ignore significant portions of heritable expression that can be attributed to 54 

distal genetic variants that may indicate complex mechanisms contributing to gene regulation. 55 
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 56 

Recent work in transcriptional regulation has estimated that distal genetic traits account for up to 70% of 57 

the variance in gene expression [5,6]. These results accord with Boyle et al’s omnigenic model, proposing 58 

that regulatory networks are so interconnected that a majority of genetic variants in the genome, local or 59 

distal, have indirect effects on the expression level of any particular gene [6,7]. In fact, work by Sinnott-60 

Armstrong et al showed huge enrichment of significant genetic signal near genes involved in the relevant 61 

pathways for biologically simple traits, even for phenotypes largely thought to be simpler than complex 62 

diseases [8]. Together, these observations suggest that the majority of phenotype variance, even for traits 63 

commonly believed to be simpler than complex diseases like cancer, is not driven by variants in core 64 

genes, but rather from thousands of variants spreading across most of the genome. 65 

 66 

Many groups have leveraged the omnigenic model to identify distal expression quantitative loci (eQTLs) 67 

by testing the effect of a distal-eSNP on an gene mediated through a set of genes local to the distal-68 

eSNP, where the SNP and gene are more than 0.5 Megabases (Mb) away. These studies draw the 69 

conclusion that many distal-eQTLs are often eQTLs for one of more of their local genes [9–15]. It has 70 

been shown previously that distal-eQTLs found in regulatory hotspots are often cell-type specific [9,13,16] 71 

and hence carry biologically relevant signal when studying bulk tissue with heterogeneous cell-types (e.g. 72 

cancerous tumors or the brain). More recently, the concepts of distal-eQTLs residing in or near regulatory 73 

elements have been integrated with multi-omics data and biological priors to reconstruct molecular 74 

networks and hypothesize cell-regulatory mechanisms [17]. 75 

 76 

Variant-mapping methods have also shown the utility of integrating molecular data beyond 77 

transcriptomics. Deep learning methods have been employed to link GWAS-identified variants to nearby 78 

regulatory mechanisms to generate functional hypotheses for SNP-trait associations [18–20]. These 79 

ideas have been extended to TWAS: the EpiXcan method demonstrates that incorporating epigenetic 80 

information into transcriptomic prediction models generally improves predictive performance and power in 81 

detecting gene-trait associations in local-only TWAS [21]. Wheeler et al have leveraged TWAS imputation 82 

to show that trans-acting genes are often found in transcriptional regulation pathways and are likely to be 83 
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associated with complex traits [22]. Thus, it is imperative to prioritize distal variants that are trans-acting to 84 

fully capture heritable gene expression that is associated with complex diseases in TWAS. 85 

 86 

To this end, we developed two extensions to TWAS, borrowing information from other omics assays to 87 

enrich or prioritize mediator relationships of eQTLs in expression models. Using simulations and data 88 

from Religious Orders Study and the Rush Memory and Aging Project (ROS/MAP) [23] and The Cancer 89 

Genome Atlas (TCGA) [24], we show considerable improvements in transcriptomic prediction and power 90 

to detect gene-trait associations. These Multi-Omic Strategies for Transcriptome-Wide Association 91 

Studies are curated in the R package MOSTWAS, available freely at https://bhattacharya-a-92 

bt.github.io/MOSTWAS. 93 

 94 

RESULTS 95 

Overview of MOSTWAS 96 

MOSTWAS incorporates two methods to include distal-eQTLs in transcriptomic prediction: mediator-97 

enriched TWAS (MeTWAS) and distal-eQTL prioritization via mediation analysis (DePMA). Here, we refer 98 

to an eQTL as a SNP with an association with the expression of a gene, and a distal-eQTL is more than 99 

0.5 Mb away from the eGene.  As large proportions of total heritable gene expression are explained by 100 

distal-eQTLs local to regulatory hotspots [6,11,13,14], we used data-driven approaches to either identify 101 

mediating regulatory biomarkers (MeTWAS) or distal-eQTLs mediated by local biomarkers (DePMA) to 102 

increase predictive power for gene expression and power to detect gene-trait associations. These 103 

methods are described in Methods with an algorithmic summary in Supplemental Figure S1. 104 

 105 

Figure 1 provides an example of the biological mechanisms MOSTWAS attempts to leverage in its 106 

predictive models for a gene G of interest: here, without loss of generality of the regulatory mechanism, 107 

assume a SNP within a regulatory element affects the transcription of gene 𝑋 that codes for a 108 

transcription factor. Transcription factor X then binds to a distal regulatory region and affects the 109 

transcription of gene 𝐺. Methodologically,  110 
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• MeTWAS first detects the association between the expression of gene 𝑋 and expression of gene 111 

𝐺. It proceeds upstream in the regulatory pathway to the genetic locus around gene 𝑋 and builds 112 

a predictive model for the expression of gene 𝑋. Imputed expression of gene 𝑋 (imputed via 113 

cross-validation) is then included as a fixed effect in the predictive model of gene 𝐺, along with 114 

the genetic variants local to gene 𝐺. This model is fit using a two-stage regression model [25], 115 

first fitting the imputed mediators using least squares regression and then the local genotypes 116 

using elastic net regression [26] or linear mixed modeling [27]. 117 

• DePMA first detects the distal-eQTL association between the distal SNP and expression of gene 118 

𝐺. It then proceeds downstream in the regulatory pathway from the distal SNP to identify whether 119 

there is a strong association between the SNP and the expression of the local gene 𝑋. Using 120 

mediation analysis, if the indirect effect of the SNP on gene 𝐺 mediated through gene 𝑋 is 121 

significantly large, the SNP is included in the final predictive model for the expression of gene 𝐺, 122 

fit using elastic net regression [26] or linear mixed modeling [27]. 123 

MeTWAS and DePMA can consider any set of regulatory elements as potential mediators (e.g. 124 

transcription factors, microRNAs, CpG methylation sites, chromatin-binding factors, etc.). 125 

 126 

If individual genotype data is available in an external GWAS panel, a MeTWAS or DePMA model may be 127 

used to impute tissue-specific expression. If only summary statistics are available in the GWAS panel, the 128 

Imp-G weighted burden testing framework [28] as implemented in FUSION [4] can be applied. We further 129 

implement a permutation test to assess whether the overall gene-trait association is significant, 130 

conditional on the GWAS effect sizes [4] and a novel distal-SNPs added-last test that assesses the added 131 

information from distal-SNPs given the association from the local SNPs (Methods). 132 

 133 

Simulation analysis 134 

We first conducted simulations to assess the power to predict gene expression and power to detect gene-135 

trait associations under various settings for phenotype heritability, local heritability of expression, distal 136 

heritability of expression, and proportion of causal local and distal SNPs for MeTWAS and DePMA (full 137 

simulation details in Methods). Using genetic data from TCGA-BRCA as a reference, we used SNPs 138 
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local to the gene ESR1 (Chromosome 6) to generate local eQTLs and SNPs local to FOXA1 139 

(Chromosome 14) to generate distal-eQTLs for a 400-sample eQTL reference panel and 1,500-sample 140 

GWAS imputation panel. We considered two scenarios for each set of simulation parameters: (1) an ideal 141 

case where the leveraged associated between the distal-SNP and gene of interest exists in both the 142 

reference and imputation panel, and (2) a “null” case where the leveraged association between the distal-143 

SNP and the gene of interest exists in the reference panel but does not contribute to phenotype 144 

heritability in the imputation panel. Though the choice of these loci was arbitrary for constructing the 145 

simulation, there is evidence that ESR1 and FOXA1 are highly co-expression in breast tumors, and local-146 

eQTLs of FOXA1 have been shown to be distal-eQTLs of ESR1 [29]. 147 

 148 

In these simulation studies, we found that MOSTWAS methods performed well in prediction across 149 

different causal proportions and local and distal mRNA expression heritabilities and generally outperform 150 

local-only modelling. Furthermore, across all simulation settings, we observed that MOSTWAS showed 151 

greater or nearly equal power to detect gene-trait associations compared to local-only models. We found 152 

that, under the setting that distal-eQTLs contributes to trait heritability, the best MOSTWAS model had 153 

greater power to detect gene-trait associations than the local-only models, with the advantage in power 154 

over local-only models increasing with increased distal expression heritability (Figure 2A). Similarly, we 155 

found that as the proportion of total expression heritability attributed to distal variation increased, the 156 

positive difference in predictive performance between the best MOSTWAS model and the local-only 157 

model increased (Supplemental Figure S2). Under the “null” case that distal variation influences 158 

expression only in the reference panel, as expected, we observed that local-only and MOSTWAS models 159 

perform similarly. Only at low causal proportions (causal proportion of 0.01) and low trait heritability (trait 160 

heritability of 0.2), did local-only models have a modest advantage in TWAS power over MOSTWAS 161 

models (Figure 2B and Supplemental Data). This difference was reduced at larger causal proportions 162 

and trait heritabilities (Figure 2B). Using these same simulation parameters, we also simulated the false 163 

positive rate (FPR), defined as the proportion of positive associations at 𝑃 <  0.05 under the null, where 164 

the phenotype trait in the GWAS panel was permuted 1,000 times across 20 sets of simulations. We 165 

found that the FPR was generally around 0.05 for all methods (Supplemental Figure S3). 166 
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 167 

The power of the distal-SNPs added-last test increased significantly as both the sample sizes of the eQTL 168 

reference panel and the GWAS imputation panel increased (Supplemental Figure S4). At a sample size 169 

of 10,000 in the GWAS panel with summary statistics (a suitably large GWAS) and a sample size greater 170 

than 200 in the eQTL panel, MOSTWAS obtained over 65% power to detect significant distal significant 171 

associations (Supplemental Figure S4). Overall, these results demonstrated the advantages of 172 

MOSTWAS methods for modeling the complex genetic architecture of transcriptomes, especially when 173 

distal variation has a large effect on the heritability of both the gene and trait of interest. Full simulation 174 

results are provided in Supplemental Data, accessible at https://zenodo.org/record/3755919 [30]. The 175 

MOSTWAS package also contains functions for replicating this simulation framework. 176 

 177 

Real data applications in brain tissue 178 

We applied MOSTWAS to multi-omic data derived from samples of prefrontal cortex, a tissue that has 179 

been used previously in studying neuropsychiatric traits and disorders with TWAS [44,45]. There is ample 180 

evidence from studies of brain tissue, especially the prefrontal cortex, that non-coding variants may 181 

regulate distal genes [44,46,47]; in fact, an eQTL analysis by Sng et al found that approximately 20-40% 182 

of detected eQTLs in the frontal cortex can be considered trans-acting [48]. Thus, the prefrontal cortex in 183 

the context of neuropsychiatric disorders provides a prime example to assess MOSTWAS. 184 

 185 

Using ROS/MAP data on germline SNPs, tumor mRNA expression, CpG DNA methylation, and miRNA 186 

expression (𝑁 =  370), we trained MeTWAS, DePMA, and traditional local-only predictive models for the 187 

tumor expression of all genes with significant non-zero heritability. Estimates of gene expression 188 

heritability were considerably larger when we considered distal variation with MOSTWAS (Supplemental 189 

Table S1). We also found that MeTWAS and DePMA performed better in cross-validation 𝑅2 than local-190 

only models (Figures 3A-C). Mean predictive 𝑅2 for local-only models was 0.029 (25% to 75% inter-191 

quartile interval (0.0,0.015)), for MeTWAS models was 0.079 (0.019, 0.082), and for DePMA models was 192 

0.045 (0.013, 0.037). 193 

 194 
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We used 87 samples in ROS/MAP with genotype and mRNA expression data that were not used in 195 

model training to test portability of MOSTWAS models in independent cohorts. As shown in Figure 4A 196 

and Supplemental Figure S5, DePMA models obtained the highest predictive adjusted 𝑅2 in the external 197 

cohort (0.042 (0.009, 0.057)), with MeTWAS (0.040 (0.010, 0.054)) also outperforming local-only models 198 

(0.031 (0.007, 0.039)). Overall, among genes with cross-validation adjusted 𝑅2 ≥ 0.01, 187 out of 267 199 

genes achieved external predictive 𝑅2 ≥ 0.01 using local-only models, 683 out of 911 using MeTWAS, 200 

and 2,135 out of 2,934 using DePMA (Figure 3A-C). 201 

 202 

We next conducted association tests for known Alzheimer’s disease risk loci using local-only and the best 203 

MOSTWAS model (selected by comparing MeTWAS and DePMA cross-validation 𝑅2) trained in 204 

ROS/MAP and summary-level GWAS data from the International Genomics of Alzheimer’s Project (IGAP) 205 

[49]. From literature, we identified 14 known common and rare loci of late-onset Alzheimer’s disease that 206 

have been mapped to genes [49–52], 11 of which had MOSTWAS models with cross-validation 𝑅2 ≥207 

0.01. Five of these 11 loci (APOE, CLU, PLCG2, SORL1, ZCWPW1) showed significant association at 208 

FDR-adjusted 𝑃 <  0.05 (Supplemental Table S2). We also compared these 11 associations to those 209 

identified by local-only models (PrediXcan [3] and TIGAR [53]), with raw 𝑃-values of association shown in 210 

Figure 4B. MOSTWAS showed stronger associations at 8 of these loci than both local-only and DPR 211 

models. We followed up on the 5 significantly associated loci using the permutation and added-last tests 212 

(Methods and Supplemental Methods). Three of these loci (APOE, SORL1, ZCWPW1) showed 213 

significant associations, conditional on variants with large GWAS effect sizes (permutation test significant 214 

at FDR-adjusted 𝑃 < 0.05). These three loci also showed significant associations with distal variants, 215 

above and beyond the association with local variants, at FDR-adjusted 𝑃 < 0.05 (Supplemental Table 216 

S2). 217 

 218 

We then conducted a transcriptome-wide association study for risk of major depressive disorder (MDD) 219 

using summary statistics from the Psychiatric Genomics Consortium (PGC) genome-wide meta-analysis 220 

that excluded data from the UK Biobank and 23andMe [54]. QQ-plots for TWAS 𝑍-statistics and 𝑃-values 221 

are provided in Supplemental Figure S7 and Supplemental Figure S8 for both local-only and 222 
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MOSTWAS models, showing earlier departure from the null using local-only models compared to 223 

MOSTWAS. Overall, using all heritable genes with cross-validation 𝑅2 with the best MOSTWAS model in 224 

ROS/MAP, we identified 102 MDD risk-associated loci with FDR-adjusted 𝑃 <  0.05 that persisted when 225 

subjected to permutation testing at FDR-adjusted 𝑃 < 0.05 (colored red in Figure 4C). We downloaded 226 

genome-wide association study by proxy (GWAX) summary statistics from the UK Biobank [55] for 227 

replication analysis of loci identified using PGC summary statistics. We found 7 of these 102 loci (labeled 228 

in Figure 4C and listed in Supplemental Table S3) also showed an association in UK Biobank GWAS 229 

that was in the same direction as in PGC. In comparison, using local-only models, we identified 11 genes 230 

with significant association with MDD risk at FDR-adjusted 𝑃 < 0.05 that persisted after permutation 231 

testing; none of these loci showed significant associations in the UK Biobank GWAX in the same direction 232 

as in PGC. These replication rates between MOSTWAS and local-only models were similar (accounting 233 

for the total number of associations), highlighting that the inclusion of distal variation does not hinder the 234 

replicability of MOSTWAS associations in comparison to local-only models [55,56]. Local-only results are 235 

provided in Supplemental Data. It is important to note here that the UK Biobank dataset is not a GWAS 236 

dataset as it defined a case of MDD as any subject who has the disorder or a first-degree relative with 237 

MDD. Hence, the study forfeits study power to detect gene-trait associations for MDD [55,56]. 238 

Nonetheless, we believe that strong prediction in independent cohorts and TWAS results across two 239 

independent cohorts provided an example of the robustness of MOSTWAS models. 240 

 241 

In summary, we observed that MOSTWAS models generally had higher predictive 𝑅2 than local-only 242 

models both in training and independent cohorts. We also found that MOSTWAS recapitulated 5 known 243 

Alzheimer's risk loci that were not detected by local-only modeling (both PrediXcan [3] and TIGAR [53]), 3 244 

of which had significant distal associations above and beyond the information in local variants using our 245 

added-last test. We also illustrated that some MDD-risk-associated loci detected by MOSTWAS in a 246 

GWAS cohort were replicable in an independent GWAX cohort [54,55]. 247 

 248 

Real data applications in breast cancer tumors 249 
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We applied MOSTWAS using breast tumor multi-omics and disease outcomes, motivated by recent 250 

GWAS and TWAS for breast cancer-specific survival [31–35]. Previous breast tumor eQTL studies have 251 

revealed several significant distal-eQTLs in trait-associated loci, many of which are in regulatory or 252 

epigenetic hotspots [35,36], motivating our application of MOSTWAS in breast tumor expression 253 

modeling.  254 

 255 

Using TCGA-BRCA [24] datasets for germline SNPs, tumor mRNA expression, CpG DNA methylation, 256 

and miRNA expression (𝑁 =  563), we trained MeTWAS, DePMA, and traditional local-only predictive 257 

models for the mRNA expression of all genes with significant non-zero germline heritability at 𝑃 <  0.05. 258 

Estimates of heritability for genes were 2-4 times larger when we considered distal variation using 259 

MOSTWAS methods (Supplemental Table S1). We also found that MeTWAS and DePMA performed 260 

better in cross-validation 𝑅2, with larger numbers of models at 𝑅2 ≥ 0.01 and significant germline 261 

heritability using MOSTWAS models than local-only models (Figures 3D-F). Mean predictive 𝑅2 for local-262 

only models was 0.011 (25% to 75% inter-quartile interval (0.0,0.013)), for MeTWAS models was 0.028 263 

(0.013, 0.032), and for DePMA models was 0.051 (0.019, 0.068). 264 

 265 

In addition to cross-validation, we used 351 samples in TCGA-BRCA with only genotype and mRNA 266 

expression data, which were not used in model training, to test the portability of MOSTWAS models in 267 

independent external cohorts. As shown in Figure 4A and Supplemental Figure S5, DePMA models 268 

obtained the highest predictive adjusted 𝑅2 in the external cohort (mean 0.016, 25% to 75% inter-quartile 269 

interval (0.003,0.018)), with MeTWAS models (0.011, (0.002,0.014)) performing on par with local-only 270 

models (0.010, (0.001, 0.015)), considering only genes that showed significant heritability and cross-271 

validation adjusted 𝑅2 ≥ 0.01 using a given method. Overall, among genes with cross-validation adjusted 272 

R2 ≥ 0.01, 37 out of 280 achieved external predictive 𝑅2 ≥ 0.01 using local-only models, 89 out of 709 273 

using MeTWAS, and 787 out of 1,185 using DePMA (Figure 3D-F). 274 

 275 

Lastly, we conducted association studies for breast cancer-specific survival using local-only and the 276 

MOSTWAS model with largest 𝑅2 trained in TCGA-BRCA and summary-level GWAS data from iCOGs 277 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.04.17.047225doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047225
http://creativecommons.org/licenses/by/4.0/


[34]. Here, we constructed the weight burden test, as described above and in Pasaniuc et al and Gusev 278 

et al [4,28]. We prioritized genes with Benjamini-Hochberg (BH) [37] adjusted 𝑃 <  0.05 for permutation 279 

testing. Of the 122 genes that had cross-validation 𝑅2 ≥ 0.01 in TCGA-BRCA using both local-only and 280 

MOSTWAS models, we found 2 survival associations with the same loci at BH FDR-adjusted 𝑃 < 0.05, 281 

with the strength of association marginally larger with the MOSTWAS model in each case (Supplemental 282 

Figure S6). Furthermore, 115 of these loci showed larger strengths of association with survival using the 283 

MOSTWAS model than the local-only model (Supplemental Figure S6). QQ-plots for TWAS 𝑍-statistics 284 

(Supplemental Figure S7) and 𝑃-values (Supplemental Figure S8) showed earlier departure from the 285 

null using local-only models. These results in TCGA-BRCA demonstrated the improved transcriptomic 286 

prediction and power to detect gene-trait associations using MOSTWAS over local-only modeling. 287 

 288 

Functional hypothesis generation with MOSTWAS 289 

We next conducted TWAS for breast cancer-specific survival using all genes with significant germline 290 

heritability at 𝑃 <  0.05 with the most predictive MOSTWAS model (i.e. MeTWAS or DePMA model with 291 

the larger cross-validation 𝑅2 greater than 0.01) . We identified 21 survival-associated loci at Benjamini-292 

Hochberg FDR-adjusted 𝑃 <  0.05. Of these 21 loci, 11 persisted when subjected to permutation testing 293 

at a significance threshold of FDR-adjusted 𝑃 <  0.05 (colored red in Figure 4D and Supplemental 294 

Table S4). 295 

 296 

An advantage of MOSTWAS is its ability to aid in functional hypothesis generation for mechanistic follow-297 

up studies. The distal-SNP added-last test allows for identification of genes where trait association from 298 

distal variation is significant, above and beyond the contribution of the local component. For 8 of the 299 

TWAS-associated 11 loci, at FDR-adjusted 𝑃 <  0.05, we found significant distal variation added-last 300 

associations (see Supplemental Methods and Supplemental Table S4), suggesting that distal variation 301 

may contribute to the gene-trait associations. All 8 of these loci showed distal association with the gene of 302 

interest mediated through a set of four transcription factors (NAA50, ATP6V1A, ROCK2, USF3), all highly 303 

interconnected within the MAPK pathway, known to be involved in breast cancer proliferation [38–43]. 304 

These regulatory sites serve as an example of how distal genomic regions can be prioritized for functional 305 
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follow-up studies to elucidate the mechanisms underlying the SNP-gene-trait associations. These results 306 

showed the strength of MOSTWAS to detect and prioritize gene-trait associations that are influenced by 307 

distal variation and to aid in generating functional hypotheses for these distal relationships. 308 

 309 

Comparison of computation time 310 

To assess the difference in computational burden between local-only, MeTWAS, and DePMA modeling, 311 

we randomly selected a set of 50 genes that are heritable across all three models from TCGA-BRCA and 312 

computed per-gene time for fitting models using a 24-core, 3.0 GHz processor. We found that MeTWAS 313 

(average of 225 seconds per gene) and DePMA (average 312 seconds per gene) took approximately 6-314 

10 times longer to fit than a traditional local-only model (average 36 seconds), as shown in 315 

Supplemental Figure S9. Model-fitting here includes heritability estimation, estimating the SNP-316 

expression weights, and cross-validation. We have implemented parallelized methods to train an 317 

expression model for a single gene in MOSTWAS. We also recommend fitting an entire set of genes from 318 

an RNA-seq panel via a batch computing approach [57–59]. Using a parallel implementation with 5 cores 319 

and batch computing, we trained MOSTWAS expression models for 15,568 genes from TCGA-BRCA in 320 

approximately 28 hours. 321 

 322 

DISCUSSION 323 

Through simulation analysis and real applications using two datasets [23,24], we demonstrated that multi-324 

omic methods that prioritize distal variation in TWAS have higher predictive performance and power to 325 

detect tissue-specific gene-trait associations [9,13,60], especially when distal variation contributes 326 

substantially to trait heritability. We proposed two methods (MeTWAS and DePMA) for identifying and 327 

including distal genetic variants in gene expression prediction models. We have provided 328 

implementations of these methods in MOSTWAS (Multi-Omic Strategies for Transcriptome-Wide 329 

Association Studies) R package, available freely on GitHub. MOSTWAS contains functions to train 330 

expression models with both MeTWAS and DePMA and outputs models with 5-fold cross-validation 𝑅2 ≥331 

0.01 and significant non-zero germline heritability. The package also contains functions and 332 

documentation for simulation analysis [61], the weighted burden test for gene-trait associations [28] and 333 
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follow-up permutation [4] and distal-SNPs added-last tests for TWAS using GWAS summary statistics. 334 

We also provide guidelines for parallelization to distribute computational across cores. 335 

 336 

Not only does MOSTWAS improve transcriptomic imputation both in- and out-of-sample, it also provides a 337 

test for the identification of heritable mediators that affect eventual transcription of the gene of interest. 338 

These identified mediators can provide insight into the underlying mechanisms for SNP-gene-trait 339 

associations to improve detection of gene-trait associations and to prioritize biological units for functional 340 

follow-up studies. TWAS using MOSTWAS models was able to recapitulate 5 out of 14 known 341 

Alzheimer's disease risk loci in IGAP GWAS summary statistics [49], which were not recoverable with 342 

local-only models. We showed the utility of the distal-SNPs added-last test to prioritize significant distal 343 

SNP-gene-trait associations for follow-up mechanistic studies, which could not be identified using 344 

traditional local-only TWAS. In PGC GWAS summary-level data for major depressive disorder [54], we 345 

found 102 risk loci, 7 of which were replicated in independent GWAX summary statistics from the UK 346 

Biobank [55]. Three of these seven loci (SYT1, CACNA2D3, ADAD2) encode important proteins involved 347 

in synaptic transmission in the brain and RNA editing. Studies have shown that variation 348 

at these loci may lead to loss of function at synapses and RNA editing that lead to psychiatric disorders 349 

[65–69]. Using MOSTWAS and iCOGs summary-level GWAS statistics for breast cancer-specific survival 350 

[34], we identified 11 survival-associated loci that are enriched for p53 binding and oxidoreductase activity 351 

pathways [62,63]. These loci include two genes (MAP3K6 and MAP4K5) encoding 352 

mitogen-activated protein kinases, which are signaling transduction molecules involved in the progression 353 

of aggressive breast cancer hormone subtypes [64].  None of the risk- or survival-associated loci 354 

identified by MOSTWAS were detected using local-only models. 355 

 356 

A considerable limitation of MOSTWAS is the increased computational burden over local-only modeling, 357 

especially in DePMA's permutation-based mediation analysis for multiple genome-wide mediators. By 358 

making some standard distributional assumptions on the SNP-mediator effect size and mediator-gene 359 

effect size vectors (e.g. effect sizes following a correlated multivariate Normal distribution), we believe a 360 

Monte-Carlo resampling method to estimate the null distribution of the product of these two effect size 361 
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vectors may decrease computational time without significant loss in statistical power [70]. Nevertheless, 362 

we believe that MOSTWAS's gain in predictive performance and power to detect gene-trait associations 363 

outweighs the added computational cost. Another concern with the inclusion of distal variants is that 364 

RNA-sequencing alignment errors can lead to false positives in distal-eQTL detection [71], and in turn, 365 

bias the mediation modeling. Cross-mapping estimation, as described by Saha et al, can be used to flag 366 

potential false positive distal-QTLs that are detected in the first step of MeTWAS and DePMA. Another 367 

limitation of MOSTWAS is the general lack of rich multi-omic panels, like ROS/MAP and TCGA-BRCA, 368 

that provide a large set of mediating biomarkers that may be mechanistically involved in gene regulation. 369 

However, the two-step regression framework outlined in MeTWAS allows for importing mediator intensity 370 

models trained in other cohorts to estimate the germline portion of total gene expression from distal 371 

variants. Importing mediator models from an external cohort can also reduce the testing burden in the 372 

preliminary QTL analysis in MeTWAS and DePMA. 373 

 374 

MOSTWAS provides a user-friendly and intuitive tool that extends transcriptomic imputation and 375 

association studies to include distal regulatory genetic variants. We demonstrate that the methods in 376 

MOSTWAS based on two-step regression and mediation analysis generally out-perform local-only models 377 

in both transcriptomic prediction and TWAS power without signs of inflated false positive rates, though at 378 

the cost of longer computation time. MOSTWAS enables users to utilize rich reference multi-omic 379 

datasets for enhanced gene mapping to better understand the genetic etiology of polygenic traits and 380 

diseases with more direct insight into functional follow-up studies. 381 

 382 

MATERIALS AND METHODS 383 

We first outline the two methods proposed in this work: (1) mediator-enriched TWAS (MeTWAS) and (2) 384 

distal-eQTL prioritization via mediation analysis (DePMA). MeTWAS and DePMA are combined in the 385 

MOSTWAS R package, available at www.github.com/bhattacharya-a-bt/MOSTWAS. Full mathematical 386 

details are provided in Supplemental Methods. 387 

 388 

Transcriptomic prediction using MeTWAS 389 
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Across all samples in the training dataset and for a single gene of interest, MeTWAS, an adaptation of 390 

two-step regression, takes in a vector of gene expression, the matrix of genotype dosages local to the 391 

gene of interest (default of 0.5 Megabases around the gene), and a set of mediating biomarkers that are 392 

estimated to be significantly associated with the expression of the gene of interest through a QTL 393 

analysis. In accord with previous studies that use penalized regression methods [35,72,73], we only 394 

select the most significant gene-associated mediators as adding too many potentially redundant features 395 

often leads to poorer predictive performance. This feature selections also limits computational time. 396 

Through simulations, we observed that including all SNPs local to the mediators results in lower 397 

predictive 𝑅2 compared to the two-step regression method in MeTWAS (Supplemental Figure S10), and 398 

the discrepancy between these methods is larger in practice (results not shown). These mediating 399 

biomarkers can be DNA methylation sties, microRNAs, transcription factors, or any molecular feature that 400 

may be genetically heritable and affect transcription. 401 

 402 

Transcriptome prediction in MeTWAS draws from two-step regression, as summarized in Supplemental 403 

Figure S1. Using the genotype local to these mediators, MeTWAS first trains a predictive model for their 404 

intensities (i.e. expression, methylation, etc.) using either elastic net [26] or linear mixed modeling [27]. In 405 

practice, we found that a simpler, one-step procedure of including all variants local to both the gene and 406 

to potential mediators led to the distal SNP effects being estimated as zero during the regularization 407 

process, even in simulations when the true distal SNP effects were nonzero (see Methods). We then use 408 

these predictive models to estimate the genetically regulated intensity (GRIn) of each mediator in the 409 

training set, through cross-validation. The GRIns for each mediator is then included in a matrix of fixed 410 

effects. The effect sizes of the GRIns on the expression of the gene of interest are estimated using 411 

ordinary least squares regression, and then the expression vector is residualized for these effect sizes. 412 

Effect sizes of  variants local to the gene of interest are then estimated using elastic net or linear mixed 413 

modeling [26,27] on the residualized gene expression quantity. Details are provided in Supplemental 414 

Methods. 415 

 416 

Transcriptomic prediction using DePMA 417 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.04.17.047225doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047225
http://creativecommons.org/licenses/by/4.0/


Expression prediction in DePMA hinges on prioritizing distal-eSNPs via mediation analysis for inclusion in 418 

the final DePMA predictive model, adopting methods from previous studies [11,12,14]. A multi-omic 419 

dataset with gene expression, SNP dosages, and potential mediators is first split into training-testing 420 

subsets. Based on the minor allele frequencies of SNPs and total sample size, we recommend a low 421 

number of splits (less than 5). 422 

 423 

In the training set, we identify mediation test triplets that consist of (1) a gene of interest, (2) a distal-424 

eSNP associated with the expression of the gene (default of 𝑃 < 10−6), and (3) a set of mediating 425 

biomarkers local to and associated with the distal-eSNP (default of FDR-adjusted 𝑃 < 0.05). We estimate 426 

the total indirect mediation effect (TME) of the distal-eSNP on the gene of interest mediated through the 427 

set of these mediators, as defined by Sobel [74]. We assess the magnitude of this indirect effect using a 428 

two-sided permutation test to obtain a permutation 𝑃-value, as more direct methods of computing 429 

standard errors for the estimated TME are often biased [14,75]. We also provide an option to estimate an 430 

asymptotic approximation to the standard error of the TME and conduct a Wald-type test. This asymptotic 431 

option is significantly faster at the cost of inflated false positives (see Supplemental Methods and 432 

Supplemental Figure S11). Distal-eSNPs with significantly large absolute TMEs are included with the 433 

local SNPs for the gene of interest in a predictive model, fit using elastic net or linear mixed modeling 434 

[26,27]. These SNP effect sizes can then be exported for imputation in external GWAS cohorts. Details 435 

are provided in Supplemental Methods. 436 

 437 

Transcriptomic imputation with MOSTWAS 438 

In an external GWAS panel, if individual level genotypes are available, we construct the mediator-439 

enriched genetically regulated expression (GReX) of the gene of interest by multiplying the genotypes in 440 

the GWAS panel by the effect sizes estimated in a MOSTWAS model. This GReX quantity represents the 441 

component of total expression that is attributed to germline genetics and can be used in downstream 442 

TWAS to detect gene-trait associations. 443 

 444 

Tests of association 445 
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If individual level genotypes are not available, then the weighted burden 𝑍-test, proposed by Pasaniuc et 446 

al and employed in FUSION [4,28], can be employed and applied to summary statistics. Briefly, the test 447 

statistic is a linear combination of the 𝑍-scores corresponding to the SNPs included in the MOSTWAS 448 

model for a gene of interest, where each individual GWAS 𝑍-score is weighted by the corresponding 449 

MOSTWAS effect size. The covariance matrix for this weighted burden test statistic is estimated from the 450 

linkage disequilibrium between SNPs in the eQTL panel or some publicly available ancestry-matched 451 

reference panels. This weighted burden test statistic is compared to the standard Normal distribution for 452 

inference. 453 

 454 

We implement a permutation test, conditioning on the GWAS effect sizes to assess whether the same 455 

distribution SNP effect sizes could yield a significant association by chance [4]. We permute the effect 456 

sizes 1,000 times without replacement and recompute the weighted burden test statistic to generate 457 

permutation null distribution. This permutation test is only conducted for overall associations at a user-458 

defined significance threshold (default to FDR-adjusted 𝑃 < 0.05).  459 

 460 

Lastly, we also implement a test to assess the information added from distal-eSNPs in the weighted 461 

burden test beyond what we find from local SNPs. This test is analogous to a group added-last test in 462 

regression analysis, applied here to GWAS summary statistics. Formally, we test whether the weighted 463 

burden test statistic for the distal-SNPs is significantly non-zero given the observed weighted burden test 464 

statistic for the local-SNPs. We draw conclusions from the assumption that these two weighted burden 465 

test statistics follow bivariate Normal distribution. Full details and derivations are given in Supplemental 466 

Methods. 467 

 468 

Simulation framework 469 

We first conducted simulations to assess the predictive capability and power to detect gene-trait 470 

associations under various settings for phenotype heritability, local and distal heritability of expression, 471 

and proportion of causal local and distal SNPs. We considered two scenarios: We considered two 472 

scenarios for each set of simulation parameters: (1) an ideal case where the leveraged associated 473 
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between the distal-SNP and gene of interest exists in both the reference and imputation panel, and (2) a 474 

“null” case where the leveraged association between the distal-SNP and the gene of interest exists in the 475 

reference panel but does not contribute phenotype heritability in the imputation panel.  476 

 477 

Using genetic data from TCGA-BRCA as a reference, we used SNPs local to the gene ESR1 478 

(Chromosome 6) to generate local eQTLs and SNPs local to FOXA1 (Chromosome 14) to generate 479 

distal-eQTLs for a 400-sample eQTL reference panel and 1,500-sample GWAS imputation panel, as in 480 

Mancuso et al’s twas_sim protocol [61]. We computed the adjusted predictive 𝑅2 in the reference panel 481 

for the trained MeTWAS and DePMA models and tested the gene-trait association in the GWAS panel 482 

using the weighted burden test. The association study power was defined as the proportion of gene-trait 483 

associations with 𝑃 < 2.5 × 10−6, the Bonferroni-corrected significance threshold for testing 20,000 484 

independent genes. With these simulated datasets, we also assessed the power of the distal added-last 485 

test by computing the proportion of significant distal associations, conditional on the local association at 486 

FDR-adjusted 𝑃 < 0.05. Full details are provided in Supplemental Methods. 487 

 488 

Data acquisition 489 

Multi-omic data from ROS/MAP 490 

We retrieved imputed genotype, RNA expression, miRNA expression, and DNA methylation data from 491 

The Religious Orders Study and Memory and Aging Project (ROS/MAP) Study for samples derived from 492 

human pre-frontal cortex [23,82,83]. We excluded variants (1) with a minor allele frequency of less than 493 

1% based on genotype dosage, (2) that deviated significantly from Hardy-Weinberg equilibrium (𝑃 <494 

10−8) using appropriate functions in PLINK v1.90b3 [79,80], and (3) located on sex chromosomes. Final 495 

ROS/MAP genotype data was coded as dosages, with reference and alternative allele coding as in 496 

dbSNP. We intersected to the subset of samples assayed for genotype (at 4,141,537 variants), RNA-seq 497 

(15,857 genes), miRNA-seq (247 miRNAs), and DNA methylation (391,626 CpG sites), resulting in a total 498 

of 370 samples. Again, we only considered the autosome in our analyses. We adjusted gene and miRNA 499 

expression and DNA methylation by relevant covariates (10 principal components of the genotype  500 

age at death, sex, and smoking status). 501 
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 502 

Multi-omic data from TCGA-BRCA 503 

We retrieved genotype, RNA expression, miRNA expression, and DNA methylation data for breast cancer 504 

indications in The Cancer Genome Atlas (TCGA). Birdseed genotype files of 914 subjects were 505 

downloaded from the Genome Data Commons (GDC) legacy (GRCh37/hg19) archive. Genotype 506 

files were merged into a single binary PLINK file format (BED/FAM/BIM) and imputed using the October 507 

2014 (v.3) release of the 1000 Genomes Project dataset as a reference panel in the standard two-stage 508 

imputation approach, using SHAPEIT v2.87 for phasing and IMPUTE v2.3.2 for imputation [76–78]. We 509 

excluded variants (1) with a minor allele frequency of less than 1% based on genotype dosage, (2) that 510 

deviated significantly from Hardy-Weinberg equilibrium (𝑃 <  10−8) using appropriate functions in PLINK 511 

v1.90b3 [79,80], and (3) located on sex chromosomes. Final TCGA genotype data was coded as 512 

dosages, with reference and alternative allele coding as in dbSNP. 513 

 514 

TCGA level-3 normalized RNA-seq expression data, miRNA-seq expression data, and DNA methylation 515 

data collected on Illumina Infinium HumanMethylation450 BeadChip were downloaded from the Broad 516 

Institute's GDAC Firehose (2016/1/28 analysis archive) via FireBrowse [24,81]. We intersected to the 517 

subset of samples assayed for genotype (4,564,962 variants), RNA-seq (15,568 genes), miRNA-seq 518 

(1,046 miRNAs), and DNA methylation (485,578 CpG sites), resulting in a total of 563 samples. We only 519 

considered the autosome in our analyses. We adjusted gene and miRNA expression and DNA 520 

methylation by relevant covariates (10 genotype principal components, tumor stage at diagnosis, and 521 

age). 522 

 523 

Summary statistics for downstream association studies 524 

We conducted TWAS association tests using relevant GWAS summary statistics for breast cancer-525 

specific survival, risk of late-onset Alzheimer's disease, and risk of major depressive disorder. We 526 

downloaded iCOGs GWAS summary statistics for breast cancer-specific survival for women of European 527 

ancestry [34]. All studies and funders as listed in Michailidou et al [32,33] and in Guo et al [34] are 528 
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acknowledged for their contributions. Furthermore, we downloaded GWAS summary statistics for risk of 529 

late-onset Alzheimer's disease from the International Genomics of Alzheimer's Project (IGAP) [49].  530 

 531 

We also downloaded GWAS and genome-wide association by proxy (GWAX) summary statistics for risk 532 

of major depressive disorder (MDD) from the Psychiatric Genomics Consortium [54] and the UK Biobank 533 

[55], respectively. IGAP is a large two-stage study based on GWAS on individuals of European ancestry. 534 

In stage 1, IGAP used genotyped and imputed data on 7,055,881 single nucleotide polymorphisms 535 

(SNPs) to meta-analyze four previously-published GWAS datasets consisting of 17,008 Alzheimer's 536 

disease cases and 37,154 controls (The European Alzheimer's disease Initiative – EADI, the Alzheimer 537 

Disease Genetics Consortium – ADGC, The Cohorts for Heart and Aging Research in Genomic 538 

Epidemiology consortium – CHARGE, The Genetic and Environmental Risk in AD consortium - GERAD). 539 

In stage 2, 11,632 SNPs were genotyped and tested for association in an independent set of 8,572 540 

Alzheimer's disease cases and 11,312 controls. Finally, a meta-analysis was performed combining results 541 

from stages 1 and 2. 542 

 543 

Model training and association testing in ROS/MAP and TCGA-BRCA 544 

Using both ROS/MAP and TCGA-BRCA multi-omic data, we first identified associations between SNPs 545 

and mediators (transcription factor genes, miRNAs, and CpG methylation sites), mediators and gene 546 

expression, and SNPs and gene expression using MatrixEQTL [84]. These QTL analyses were adjusted 547 

for 10 genotype principal components to account for population stratification, along with other relevant 548 

covariates (age, sex, and smoking status for ROS/MAP; tumor stage and age for TCGA-BRCA). For 549 

MeTWAS modeling, we considered the top 5 mediators associated with the gene of interest, assessed by 550 

the smallest FDR-adjusted 𝑃 <  0.05. For DePMA models, we considered all distal-SNPs associated with 551 

gene expression at raw 𝑃 <  10−6 and any local mediators at FDR-adjusted 𝑃 <  0.05. Local windows for 552 

all models were set to 0.5 Mb. For association testing, we considered only genes with significant non-zero 553 

estimated total heritability by GCTA-LDMS [85] and cross-validation adjusted 𝑅2 ≥  0 across 5 folds. The 554 

MeTWAS or DePMA model with larger cross-validation 𝑅2 was considered as the final MOSTWAS model 555 
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for each gene. All other modeling options in MeTWAS and DePMA were set to the defaults provided by 556 

the MOSTWAS package. 557 

 558 

Using ROS/MAP models, we first conducted TWAS burden testing in GWAS summary statistics for late-559 

onset Alzheimer's disease risk from IGAP, prioritized 14 known risk loci identified from literature [49–52]. 560 

We subjected TWAS-identified loci at FDR-adjusted 𝑃 <  0.05 to permutation testing, and any loci that 561 

persisted past permutation testing to distal variation added-last testing. We similarly conducted TWAS 562 

for risk of major depressive disorder (MDD) using GWAS summary statistics from PGC (excluding data 563 

from 23andMe and the UK Biobank) with the necessary follow-up tests. For any TWAS-identified loci 564 

that persisted permutation in PGC, we further conducted TWAS in GWAX summary statistics for MDD 565 

risk in the UK Biobank [55] for replication. 566 

 567 

Using TCGA-BRCA models, we conducted TWAS burden testing [4,28] in iCOGs GWAS summary 568 

statistics for breast cancer-specific survival in a cohort of women of European ancestry. We subjected 569 

TWAS-identified loci at Benjamini-Hochberg [37] FDR-adjusted 𝑃 <  0.05 to permutation testing, and any 570 

locus that persisted past permutation testing to distal variation added-last testing. 571 

 572 
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FIGURES 
 
Figure 1: Example of a biological mechanism MOSTWAS leverages in its predictive models. Here, 
assume a SNP (in green) within a regulatory element affects the transcription of gene 𝑋 that codes for a 

transcription factor. Transcription factor 𝑋 then binds to a distal regulatory region and affects the 

transcription of gene 𝐺. The association between the expression of gene 𝑋 and gene 𝐺 is leveraged in the 
first step of MeTWAS. A distal-eQTL association is also conferred between this distal-SNP and the eGene 
𝐺, which is leveraged in the DePMA training process. 

 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.04.17.047225doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047225
http://creativecommons.org/licenses/by/4.0/


Figure 2: Comparison of TWAS power via simulations using MOSTWAS and local-only models. (A) 

Proportion of gene-trait associations at 𝑃 <  2.5 × 10−6 using local-only (red) and the most predictive 
MOSTWAS (blue) models across various local and distal expression heritabilities, trait heritability, and 
causal proportions. (B) Proportion of significant gene-trait associations across the same simulation 
parameters with no distal effect on the trait in the simulated external GWAS panel. 
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Figure 3: Predictive adjusted 𝑅2 from cross-validation across local-only, MeTWAS, and DePMA models. 

If a given gene does not have ℎ2  >  0 with 𝑃 <  0.05, we set the predictive adjusted 𝑅2 to 0 here for 
comparison. The top row compares local-only and MeTWAS, middle row compares local-only and 
DePMA, and the bottom row compares MeTWAS and DePMA. The left column has performance in 

ROS/MAP, while the right column has performance in TCGA-BRCA. All axes indicate the CV adjusted 𝑅2 
for different models. 
 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2020. ; https://doi.org/10.1101/2020.04.17.047225doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047225
http://creativecommons.org/licenses/by/4.0/


Figure 4: External validation of MOSTWAS and gene-trait associations using MOSTWAS models. (A) 
Median predictive adjusted $R^2$ in held-out cohorts from TCGA-BRCA and ROS/MAP in local-only, 
MeTWAS, and DePMA models that have in-sample significant heritability. The interval shows the 25% 

and 75% quantiles for external cohort predictive 𝑅2. (B) Associations with 11 known Alzheimer's risk loci, 
as identified in literature, using MOSTWAS, local-only, and TIGAR Dirichlet process regression (DPR). 
Loci are labeled with P if the permutation test achieves FDR-adjusted 𝑃 <  0.05 and D if the added-last 

test achieves FDR-adjusted 𝑃 <  0.05. (C) TWAS associations for major depressive disorder risk using 
GWAS summary statistics from PGC. Loci are colored red if the overall association achieves FDR-
adjusted 𝑃 <  0.05 and the permutation test also achieves FDR-adjusted 𝑃 <  0.05. We label the 7 loci 

that were independently validated with UK Biobank GWAX summary statistics at FDR-adjusted 𝑃 <  0.05 
for both the overall association test and permutation test. (D) TWAS associations for breast cancer-
specific survival using GWAS summary statistics from iCOGs. Loci are colored red and labeled if the 
overall association achieves FDR-adjusted 𝑃 <  0.05. 
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