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Abstract 
 Human genetics have defined a new autism-associated syndrome caused by loss-of-function 
mutations in MYT1L, a transcription factor known for enabling fibroblast-to-neuron conversions. 
However, how MYT1L mutation causes autism, ADHD, intellectual disability, obesity, and brain 
anomalies is unknown. Here, we develop a mouse model of this syndrome. Physically, Myt1l 
haploinsufficiency causes obesity, white-matter thinning, and microcephaly in the mice, mimicking 
clinical phenotypes. During brain development we discovered disrupted gene expression, mediated in 
part by loss of Myt1l gene target activation, and identified precocious neuronal differentiation as the 
mechanism for microcephaly. In contrast, in adults we discovered that mutation results in failure of 
transcriptional and chromatin maturation, echoed in disruptions in baseline physiological properties of 
neurons. This results in behavioral anomalies including hyperactivity, muscle weakness and fatigue, 
and social alterations with more severe phenotypes in males. Overall, our findings provide insight into 
the mechanistic underpinnings of this disorder and enable future preclinical studies. 
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Introduction  

Genetic mutations in a variety of highly constrained human genes have been strongly associated 
with Intellectual Disability (ID) and other developmental disorders including Autism Spectrum Disorder 
(ASD), providing a great opportunity to understand these disorders. Many forms of ID/ASD are caused 
by mutations in chromatin regulators/transcription factors (TFs), such as FOXP1, MECP2, SETD5 and 
CHD8, and rodent models have been essential to defining the CNS consequences of these mutations 
(Anderson et al., 2020; Gompers et al., 2017; Guy et al., 2001; Katayama et al., 2016; Sessa et al., 
2019). Now, recent human genetic studies discovered de novo mutations in another TF, MYT1L, to be 
strongly associated with ID (Blanchet et al., 2017; de Ligt et al., 2012; Loid et al., 2018; Windheuser et 
al., 2020a)  and ASD (De Rubeis et al., 2014; Sanders, 2015; Satterstrom et al., 2018). Most individuals 
with these MYT1L mutations (or larger deletions of the entire 2p25.3 region) suffer from ID with a subset 
also showing ASD and/or ADHD (Blanchet et al., 2017; Mansfield et al., 2020; Windheuser et al., 
2020a). Other consequences described by these groups include microcephaly, white-matter thinning, 
obesity, epilepsy, and neuroendocrine disruptions, as well as partially penetrant physical abnormalities 
(clinodactyly and strabismus). However, histological, cellular, and molecular consequences of germline 
MYT1L mutation are not yet defined. A better understanding of the function of MYT1L in the developing 
brain may clarify the pathobiology of this syndrome. 

Prior studies, primarily in cell culture, have proposed some molecular and developmental 
functions for MYT1L.  MYT1L is a CCHC zinc finger transcription factor that is highly expressed in the 
developing brain (Kim et al., 1997; Matsushita et al., 2014; Weiner and Chun, 1997). MYT1L is most 
well-known from overexpression studies, where high levels of MYT1L, along with BRN2 and ASCL1, 
reprogram fibroblasts directly into neurons. This indicates it can, in combination with other factors, play 
an instructive role in regulating neuronal differentiation (Pang et al., 2011; Vierbuchen et al., 2010). 
ChIP-seq studies in this system indicated MYT1L binds specific targets, especially promoters. 
Comparison of these targets with RNA-seq changes in fibroblasts following MYT1L overexpression led 
to the conclusion that MYT1L was a new kind of repressor specifically of non-neuronal gene expression, 
thereby restricting cell potential away from non-neuronal fates (Mall et al., 2017). This fits with an earlier 
report indicating that at least an isolated central domain of MYT1L can bind the repressor SIN3B (Romm 
et al., 2005) and MYT1L can repress gene expression (Manukyan et al., 2018). The related MYT1 gene 
was shown in the same work to recruit histone deacetylases - proteins which have the capacity to close 
chromatin. However, work on synthetic reporters showed MYT1L tended to activate gene expression 
4-5 fold overall (Jiang et al., 1996; Manukyan et al., 2018), and this could be mapped to the N-terminal 
domain (Manukyan et al., 2018). Yet, while overexpression of MYT1L in u87 glioma lines both increased 
and decreased gene expression, the reported MYT1L binding motif (AAA[C/G]TTT) was enriched 
primarily in the promoters of repressed genes, and luciferase activity for 3 of 5 endogenous targets 
showed repression (Manukyan et al., 2018). Thus, whether MYT1L activates gene expression through 
a different motif, or through cooperativity with other transcription factors is not clear. Further, the direct 
impact of MYT1L knockdown or overexpression on chromatin accessibility has not been assessed. 

As opposed to overexpression as highlighted in the cell culture studies above, most MYT1L 
variants associated with developmental disabilities are predicted to be heterozygous loss-of-function, 
suggesting haploinsufficiency as the primary mechanism in disease. Yet, there is no mammalian 
system to study the consequences of MYT1L germline haploinsufficiency or complete loss in vivo. 
Likewise, there have been no comprehensive studies to define the normal role of MYT1L in developing 
and mature brains. Evidence from neuronal differentiation of neural progenitor cells suggests that, 
rather than only repress non-neuronal genes, MYT1L was also necessary for activating neuronal genes 
(Kepa et al., 2017). Specifically, upon shRNA knockdown, far more genes were decreased than 
increased, consistent with loss of an activator, and these corresponded to synaptic proteins that mark 
neuronal maturation. Indeed, with MYT1L shRNA, neurons failed to reach sufficient electrophysiological 
maturation to enable action potentials (Mall et al., 2017). Further, a morpholino study in zebrafish 
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followed by in situ hybridization for two neuropeptides (Blanchet et al., 2017), showed a loss of these 
transcripts, both known to express late in maturation (Almazan et al., 1989). Thus, overall, the human 
brain development phenotypes could either be related to a loss of a repressor (i.e., ectopic expression 
of non-neuronal genes) as suggested by overexpression, or a loss of an activator that promotes 
neuronal differentiation, as suggested by shRNA. Determining whether loss of MYT1L levels results in 
more opening or closing of chromatin, and the corresponding consequence on gene expression, could 
inform whether it functions as an activator, repressor, or both in vivo. Furthermore, characterizing a 
mammalian model for the downstream consequences on brain development, neurophysiology, and 
behavioral circuit function would provide insight into the conserved roles of this protein, as well as 
provide a tool for future studies of the disease.  

Therefore, we developed a mouse model to understand the consequences of MYT1L mutation 
in vivo, inspired by a local patient who had an exon 10 stop gain resulting in ASD, ADHD, ID and other 
characteristics. We find MYT1L haploinsufficiency alters chromatin accessibility and corresponding 
gene expression during development leading to precocious neuronal differentiation and smaller brains, 
though without obvious ectopic non-neuronal gene expression. Postnatally, genomic studies reveal a 
neuronal maturation failure, along with corresponding electrophysiological abnormalities, finally 
resulting in clinically-relevant muscle weakness and fatigue, obesity, hyperactivity, and social 
orientation deficits as revealed by a novel social motivation assay. This new model provides 
mechanistic insights into MYT1L function in vivo, and preclinical opportunities for novel therapeutic 
development for MYT1L Syndrome. 
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Results 
MYT1L is expressed in neuronal lineages across key developmental windows  

To establish where MYT1L functions, we first defined its expression across development. First, 
we looked at its temporal expression in mice, which would guide spatial expression studies afterwards. 
We found MYT1L mRNA increased across neurogenesis and peaked on postnatal day (P)1 yet 
sustained low levels into adulthood (Fig. 1A), paralleling human expression (Fig. S1A). Further, MYT1L 
maintained similar protein levels from embryonic day (E)14 to P1 then declined (Fig. 1B). Spatially, 
initial studies highlighted expression in new neurons of the developing brain (Kim et al., 1997), with an 
absence in glia. In contrast, a recent report proposed expression in oligodendroglia, promoting their 
fate (Shi et al., 2018). To resolve this inconsistency, we next investigated MYT1L’s cellular expression.  

 

Figure 1: MYT1L frameshift mutation results in protein haploinsufficiency, physical anomalies, and obesity. 
(A) qRT-PCR revealed trajectory of MYT1L mRNA expression across mouse brain development (n = 3 for each time point). 
(B) Western blot showed a parallel trajectory of protein levels. (C) Immunofluorescence of MYT1L protein (red) revealed 
expression in Map2+ (green) Cortical Plate (CP), intermediate zone (IZ), and a few in SOX2+ (white) progenitors in the 
Ventricular Zone/SubVentricular Zone (VZ/SVZ). Scale bar, 50 μm. (D) Quantification of MYT1L+ fraction within four 
different cell types (n = 3). (E) Schematics for MYT1L KO mouse line generation using CRISPR-Cas9 and donor 
oligonucleotide. (F) Sanger sequencing confirmed c.3035dupG mutation, which leads to frameshift and premature stop 
codon gain on MYT1L mutant allele. (G) Western blot on P1 whole brain lysates confirmed MYT1L protein reduction in Het 
mice with (H) quantification. In physical examination, a subset of Het mice displayed (I) fifth finger clinodactyly, (J,K) 
abnormal hindlimb posture representation with (K) quantification. (L) Also, Het mice weighed significantly more than WTs 
as adults, which was more pronounced in females. We also observed the expected overall greater weight in males 
compared to females.  
Data were represented as mean ± SEM. See also Figure S1 and Table S5 for statistical test details. 

Immunofluorescence (IF) during peak cortical neurogenesis (E14), with a knockout-validated 
MYT1L antibody (Fig. S1J), revealed MYT1L’s gradient of expression in the cortex and medial 
ganglionic eminence: almost absent in the progenitor layers (SOX2+) and highest in the upper cortical 
plate (CP; Fig. 1C,D, S1B,C), mirroring prior studies (Kim et al., 1997; Matsushita et al., 2014; Weiner 
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and Chun, 1997). This parallels neuronal maturation gradients, with dim intermediate zone (IZ) 
expression, where immature neurons are found, and strongest expression in CP. A small portion of 
proliferating cells (Ki-67+), or intermediate progenitors (TBR2+) expressed MYT1L (Fig. 1D, S1C) at 
the IZ border. This suggests MYT1L may be expressed as progenitors exit the cell cycle. In neonates, 
MYT1L was in postmitotic neurons (BRN2+ and CTIP2+) and small portion of radial glia (SOX2+) but 
not in oligodendroglia (OLIG2+; Fig. S1D,E). In adults, MYT1L was expressed in neurons (NEUN+) 
across all regions examined (Fig. S1F,G). MYT1L was not found in astrocytes (GFAP+) nor 
oligodendroglia (OLIG2+; Fig. S1H). Collectively, our expression studies indicate MYT1L’s function 
commences concurrently with final proliferation of neuronal progenitors, and its expression in all 
postmitotic neurons across development implies MYT1L haploinsufficiency potentially influences any 
neuron type. Further, the timeline suggests a peak function during neuronal maturation, but does not 
rule out a sustained role in adult neurons. Finally, we replicated observations (Kim et al., 1997; Mall et 
al., 2017) that MYT1L is not expressed in glia, and thus impacts on glia (i.e., white-matter thinning) 
must be indirect. In addition to establishing where and when MYT1L deficiency might act, we also 
generated a mouse to determine the consequences of its loss. 
 
Generation and characterization of Myt1l knockout mice 

Germline mutants of Myt1l would enable studies of its role in CNS development, its function on 
chromatin, gene expression, and the cellular, physiological, and behavioral phenotypes of 
haploinsufficiency. Therefore, we used CRISPR-mediated homology-directed repair (HDR) to generate 
mice with a mutation on exon7 (chr12:29849338, c.3035dupG, S710fsX; Fig. 1E), inspired by a MYT1L 
patient mutation in the homologous exon 10 (Table S1), resulting in  frameshift and a predicted stop-
gain (Fig. 1F). As we found Myt1l homozygous mutant (KO) mice die at birth, we confirmed Myt1l 
transcripts and protein decreased in heterozygous mice (Het; Fig. 1G,H, S1K), and IF showed complete 
MYT1L protein loss in KO E14 mouse cortex (Fig. S1J). No truncated protein (est. 80.63 kDa) was 
produced by the mutation (Fig. S1I). Further sequencing of the cDNA from Hets revealed a depletion 
of the mutant mRNA compared to genomic controls, consistent with nonsense mediated decay (Fig. 
S1L). Thus this mutation appears to result in haploinsufficiency.  

Next, we assessed mice for physical abnormalities, including obesity, reported in patients. We 
observed clinodactyly (Fig. 1I) and early age cataracts. In addition, we observed abnormal hindlimb 
posture: transient hyperflexions of one or both hindlimbs (Fig. 1J,K), reflected not in coordinated 
clasping, but in holding limb(s) at midline. Fifth finger clinodactyly and eye issues (strabismus) have 
been reported in patients. Finally, we also observed obesity in Hets. There was an initial separation of 
group weights at P45 which became statistically significant at P94, and was more pronounced in 
females than males (Fig. 1L). Thus, Myt1l mutation results in physical alterations and obesity in mice 
and humans. 
 
MYT1L haploinsufficiency results in microcephaly and thinned white-matter 
Almost half of patients have CNS malformations like microcephaly, hydrocephaly and thinned white-
matter. Therefore, we investigated structural abnormalities in P60 Hets with Nissl staining (Fig. 2A,B). 
Brain organization was grossly normal, yet Hets showed decreased brain weight and smaller cortical 
volume (Fig. 2C,D) with no change in cortex/brain ratio (Fig. S2A) compared to WTs. For white-matter, 
there was a trend towards reduced corpus callosum volume (Fig. S2B). In addition, there was no cell 
density change in Het cortex (Fig. S2C), indicating that microcephaly in Hets corresponds to fewer cells, 
rather than less parenchyma. We next investigated mouse brains with magnetic resonance (MR)-based 
Diffusion Tensor Imaging (DTI), a more sensitive, in vivo, clinically-translatable technique that can 
provide both structural and functional information (Fig. 2E). From maps of apparent diffusion coefficient 
(ADC; Fig. S2D) and fractional anisotropy (FA; Fig. 2F), we segmented several brain regions and 
performed 3D reconstruction (Fig. 2G, S2E,F). By MRI, Hets again had smaller brain volumes, with no 
size change in the ventricular system (Fig. 2H,S2G). With segmentation of FA maps (Fig. 2F,G), we 
found Hets had a smaller corpus callosum volume (Fig. 2I). Functionally, FA values were unchanged 
in white matter and cortex, suggesting that remaining axons were not abnormal (Fig. S2H). As MYT1L 
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was not expressed in oligodendroglia (Fig S1E,H), this suggests the white matter decrease reflected a 
decreased number of axons rather than oligodendroglial dysfunction (e.g. dysmyelination). Overall, 
Myt1l mutation results in both decreased brain size and smaller specific white-matter tracts. 
 

 
Figure 2: MYT1L haploinsufficiency causes microcephaly and white-matter thinning in corpus callosum 
(A) Sectioning strategy for Nissl staining. Scale bar, 3 mm. (B) Diagram of different brain structures examined. (C) Adult 
Het mice had decreased brain weight and (D) decreased cortical volume. (E) Coronal images acquired from DTI. (F) 
Fractional anisotropy (FA) map for visualization of white-matter tracts. Scale bar, 0.5 cm. (G) 3D reconstruction of different 
white-matter tracts via FA mapping, including corpus callosum (CC, green), cerebral peduncle (CP, red), internal capsule 
(IC, blue), fimbria (yellow), and cortex (blue). (H) DTI recapitulated smaller brain phenotype in Het mice. (I) Histogram 
showed adult Het mice had decreased corpus callosum volume with other white-matter tracts unchanged. and (J)  
Data were represented as mean ± SEM. See also Figure S2 and Table S5 for statistical test details. 

 
MYT1L loss alters chromatin state during early mouse brain development 
 We next conducted genomic studies in the developing brain to 1) determine the function of 
MYT1L in the embryonic brain, and 2) understand the developmental deficits that might cause the 
structural phenotypes. We focused on E14, when MYT1L begins expression (Fig 1), and to leverage 
previous chromatin ChIP-seq analysis from E13.5 (Mall et al., 2017) to examine the consequences of 
MYT1L loss at direct binding targets. At E14, we could also assay KOs which may further potentiate 
any molecular phenotypes, and with Hets allow for identification of regions that respond linearly to gene 
dose. 

First, we performed Assay for Transposase Accessible Chromatin(ATAC)-seq (6 WT, 5 Het, and 
6 KO E14 cortex, Fig. S3A) to determine how MYT1L loss alters chromatin accessibility. MTY1L is 
thought to modulate chromatin (Romm et al., 2005), with recent overexpression studies highlighting a 
repressor role (Mall et al., 2017). We sought here to determine if it has the same role during normal 
brain development. We identified 1965 (FDR<.05, 4837 FDR<.1, Table S2) differentially accessible 
regions (DARs) in mutants (Het and KO; Fig. 3A,B, S3B,C). Interestingly, KO mice showed smaller 
changes than Hets in terms of DARs decreasing accessibility after Myt1l mutation (Fig. 3A), indicating 
a possible compensatory mechanism triggered by complete loss of MYT1L resulting in more activated 
chromatin structures. Motif analysis on DARs revealed that regions losing accessibility in mutants were 
enriched for motifs of stem-cell TFs (Lhx2, Sox2), as well as the key neurogenic TF Ascl1. More-
accessible DARs are enriched for motifs of pro-differentiation TFs (NF-1 and Olig2; Fig. 3C & Table 
S2). A Gene Ontology (GO) analysis on DARs located in transcriptional start sites (TSS) (Table S4) 
revealed less-accessible TSS were enriched for cell cycle and neurogenesis pathways (Fig 3D).  
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Figure 3: Chromatin Accessibility and RNA-seq analysis define molecular consequences of MYT1L loss in the 
developing brain 
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(A) Less and (B) more-accessible regions in MYT1L mutant E14 mouse cortex identified by ATAC-seq (FDR < .1). (C) 
Homer motif analysis on less-accessible DARs over more-accessible DARs. (D) GO analysis on less-accessible DARs 
associated genes showed the disruption of neurodevelopmental programming in mutants. (E) Heatmap for differential gene 
expression in mutant (FDR < .1). (F) GO analysis on DEGs revealed an upregulation of early neuronal differentiation 
pathways and (G) a downregulation of cell proliferation programs. (H) GSEA analysis found iN signature genes increased 
expression while (I) MEF genes decreased expression in mutants cortex. 
See also Figure S3 and Table S5 for statistical test details. 

Second, we examined MYT1L binding targets defined from E13.5 brain and reprogramming 
fibroblasts (Mall et al., 2017). On the balance, we found MYT1L loss decreased the accessibility of 
bound regions (Fig. S3D), suggesting loss of an activator. Also, there were more ChIP targets 
overlapped with less-accessible DARs than those overlapped with more-accessible DARs (𝜒2(1, 
N=203)=11.48, p=.0007), further arguing MYT1L’s direct function as an activator to open the chromatin 
during CNS development. However, only a small subset of ChIP targets were DARs (3.62% of 6652 
ChIP peaks). Thus, chromatin accessibility changes in mutants can be attributed to both direct and 
indirect effects. In sum, MYT1L loss alters chromatin accessibility, including directly bound targets, 
which likely leads to neurodevelopmental gene expression deficits (Fig. 3D). 
 
MYT1L loss alters gene expression during early mouse brain development 
 To understand the transcriptional consequences of this altered chromatin, we conducted RNA-
seq on E14 mouse cortex (6 WT, 6 Het, and 4 KO E14 cortex, Fig. S3E). Among 13846 measurable 
genes, we identified 1768 differentially expressed genes (DEGs; Fig. 3E & Table S3). Fold changes of 
DEGs correlated well between Het and KO datasets, with larger effects in KOs (Fig. S3F,G). This is 
consistent with a dose-dependence for MYT1L transcriptional regulatory activity at many targets.  

Decreased gene expression can be caused by TSS closure, so we plotted the ATAC-seq fold 
changes for TSS of all DEGs. Indeed, there was a concordance between ATAC-seq TSS and RNA-
Seq changes (Fig. S3H). In addition, unlike in neuronal reprogramming where MYT1L overexpression 
mostly suppressed the expression of its ChIP-seq targets, those targets showed subtle decreased 
expression in our E14 RNA-seq upon MYT1L loss (Fig. S3I,J). Generally, changes in DEGs identified 
from MYT1L mouse mutants did not correlate with changes seen in prior RNA-seq of MYT1L 
overexpression (OE) or knockdown (KD) experiments in cultured MEFs and neurons, respectively (Mall 
et al., 2017)(Fig. S3M-P). We also categorically defined 'in vitro MYT1L repressed’ genes 
(downregulated by OE, upregulated by KD) and ‘in vitro MYT1L induced’ genes (upregulated by OE, 
downregulated by KD). In these categorical analyses, we found downregulated genes from our in vivo 
RNA-seq did include 33 in vitro MYT1L induced genes from cultures (p<.0005). However, our 
upregulated genes did not show significant  overlap with MYT1L repressed genes (Fig. S3Q,R). 
Collectively, the loss of expression of MYT1L target genes with MYT1L mutation indicates MYT1L 
functions preponderantly as an activator during early brain development. This is distinct from the 
repressor of non-neuronal lineages function reported in direct conversion by OE or KD in vitro (Mall et 
al., 2017). Specifically, we observed no de-repression of the previously described non-neuronal lineage 
genes with MYT1L mutation (Fig. S3K), suggesting this proposed new class of repressor function (Mall 
et al., 2017) might be relevant in direct reprogramming, but not reflect the in vivo role. 

Next, as adult structural abnormalities can be attributed to deficits during brain development, we 
examined the gestalt of the RNA-seq using GO analysis (Table S4). There was an upregulation of CNS 
development pathways (Fig. 3F) in mutants, driven by markers of neuronal differentiation. This 
suggests early differentiation in mutants. Likewise, examination of induced neuron (iN) and mouse 
embryonic fibroblast (MEF) signature genes in our RNA-seq with Gene Set Enrichment Analysis (GSEA) 
discovered a downregulation of MEF genes and upregulation of iN genes in E14 mutants (Fig. 3H,I), 
indicating mutant cortex shifted profiles towards early neuronal differentiation. This was further 
supported by GSEA analysis on pre-defined “mid-fetal” and “early-fetal” genes from the human brain, 
with mid-fetal genes precociously upregulated in mutants (Fig. S3S,T). Interestingly, this is the opposite 
expression pattern to Chd8 mutants, who have macrocephaly rather than microcephaly (Katayama et 
al., 2016). We also looked at Wnt and Notch signaling pathways, which are suppressed by MYT1L in 
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OE studies (Mall et al., 2017). However, we found no significant categorical upregulation in our Myt1l 
mutants (Fig. S3U,V). Surprisingly, MYT1L loss also impacted cell cycle pathway genes, with inhibitors 
(e.g. Rb1, Cdkn1c, Gas1) upregulated and mitosis genes (e.g. Mcm5, Cdca5, Ccnf) downregulated 
(Fig. 3F,G, Table S2). In addition, an upregulation of electron transport chain (e.g. Mt-nd2, Mt-co3) and 
downregulation of glycolysis (e.g. Gpi1, Ldha) indicate mitochondria dysfunction upon MYT1L loss, 
which could further affect neuronal development (Khacho et al., 2017; Klein Gunnewiek et al., 2020). 
We further compared gene expression between Het and KO mice and found a further upregulation in 
KOs of genes associated with chromatin activation (e.g. Setd2, Dpf3; Fig. S3L). We speculate these 
changes might represent compensation for complete MYT1L loss and could explain the more open 
chromatin in the KOs than Hets (Fig 3A). Overall, the results suggest MYT1L mutation leads to 
precocious early neuronal programs and perturbs cell proliferation programs during brain development, 
which might contribute to microcephaly in adults.  

Figure 4: MYT1L loss disrupts progenitor proliferation by precocious cell cycle exit. 
(A) Immunostaining for nuclei (DAPI, blue), apical progenitors (SOX2, green), intermediate progenitors (TBR2, grey) and 
postmitotic neurons (TBR1, red) in the E14 mouse cortex. (B) KO mouse cortex had significantly less cellular density, (C) 
less apical progenitors, with normal (D) intermediate progenitors and (E) postmitotic neurons. (F) Myt1l mutants have 
significantly more early cell (SOX2+ and TBR2+) populations but less later cell (TBR1+) population. (G-H) KO mice have 
less proliferating cells compared to Het and WT littermates, (I) even after being normalized to total cell number. (J) EdU 
labeling for a 1.5-hour window found decreased cell proliferation rate in both Het and KO mouse cortex compared to WT, 
as quantified in (K). (L) Co-staining for Ki-67 and EdU (20-hours after labeling) experiments found (M) a larger Q fraction 
value in KO but not in Het mouse cortex compared to WT. White dash lines in (L) indicates the border where proliferating 
cells started to exit the cell cycle and differentiate. 
Data are represented as mean ± SEM. Scale bars, 25 μm in A, 50 μm in G, 100 μm in J&L. See also Figure S4 and Table 
S5 for statistical test details. 
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MYT1L loss impairs cell proliferation in developing mouse cortex 
Precocious neuronal differentiation can potentially reduce the progenitor pool and thus alter cell-

type proportions in the developing brain. Further, decreased progenitor numbers  can reduce overall 
cell production and eventually result in smaller brain size. To validate our prediction that MYT1L loss 
affects cell differentiation and proliferation, we first stained cell-stage markers in E14 cortex (Fig. 4A) 
to assess the proportions of different cell populations including progenitors. We found KOs have 
decreased apical progenitor (SOX2+) density with normal intermediate progenitor (TBR2+) and 
postmitotic neuron (TBR1+) density compared to Hets and WTs (Fig. 4C-E, S4B-C). After normalizing 
SOX2+ cells to total cell number, there was still a trend towards fewer SOX2+ cells in KOs (Fig. S4A, 
p = 0.0528), indicating smaller APs density can be independent of decreased total cell number (Fig. 
4B). We also found the ratio between TBR2+ and SOX2+ but not between TBR1+ and TBR2+ was 
increased in both Het (p = 0.066) and KO (p = 0.0026) mice (Fig. S4D,E). Overall, when considering 
all three cell types, we saw a shift from early cell fate (SOX2+) to late cell fate (TBR2+/TBR1+) in Myt1l 
mutants (Fig. 4F), supporting the precocious cell differentiation program hypothesized from the RNA-
seq. Proliferating cells (Ki-67+) were also decreased in KOs after normalizing to total cell number cell 
number (Fig. 4G-I), suggesting MYT1L loss affects cell proliferation. Therefore, we performed EdU 
labeling experiments to measure proliferation rates (Fig. 4J). We found that, within a 1.5-hour window, 
both Het and KO cortices have significantly fewer EdU+ cells (Fig. 4K), highlighting a slower cell 
proliferation rate in the mutant developing cortex and a potential mechanism for the adult microcephaly.  

Following mitosis, daughter cells either re-enter cell cycle to expand the progenitor pool, or leave 
permanently and become neurons. Decreased proliferation could be driven by a greater number of 
cells exiting the cell cycle. Therefore, we quantified exiting by co-staining for recently proliferating cells 
(EdU 20 hours) which have lost Ki-67 (Q fraction; Fig. 4L) (Gompers et al., 2017). KOs had significantly 
larger Q fraction (Fig. 4M). These results show that MYT1L loss perturbs cell proliferation and enhances 
exit from the cell cycle. This corresponds well to the RNA-seq, and provides the most parsimonious 
explanation for the smaller brains: precocious differentiation of a fraction of neural progenitors results 
in overall less proliferating cells and a decreased final neuron number and brain size in adults. 
 
MYT1L haploinsufficiency results in sustained chromatin changes in adult brain 

Germline mutants also enable investigation of MYT1L function in the adult brain. We next 
determined if the developmental molecular deficits continue, or if MYT1L serves a distinct role in adults. 
As ID and ASD are not well localized in the brain, we focused on the prefrontal cortex (PFC), known to 
be dysregulated in human ADHD (Yasumura et al., 2019). For ATAC-seq (6 WT, 6 Het PFC, Fig. 
S1A,B), we discovered 4988 DARs (FDR<0.05, 9756 DARs FDR<0.1; Fig. 5A,B, S5C,D, and Table 
S2), with no peak showing sex and genotype interaction (Table S2). Motif analysis on DARs found 
regions of lost accessibility in Hets are enriched for motifs of TFs involved in neuron projection (Egr2) 
and the ASD gene Foxp1, while those more-accessible regions had motifs for an early neuronal TFs 
(Eomes; Fig. 5C,S5F). GO analysis (Table S4) likewise highlighted disruption of neuronal projection 
development and synaptic transmission pathways (Fig. 5D,S5G). Similar to E14, CHIP-seq targets had 
less accessibility in adult Hets (Fig. S5E) and more ChIP targets overlapped with less-accessible DARs 
than those overlapped with more-accessible DARs (𝜒2(1, N=291)=143.94, p<.0001), again suggesting 
MYT1L often has a direct role as an activator in vivo.  

We also performed RNA-seq (6 WT, 6 Het PFC, Fig. S5H) to determine transcriptional 
consequences. Of 14,104 measurable genes, we identify 533 DEGs in Het PFC (Fig. 5E & Table S3). 
And sex specific analysis showed limited number of genes with significant sex and genotype interaction, 
including genes related to activity (Bdnf and Jun) and cell adhesion (Cdh3 and Perp) (Table S3). 
Mapped to ATAC-seq data, there was good correspondence between TSS accessibility and gene 
expression (Fig. S5I, Table S3). Opposite to E14 RNA-seq, CHIP-seq promoter-related genes 
displayed subtle upregulation upon MYT1L loss in adult RNA-seq (Fig. S5J), suggesting in adults it 
may be more often acting as a repressor (though more firm conclusions await MYT1L binding data in 
adult brains). When comparing DEGs’ expression between adult in vivo and prior in vitro RNA-seq, we 
still did not see correlation in fold changes (Fig. S5K,L). Interestingly, only upregulated genes from our  
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in vivo RNA-seq significantly overlapped with ‘in vitro MYT1L repressed genes’ (defined as above), 
while our downregulated genes did not show any overlap with MYT1L induced genes (Fig. S5M,N). 
Also, the DEGs from E14 but not adult RNA-seq were significantly enriched in CHIP-seq targets (Fig. 
5J,S3K). These results suggest that MYT1L has distinct targets in adult brain, and perhaps different 
roles than in E14. In E14 the preponderance of evidence fit a model of a loss of an activator. In the 
adult, the results were more mixed with ATAC suggesting loss of an activator, while the RNA-seq 
contrasted somewhat.   

Figure 5: Long term MYT1L deficiency results in arrested maturation of neuronal chromatin and expression 
patterns 
(A) Less and (B) more-accessible regions in adult Het mouse PFC identified by ATAC-seq (FDR < .1). (C) Homer motif 
analysis on less-accessible DARs over more-accessible DARs. (D) GO analysis on DAR associated genes showed the 
dysregulation of neurodevelopmental programming in adult Het mouse PFC. (E) Heatmap for differential gene expression 
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in adult Het mouse PFC (FDR < .1). (F) GO analysis on DEGs revealed an upregulation of early neurodevelopmental 
pathways and (G) a down-regulation of neuron maturation and functions. (H) GSEA analysis found “early-fetal” genes 
increased their expression while (I) “mid-fetal” genes remained unchanged in adult Het mouse PFC compared to WT. (J) 
Repressed genes upon MYT1L loss in PFC significantly overlapped with induced neuron signature and neuronal signature 
genes. (K) MYT1L regulated genes were implicated in other ID/ASD mouse models and human genetic data sets. 
See also Figure S5 and Table S5 for statistical test details. 

 
MYT1L haploinsufficiency results in failed transcriptional development 

To define a role of MYT1L in the adult brain, we performed GO analysis on DEGs (Table S4). 
This revealed that genes from early phases of CNS development (neurogenesis, neuronal 
differentiation genes, e.g. Eomes, Dlx2, Dcx), were up-regulated in Hets (Fig. 5F). Interestingly, these 
are genes expressed in immature neurons, again indicating a shift in timing of transcriptional maturation. 
To systematically evaluate this, we performed GSEA and confirmed increased expression of “early-
fetal” genes with no expression change of “mid-fetal”, Wnt signaling, and Notch signaling genes in Hets 
(Fig. 5H,I, S5O,P). Persistent activation of developmental programs suggests that adult Het brains are 
trapped in an immature state. Indeed, genes downregulated upon MYT1L loss were significantly 
enriched in neuronal genes, showing an impaired mature neuronal identity (Fig. 5J). Likewise, GO 
analysis in Hets showed downregulation of neuronal projection development (e.g. Epha7, L1cam), ion 
homeostasis (e.g. Kcnt2, Kcne4, Kctd13), and synaptic transmission (Gipc1, Vamp2, Fig. 5G), echoing 
this immaturity, and potentially a disrupted neuronal function.  

Finally, since MYT1L Syndrome is one of several forms of ID/ASD caused by TF mutation, we 
tested whether DEGs are dysregulated in related models. DEGs from adult RNA-seq significantly 
overlapped with DEGs from Chd8, Chd2, Kdm5c, Phf6, Foxp1, and Pogz KO mouse models (Fig. 5K). 
DEGs from E14 were enriched in the Chd2 and Chd8 datasets (Fig. 5K, S5Q). Interestingly, post hoc 
analysis showed genes were dysregulated in an opposite direction between Myt1l mutant mice and 
other ID/ASD mouse models (Fig S5Q,R). This suggests genes implicated in different ID/ASD models 
are pathogenic when dysregulated in either direction. 

Further, compared to human data, DEGs derived from PFC of Het mice were enriched in ADHD 
and ASD associated genes, but not in human IDD, SCZ, or microcephaly genes (Fig. 5K, S5R). 
Conversely, DEGs from E14 significantly overlapped with human ID and microcephaly but not ASD, 
ADHD, or SCZ genes (Fig. 5K, S5Q). Together, these findings highlight some convergence between 
MYT1L Syndrome and other developmental disorders. 

 
MYT1L haploinsufficiency disrupts postnatal neuronal physiology and spine maturity 

Het mice showed deficits in transcriptional and epigenetic chromatin states, with a failure to 
achieve the mature profile alternation in axonal development programming. Therefore, we asked 
whether this manifested in neurophysiological changes at the level of cellular excitability or synaptic 
transmission. We first examined the passive membrane properties and cell morphology of layer 2/3 
pyramidal neurons in the primary visual cortex (V1) at P21-23, an extensively studied system with 
similar cell types and mesoscale circuit connectivity to PFC. Early postnatal development drives a 
series of changes in synaptic and membrane properties of cortical neurons, which are collectively 
necessary for normal function(Desai et al., 2002; Kasper et al., 1994; Kroon et al., 2019; Maravall et 
al., 2004). Compared to age-matched WT neurons, Het neurons exhibited significantly depolarized 
resting membrane potentials (Fig. 6A), and significantly decreased membrane resistance (Fig. 6B), 
changes that affect membrane excitability in opposite directions. We also observed a smaller time 
constant in Hets that was explained by the decrease in membrane resistance and capacitance (Fig. 
6C,D), which could arise from a decrease in total cell surface area or altered ion channel composition. 
In total, MYT1L haploinsufficiency disrupts the passive physiological properties of pyramidal neurons. 
To ask whether the change in capacitance was a direct result of cell surface area, we examined the 
somatic size of the patched neurons. A previous shRNA study on differentiating NPCs revealed larger 
cell bodies yet decreased neurites (Kepa et al., 2017). Here, with controlled haploinsufficiency in vivo, 
we found that MYT1L loss changed neither neuron soma size (Fig. 6E,S6A,B) nor dendrite 
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morphological properties, including length, nodes, as well as complexity (Fig. S6D-G). There was a 
small decrease of total dendrite numbers in Het neurons (Fig. S6C), but it was not significant (p = 
0.054). Further branch analysis revealed no difference between Hets and WTs for branch order 
numbers or length (Fig. S6H,I). To assess detailed dendritic complexity, we conducted a Sholl analysis 
and still found no difference in spatial aspects of dendritic morphology across genotypes (Fig. 6F,S6J). 
These results indicate altered passive properties of Het neurons is not caused by morphological 
changes. 

Figure 6: MYT1L haploinsufficiency disrupts baseline neuronal properties and dendritic spine maturity but not 
neuronal morphology. 
(A) MYT1L loss led to less negative membrane potential, (B) reduced membrane resistance, (C) decreased membrane 
capacitance, and (D) smaller membrane time constant in cortical pyramidal neurons. (E) Neuronal soma and dendrites 
tracing in Neurolucida. (F) Sholl analysis found no dendrite complexity change across genotypes. (G) Het neurons showed 
increased mEPSC amplitudes distribution compared to WT neurons. (H) Analysis on individual events of mEPSC and 
mIPSC found that the charges of Het neurons’ mEPSC are slightly larger , (I) while mIPSC are slightly smaller. (J) 
Representative images of spine tracing and subtypes identification using Neurolucida. (K) Het neurons had more apical 
spines compared to WT neurons with (L) general increase in different spine subtypes. (M) Het neurons had a higher 
percentage of less immature spines (Stubby, Thin) and less mature spines (Mushroom) compared to WT. 
Data are represented as mean ± SEM. See also Figure S6 and Table S5 for statistical test details. 

We next asked whether MYT1L haploinsufficiency affects the number or strength of synapses 
onto cortical pyramidal neurons. To do this, we measured miniature excitatory postsynaptic currents 
(mEPSCs, Fig. S6K). We saw no change in the frequency of mEPSCs(Fig. S6L). However, we did see 
a trend towards an increase in the mean amplitude of the mEPSCs across cells (Fig. S6M). More 
immature cortical neurons have been shown to have larger mEPSCs (Desai et al., 2002). Investigating 
all individual mEPSC events revealed they were indeed shifted towards larger currents (Fig. 6G). Since 
excitation/inhibition (E/I) balance is often disrupted in neurodevelopmental disorders including ASD 
(Gogolla et al., 2009; Nelson and Valakh, 2015), we also measured miniature inhibitory postsynaptic 
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currents (mIPSC, Fig. S6N) to examine E/I balance in Het mice. With no change in mIPSC amplitude, 
there was a small decrease of mIPSC frequency, though not significant (p = 0.081)(Fig. S6O,P). We 
further looked at mEPSC and mIPSC charge and found that the distribution of charge carried by all 
individual postsynaptic current events shift towards increased excitation (p=.024) and decreased 
inhibition (p=.030) in Het neurons compared to WT (Fig. 6H,I). These results suggest MYT1L loss leads 
to increased E/I ratio in the mouse brain. Morphologically, microscopic investigation of apical dendritic 
spine density and morphological maturity (Fig. 6J) revealed increased spine density (Fig. 6K) with 
decreased mature spines(mushroom) but increased immature spines (thin and stubby) in Het neurons 
(Fig. 6L,M). Neurons tend to generate excessive spines during early development and spine numbers 
decrease via pruning process after postnatal development (Bhatt et al., 2009). Thus, increased spine 
density again indicated disrupted maturation of Het neurons. However, we did not see mEPSC 
frequency increase in Het neurons, suggesting extra spines were non-functional or other compensatory 
mechanisms offset the impact of increased spine density. 
 
MYT1L haploinsufficiency persistently impairs muscle strength and endurance, and elevates 
activity and arousal  

We determined behavioral circuit consequences of the sustained molecular anomalies resulting 
from MYT1L haploinsufficiency. We evaluated Hets for features related to developmental delays, ADHD, 
ASD, and ID present in human MYT1L deletion patients and our index patient by conducting a 
comprehensive behavioral characterization (Fig. 7A,B). We note that the index patient was a male who 
had been diagnosed with ASD in early childhood; he exhibited sustained pathognomonic features of 
the condition including repetitive thinking, subtle stereotypic motor mannerisms, deficiency in eye gaze, 
and interpersonal aloofness when focused on the objects of his own mental pursuits, fully consistent 
with DSM5 level 1 severity of impairment in function.  These ASD symptoms were out of proportion to 
social impairments that would be attributable to the comorbid conditions of ADHD and mild ID with 
which he was also diagnosed, and he displayed the compensatory strength of a distinct affability (at 
times to the point of joviality) and enjoyment of social interaction despite the quality and consistency of 
social interaction being compromised by his ASD symptoms. Further details of his symptom profile are 
provided in Table S1. 

Language and motor delay are universal in MYT1L deletion patients (Blanchet et al., 2017), 
therefore, we assessed Hets for gross developmental, communication, and motor delay (Fig. 7A). 
Physically, we found that Hets did not exhibit signs of gross developmental delay: they matched WT 
ages at pinnae detachment and eye opening, and postnatal weight gain (Fig. 7C). We examined early 
communicative interaction by recording ultrasonic vocalizations (USV) emitted by isolated pups. Hets 
exhibited an increase in USV rate compared to WT littermates (Fig. 7D) following maternal separation, 
that is likely independent of altered respiratory muscle function (Fig. 7E-H). Rather than delayed 
communicative behavior, this elevated rate suggests an anxiety-like phenotype or, since USV rate also 
reflects arousal levels, a heightened arousal that may reflect a hyperactive phenotype.  

 Possible motor delay was assessed with a battery of tasks conducted during the first two weeks 
postnatal (Feather-Schussler and Ferguson, 2016), which examined the acquisition of motor function, 
including ambulation, posture, reflexes, and muscle strength and endurance. Hets exhibited normal 
acquisition of ambulation, grasping reflex (Fig. 7I,J), and comparable latencies for righting and negative 
geotaxis reflexes (Fig. 7K,L). However, Myt1l mutation was associated with an inability to hold position 
during the negative geotaxis test (Fig. 7L), indicating Hets had a difficult time holding themselves in 
place. Hets were also unable to remain suspended as long on other strength tasks including fore- and 
hindlimb suspension (Fig. N), and grip strength (Fig. 7O) compared to WTs. While these tasks are not 
exhaustive, the results suggest no gross motor delay was present. Yet, the strength and endurance 
deficits suggest hypotonia, a feature reported often in MYT1L deletion patients (Blanchet et al., 2017; 
Doco-Fenzy et al., 2014; Windheuser et al., 2020b). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2020.12.17.423095doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?KpNklN
https://www.zotero.org/google-docs/?cjgfwU
https://www.zotero.org/google-docs/?jjPSAf
https://www.zotero.org/google-docs/?C2iegx
https://www.zotero.org/google-docs/?C2iegx
https://doi.org/10.1101/2020.12.17.423095
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2020.12.17.423095doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423095
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7: Myt1l haploinsufficiency results in heightened USV production and muscle weakness and fatigue.  
(A) Timeline for developmental assessments. (B) Timeline for post-weaning behavioral assays. (C) Early postnatal weight 
trajectories were comparable for WT and Hets. (D) Hets produced fewer USVs from P5-P11 than WT. (E-H) Het calls did 
not differ from WT calls on temporal (call duration (E), pause duration (F), sound pressure level (G)) or spectral (mean 
frequency (H)) features. (I) MYT1L loss was not associated with ambulation scores at P8. (J) MYT1L loss was not associated 
with grasping reflex in the forepaws or hindpaws. (K) Hets exhibited latency to righting reflex similar to WTs at P6 and P14. 
(L) Latency to exhibit negative geotaxis was comparable between Hets and WTs at P10, however, MYT1L loss was 
associated with increased falls from the inclined apparatus. (M) Hets were unable to remain suspended by fore or hindlimbs 
as long as WTs. (N) Hets fell from the grip strength mesh screen at a narrower angle than WTs. (O) As adults, Hets hung 
on an inverted screen for a shorter latency than WTs. (P) Hets exhibited a longer latency than WTs to climb to the top of a 
90° screen. (Q) Time to balance on an elevated platform was similar between Hets and WTs. (R) Hets climbed down a pole 
at a comparable latency to WTs. (S) Hets climbed to the top of a 60° wire mesh screen at a comparable latency to WTs. (T) 
Hets initiated movement at a similar latency to WTs. (U) Percent inhibition of startle following a pre-pulse was similar in Hets 
and WTs. 
For panels C, D, and U, grouped data are presented as means ± SEM. For panels E-H, K, L (left), and M-T grouped data 
are presented as boxplots with thick horizontal lines respective group medians, boxes 25th – 75th percentiles, and whiskers 
1.5 x IQR. Individual data points are open circles. See also Table S5 for statistical test details.  

In an independent cohort assessed from P30 through adulthood (Fig. 7B) we also observed 
phenotypes consistent with reduced muscle strength and endurance in Hets on sensorimotor tasks. 
Hets demonstrated decreased strength and endurance on the inverted screen test (Fig. 7P) and 
difficulty climbing a 90° wire screen (Fig. 7Q), which requires strength and coordination. Hets were 
largely normal on the remaining sensorimotor tasks for balance, coordination and movement initiation 
(Fig. 7R-U). In addition, we found comparable pre-pulse inhibition (PPI) between groups in the sensory 
gating startle/PPI task (Fig. 7V). Coupled with the neonatal data, these findings indicate MYT1L loss 
resulted in muscle weakness suggestive of hypotonia, yet future studies of body composition and 
muscle pathology will be necessary to confirm this as a model of MYT1L-dependent hypotonia.  

As patients show ID, we examined spatial learning and memory and Pavlovian fear conditioning 
as assessments of learning in mice. Hets displayed normal spatial acquisition and memory retention in 
the Barnes maze (Fig S7A,B). However, Hets failed to show typical contextual and cued fear 
conditioning (Fig. S7C), suggesting decreased associative memory. In the same cohort of mice, we 
examined activity levels for ADHD-like features at P30. Regardless of sex, Hets were hyperactive in 
the open-field task, traveling a greater distance than WT littermates (Fig. S8A). This hyperactivity 
replicated in subsequent assays, where activity variables were also available: in distance traveled in 
the social operant task and in heightened baseline force measurements in the startle task (a 
measurement of movement in the apparatus in the absence of startle stimuli; Fig 8S, S8B). This 
hyperactive phenotype confounds the interpretation of the conditioning data above because it can 
mirror a conditioning deficit in this task. Thus, further investigations are necessary to understand any 
learning deficits in this model. Finally, we assessed the center variables of the open field task for 
anxiety-related behaviors (thigmotaxis), and found no increase in anxiety-related behavior in Hets as 
measured in this task (Fig. S8C). The hyperactivity phenotype in the absence of anxiety-related 
markers sheds more light on the heightened USV data.  It further supports our interpretation that we 
were observing an arousal-related increase in call rate during the first two weeks postnatal. 

 
MYT1L haploinsufficiency results in ASD-related social impairments particularly robust in 
males 
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Figure 8. Myt1l haploinsufficiency altered social behaviors. 
(A) MYT1L loss was associated with more losses in the social dominance assay. (B) Assay schematics for social approach 
test trials. Investigation zones demarcated by the dotted red lines. (C) During the sociability trial, Hets spent less time 
investigating with the social stimulus than WTs and failed to show an increase in time spent in the social versus empty 
investigation zones. No difference between genotypes was observed in social novelty. (D) Sociability and social novelty 
preference scores were comparable between Hets and WTs. (E) Hets spent more time in the center chamber during both 
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the sociability and social novelty trials of the social approach task compared to WTs. (F) During the sociability trial, Hets 
entered the zone surrounding the social stimulus fewer times compared to WTs, and failed to show an increase in entries 
into the social cup zone versus empty cup zone. During the social novelty trial, Hets entered the zone surrounding the novel 
mouse less than WT mice. (G-H) Social operant assay and timeline schematics. (I) C57BL/6J mice show consistency across 
multiple test days in the max level of effort they will exert for access to social interaction reward, demonstrating performance 
in the social operant test is reproducible in the same individuals across test days. (J) This max effort is driven by the social 
aspect of the reward as demonstrated by the difference in performance between mice that receive the social interaction 
reward versus mice that received only the raising of the door yet no access to a stimulus mouse. (K) The time series of task 
acquisition demonstrates that Myt1l WT and Het mice learn to discriminate between correct versus incorrect holes for access 
to a social interaction reward during FR1 training. (L) Both Myt1l WT and Het mice that meet learning criteria are motivated 
to work harder for the social interaction reward when more effort is required during the FR3 testing. (M) Day to reach criteria 
during social operant training was not different between Hets and WTs. (N) Breakpoint reached during social operant PR3 
testing was not different between Hets and WTs. (O) Het males achieved less social rewards compared to WT males. (P) 
Het males and females exhibited a comparable number of correct nosepokes to WT littermates. (Q) During a reward, Het 
males trended towards less total time in the social interaction zone compared to WT males. Regardless of genotype, males 
spent more time in the social interaction zone compared to females. (R) Het males spent less total time in the social 
interaction zone than WT males. Regardless of genotype, males spent more time in the social interaction zone compared 
to females. (S) Female and male Hets traveled farther distances during 1-hr social operant trials compared to WTs. Overall, 
females traveled farther distances than males during social operant trials.  

For panels C-F, I-L, and N-S, grouped data are presented as means ± SEM. Individual data points are open circles. 
See also Figure S7,8 and Table S5 for statistical test details.  

We also investigated multiple behaviors related to the index patient’s ASD diagnosis. First, we 
investigated cognitive inflexibility, sensory sensitivity, repetitive behaviors and stereotypies across 
multiple assays. In the spontaneous alternation T-maze, male and female Hets exhibited comparable 
percent alternation to WTs and alternation rates different from chance (50%; Fig. S8D), indicating no 
preservation in this task. To assess sensory sensitivities, we quantified responses to stimulation of the 
plantar surface of the paw with von Frey filaments. Het mice exhibited an overall reduced sensitivity to 
this tactile stimulation (Fig. S8E). Examination of open field movement plots revealed sharp vertical 
movements in the perimeter, suggestive of jumping. Therefore, we re-analyzed the video-data with 
cutting-edge pose estimation software DeepLabCut (Mathis et al., 2018) coupled with SimBA (Nilsson 
et al., 2020) (Fig. S8F) to generate supervised machine-learning behavioral predictive classifiers for 
automated quantification of jumping behavior (Movie S1). Despite hyperactivity displayed by both male 
and female Hets (Fig. S8A), female Hets alone exhibited significantly more jumping compared to 
female WTs and male Hets (Fig. S8G). Therefore, this may be a female-specific overactivity trait. We 
also did not observe stereotyped behavior in the force-plate actometer (FPA) in the form of bouts of 
low mobility or movement during those bouts (Fig. S8H,I), which would be suggestive of repetitive 
grooming. Indeed, training a video classifier to specifically assess grooming in the open field task 
revealed that while there was an interesting sex difference in duration of grooming bouts (Fig. S8J), 
Myt1l mutation did not further modulate this behavior (Fig. S8K). Thus in the tasks used here, no 
behaviors related to repetitive/restrictive interests or stereotypies were observed.  

Previous work suggested MYT1L promotes differentiation of oligodendroglia (Shi et al., 2018), 
which could impact myelination. Demyelination can result in a tremor in mice, as assessed by the FPA 
(Li et al., 2019). However, we did not observe any tremor in Hets at five weeks postnatal (Fig. S8L), 
suggesting the white matter anomalies we see do not reflect demyelination, consistent with the normal 
FA values (Fig. 3H). 

Finally, we assayed multiple aspects of social behavior. To assess social hierarchy behavior, we 
used the social dominance tube test in which the dominant mouse will force a partner out of an 
interaction tube. MYT1L loss was associated with submission in this test (Fig. 8A). In the social 
approach task (Fig. 8B), Hets showed reduced sociability (less time investigating the novel conspecific 
compared to WTs) during both trials (Fig. 8C), though still exhibiting social preference (Fig. 8D). This 
is due to reduced investigation time overall, as Hets spent more time in the center chamber (Fig. 8E). 
These findings, coupled with reduced entries into the social investigation zone (Fig. 8F), indicate 
reduced sociability in the Hets compared to WTs.  

 Deficits in sociability may be due to reduced motivation to engage with a social partner. Social 
motivation requires both social reward circuits and social orienting circuits (i.e., attending to a social 
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stimulus when presented) (Chevallier et al., 2012). Therefore, we used data from an adapted and 
extended social paradigm (Martin and Iceberg, 2015), to understand the effect of MYT1L loss on social 
motivation directly and parse these two possibilities. We adapted standard operant conditioning (Fig. 
8G,H) to assess social motivation by rewarding nosepokes with an opportunity for transient social 
interaction (Fig. 8I-L). Social reward seeking is quantified by increasing the number of nosepokes 
required (work) to elicit each reward, and in parallel the animal’s social orienting can be assessed by 
tracking its behavior. Hets were normal on learning the task, including day to reach criteria based on 
correct to incorrect nosepokes (Fig. 8M) and appeared to show normal social reward-seeking defined 
by the maximum number (breakpoint) of correct nosepokes made for a reward (Fig. 8N). However, 
during training male Hets achieved fewer social rewards compared to WT males (Fig. 8O) despite 
exhibiting a comparable number of correct nosepokes (Fig. 8P). This suggested the Het males 
continued to poke despite the presentation of a social reward. Indeed, we found that Het males tended 
to spend less time at the door during a reward (Fig. 8Q), and showed a significant decrease in overall 
time in the interaction zone (Fig. 8R). This reduction is not secondary to increased activity levels of 
male Hets as both males and female Hets show increased distance traveled (Fig. 8S). Together, these 
data indicate that Het males failed to cease holepoking and attend to a social stimulus at the WT rate. 
This suggests MYT1L loss might lead to ASD phenotypes through disrupting social orienting, possibly 
linked to inappropriate perseveration on non-social stimuli. 

  
Discussion 
 Here, we generated a model of Myt1l Het mutation to address the role of MYT1L protein during 
CNS development, and to comprehensively characterize a model of this ID-associated syndrome. We 
confirmed that the frameshift mutation results in haploinsufficiency, ruling out a truncated protein 
mechanism. The lowered protein level leads to physical and behavioral anomalies, many of which 
reflect observations in patients, including microcephaly, thinned white-matter, muscle weakness, 
obesity, hyperactivity, and social deficits.  This indicates these mice are a robust model of the disorder, 
and will enable preclinical and mechanistic studies that are not possible in humans. 
 Along these lines, molecular and neuropathologic studies defined a mechanism for aspects of 
the syndrome. Specifically, the syndrome’s microcephaly appears to be due to an increased rate of cell 
cycle exit and precocious differentiation from progenitor to immature neurons. The most parsimonious 
interpretation is that loss of proliferating progenitors results in insufficient expansion progenitor pools 
and thus a correspondingly smaller brain. 
 These same molecular studies clarify the role of MYT1L protein levels in normal brain 
development. In both Het and KOs, ATACseq revealed substantial change in chromatin accessibility 
across the genome, with both increases and decreases apparent. Given the shift in cell proportions 
from precocious differentiation, this represents a mix of direct and indirect effects. Focusing on the likely 
direct effects (i.e., at CHIPseq peaks), mutants showed a disproportionate loss of accessibility, 
suggesting MYT1L more often functions as an activator in vivo. Our RNAseq findings mirror these 
observations.  

A role primarily as an activator during normal brain development agrees with some prior data, 
but does contrast with the specific role proposed for MYT1L during transdifferentiation studies.  Prior 
studies defined both N-terminal activating domains and repressive domains (Manukyan et al., 2018) 
suggesting MYT1L may have distinct functions in different contexts. Further, the lack of binding motifs 
near activated transcripts following MYT1L overexpression led Manukyan et al. to speculate MYT1L’s 
activating effects involved either a novel motif or indirect recruitment via other TFs. Our data offer some 
support for the latter conclusion, with ~20% each of reduced accessibility regions showing ASCL1 and 
LHX motifs, but no enrichment of the MYT1L motif. We also saw some evidence of repressive function 
for MYT1L, as some regions opened chromatin upon its loss. However, our findings in vivo during 
development contrast with the role MYT1L was proposed to serve in vitro during directed 
transdifferentiation of fibroblasts to neurons (Mall et al., 2017), where overexpression MYT1L 
corresponded to a loss of fibroblast gene expression. They concluded MYT1L served as a novel 
‘repressor of all lineages save neurons,’ almost as an opposite to the classic REST TF, known to 
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repress the expression of neuron-specific genes in all non-neuronal cells (Chong et al., 1995). We 
reasoned that if MYT1L had this role in vivo, deletion should lead to enhanced non-neuronal gene 
expression. However, decrease or loss of MYT1L did not result in ectopic expression of other lineages’ 
genes in E14 brain, suggesting such a role is not a major function during normal brain development.  

Yet, with regards to later function on neuronal maturation our adult studies agree in a general 
way with prior shRNA data in primary neurons & NPCs (Kepa et al., 2017; Mall et al., 2017) that 
decreasing MYT1L levels disrupts neuronal maturation. Like these studies, we saw a decrease in 
mature neuronal markers, and we highlight an aberrant higher expression of immature neuronal 
markers such as Eomes and Dlx2. Correspondingly, Het neurons exhibited markedly abnormal passive 
membrane properties, specifically a depolarized resting potential, decreased membrane resistance, 
decreased capacitance and smaller time constant. In addition, we observed excessive dendritic spines 
with immature morphology and increased mEPSC amplitudes in Hets. This physiological effect was not 
as severe as was seen following shRNA from Mall, where action potentials were completely lost, nor 
Kepa, where cell body size was doubled and neurites decreased by half. Perhaps these more robust 
effects reflect a stronger knockdown (e.g, 90% for Kepa), and may explain why KO mice are not viable 
after birth. Nonetheless, synaptic and membrane dynamics are key determinants of neuronal 
computation, thus the changes observed in vivo indicate a functional mechanism by which MYT1L 
haploinsufficiency-induced changes in transcription and chromatin state may undermine circuit function 
in Hets.  
 This has lasting behavioral consequences as well, including muscle weakness, hyperactivity and 
social deficits, echoing patient prevalence of hypotonia, and the diagnosis in a subset of ADHD and 
ASD (Blanchet et al., 2017). Mutants were hyperactive across numerous tasks, including open field, 
social operant and prepulse inhibition/startle, and arguably USVs. The mice also had altered sociality, 
shown in the standard social approach task where they spent a decreased amount of time with stimulus 
mice, but had normal preference compared to an object. A common theory of ASD posits social 
motivation deficits are secondary either to deficits in social reward seeking or social orienting (Chevallier 
et al., 2012). We therefore adapted a protocol to specifically parse these possibilities: we coupled social 
operant conditioning to behavioral tracking and found that mutants, specifically males, learned to 
holepoke for a social reward, but tended to continue hole poking rather than reorienting to the social 
stimuli. This finding suggests this mutation might impact social orienting rather than social reward:  a 
hypothesis that may be interesting to test with eye tracking in patients as well.  Regardless, we believe 
this adaptation of the social operant protocol may be of use in subtyping deficits leading to social 
anomalies across different genetic models of ID with partially penetrant ASD.  

Beyond mechanisms for the structural anomalies, the development of this new MYT1L 
Syndrome model will allow identification of molecular mechanisms mediating these behavioral 
anomalies as well. Of particular interest is understanding whether MYT1L acts on the same or different 
targets across CNS development. In addition, there is also an opportunity to define circuits involved in 
social orienting in mice, a relatively understudied area. Finally, the robust patient-related phenotypes 
allow for well-powered preclinical studies of potential therapeutics for MYT1L Syndrome.  
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STAR * Methods 
 
Key Resources Table 
 

REAGENT or 
RESOURCE 

SOURCE IDENTIFIER 

Antibodies 

Rabbit anti-MYT1L Proteintech 25234-1-AP 

Guinea pig anti-
MAP2 

Synaptic Systems #188044 

Goat anti-SOX2 Santa Cruz sc-17320 

Chicken anti-TBR2 Millipore AB15894 

Rat anti-TBR2 Invitrogen #14-4875-82 

Rat anti-Ki67 Invitrogen # 14-5698-82 

Rat anti-CTIP2 Abcam ab18465 

Mouse anti-BRN2 Santa Cruz sc-393324 

Rabbit anti-NEUN Cell Signaling #12943 

Goat anti-GFAP Abcam ab53554 

Goat anti-OLIG2 R&D Systems AF2418 

Rabbit anti-TBR1 Abcam ab31940 

Mouse anti-
GAPDH 

Sigma G8795 

Donkey anti-rabbit, 
Alexa Fluor 488 

Invitrogen A-21206 

Donkey anti-rabbit, 
Alexa Fluor 546 

Invitrogen A10040 

Donkey anti-rabbit, 
Alexa Fluor 647 

Invitrogen A-31573 

Donkey anti-
chicken, Alexa 
Fluor 488 

Jackson Immuno Research #703-545-155 

Donkey anti-rat, 
Alexa Fluor 488 

Invitrogen A48269 

Donkey anti-rat, 
Alexa Fluor 647 

Invitrogen A48272 
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Donkey anti-
muose, Alexa 
Fluor 546 

Invitrogen A10036 

Donkey anti-goat, 
Alexa Fluor 488 

Jackson Immuno Research 705-546-147 

Donkey anti-goat, 
Alexa Fluor 647 

Jackson Immuno Research 705-605-003 

Goat anti-mouse 
IgG (H+L)-HRP 
conjugate 

Bio-Rad #1706516 

Goat anti-rabbit 
IgG (H+L)-HRP 
conjugate 

Millipore AP307P 

Chemicals, peptides, and recombinant proteins 

Streptavidin, Alexa 
Fluor™ 568 
conjugate 

Invitrogen S11226 

SYBR Green 
Master Mix 

Thermo Fisher #4309155 

Critical commercial assays 

Click-iT EdU Cell 
Proliferation Kit for 
Imaging Alexa 
Fluor-594 

Invitrogen C10339 

qScript cDNA 
synthesis Kit 

QuantaBio #95047 

Zymo RNA Clean 
and 
ConcentratorTM-5 
kit 

Zymo Research R1014 

Deposited data 

 RNA-seq Gene Expression Ominibus  Depositing in process 

 ATAC-seq Gene Expression Ominibus  Depositing in process 

      

      

Experimental models: Organisms/strains 
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Mouse, C57BL/6J, 
Myt1l S710fsX 
knockin 

This paper Depositing with JAX/MMRC in process.   

Mouse, C57BL/6J, 
Wild-type 

The Jackson Laboratory #000664 

Oligonucleotides 

Myt1l S710fsX 
founder screening 

This paper F(5'-3'): GGCCTAACCACACTGTCCTC; R(5'-3'): 
CACAAGTTAGGGCTGGAGGG 

Myt1l S710fsX 
PCR genotyping 
(WT) 

This paper F(5'-3'): ATGTCGCAGTAGCCAAGTC; R(5'-3'): 
TCTTGCTACACGTGCTACT 

Myt1l S710fsX 
PCR genotyping 
(Mut) 

This paper F(5'-3'): ATGTCGCAGTAGCCAAGTC; R(5'-3'): 
TCTTGCTACACGTACTGGA 

Myt1l S710fsX 
Sanger 
sequencing 

This paper F(5'-3'): ACCTGTTAGTCACATGAGG; R(5'-3'): 
TGGTGGAGATGCCTATCTC 

1st PCR for 
illumina 
sequencing 

This paper F(5'-3'): 
GTGACTGGAGTTCAGACGTGTGCTCTTCCG
ATCTCAAGCGGTACTGCAAGAATG; R(5'-3'): 
ACACTCTTTCCCTACACGACGCTCTTCCGAT
CTCTGTGGCATTTCACGACAAC 

2nd PCR for 
illumina 
sequencing_001 

This paper F(5'-3'): 
AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCT; R(5'-
3'): 
CAAGCAGAAGACGGCATACGAGATACCGGT
GTCGTGACTGGAGTTCAGACGTGTGCTCTTC
CGA 

2nd PCR for 
illumina 
sequencing_002 

This paper F(5'-3'): 
AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCT; R(5'-
3'): 
CAAGCAGAAGACGGCATACGAGATAAGAGA
TGTGTGACTGGAGTTCAGACGTGTGCTCTTC
CGA 

2nd PCR for 
illumina 
sequencing_003 

This paper F(5'-3'): 
AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCT; R(5'-
3'): 
CAAGCAGAAGACGGCATACGAGATCTTCAC
ACAGTGACTGGAGTTCAGACGTGTGCTCTTC
CGA 
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2nd PCR for 
illumina 
sequencing_004 

This paper F(5'-3'): 
AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCT; R(5'-
3'): 
CAAGCAGAAGACGGCATACGAGATCAAATC
GGAGTGACTGGAGTTCAGACGTGTGCTCTT
CCGA 

2nd PCR for 
illumina 
sequencing_005 

This paper F(5'-3'): 
AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCT; R(5'-
3'): 
CAAGCAGAAGACGGCATACGAGATGGTCCC
TAAGTGACTGGAGTTCAGACGTGTGCTCTTC
CGA 

2nd PCR for 
illumina 
sequencing_006 

This paper F(5'-3'): 
AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCT; R(5'-
3'): 
CAAGCAGAAGACGGCATACGAGATCCTTCT
GTGGTGACTGGAGTTCAGACGTGTGCTCTT
CCGA 

2nd PCR for 
illumina 
sequencing_007 

This paper F(5'-3'): 
AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCT; R(5'-
3'): 
CAAGCAGAAGACGGCATACGAGATTCCGTA
TTAGTGACTGGAGTTCAGACGTGTGCTCTTC
CGA 

2nd PCR for 
illumina 
sequencing_008 

This paper F(5'-3'): 
AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCT; R(5'-
3'): 
CAAGCAGAAGACGGCATACGAGATACTTGG
GCAGTGACTGGAGTTCAGACGTGTGCTCTT
CCGA 

2nd PCR for 
illumina 
sequencing_009 

This paper F(5'-3'): 
AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCT; R(5'-
3'): 
CAAGCAGAAGACGGCATACGAGATTCCTCC
AAAGTGACTGGAGTTCAGACGTGTGCTCTTC
CGA 

2nd PCR for 
illumina 
sequencing_010 

This paper F(5'-3'): 
AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCT; R(5'-
3'): 
CAAGCAGAAGACGGCATACGAGATTAGCAA
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AACGTGACTGGAGTTCAGACGTGTGCTCTTC
CGA 

MYT1L qPCR This paper F(5'-3'): ACTATCAAGCAGCGAGCCAG; R(5'-
3'): CATGTCAGCCTCCATCTGGG 

GAPDH qPCR This paper F(5'-3'): AGGTCGGTGTGAACGGATTTG; R(5'-
3'): GGGGTCGTTGATGGCAACA 

ATAC-seq i5 
adapter_001 

This paper AATGATACGGCGACCACCGAGATCTACACG
TAAGGAGTCGTCGGCAGCGTCAGATGTG 

ATAC-seq i5 
adapter_002 

This paper AATGATACGGCGACCACCGAGATCTACACCT
CTCTATTCGTCGGCAGCGTCAGATGTG 

ATAC-seq i5 
adapter_003 

This paper AATGATACGGCGACCACCGAGATCTACACTA
TCCTCTTCGTCGGCAGCGTCAGATGTG 

ATAC-seq i7 
adapter_001 

This paper ACATCTCCGAGCCCACGAGACTAAGGCGAA
TCTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_002 

This paper ACATCTCCGAGCCCACGAGACCGTACTAGA
TCTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_003 

This paper ACATCTCCGAGCCCACGAGACAGGCAGAAA
TCTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_004 

This paper ACATCTCCGAGCCCACGAGACTCCTGAGCA
TCTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_005 

This paper ACATCTCCGAGCCCACGAGACGGACTCCTA
TCTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_006 

This paper ACATCTCCGAGCCCACGAGACTAGGCATGA
TCTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_007 

This paper ACATCTCCGAGCCCACGAGACCTCTCTACAT
CTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_008 

This paper ACATCTCCGAGCCCACGAGACCAGAGAGGA
TCTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_009 

This paper ACATCTCCGAGCCCACGAGACGCTACGCTA
TCTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_010 

This paper ACATCTCCGAGCCCACGAGACCGAGGCTGA
TCTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_011 

This paper ACATCTCCGAGCCCACGAGACGTAGAGGAA
TCTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_012 

This paper ACATCTCCGAGCCCACGAGACGTCGTGATA
TCTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_013 

This paper ACATCTCCGAGCCCACGAGACACCACTGTAT
CTCGTATGCCGTCTTCTGCTTG 
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ATAC-seq i7 
adapter_014 

This paper ACATCTCCGAGCCCACGAGACTGGATCTGA
TCTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_015 

This paper ACATCTCCGAGCCCACGAGACCCGTTTGTAT
CTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_016 

This paper ACATCTCCGAGCCCACGAGACTGCTGGGTA
TCTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_017 

This paper ACATCTCCGAGCCCACGAGACAGGTTGGGA
TCTCGTATGCCGTCTTCTGCTTG 

ATAC-seq i7 
adapter_018 

This paper ACATCTCCGAGCCCACGAGACAAGAGGCAA
TCTCGTATGCCGTCTTCTGCTTG 

Software and algorithms 

R https://www.r-project.org/ R version 4.0.0 

Fiji / ImageJ https://fiji.sc v2.0.0 

GraphPad Prism https://www.graphpad.com v8.0 

FastQC https://www.bioinformatics.b
abraham.ac.uk/projects/fast
qc/ 

v0.11.9 

Trimmomatic (Bolger et al., 2014) v0.39 

Bowtie2 http://bowtie-
bio.sourceforge.net/bowtie2
/index.shtml 

v2.4.0 

STAR https://github.com/alexdobin
/STAR 

v2.7.0 

ITK-SNAP http://www.itksnap.org/pmwi
ki/pmwiki.php 

v3.8.0 

Samtools http://www.htslib.org v1.12 

Picard https://github.com/broadinst
itute/picard/releases/tag/2.2
5.2 

v2.25.2 

Macs2 (Zhang et al., 2008) N/A 

Homer (Heinz et al., 2010) v4.11 

edgeR (Robinson et al., 2010) v3.12 

RUVseq (Risso et al., 2014) v3.12 

DeepTools https://deeptools.readthedo
cs.io/en/develop/ 

v2.0 
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HTSeq  (Anders et al., 2015) v0.11.1 

Cytoscape https://cytoscape.org/ v3.8.0 

GSEA (Subramanian et al., 2005) v4.0.3 

BioMart (Durinck et al., 2009) N/A 

ChIPpeakAnno (Zhu et al., 2010) v2.0.5 

 
Resource Availability 
 
Lead Contact 
Further information and requests for resources and reagents should be directed to and will be fulfilled 
by the lead contact, Dr. Joseph D. Dougherty (jdougherty@wustl.edu ). 
 
Materials availability 
Mouse line generated in this study is available upon request. 
 
Data and code availability 
The codes for analysing illumina sequencing, ATAC-seq, and RNA-seq generated in this study are 
available upon request. 
The ATAC-seq and RNA-seq raws reads as well as counts data are available at… 
 
Experimental model and subject details 
 
Human subjects 
All procedures with human subjects were approved by the Washington University Institutional Review 
Board (201603131). 
 
Animal models 
All procedures using mice were approved by the Institutional Care and Use Committee at Washington 
University School of Medicine and conducted in accordance with the approved Animal Studies Protocol. 
All mice used in this study were bred and maintained in the vivarium at Washington University in St. 
Louis in individually ventilated (36.2 x 17.1 x 13 cm) or static (28.5 x 17.5 x 12 cm; post-weaning 
behavior only) translucent plastic cages with corncob bedding and ad libitum access to standard lab 
diet and water. Animals were kept at 12/12 hour light/dark cycle, and room temperature (20-22°C) and 
relative humidity (50%) were controlled automatically. For all experiments, adequate measures were 
taken to minimize any pain or discomfort. Breeding pairs for experimental cohorts comprised Myt1l Hets 
and wild type C57BL/6J mice (JAX Stock No. 000664) to generate male and female Myt1l Het and WT 
littermates. For embryonic ATAC-seq, RNA-seq, and EdU labeling, Myt1l Het x Het breeding pairs were 
used to generate Myt1l WT, Het and homozygous mutant littermates. Animals were weaned at P21, 
and group-housed by sex and genotype. Biological replicates for all experiments are sex and genitype 
balanced. 
 
Method details 
 
Generation of MYT1L knockout mice. 
 
 A Cas9 gRNA was designed to target the 7th exon of the mouse MYT1L gene (seq: 5’ 
GCTCTTGCTACACGTGCTACNGG 3’), similar to where a patient specific heterozygous de novo 
mutation had been defined by our clinical colleagues in human case with ASD (c.2117dupG). Cutting 
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efficiency of reagents and homologous recombination was confirmed in cell culture. Then validated 
gRNA and Cas9 protein (IDT) were electroporated into fertilized C57BL6/J oocytes along with single 
stranded oligonucleotides carrying homology to the targeted region and the G mutation (Seq: 5’ 
accagcagctatgcacctagcagcagcagcaacctcagctgtggtggtggcagGcagcgccTCCagTacgtgtagcaagagcagcttt
gacta cacacatgacatggaggccgcacacatggcagcc 3’) as well as blocking oligonucleotides (Seq: 5’ 
accagcagctatgcacctagcagcagcagcaacctcagctgtggtggtggcagcagcgccTCCagTacgtgtagcaagagcagctttga
ctacacacatgacatggaggccgcacacatggcagcc 3’) for the other strand to prevent homozygous mutation and 
presumptive embryonic lethality of founders. Eggs were cultured for 1-2 hours to confirm viability, then 
transferred to pseudopregnant surrogate dams for gestation. Pups were then screened for the targeted 
allele by amplicon PCR with mutation flanking primers followed by Illumina sequencing.  

Founders carrying the appropriate allele were then bred with wild type C57BL/6J mice (JAX 
Stock No. 000664) to confirm transmission. F1 pups from the lead founder were genotyped by 
sequencing as above, then bred to generate experimental animals. Subsequent genotyping at each 
generation was conducted utilizing allele specific PCR using the MYT1L mutant primers and control 
primers, amplified using Phusion and the following cycling conditions: 98°C for 3 min, 98°C for 10 s, 
61°C for 20 s, 72°C for 20 s, repeat 2-4 for 35 cycles, 72°C for 5 min, and hold at 4°C. 
 
RNA extraction and RT-qPCR 
 
Mice brains or cortex were dissected out at different developmental stages and homogenized in lysis 
buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630, 0.1% RNase 
inhibitor) on ice. Then lysates were mixed with Trizol LS and chloroform. After centrifugation, RNA was 
extracted from the aqueous layer with Zymo RNA Clean and ConcentratorTM-5 kit. cDNA libraries were 
prepared using qScript cDNA synthesis Kit (QuantaBio). RT-qPCR were performed using SYBR Green 
Master Mix (Thermo Fisher) on QuantStudio 6 Flex Real Time PCR System using primers in the Key 
Resources Table. We normalized cycle counts to GAPDH and calculated normalized relative gene 
expression using ΔΔCT. To compare MYT1L mRNA expression between genotypes, we put 6 WT and 
8 Het brains into qPCR procedure. To understand MYT1L expression in human brain, we acquired 
normalized RNA-seq RPKM values of MYT1L in primary somatosensory cortex (S1C) from Allen Brain 
Atlas BrainSpan dataset (http://www.brainspan.org/) and plotted MYT1L mRNA temporal expression in 
R. 
 
Western Blot 
 
Mice brains or cortex were dissected out at different developmental stages and homogenized in lysis 
buffer (50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 3 mM MgCl2, 1% IGEPAL CA-630, 10 mM NaF, 10 mM 
Na3Vo4 with Protease inhibitors). After centrifugation, supernatants were collected and protein 
concentration was measured by BCA assay. For each sample, 20 µg of protein was run on the 7.5% 
BioRad precast gel and transferred to the PVDF membrane. We blocked the membrane using TBST 
with 3% BSA for 2 hours at room temperature (RT). Then, the membrane was incubated with anti-
MYT1L (1:500, 25234-1-AP, Proteintech) and anti-GAPDH (1:5000, G8795, Sigma) primary antibodies 
overnight at 4°C and then incubated with HRP conjugated anti-Mouse (1:2000, 1706516, BioRad) and 
anti-goat (1:2000, AP307P, Millipore) for one hour at RT. After washing, the membrane was developed 
in BioRad ECL Western Blotting Substrates and imaged with myECL Imager (Thermo Fisher). 
Fluorescent intensity was measured by ImageJ and MYT1L expression was normalized to GAPDH. To 
compare MYT1L protein expression between genotypes, we put 3 WT and 4 Het brains into Western 
Blot procedure. 
 
Immunofluorescence 
 
Mice brains were dissected out at different developmental stages and fixed in 4% paraformaldehyde 
(PFA) overnight at 4°C. After gradient sucrose dehydration and O.C.T. compound embedding, brains 
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were sectioned using Leica Cryostat (15 µm for E14 brains and 30 µm for postnatal brains), Antigen 
retrieval was performed by boiling sections in 95°C 10 nM sodium citrate (pH 6.0, 0.05% Tween-20) for 
10 mins. Then sections were incubated in the blocking buffer (5% normal donkey serum, 0.1% Triton 
X-100 in PBS) at RT for 1 hour. Primary antibodies, including anti-MYT1L (1:500, 25234-1-AP, 
Proteintech), anti-MAP2 (1:200, #188044, SYSY), anti-SOX2 (1:200, sc-17320, Santa Cruz), anti-TBR2 
(1:400, AB15894, Millipore), anti-Ki-67 (1:500, #14-5698-82, Invitrogen), anti-CTIP2 (1:500, ab18465, 
Abcam), anti-BRN2 (1:500, sc-393324, Santa Cruz), anti-NEUN (1:500, #12943, Cell Signaling), anti-
GFAP (1:500, ab53554, Abcam), anti-OLIG2 (1:200, AF2418, R&D Systems), and anti-TBR1 (1:500, 
ab31940, Abcam) were used to detect different cell markers. Next, sections were incubated in 
fluorescence conjugated secondary antibodies, including donkey anti-rabbit (Alexa 488, 546, and 647, 
Invitrogen), donkey anti-mouse (Alexa 546, Invitrogen), donkey anti-chicken(Alexa 488, Jackson 
ImmunoResearch), donkey anti-rat (Alexa 488 and 647, Invitrogen), and donkey anti-goat (Alexa 488 
and 647, Jackson ImmunoResearch) at 1:500 dilution for 2 hours in RT. Images were captured under 
Zeiss Confocal Microscope or Zeiss Axio Scan Slide Scanner and cell counting was performed using 
ImageJ. In order to compare cell numbers of different cell types across genotypes, we had 5 WT, 6 Het, 
and 5 KO E14 brains for cell counting experiments (Fig. 4A). And we had 6 WT, 6 Het, and 5 KO E14 
brains to quantify the Ki-67 positive cells (Fig. 4G,H). 
 
Sanger Sequencing 
 
Genomic DNA (gDNA) was extracted from mouse tissue by Qiagen Blood and Tissue Kit. a 2.2kb gDNA 
fragment flanking the G duplication site was amplified using the primers (Key Resources Table), 
Phusion, and following program: 98°C for 2 min, 98°C for 10 s, 60°C for 20 s, 72°C for 1 min, repeat 2-
4 for 30 cycles, 72°C for 5 min, and hold at 4°C. PCR products were purified with QIAquick PCR 
Purification Kit and submitted for sanger sequencing at Genewiz. We used Snapgene to check and 
visualize sanger sequencing results. 
 
Illumina Sequencing 
 
gDNA and cDNA library from mice brains was generated as described in the above sections. To prepare 
sequencing libraries, we performed two-step PCR to first tag 200bp DNA fragments flaking the mutation 
site with illumina adapters (Taq, primers seen Key Resources Table, PCR program: 94°C for 3 min, 
94°C for 10 s, 58°C for 20 s, 68°C for 1 min, repeat 2-4 for 30 cycles, 68°C for 5 min, and hold at 4°C) 
and then add unique index to individual samples (Taq, primers seen supplemental tables, PCR program: 
98°C for 3 min, 98°C for 10 s, 64°C for 30 s, 72°C for 1 min, repeat 2-4 for 20 cycles, 72°C for 5 min, 
and hold at 4°C). Final PCR products were purified by gel extraction using Qiagen Gel Extraction Kit 

and submit for 2✕150 Illumina sequencing to CGSSB at Washington University School of Medicine. 

For each sample, we were able to get ~80,000 reads. We conducted quality control on raw reads using 
Fastqc. Then reads were trimmed by Trimmomatic software and aligned to the mouse genome by 
STAR. We used VarScan and Samtools to determine the percentage of the mutation in gDNA(n = 8) 
and cDNA(n = 8) samples. 
 
Nissl Staining 
 
Following perfusion with 4% paraformaldehyde, the brains were removed, weighed (WT n = 5, Het n = 
6), sectioned coronally using a vibratome at 70 μm, and then mounted onto gelatin coated slides (WT 
n = 8, Het n = 9). Sections were then rehydrated for 5 minutes in xylene, xylene, 100% ethanol, 100% 
ethanol, 95% ethanol, 70% ethanol, and deionized water. Using 0.1% cresyl violet at 60°C, sections 
were stained for two hours and rinsed with two exchanges of deionized water. Differentiation began 
with 30 second rinses in 70% ethanol, 80% ethanol, and 90% ethanol. Next, a two-minute rinse in 95% 
ethanol was done, checking microscopically for a clearing background. This was followed by a 30-
second rinse in two exchanges of 100% ethanol, a 15-minute rinse using 50% xylene in ethanol, and a 
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1-hour rinse of xylene. Finally, the sections were mounted and coverslipped using DPX mountant. 
Whole and regional volumes were outlined by a rater blind to treatment using Stereoinvestigator 
Software (v 2019.1.3, MBF Bioscience, Williston, Vermont, USA) running on a Dell Precision Tower 
5810 computer connected to a QImaging 2000R camera and a Labophot-2 Nikon microscope with 
electronically driven motorized stage. 
 
In vivo Magnetic Resonance Imaging (MRI): data acquisition.  
 
All animal experiments were approved by Washington University’s Institutional Animal Care and Use 
Committee. MRI experiments were performed on a small-animal MR scanner built around an Oxford 
Instruments (Oxford, United Kingdom) 4.7T horizontal-bore superconducting magnet and equipped with 
an Agilent/Varian (Santa Clara, CA) DirectDriveTM console. Data were collected with a laboratory-built, 
actively-decoupled 7.5-cm ID volume coil (transmit)/1.5-cm OD surface coil (receive) RF coil pair. Mice 
were anesthetized with isoflurane/O2 (1.2% v/v) and body temperature was maintained at 37±1°C via 
circulating warm water. Mouse respiratory rate (50-70 breaths/minutes) and body temperature (rectal 
probe) were monitored with a Small Animal Instruments (SAI, Stony Brook, NY) monitoring and gating 
unit. 
T2-weighted transaxial images (T2W) were collected with a 2D fast spin-echo multi-slice (FSEMS) 
sequence: echo train length=4, kzero=4, repetition time (TR)=1.5 s, effective echo time (TE)=60 ms; 
field of view (FOV)=24 x 24 mm2, matrix size =192 x 192, slice thickness=0.5 mm, 21 slices, 4 averages. 
Co-registered T1-weighted images (T1W) were collected with a 2D spin-echo multi-slice (SEMS) 
sequence: TR=0.8 s, TE=11.3 ms, 2 averages. 
Diffusion Tensor Imaging (DTI) measures the directional water movement along and perpendicular to 
axons (fractional anisotropy: FA) as a measure of white-matter integrity, and the same images can be 
used for structural assessments. DTI data were collected using a multi-echo, spin-echo diffusion-
weighted sequence with 25-direction diffusion encoding, max b-value=2200 s/mm2. Two echoes were 
collected per scan, with an echo spacing of 23.4 ms, and combined offline to increase signal-to-noise 
ratio (SNR), resulting in a SNR improvement of 1.4x compared with a single echo. Other MR acquisition 
parameters were TR=1.5 s, TE=32 ms, length of diffusion-encoding gradients (δ)=6 ms, spacing 
between diffusion gradients (Δ)=18 ms, FOV = 24 mm x 24 mm, matrix size = 192 x 192, slice 
thickness=0.5 mm, 21 slices, 1 average. The total acquisition time was approximately 2 hours and 5 
minutes. 
 
DTI Data Analysis. 
 
DTI datasets were analyzed in MatLab (The MathWorks®, Natick MA). Following zero-padding of the 
k-space data to matrix size 384 x 384, the data were Fourier-transformed and the images from the two 
spin echoes were added together. A 3 x 3 Gaussian filter (Sigma = 0.7) was applied and the resulting 
images were fit as a mono-exponential decay using the standard MR diffusion equation (Stejskal and 
Tanner, 1965): 

S/S0 = exp[(-ℽ2G2δ2(𝚫-δ/3)D)], 
in which S is the diffusion-weighted signal intensity, S0 the signal intensity without diffusion weighting, 
γ is the gyromagnetic ratio, G is the gradient strength, and D is the diffusion coefficient. Eigenvalues 
(𝜆1,𝜆2,𝜆3) corresponding to the diffusion coefficients in three orthogonal directions were calculated and 

parametric maps of apparent diffusion coefficient (ADC), axial diffusion (Daxial), radial diffusion (Dradial), 
and fractional anisotropy (FA) were calculated according to standard methods (Basser and Pierpaoli, 2011; 
Mori, 2007). Parametric maps were converted into NIfTI (.nii) files for inspection and segmentation in 

ITK-SNAP (www.itksnap.org). We ended up analysing 8 WT mice and 6 Het mice. 
 
ATAC-seq 
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ATAC-seq was performed as described before (Buenrostro et al., 2015). Briefly, mouse E14 cortex or 
adult PFC (P60-P70) was dissected and gently homogenized in cold nuclear isolation buffer (10 mM 
Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630) . Embryonic tissues were pooled 
across sexes, adult tissues included both sexes, balanced for genotype. Lysates were filtered through 
40 µm mesh strainer. After spinning down, 100,000 nuclei were put into the tagmentation reaction for 
each sample. We had 6 WT, 5 Het and 6 KO cortex for embryonic experiments. For adult PFC 
experiments, we put 6 WT and 6 PFC into the pipeline. Tagmentation reaction was performed using 
Illumina Tagment DNA TDE1 Enzyme and Buffer Kit with 30 min incubation time at 37°C. Immediately 
following the tagmentation, we purified DNA fragments using QIAquick PCR Purification Kit. We took 
half amount of purified DNA fragments and added Illumina Nextera i5+i7 adapters with unique index to 
individual samples by PCR reaction (Phusion, primers seen in Key Resources Table, PCR program: 
72°C for 5 min, 98°C for 30 s, 98°C for 10 s, 63°C for 30 s, 72°C for 1 min, repeat 3-5 for 8-10 cycles, 
and hold at 10°C). Generated libraries were purified using AMpure beads (1:1.8 dilution). We ran 
Tapestation for libraries and checked the nucleosome peaks pattern as quality control. Finally, libraries 
were submitted to GTAC Washington University School of Medicine for Novaseq aiming for 50M reads 
per sample. 
 
DAR analysis 
 
Raw reads were trimmed by Trimmomatic software to remove adapter sequence. We used Fastqc to 
check reads quality before and after trimming. Then reads were mapped to mm10 genome by Bowtie2. 
We filtered out mitochondrial reads (Samtools), PCR duplicates (Picard), non-unique alignments 
(MAPQ > 30), and unmapped reads (Samtools). Then a series of QC metrics were examined to ensure 
ATAC experiments worked well, including insert size distribution, mitochondria reads percentage, non-
redundant reads percentage, and TSS enrichment. To adjust reads start sites, we shifted reads aligned 
to + strand by +4bp and reads aligned to - strand by -5 bp by bedtools and awk. After shifting, we 
merged bam files for all samples in one specific time stage (E14 or adult) together and performed peak 
calling by MACS2 with q < 0.05. Peaks were annotated by Homer software. In order to perform 
differential accessible region analysis, we derived peaks read counts from individual sample’s shifted 
bam file using bedtools. With read counts, utilized edgeR package to identify DARs. Briefly, we first 
checked library size, read counts distribution, pearson correlation, and multidimensional scale plots 
and identified no obvious outlier sample. Then we normalized reads and removed unwanted variables 
using the RUVseq package. For E14 cortex ATAC-seq, we fitted the data into a nested interaction 
model to identify altered chromatin accessibility across all genotypes (WT, Het, and KO). And we 
considered peaks with the same significant fold change (FDR < .1) direction in Het and KO as true 
DARs. For adult PFC, a negative binomial generalized linear model was fitted and sex was counted as 
covariate when testing for DARs (FDR < .1). Heatmaps for DARs were generated by deepTools. TSS 
peaks were defined as ±1kb from TSS and all other peaks were considered non-TSS peaks. MYT1L 
ChIP targets from Mall et al.’s Table S2 were mapped to ATAC-seq data sets by bedTools and we 
defined overlapping peaks between the two with 1kb maximum gap. Motif analysis was performed using 
Homer software on DARs (FDR < .1). We used more-accessible regions as background when finding 
motifs for less-accessible regions and vice versa.  
 
RNA-seq 
 
Embryonic cortex and adult PFC (P60-P70) was dissected out and RNA was extracted as described 
above.  Embryonic tissues were pooled across sexes, adult Adult tissues included both sexes, balanced 
for genotypeTotal RNA integrity was determined using Agilent 4200 Tapestation. Library preparation 
was performed with 10ng of total RNA with a RIN score greater than 8.0. ds-cDNA was prepared using 
the SMARTer Ultra Low RNA kit for Illumina Sequencing (Takara-Clontech) per manufacturer’s protocol. 
cDNA was fragmented using a Covaris E220 sonicator using peak incident power 18, duty factor 20%, 
cycles per burst 50 for 120 seconds. cDNA was blunt ended, had an A base added to the 3’ ends, and 
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then had Illumina sequencing adapters ligated to the ends. Ligated fragments were then amplified for 
15 cycles using primers incorporating unique dual index tags. Fragments were sequenced on an 
Illumina NovaSeq-6000 using paired end reads extending 150 bases. Again, raw reads were trimmed 
by Trimmomatic software to remove adapter sequence and we used Fastqc to check reads quality 
before and after trimming. rRNA reads were filtered out by Bowtie2. And filtered reads were mapped to 
the mouse mm10 genome by STAR. Read counts for genes were derived by HTSeq software for 
individual samples. We checked read counts distribution, junction saturation, library size, pearson 
correlation and multidimensional scale plots to rule out any outliers. In the end, we were able to put 6 
WT, 6 Het, 4 KO E14 cortex and 6 WT, 6 Het adult PFC into the DGE analysis pipeline.  
 
Differential Gene Expression analysis 
 
Similar to DAR analysis, we normalized raw counts and removed unwanted variables with the edgeR 
and RUVseq package. A nested interaction model was fitted to identify differential gene expression 
across genotypes for E14 cortex RNA-seq. DEGs with the same significant fold change direction in 
both Het and KO samples were considered as true MYT1L regulated genes and were subjected to 
downstream analysis. For adult PFC RNA-seq, we fitted the data to a negative binomial generalized 
linear model with sex as covariates. We applied cut-off FDR <.1 to define DEGs. Heatmaps for DEGs 
were generated by heatmap.2 function in R. 
 
GO analysis 
 
To perform GO analysis on DARs, we assigned DARs (FDR < .1) located within ±1kb from TSS to 
corresponding genes. GO analysis was performed using BiNGO in Cytoscape. p values were adjusted 
by Benjamini-Hochberg FDR correction and FDR < 0.05 cut-off was used to determine significant 
enrichments. The same software and corrected p value cut-off was applied to GO analysis on DEGs 
(FDR < .1) in RNA-seq. Full GO analysis results can be seen in Table S4. 
 
GSEA analysis 
 
GSEA was performed as described before (Subramanian et al., 2005) using GSEA v4.0.3 
(https://www.gsea-msigdb.org/gsea/index.jsp). We first examined gene set collections H (Hallmark 
gene sets) and C2 (curated gene sets of online pathway databases) to understand how MYT1L loss 
affects different cellular processes in a comprehensive manner. Then we tested the expression 
changes of MYT1L ChIP targets, human “early-fetal” and “mid-fetal” genes (Kang et al., 2011; 
Katayama et al., 2016), MEF signature genes, induced neuron signature genes on E14 cortex and adult 
PFC expression data (See Table S3), Wnt signaling genes (MGI GO:0016055), and Notch signaling 
genes (MGI GO:0007219). Human gene IDs were converted into mouse gene IDs by BioMart 
(https://www.ensembl.org/biomart). All analysis was performed with “gene_set” as permutation type 
and 1,000 permutations. Significant enrichment was determined by FDR <. 1 cut-off. 
 
Comparison between in vivo and in vitro RNA-seq 
 
In vitro RNA-seq data were obtained from Mall et al., 2017 studies on MYT1L overexpression (OE) in 
MEF and shRNA knockdown (KD) in primary hippocampal neuron cultures (Mall et al., 2017). We 
defined genes that showed upregulation in OE but downregulation in KD as MYT1L induced genes, 
while genes getting downregulated in OE but upregulated in KD were considered as MYT1L repressed 
genes. Then, the hypergeometric test was performed to determine whether there is significant 
overlapping between DEGs from our in vivo RNA-seq experiments and previously reported MYT1L 
targeted genes in vitro. We also used R to investigate linear regression of DEGs’ fold changes between 
in vivo and in vitro RNA-seq experiments.  
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Disease models and human genetic data sets enrichment 
 
DEGs of different ID/ASD related mouse model were derived from CHD8 haploinsufficient cortex (p 
< .05 for E14.5, FDR < .1 for P77)(Gompers et al., 2017), KDM5C KO frontal cortex (p < 0.01)(Iwase 
et al., 2016), CHD2 haploinsufficient embryonic cortex (p < .05) and P30 hippocampus (FDR < .1)(Kim 
et al., 2018), PHF6 KO cortex (FDR < 0.05)(Cheng et al., 2018), FOXP1 KO hippocampus (FDR < 
0.05)(Araujo et al., 2015), and POGZ cKO hippocampus (FDR < .05)(Suliman-Lavie et al., 2020). For 
human diseases genetic data sets, we downloaded ASD genes from SFARI (huamn module, gene 
score 1 and 2), ADHD genes from ADHDgene (http://adhd.psych.ac.cn/), ID genes from IDGenetics 
(http://www.ccgenomics.cn/IDGenetics/), SCZ genes from SZDB2.0 SNP data sets 
(http://www.szdb.org/), and Microcephaly genes from DisGeNET (https://www.disgenet.org/home/). 
Enrichment analysis was performed using the one-sided hypergeometric test and p values were 
adjusted by Benjamini-Hochberg correction. 
 
EdU labeling 
 
We performed intraperitoneal injection on E14 timed-pregnant females with EdU solution (50mg/kg). 
For the cell proliferation assay, we waited for 1.5 hours before harvesting embryonic brains. Brains 
were dissected and fixed with 4% PFA at 4°C overnight. Then we dehydrated and sectioned brains into 
15 µm sections on glass slides as described in the immunofluorescence session. Those sections were 
subjected to EdU detection assay using Click-iT EdU Cell Proliferation Kit for Imaging Alexa Fluor-594 
(Invitrogen) with manufacturer instructions. 4 animals per genotype were used for cell proliferation 
assay. 
For the cell cycle existing assay, we waited for 20 hours before harvesting brains. The same procedure 
was conducted on fixed brains to get 15 µm sections. Then, antigen retrieval was performed by boiling 
sections in 95°C 10 nM sodium citrate (pH 6.0, 0.05% Tween-20) for 10 mins. Brain sections were first 
incubated with anti-Ki-67 primary antibody and Alexa488-fluorescence conjugated secondary antibody 
before EdU detection assay. EdU+/Ki67+ cells represent neuronal progenitors that still remained in the 
cell cycle, while EdU+/Ki67- cells represent differentiating progenitors that exited the cell cycle. We 
calculated Q fraction value as the ratio between EdU+/Ki67- cells and total EdU+ cells to assess the 
portion of cells starting differentiation within the 20-hour time window. All images were captured under 
Zeiss Confocal Microscope and cell counting was performed using ImageJ. 4 animals per genotype 
were used for cell cycle existing assay. 
 

Slice Preparation 

Coronal brain slices (325 μm) containing V1 were obtained as previously described (Lambo and 
Turrigiano, 2013) using chilled (1°C) standard artificial CSF (ACSF). ACSF was continuously 
oxygenated and contained the following (in mm): 126 NaCl, 3 KCl, 2 MgSO4, 1 NaHPO4, 25 NaHCO3, 
2 CaCl2, and 14 Dextrose. Slices were cut on a Leica VT1000S vibratome and incubated on a 
semipermeable membrane covered by room temperature oxygenated standard ACSF. 

Slice Electrophysiology 

V1m was identified, and whole-cell patch-clamp recordings obtained from layer 2/3 pyramidal 
neurons, as previously described (Lambo and Turrigiano, 2013). In brief, V1m was identified using the 
mouse brain atlas after adjusting for the lambda-bregma distance for age. The shape and morphology 
of the white matter were used to identify V1m. Neurons were visualized with a 40× water-immersion 
objective using infrared-differential interference contrast optics. Internal recording solution contained 
(mm): 20 KCl, 100 K-gluconate, 10 HEPES, 4 Mg-ATP, 0.3 Na-GTP, 10 phosphocreatine, and 0.4% 
biocytin. For AMPA miniature EPSC (mEPSC) recordings, neurons were voltage-clamped to −70 mV 
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in standard ACSF containing TTX (0.2 μm), APV (50 μm), and picrotoxin (20 μm) and warmed to 33°C. 
For AMPA miniature IPSC (mIPSC) recordings, internal recording solution contained (mM): 120 KCl, 
10 HEPES, 4 Mg-ATP, 0.3 Na-GTP, 2.5 phosphocreatine, and 0.2% biocytin. Neurons were voltage-
clamped to -70 mV in standard ACSF containing TTX (0.2 μm), APV (50 μm), and DNQX (20 μm). For 
all recordings, Neurons were excluded from analyses if the resting membrane potential was more 
positive than −50 mV, input resistance was <40 MΩ, series resistance was >20 MΩ, or if any of these 
parameters changed by >20% during the recording. Pyramidal neurons were identified by the presence 
of an apical dendrite and tear-drop shaped soma and morphology was confirmed by post hoc 
reconstruction of biocytin fills, as described previously (Desai et al., 2002). All physiology data were 
analyzed using Clampfit (Molecular Devices) and custom software written in Python (available at 
github.com/hengenlab). We recorded 24 neurons from 9 WT animals and 22 neurons from 9 Het 
animals to compare the passive properties as well as mEPSC (100 events for each recorded neuron) 
activities across genotypes. We also recorded the mIPSC of 17 neurons from 5 WT animals and 22 
neurons from 5 Het animals to assess the E/I balance. 

Neuronal Morphology Analysis 
 

Brain slices from slice electrophysiology were subjected to histochemical analysis using NEUN 
antibody to confirm neuron identity and streptavidin Alex Fluor-568 (Invitrogen) to label injected biocytin 
for morphology assessment. Stained sections were mounted in cell gasket with SlowFade Diamond 
Antifade Mountant (Invitrogen). Images for neuronal body and dendrites were taken under Zeiss LSM 
880 Airyscan Confocal Microscope. We used Neurolucida 360 
(https://www.mbfbioscience.com/neurolucida360) to trace the neuronal body (15 neurons from 8 WT 
animals, 14 neurons from 8 Het animals) and dendrites (10 neurons from 5 WT animals, 10 neurons 
from 6 Het animals) and count different types of dendritic spines (10 neurons from 4 WT animals, 7 
neurons from 4 Het animals). Branch analysis and sholl analysis were performed using  Neurolucida 
Explorer (https://www.mbfbioscience.com/neurolucida-explorer). Then we exported measurements for 
soma surface area, soma volume, total dendrite number, total dendritic length, average dendrite length, 
dendrite node number, and complexity ([Sum of the terminal orders + Number of terminals] * [Total 
dendritic length / Number of primary dendrites]), branch number, branch length, total spine density, and 
density of different spine subtypes to compare neuron morphological maturation between Hets and 
WTs. 
 
 
Behavioral Analysis 
 
Animals and experimental design. 
The behavior phenotypes we investigated were chosen based on the symptom profile of the index 
patient and that of the greater MYT1L deletion population. We examined the phenotypes of two 
independent cohorts. The first cohort comprised 57 Het (26 female and 31 male) and 55 WT (29 female 
and 26 male) mice, and was used to assess the first three weeks of postnatal development for gross, 
motor and communicative delays (Table S6). The second cohort comprised 20 Het (10 female and 10 
male) and 21 WT (13 female and 8 male) mice. One female Het died after social operant testing, two 
male Hets died one month after conditioned fear testing, and another male Het died before T-maze 
testing. A third cohort comprising 16 WT (8 female and 8 male) and 14 Het (8 female and 6 male) mice 
was assayed for cognitive inflexibility in the T-maze. These mice were characterized beginning as 
juveniles and continued through adulthood, and assessed for behavioral features related to the 
neuropsychiatric diagnoses of our index patient (Table S6). A fourth cohort comprising 23 WT (9 female 
and 14 male) and 19 Het (11 female and 8 male) mice was assessed for tactile sensitivity using the 
von Frey filaments. ASD-related repetitive and social behaviors were investigated in the force-plate 
actometer, spontaneous alternation T-maze, the von Frey assessment of tactile sensitivity, social 
operant task, social dominance task, and three-chambered social approach assay. ADHD-related 
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hyperactivity was assessed specifically using the open field task, but we also examined general activity 
across any task in which we conducted subject tracking. We looked at behaviors relevant to ID in the 
Barnes maze and fear conditioning tasks. To assess mature sensory and motor function, we used a 
battery of sensory motor tasks and the prepulse inhibition/startle apparatus. Finally, we documented 
weight throughout the lifespan, and performed assessments of physical features and posture to identify 
any dysmorphia. A male experimenter conducted the ultrasonic vocalization recordings, and a female 
experimenter conducted the remainder of the behavioral testing. Each experimenter was blinded to 
experimental group designations during testing, which occurred during the light phase. Order of tests 
was chosen to minimize effects of stress. Animals were acclimated to the testing rooms 30 - 60 min 
prior to testing.  
 
Developmental assessment. 
During the first three weeks postnatal, we assessed the Myt1l Het and WT littermates for signs of gross 
developmental delay, communicative delay or motor delay, which are universal in MYT1L deletion 
patients (Blanchet et al., 2017) (See Table S6). To evaluate gross development, the mice were weighed 
daily from P5 - P21, and evaluated for physical milestones of development including pinna detachment 
by P5 and eye opening by P14. While human language cannot be explored in mice, vocal 
communication behavior is conserved across taxa (Ehret, 1980). Mouse pups produce isolation calls 
as a way to attract the dam for maternal care (Haack et al., 1983), thus it is one of the earliest forms of 
social communication we can examine in mice. This behavior also has a developmental trajectory, 
beginning just after birth, peaking during first week postnatal and disappearing around P14, making it 
useful for examining delay in early social circuits. Ultrasonic vocalizations (USVs) were recorded on P5, 
P7. P9 and P11 following our previous methods (Maloney et al., 2018a). Briefly, the dam was removed 
from the nest and the litter placed in a warming cabinet. The surface temperature of each pup was 
recorded (HDE Infrared Thermometer; Het: M=35.4°C, SD=0.90; WT: M=35.2°C, SD=1.16), and then 
the pup was placed in an empty cage (28.5 x 17.5 x 12 cm) in a sound-attenuating chamber. USVs 
were recorded for three minutes using an Avisoft UltraSoundGate CM16 microphone, Avisoft 
UltraSoundGate 116H amplifier, and Avisoft Recorder software (gain = 3 dB, 16 bits, sampling rate = 
250 kHz). The pup was then removed, weighed, tissue collected for genotyping (P5 only), and returned 
to the nest. Following recording of the last pup, the dam was returned to the nest. Frequency sonograms 
were prepared from recordings in MATLAB (frequency range = 25 kHz to 120 kHz, FFT size = 512, 
overlap = 50%, time resolution = 1.024 ms, frequency resolution = 488.2 Hz). Individual syllables and 
other spectral features were identified and counted from the sonograms as previously described (Holy 
and Guo, 2005; Rieger and Dougherty, 2016).  
  Possible motor delay was assessed with a battery of tasks conducted during the first two weeks 
postnatal (Feather-Schussler and Ferguson, 2016), which assess the acquisition of motor function, 
including ambulation, posture, reflexes, and muscle strength and endurance (See Table S6). A few of 
key reflexes appear in mouse pups in the first week, including the righting, grasping and negative 
geotaxis reflexes at about P5-P7. To assess surface righting reflex (P6 and P14), each pup was placed 
on its back in an empty cage lined with a plastic bench pad and the time to return to a prone position 
was recorded up to 60 sec (Fig. 7K). Three trials were averaged for analysis. Acquisition of grasping 
reflex was assessed (P6 and P14) by placing the blunt side of a razor blade against the palmar surface 
of each paw and recording the presence or absence of grasping (Fig. 7J). Negative geotaxis was 
evaluated (P10) by placing the pup facing downward on a 45° incline (Fig. 7L). The time up to two min 
the pup required to turn 180° was recorded. Three trials were averaged for analysis. Mice start to 
ambulate at P5 by crawling and are fully walking by P10. So we examined their ambulation at P8 to 
identify any delays (Fig. 7I). We also looked at the posture of their hindlimb – with maturation of 
ambulation, the hindlimb angle narrows. Each pup was placed in an empty cage (36.2 x 17.1 x 13 cm) 
and their ambulation was scored over a 3 min period using the following scale: 0 = no movement, 1 = 
crawling with asymmetric limb movement, 2 = slow crawling but symmetric limb movement, and 3 = 
fast crawling/walking. Video of ambulation was recorded at the same time and angle of the hindlimbs 
was measured with lines from mid-heel through middle digit across three separate frames, which were 
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averaged for analysis. Muscle strength and endurance were assessed with forelimb and hindlimb 
suspension tests (P10 and P12, respectively) and grip strength (P10, 12 and 14). For forelimb 
suspension, each pup was allowed to grasp a wire strung across a pencil cup with felt padding with 
both forepaws (Fig. 7M). Latency to release from the wire was recorded across three separate trials 
that were averaged for analysis. One influential outlier (z=3.63) was excluded from analysis. Hindlimb 
suspension ability was measured by placing the pup facing downward into a 50 mL conical tube with 
the hindlimbs hung over the edge (Fig. 7M). Latency to release from the conical edge was recorded 
across three separate trials that were averaged for analysis. Grip strength was measured by placing 
each pup in the middle of a horizontal fiberglass wire screen, and slowly rotating the screen vertically 
until inverted 180° (Fig. 7N). The angle at which the pup fell from the screen onto a bench pad was 
recorded across three separate trials, which were averaged for analysis.  

 

Open field. 
Locomotor ambulation was measured at P30 to assess activity, exploration, and anxiety-like levels in 
the open field assay similar to our previous work (Maloney et al., 2018b). Specifically, the behavior of 
each mouse was evaluated over a 1-hr period in a translucent acrylic apparatus measuring 59 x 39 x 
22 cm (Fig. S8A), housed inside a custom sound-attenuating chamber (70.5 x 50.5 x 60 cm), under 
approximately 9 lux illumination (LED Color-Changing Flex Ribbon Lights, Commercial Electric, Home 
Depot, Atlanta, GA). A CCTV camera (SuperCircuits, Austin, TX) connected to a PC computer running 
the software program ANY-maze (Stoelting Co., Wood Dale, IL; http://www.anymaze.co.uk/) tracked 
the movement of the mouse within the apparatus to quantify distance traveled, and time spent in and 
entries into the center 50% and outer perimeter zones. The apparatus was cleaned between animals 
with a 0.02% chlorhexidine diacetate solution (Nolvasan, Zoetis, Parsippany-Troy Hills, NJ).  
 Pose estimation (DeepLabCut (Mathis et al., 2018) and machine learning classification (SimBA 

(Nilsson et al., 2020)) were used to further quantify behaviors of the mice in videos recorded during the 
open field test. Specifically, we used DeepLabCut to estimate the pose of eight body parts of the mice, 
including nose, left ear, right ear, center, lateral left, lateral right, tail base, and tail end. A random subset 
of frames from all 41 videos were used for the network training. The trained network was then applied 
to all videos, yielding pose tracking files. The video and the tracking file of a Het female mouse were 
input to SimBA to build classifiers for jumping (Fig. S8F), facial grooming, and body/tail grooming. A 
region of interest (ROI) defined as a rectangle covering the center area of the open field was appended 
to the machine learning features extracted from the tracking file. Then the training video was annotated 
for interesting behaviors using the SimBA event-logger. Random forest classifiers were trained using 
default hyperparameters, and classifier performances were evaluated. We set the discrimination 
threshold of jumping, facial grooming and body/tail grooming to 0.8, 0.444, and 0.521 respectively. The 
minimum behavior bout length (ms) for all behaviors was set to 200. In the end, the classifiers were 
applied to analyze all the videos. Facial grooming and body/tail grooming were combined for analyses. 
The descriptive statistics for each predictive classifier in the project, including the total time, the number 
of frames, total number of ‘bouts’, mean and median bout interval, time to first occurrence, and mean 
and median interval between each bout, were generated. 
 
Force-plate actometer. 

At P36, the presence of stereotyped movements indicative of self-grooming and presence of 
tremor resulting from possible demyelination was assessed in the force-plate actometer (FPA; Fig. 
S8H), as previously described (Reddy et al., 2012; Tischfield et al., 2017). The custom made FPA 
consisted of a carbon fiber/nomex composite material load plate measuring 24 × 24 cm surrounded by 
a clear polycarbonate cage (15 cm high) with a removable clear polycarbonate top perforated with 
ventilation holes, and housed in a sound-attenuating cabinet measuring 70.5 x 50.5 x 60 cm. Force 
was measured by summing the signal from four transducers, which is then expressed as a percentage 
of body weight. Grooming only takes place during low mobility bouts, as previously defined (Reddy et 
al., 2012) and validated (Tischfield et al., 2017). Raw data was acquired with a DOS-based Free Pascal 
program and further processed using custom MATLAB scripts (Fowler et al., 2001). To identify any 
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tremor, each force time series was Fourier transformed to identify unique frequencies and plotted as a 
continuous function or power spectra. Tremor was identified as the frequency at peak power. 
 

Barnes maze.  
Spatial learning and memory was evaluated in the Barnes maze using methods adapted from 

previous work (Pitts, 2018). The Barnes maze apparatus consisted of a circular white acrylic platform 
measuring 122 cm in diameter, with 20 equally spaced holes (5 cm in diameter) around the perimeter 
6.35 cm from the edge, elevated 80 cm from the floor (Fig. S7A,B). The maze was brightly lit with 
overhead lighting, and extra maze cues were used to aid learning. Testing comprised two acquisition 
trials separated by 45 minutes on each of 5 consecutive days. During acquisition trials, an escape box 
measuring 15.2 x 12.7 cm with an inclined entry was attached to the maze underneath one hole location 
(three escape locations were counterbalanced across mice). Prior to the first trial on the first day, each 
mouse was placed in the escape hole for 30 seconds covered by a clear acrylic tube. During each trial, 
a mouse was placed in the center of the maze facing a random direction, 75 dB white noise sounded 
until the mouse entered the escape box, which ended the trial. Each mouse was allowed to remain in 
the escape box for 30 seconds. If the mouse failed to enter the escape box, the trial would end after a 
maximum of three minutes and the mouse would be placed in the escape box for 30 seconds. On the 
sixth day, a three minute probe trial was conducted to assess each animal’s memory for the previously 
learned location of the escape box. The escape box was removed, and a mouse was placed in the 
center of the maze facing a random direction, and 75 dB white noise sounded until the end of the trial. 
A digital USB 2.0 CMOS Camera (Stoelting Co., Wood Dale, IL) connected to a PC computer running 
the software program ANY-maze (Stoelting Co., Wood Dale, IL; http://www.anymaze.co.uk/) tracked 
the movement of the mouse within the apparatus to quantify distance traveled, frequency and duration 
of visits to the escape box and to incorrect holes. All males were tested first, followed by the females. 
The apparatus was cleaned between animals with a 0.02% chlorhexidine diacetate solution (Nolvasan, 
Zoetis, Parsippany-Troy Hills, NJ).  

 
Social operant.  
 Social motivation, including social reward seeking and social orienting (Chevallier et al., 2012), 
was evaluated from P48-P60 using a social operant task adapted and extended from previous methods 
(Martin and Iceberg, 2015; Martin et al., 2014), adding continuous tracking to measure social reward 
seeking and social orienting in parallel. Standard operant chambers (Med Associates) enclosed in 
sound-attenuating chambers (Med Associates) were modified. A clear acrylic conspecific stimulus 
chamber (10.2 x 10.2 x 18.4 cm; Amac box, The Container Store) was attached to the side, separated 
from the operant chamber proper by a door opening (10.2 x 6 cm) with stainless steel bars (spaced 
6mm apart), centered between the nosepoke holes (Fig. 8G). A 3D printed filament door was attached 
via fishing wire to a motor (Longruner) controlled by an Arduino (UNO R3 Board ATmega328P) 
connected to the Med Associates input panel. The chamber included a red cue light that illuminated at 
the beginning of the test trial and remained illuminated until the test trial ended. The rest of the chamber 
was illuminated with a puck light (Honwell) to achieve 54 lux. The operant chamber bottom tray was 
filled with one cup of fresh corn cob bedding, which was replaced between mice. Operant chambers 
and stimulus chambers were designated for males or females throughout the experiment. The operant 
chambers were cleaned with 70% ethanol and the stimulus chambers were cleaned with 0.02% 
chlorhexidine diacetate solution (acrylic; Nolvasan, Zoetis) between animals. One of the operant 
chamber holes was designated the “correct” hole, and the other the “incorrect” hole, which were 
counterbalanced across groups. A nosepoke into the correct hole triggered illumination of a cue light 
within that hole and the raising (opening) of the door between the operant and stimulus chambers. A 
nosepoke into the incorrect hole did not trigger an event. The experimental and stimulus animals were 
allowed to interact across the bars for 12 sec (social reward) and then the door was lowered (shut) and 
the correct hole cue light turned off. The operant chambers were connected to a PC computer via a 
power box (Med Associates). MED PC-V software quantified nosepokes as “correct”, “incorrect”, and 
“rewards” to measure social reward seeking behavior as part of social motivation. CCTV cameras 
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(Vanxse) were mounted above the chambers and connected to a PC computer via BNC cables and 
quad processors. Any-Maze tracking software (Stoelting Co., Wood Dale, IL; 
http://www.anymaze.co.uk/) was used to track the experimental and stimulus animals’ behavior to 
quantify distance traveled, and time spent in and entries into the social interaction zone (6 x 3 cm zone 
in front of the door in each the operant and stimulus chamber). This allowed us to quantify the social 
orienting aspect of social motivation, defined as the experimental animal entering and spending time in 
the social interaction zone. Custom Java tools and SPSS syntax were used to align the Any-Maze 
tracking data with the timing of rewards in the Med Associates text data to extract presence or absence 
of each animal within the interaction zones during each second of every reward. 
 The operant paradigm comprised habituation, training, and testing trials (Fig. 8H). For all trials, 
sex- and age-matched, novel C57BL/6J mice served as conspecific stimulus mice. All mice, 
experimental and stimulus, were group housed by sex during the entirity of the operant paradigm. The 
stimulus mice were loaded into and removed from the stimulus chambers prior to the placement and 
after removal of the experimental mice into the operant chambers, respectively, to prevent the 
experimental animals from being in the chambers without a conspecific stimulus partner. Habituation 
consisted of a 30 minute trial on each of two consecutive days, during which the door remained opened, 
and the nosepoke holes were shifted to be inaccessible to prevent any nose-poking prior to training. 
This allowed the experimental mice to acclimate to the chamber and the presence of a stimulus partner 
in the adjoining chamber. Training consisted of 1-hr trials during which the fixed ratio 1 (FR1) 
reinforcement schedule was used to reward the mouse with a 12-sec social interaction opportunity 
following one correct nosepoke. During the 12-sec reward period, any additional correct nosepokes did 
not result in another reward. Each mouse received at least three days of FR1, after which achievement 
of learning criteria moved the mouse on to testing. Ten days of FR1 without reaching criteria resulted 
in “non-learner” status. Learning criteria included at least 40 correct nose pokes, a 3:1 correct:incorrect 
ratio, and at least 65% of rewards including a social interaction (defined as both experimental and 
stimulus mice in their respective social interaction zones simultaneously for at least 1 sec of the reward). 
Testing comprised a 1-hr trial on each of 3 consecutive days, during which the fixed ratio 3 (FR3) 
reinforcement schedule was used to reward the mouse with a 12-sec social interaction opportunity 
following three consecutive correct nosepokes. FR3 served to increase social reward seeking effort 
required to receive a social reward. Following completion of FR3 testing, breakpoint testing was 
conducted on the following day during a 1-hr trial. To measure the breakpoint, or maximum nosepokes 
or effort the animal would exhibit for a social reward, the progressive ratio 3 (PR3) reinforcement 
schedule was used to reward the mouse with a 12-sec social interaction opportunity following a 
progressive increase in required correct nosepokes by 3 (e.g. 3, 6, 9, 12, etc). Due to the limited number 
of testing chambers and the length of testing daily, we restricted the number of animals to 17 WTs (10 
females, 7 males) and 19 Hets (10 females, 9 males) in order to fit all runs into one day. Task validation 
data was derived from a cohort of 40 male (n=20) and female (n=20) C57BL/6J adult mice (~P60), 
which served as either experimental mice (n=20) that received a social partner interaction as a reward 
or control mice (n=20) that received only the opening of a door as a reward. The testing procedure was 
as stated above, except that all mice received four consecutive PR3 testing days to assess reliability 
of performance within individuals.   
 
Sensorimotor battery. 

To assess sensorimotor capabilities, performance of the mice was measured at P71-P72 in the 
following series of tasks based on our previously published methods (Maloney et al., 2018b, 2019a). 
Walking initiation assessed the ability to initiate movement by placing the mouse on a flat surface in 
the middle of a taped square measuring 21 x 21 cm and recording the time up to 60 sec the animal 
took to cross the square with all four paws (Fig. 7T). Balance was assessed in the platform test, which 
requires the animal to balance up to 60 sec on a wooden platform measuring 1.0 cm thick and 3.3 cm 
in diameter and elevated 27 cm (Fig. 7Q). In the pole test, motor coordination was evaluated as the 
time the animal took up to 120 sec to turn 180° to face downward and climb down the 57.8 cm pole 
(Fig. 7R). The 60° and 90° screen tests assessed a combination of coordination and strength as each 
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mouse was required to turn 180° to face upward while in the middle of a 52 cm long wire mesh screen 
angled 60° or 90° and climb to the top within 60 sec (Fig. P,SI). The inverted screen test required 
muscle strength and endurance for the animal to hang on an inverted wire mesh screen for up to 60 
sec (Fig. 7O). The time for each test was manually recorded to the hundredths of a second using a 
stopwatch. Two trials were conducted for each test and the average of the two was used in analyses. 
To avoid exhaustion effects, the order of the tests during the first set of trials was reversed for the 
second set of trials. The order of the tests was not counterbalanced between animals so that every 
animal experienced each test under the same conditions. All males were tested first, followed by the 
females. All equipment was cleaned with 70% ethanol between animals.  
 
Tube test of social dominance. 
 Mice begin to develop social hierarchy behaviors at 6 weeks of age under laboratory conditions, 
which result in dominance ranks within their social groups (Hayashi, 1993). The tube test of social 
dominance was used to assess the social hierarchy behavior of the mice as previously described 
(Maloney et al., 2018b). Briefly, a pair of sex-matched MYT1L Het and WT mice were gently guided 
into a clear acrylic tube measuring 30 cm in length and 3.6 cm in diameter from either end (Fig. 8A). 
When the mice met in the center, a divider was lifted and the time for one mouse to back out of the 
tube as the bout loser/submissive partner up to 2 min was recorded. This was repeated once across 
three consecutive days for each animal with a novel sex-matched partner. Prior to testing, each mouse 
was habituated to the tube by gently guiding it through the tube from either end across two consecutive 
days. The tube was cleaned with 0.02% chlorhexidine diacetate solution (Nolvasan, Zoetis, Parsippany-
Troy Hills, NJ) between each pair. Each trial was video recorded and subsequently scored for the 
dominant and submissive partner of each bout. Because testing required sex-matched genotype-mixed 
pairs, only a subset of 17 WTs (9 females, 8 males) and 17 Hets (9 females and 8 males) were used.  
 
Prepulse inhibition/startle. 
 Sensorimotor gating and reactivity were assessed at P94 in the prepulse inhibition (PPI) 
/acoustic startle task (Fig. 7U) as previously described (Dougherty et al., 2013). Briefly, PPI (response 
to a prepulse plus the startle pulse) and acoustic startle to a 120 dBA auditory stimulus pulse (40 ms 
broadband burst) were measured concurrently using computerized instrumentation (StartleMonitor, 
Kinder Scientific). A total of 65 trials were presented. Twenty startle trials were presented over a 20 min 
test period, during which the first 5 min served as an acclimation period when no stimuli above the 65 
dB white noise background were presented (non-startle trials). The session began and ended by 
presenting 5 consecutive startle (120 db pulse alone) trials unaccompanied by other trial types. The 
middle 10 startle trials were interspersed with PPI trials, consisting of an additional 30 presentations of 
120 dB startle stimuli preceded by prepulse stimuli of 4, 12, or 20 dB above background (10 trials for 
each PPI trial type). A percent PPI score for each trial was calculated using the following 
equation: %PPI = 100 × (startle pulse alone − prepulse + startle pulse)/startle pulse alone. The 
apparatus was cleaned with 0.02% chlorhexidine diacetate solution (Nolvasan, Zoetis, Parsippany-Troy 
Hills, NJ).  
 
Fear conditioning. 
 To assess associative memory to an aversive stimuli, we evaluated our mice in the fear 
conditioning paradigm as we previously described (Maloney et al., 2019a). In this task, freezing 
behavior was quantified as a proxy for the fear response. Briefly, the apparatus consisted of an acrylic 
chamber (26 x 18 x 18 cm) with a metal grid floor, an LED cue light and an inaccessible peppermint 
odorant that is housed in a sound-attenuating chamber (Actimetrics). The cue light turned on at the 
start of each trial and remained illuminated. The procedure (Fig. S7C) comprised a 5-minute training 
session, an 8-minute contextual memory test, and a 10 minute cued memory test across 3 consecutive 
days. During training an 80 dB tone (white noise) sounded for 20 sec at 100 sec, 160 sec and 220 sec. 
A 1.0 mA shock (unconditioned stimulus; UCS) was paired with the last two sec of the tone (new 
conditioned stimulus; CS). Baseline freezing behavior was measured during the first two minutes and 
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the freezing behavior as the conditioned response (CR) to the presentation of tone and foot shock was 
measured during the last three minutes. Freezing behavior was quantified through the computerized 
image analysis software program FreezeFrame (Actimetrics, Evanston, IL). During contextual 
conditioning testing on day 2, no tones or shocks were presented allowing for the evaluation of freezing 
behavior (CR) in response to the contextual cues associated with the shock stimulus (UCS) from day 
1. During cued conditioning testing on day 3 the context of the chamber was changed to an opaque 
acrylic-walled chamber containing a different (coconut) odorant. The 80 dB tone (CS) began at 120 sec 
and lasted the remainder of the trial. During the first two min baseline freezing behavior to the new 
context (pre-CS) was measured. During the remaining eight min, freezing behavior (CR) in response 
to the auditory cue (CS) associated with the shock stimulus (UCS) from day 1 was quantified. Sensitivity 
to footshocks was evaluated following testing as previously described (Maloney et al., 2019b), and no 
differences were observed between genotypes (data not shown). 
 
Social approach. 

The three-chamber social approach task was used to test sociability and social novelty 
preference as previously described (Maloney et al., 2018b). Sociability is defined here as the preference 
to spend time with a novel conspecific over a novel empty cup. Social novelty is defined as the 
preference to spend time with a novel versus familiar conspecific. The clear acrylic apparatus 
measuring 60 x 39 x 22 cm is divided into three equal chambers each measuring 19.5 x 39 x 22 cm 
with two doors of 5 x 8 cm (Fig. 8B). During testing, an acrylic lid with four air holes is placed on top of 
the apparatus. Two stainless steel cages (Galaxy Pencil/Utility Cup, Spectrum Diversified Designs, Inc) 
measuring 10 cm tall and 10 cm in diameter with vertical bars served as conspecific stimulus cages 
and allowed for controlled, minimal contact interactions between experimental and stimulus mice. The 
apparatus is placed inside a custom-built sound-attenuating chamber (70.5 × 50.5 × 60 cm). Testing is 
completed under red light illumination of ~11 lux provided by LED Flex Ribbon Lights (Commercial 
Electric, Home Depot). Video is captured by a CCTV camera (SuperCircuits) mounted in the top of 
each sound-attenuated chamber. A PC computer with the program ANY-maze (Stoelting Co., Wood 
Dale, IL; http://www.anymaze.co.uk/) recorded video and live tracked the nose, body and tail of the test 
mouse to produce variables for analysis: distance traveled, time spent in and entries into each chamber 
and investigation zone. An investigation zone is the area 2 cm outward from the perimeter of each 
conspecific cage. An entry into the investigation zone requires the nose-point to be within the zone, 
constituting a purposeful interaction by the test mouse. The social preference score was calculated as 
(time in social / (time in social + time in empty))*100. The novelty preference score was calculated as 
(time in novel / (time in novel + time in familiar))*100. Statistical analysis was as previously described 
(Nygaard et al., 2019). 

Testing consists of four, consecutive 10-minute trials. Trials 1 and 2 habituate the test mouse to 
the center chamber and the whole apparatus, respectively. At the completion of trial 2 the mouse is 
gently guided back to the center chamber and doors closed. Trials 3 and 4 test sociability and social 
novelty preference, respectively. In trial 3, an unfamiliar, sex-matched conspecific (C57BL/6J) in a 
conspecific cage is added to one of outer chambers, and an empty conspecific cages is added to the 
other outer chamber. The conspecific cage locations were counterbalanced between groups. The test 
mouse was allowed to explore freely, and at the end of the trial was guided back to the center chamber. 
During trial 4, a new novel conspecific mouse (C57BL/6J) is added to the empty cage, the conspecific 
mouse from trial 3 remains in the same cage to serve as the familiar stimulus. After each test, the 
apparatus is cleaned with 0.02% chlorhexidine diacetate solution (Nolvasan, Zoetis). The conspecific 
cages were cleaned with 70% ethanol solution.  
 
Spontaneous alternation T-maze. 

The spontaneous alternation T-maze was used to assess perseverative exploratory behavior 
with procedures adapted from our previous work (Maloney et al., 2018b). The apparatus is made of 
grey acrylic walls with a clear acrylic floor (Fig. S8D; Noldus). White paper is adhered to the underside 
of the floor to create distinction between coat color and the apparatus for contrast. A Start chamber (20 
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x 8.7 cm) is connected to two radiating arms (25 x 8.7 cm), each separated by a door that closes from 
the floor up. The doors for each arm and start chamber are controlled automatically by Ethovision XT 
14 (Noldus) through air compression provided by an ultra-quiet air compressor (California Air Tools) 
located in an adjacent room. Video is captured by an IR camera (Basler acA1300) mounted above the 
apparatus, which is connected to a PC computer. Testing is completed in the dark with four IR LED 
lights (JC Infrared Illuminator) and consists of 10 consecutive trials. Prior to the start of the trial, the 
mouse is sequestered in the Start chamber for two minutes to habituate to this chamber. To begin the 
trial, the start door opens, and the mouse is free to explore. An arm choice is made when the whole 
body crosses the arm threshold located 11.1 cm beyond the door to the arm, and which triggers all 
doors to close, and the mouse is allowed to explore the chamber for 15 seconds. The door to that arm 
is then lowered, allowing the animal to move back to the Start chamber, triggering the closing of all 
doors. After 5s in the Start chamber, the doors all re-open, triggering the beginning of the nex trial. If 
no arm choice is made after two minutes, it is considered a non-choice trial, and the start of the next 
trial is triggered. Once all 10 trials are completed the mouse is returned to its home cage and the 
apparatus cleaned with 0.02% chlorhexidine diacetate solution (Nolvasan, Zoetis).  

 
Tactile sensitivity assessment. 
 Tactile sensitivity task assessed reflexive, mechanical sensitivity to a punctate stimulus (von 
Frey filaments), and was conducted as previously described (Maloney et al., 2018b). The testing 
apparatus consisted of a metal grid surface elevated 63.5 cm, which allowed access to the plantar 
surface of each animals’ paws. Each animal was housed in an individual acrylic box (10 cm x 10 cm x 
10 cm) open on the bottom and opaque on three sides to prevent visual cues between animals. All 
mice were acclimated to the testing room 30 min prior to habituation and testing. On days 1 and 2, all 
mice were habituated to the testing apparatus for 1 hour. On day 3, mice were allowed to acclimate to 
the testing apparatus for 30 minutes prior to start of testing. Eight different von Frey hair filaments 
(applying 0.04-2 g of force; North Coast Medical and Rehabilitation Products) were applied to the 
plantar surface of each animal’s hind paw and withdrawal responses were recorded (Fig. S8E). 
Presentations started with the lowest filament strength (0.04 g) and increased to the maximum filament 
strength (2 g). Each filament was applied to the plantar surface of each hind paw five times, and the 
number of paw withdrawal responses was recorded as percentage of responses. To evaluate the 
changes in paw withdrawal responses to the whole range of filaments over the testing duration, the 
area of the curve (AUC) was calculated for each animal.  
 
Weight, posture, and physical assessments. 

All mice from the second cohort were weighed continuously throughout the experiment, starting 
on P30, to assess obesity-related weight gain in the mice. In addition, on P86, the mice were assessed 
for posture and physical characteristics. Posture was assessed by picking up the animal by the base 
of its tail and evaluating the splay of the forelimbs and hindlimbs. Normal posture was defined as splay 
of both forelimbs and hindlimbs. Abnormal posture was defined as any deviation from this, including 
hyperflexion or grasping of limbs. Posture was analyzed as a binary measure: normal splayed posture 
or abnormal posture. The physical examination consisted of assessment of the condition of eyes 
(presence of debris or cataracts), whiskers (full, partial, pruned), fur (matted or clean), skin (presence 
of dermatitis), nose (presence of drainage), and anus (presence of prolapse), as well as presence of 
any seizure-like activity induced by handling or tumors.  
 
Quantification and statistical analysis 
 

Statistical analyses and graph plottings were performed using IBM SPSS Statistics (v.26), 
GraphPad Prism (v.8.2.1), and R(v.4.0.0). Prior to analyses, data was screened for missing values and 
fit of distributions with assumptions underlying univariate analysis. This included the Shapiro-Wilk test 
on z-score-transformed data and qqplot investigations for normality, Levene’s test for homogeneity of 
variance, and boxplot and z-score (±3.29) investigation for identification of influential outliers. Means 
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and standard errors were computed for each measure. Analysis of variance (ANOVA), including 
repeated measures or mixed models, was used to analyze data where appropriate. Sex was included 
as a biological variable in all analyses across all experiments. Simple main effects were used to dissect 
significant interactions. Where appropriate, the Greenhouse-Geisser or Huynh-Feldt adjustment was 
used to protect against violations of sphericity. Multiple pairwise comparisons were subjected to 
Bonferroni correction or Dunnett correction. One-sample t-tests were used to determine differences 
from chance. For data that did not fit univariate assumptions, non-parametric tests were used or 
transformations were applied. For mouse behavior data, the square root transformation was applied to 
the USV and fear conditioning data. Chi-square or Fisher’s exact tests were used to assess Myt1l 
mutation and sex association with categorical variables. Sex x genotype effects are reported where 
significant, otherwise data are reported and visualized collapsed for sex. The critical alpha value for all 
analyses was p < .05, unless otherwise stated. Figure schematics were generated using BioRender.  
The datasets generated and analyzed during the current study are available from the corresponding 
author upon reasonable request. All statistical data can be found in Table S5.  
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Supplemental Figures 

Figure S1: MYT1L protein is expressed in neuronal lineages, peaking during neuronal 
maturation. Related to Figure 1. 
(A) MYT1L expression across human brain development (somatosensory cortex, data from BrainSpan, 
https://www.brainspan.org/) also showed peak expression during neuronal maturation, yet sustained 
expression in adulthood. (B) Coronal section of E14 brain immunofluorescence showed MYT1L 
expression in zones of maturing neurons throughout the brain. (C) Immunofluorescence of 
(Intermediate Zone) in E14 showed transition from cycling (Ki-67+), SOX2, and TBR2 positive 
progenitors to MYT1L positive cells. Only a small portion of cells showed overlap of these makers. (D) 
MYT1L was expressed in neurons across upper (CTIP2+, green) and lower (BRN+, white) layers of the 
P1 mouse cortex, (E) but not in radial glia (SOX2+) and oligodendrocytes (OLIG2+). (F) Sagittal section 
of adult (P60) mouse brain immunofluorescence showed broad expression of MYT1L in cortex, 
hippocampus, hypothalamus, striatum, as well as cerebellum. (G & H) MYT1L staining in P60 mouse 
cortex showed its exclusive expression in neurons (NEUN+) but not in astrocytes (GFAP+) and 
oligodendrocytes (OLIG2+). (I) Long exposure of Western blot in Fig. 1G showed no truncated protein 
produced by MYT1L c.3035dupG mutation. (J) Immunofluorescence on E14 mouse cortex further 
validated antibody specificity and protein loss in MYT1L KO mice. (K) RT-qPCR revealed MYT1L 
relative mRNA expression to GAPDH decreases in P1 Het whole brain lysates (WT n = 6, Het n = 7). 
(L) Illumina sequencing on gDNA and cDNA from P1 MYT1L Het mouse brain showed mutant allele-
specific loss in cDNA (n = 8), consistent with nonsense mediated decay. 
Scale bars, 500 μm in B, 20 μm in C, 250 μm in D, 20 μm in E, 3 Mm in F, 200 μm in G, 20 μm in H, 
and 50 μm in J. See Table S5 for statistical test details. 
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Figure S2: MYT1L haploinsufficiency causes microcephaly and white-matter thinning in corpus 
callosum. Related to Figure 2. 
(A) The ratio between cortex and brain volume remains unchanged in Myt1l Het mice. (B) Myt1l Het 
mice had smaller corpus callosum volume (p = 0.072). (C) MYT1L loss did not change gross cell density 
in the brain. (D) Apparent diffusion coefficient (ADC) map showing ventricular structures as 
hyperintense (bright) areas. Scale bar, 0.5 cm. (E) 3D reconstruction of the brain contour and (F) 
different ventricles, including the fourth ventricle (FV (green), third ventricle (TV;blue), lateral ventricles 
(LV;yellow), and cerebral aqueduct (CA;light blue). (G) MYT1L loss did not change ventricular sizes. 
(H) FA values were unchanged between Het and WT littermates.  
Data are represented as mean ± SEM. See Table S5 for statistical test details. 
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Figure S3: Chromatin Accessibility and RNA-seq analysis define molecular consequences of 
MYT1L loss in the developing brain. Related to Figure 3. 
(A) MDS plot for ATAC-seq fold changes from individual biological replicates. (B) Representative peak 
of less accessible DAR found in ATAC-seq (highlighted in yellow). (C) Representative peak of more 
accessible DAR found in ATAC-seq (highlighted in yellow). (D) ATAC-seq fold changes for MYT1L 
ChIP targets showed a loss of  accessibility at MYT1L bound regions in both Het and KO E14 mice 
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cortex. (E) MDS plot for RNA-seq fold changes from individual biological replicates. (F) Fold changes 
of DEGs correlated well between MYT1L Het and KO samples. Regression line is shown in red. (G) 
Total loss (KO) of MYT1L had larger effects on fold changes of DEGs compared to partial (Het) MYT1L 
loss. (H) ATAC-seq fold changes for TSS of DEGs identified in RNA-seq. Up-regulated genes in Het 
E14 mouse cortex had slightly more-accessible TSS while down-regulated genes had significantly less-
accessible TSS in ATAC-seq data. The same correlation between DEGs and ATAC-seq was also 
observed in KO mice with greater significance. (I) RNA-seq fold changes for MYT1L targeted genes in 
(Mall et al., 2017) show subtle downregulation in Het and (J) KO E14 CTX expression data sets. (K) 
Overlap of DEGs and different cell-type  signature gene lists. Activated genes upon MYT1L loss 
significantly overlapped neuronal signature genes while genes decreasing expression overlapped with 
MYT1L embryonic ChIP targets and keratinocyte signature genes. (L) GO analysis revealed a further 
up-regulation of chromatin modification pathways in KO mice compared to Het. (M) Correlation of DEGs’ 
expression changes between Het CTX RNA-seq and primary hippocampal neuron culture MYT1L 
knockdown (KD) RNA-seq experiments. (N) Correlation of DEGs’ expression changes between Het 
CTX RNA-seq and MEF MYT1L overexpression (OE) RNA-seq experiments. (O) Correlation of DEGs’ 
expression changes between KO CTX RNA-seq and MYT1L KD RNA-seq experiments. (P) Correlation 
of DEGs’ expression changes between KO CTX RNA-seq and MYT1L OE RNA-seq experiments. (Q) 
Venn diagram of overlap  between downregulated DEGs in E14 CTX RNA-seq and MYT1L induced 
genes in vitro. (R) Venn diagram of overlap between upregulated DEGs in E14 CTX RNA-seq and 
MYT1L repressed genes in vitro. (S) GSEA analysis revealed human “early fetal” genes are not 
categorically affected in mutants while (T) “mid-fetal” tended to be up-regulated in mutant E14 mouse 
cortex. (U) GSEA analysis showed no significant categorical shift of Wnt signaling and (V) Notch 
signaling pathway gene expression in Myt1l mutant CTX.  
Boxplots are plotted with thick horizontal lines as group medians, boxes 25th – 75th percentiles, and 
whiskers 1.5 x IQR. See Table S5 for statistical test details. 
 
 

 
Figure S4: MYT1L loss disrupts progenitor proliferation by precocious cell cycle exit. Related 
to Figure 4. 
(A) MYT1L KO mice tended to have decreased SOX2(+) cells density compared to WT and Het (p = 
0.0528) littermates after normalizing to total cell number. (B) MYT1L loss did not change normalized 
TBR2(+) and (C) TBR1(+) cell density. (D) MYT1L loss altered early progenitor differentiation as shown 
by TBR2(+)/SOX2(+) ratio. (E) MYT1L loss did not alter late progenitor differentiation as shown by 
TBR1(+)/TBR2(+) ratio. 
Data are represented as mean ± SEM and one-way ANOVA was performed with Dunnett correction. 
See Table S5 for statistical test details. 
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Figure S5: Long term MYT1L deficiency results in arrested maturation of neuronal chromatin 
and expression patterns. Related to Figure 5. 
(A) Dissection strategy for PFC in adult mouse brain. (B) MDS plot for ATAC-seq fold changes from 
individual biological replicates. (C) Representative peak of a DAR with less accessibility in Hets 
(highlighted in yellow). (D) Representative peak of a DAR that was more accessible in Hets (highlighted 
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in yellow). (E) ATAC-seq fold changes for MYT1L ChIP targets showed reduced chromatin accessibility 
at MYT1L bound regions in adult Het mouse PFC. (F) Motif analysis comparing more-accessible DARs 
to less-accessible DARs. (G) GO analysis on DAR associated genes showed the dysregulation of 
neuronal functions in adult Het mouse PFC. (H) MDS plot for RNA-seq fold changes from individual 
biological replicates. (I) ATAC-seq fold changes for TSS of DEGs identified in RNA-seq. Upregulated 
genes in adult Het mouse PFC had more accessible TSS while downregulated genes had less 
accessible TSS in ATAC-seq data. (J) RNA-seq fold changes for MYT1L target genes in (Mall et al., 
2017) show subtle upregulation in adult Het mouse PFC. (K) Correlation of DEGs’ expression changes 
between Het PFC RNA-seq and published primary hippocampal neuron culture MYT1L knockdown 
(KD) RNA-seq experiments. (L) Correlation of DEGs’ expression changes between Het PFC RNA-seq 
and published MEF MYT1L overexpression (OE) RNA-seq experiments. (M) Overlap between 
downregulated DEGs in PFC RNA-seq and MYT1L induced genes in vitro. (N) Overlap between 
upregulated DEGs in PFC RNA-seq and MYT1L repressed genes in vitro. (O) GSEA analysis showed 
normal expression of Wnt signaling and (P) Notch signaling pathway in Myt1l Het PFC. (Q-R) MYT1L 
regulated genes were implicated in other ID/ASD mouse models and human genetic data sets.  
Boxplots are plotted with thick horizontal lines as group medians, boxes 25th – 75th percentiles, and 
whiskers 1.5 x IQR. See Table S5 for statistical test details. 
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Figure S6: MYT1L haploinsufficiency disrupts baseline neuronal properties and dendritic spine 
maturity but not neuronal morphology. Related to Figure 6. 
(A) Myt1l Het cortical pyramidal neurons had the same soma volume, (B) and soma surface area as 
WT.  (C) Myt1l Het cortical pyramidal neurons had slightly fewer dendrite numbers compared to WT. 
(D) Myt1l Het cortical pyramidal neurons had the same total dendritic length, (E) average dendrite 
length, (F) dendrite node number, (G) and dendrite complexity as WT. (H) Branch analysis showed no 
branch number and (I) length change in Het neurons. (J) Sholl analysis found no dendrite length change 
across genotypes. (K) Overlapped individual mEPSC events of WT (left) neurons, Het (middle) neurons, 
and averaged mEPSC events (right, blue for WT, red for Het). (L) MYT1L loss did not change mEPSC 
frequency of Het neurons. (M) Het neurons have non-significant slightly increased average mEPSC 
amplitude. (N) Overlapped individual mIPSC events of WT (left) neurons, Het (middle) neurons, and 
averaged mIPSC events (right, blue for WT, red for Het). (O) MYT1L loss slightly decreased  mIPSC 
frequency with no influence on (P) amplitudes of Het neurons compared to WT.  
Data are represented as mean ± SEM. See Table S5 for statistical test details. 
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Figure S7: Myt1l haploinsufficiency did not clearly disrupt spatial learning and memory or fear 
conditioning. Related to Figure 8. 
(A) Distance to reach the escape hole was not different between Hets and WTs during acquisitions 
trials in the Barnes maze. (B) During the Barnes maze probe trial, Hets visited the previously learned 
escape hole location at a similar frequency to WTs. (C) Conditioned fear timeline. Hets froze in 
response to a pairing of shock and tone/context at a level comparable to WTs on Day 1, yet, froze less 
during contextual and cued fear tests. No differences were observed for baseline data.  
Grouped data are presented as means ± SEM with individual data points as open circles. See also 
Figure S8 and Table S5 for statistical test details.  
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Figure S8: Myt1l haploinsufficiency resulted in hyperactivity and reduced tactile sensitivity 
without evidence of stereotypies. Related to Figure 8. 
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(A) Hets exhibited a longer distance traveled in the open field than WTs. (B) During the non-startle 
trials of the PPI task, Hets exhibited greater movement force magnitude than WTs. (C) Hets spent 
comparable time in the center of the open field chamber to WTs. (D) WTs and Hets exhibited % 
alternations in the T-maze different from chance (50%). (E) Het mice responded less than WTs to 
varying forces of tactile stimulation via von Frey filaments. (F) Representative video image frame for 
SimBA for jumping ensemble prediction. (G) Female Hets jumped significantly more than female WTs 
or male Hets. (H-I) In the FPA, Hets demonstrated a comparable number of low mobility bouts and 
distance traveled during those bouts to WTs. (J) Female mice engaged in longer grooming bouts than 
males. (K) Hets did not exhibit altered grooming frequency compared to WTs. (L) Hets did not exhibit 
a difference in tremor frequency in the FPA compared to WTs.  
For panels A-F, I, J, and M grouped data are presented as means ± SEM. For panels F (inset), K, and 
L grouped data are presented as boxplots with thick horizontal lines respective group medians, boxes 
25th – 75th percentiles, and whiskers 1.5 x IQR. Individual data points are open circles. See also Figures 
8 and Table S5 for statistical test details. 
 

Supplemental Information 

 

Table S1. Characterization of Myt1l Index patient.  The level of functional impairment referable to 
his autism spectrum disorder (ASD) symptoms was DSM5 Level 1 (“requiring support”). He required 
frequent verbal (rarely physical) redirection for silliness, perseveration, or engagement in non-preferred 
tasks. His stereotypic behaviors included repetitive hand wringing, body rocking, stereotypic tensing 
and vocalizing behaviors. He required a full time paraprofessional in his early school years, but 
responded significantly to the combination of clonidine and bupropion for improvement in hyperactivity, 
impulsivity, and aggression, and over time he made incremental gains in composure as well as 
improved impulse control.  A distinct strength was his affable, at times jovial nature; he greatly enjoyed 
social interactions with people even though his behavior in the context of such interactions could be 
substantially compromised by immature or perseverative behavior, as well as deficiency in eye gaze.  
By early adolescence he had mastered enough social interest and competency that he was described 
as “the mayor” of a summer camp, and he was participating avidly in a musical band. He is able to read, 
and is very conversational; he has a sense of humor, has made friends, and enjoys telling jokes; his 
interpersonal exchanges remain silly at times, overly chatty, over-focused on topics of interest to him, 
and with marginal eye contact and some degree of residual fidgetiness. Medical comorbidities have 
included obesity and idiopathic scoliosis of adolescence. 

 

Table S2. DAR analysis and motif analysis results, Related to Figure 3 and 5  

Table S3. DGE analysis results and gene lists used for GSEA analysis, Related to Figure 3 and 5 

Table S4. GO analysis results, Related to Figure 3 and 5 

Table S5. Statistical analysis results, Related to Methods 

Table S6. Developmental assessment and behavioral testing orders, Related to Methods 

Movie S1. Example DLC pose estimation and SimBA behavior prediction of jumping behavior in Het 
mice, Related to Figures 7, 8 and S8. 
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