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> has shaped our understanding of the structure and function
s of the brain across a variety of organisms and scales over
s the last decade'l 1418 In humans, these wiring diagrams are
s obtained in vivo through Magnetic Resonance Imaging (MRI),
s and show promise towards identifying biomarkers of disease.
7 This can not only improve understanding of so-called “connec-

s topathies”, such as Alzheimer’s Disease and Schizophrenia,
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Abstract

The analysis of brain-imaging data requires complex processing pipelines to support findings on brain function
or pathologies. Recent work has shown that variability in analytical decisions, small amounts of noise, or
computational environments can lead to substantial differences in the results, endangering the trust in conclu-
sions'~’. We explored the instability of results by instrumenting a connectome estimation pipeline with Monte
Carlo Arithmetic®? to introduce random noise throughout. We evaluated the reliability of the connectomes,
their features’®'", and the impact on analysis'>13. The stability of results was found to range from perfectly
stable to highly unstable. This paper highlights the potential of leveraging induced variance in estimates of
brain connectivity to reduce the bias in networks alongside increasing the robustness of their applications in the
classification of individual differences. We demonstrate that stability evaluations are necessary for understanding
error inherent to brain imaging experiments, and how numerical analysis can be applied to typical analytical
workflows both in brain imaging and other domains of computational science. Overall, while the extreme variability
in results due to analytical instabilities could severely hamper our understanding of brain organization, it also

leads to an increase in the reliability of datasets.
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The modelling of brain networks, called connectomics, o but potentially pave the way for therapeutics!®-23.

10 However, the analysis of brain imaging data relies on com-
11 plex computational methods and software. Tools are trusted to
12 perform everything from pre-processing tasks to downstream
13 statistical evaluation. While these tools undoubtedly undergo
14 rigorous evaluation on bespoke datasets, in the absence of
15 ground-truth this is often evaluated through measures of re-

24-27

i liability , proxy outcome statistics, or agreement with
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i7 existing theory. Importantly, this means that tools are not
1e necessarily of known or consistent quality, and it is not un-
1e common that equivalent experiments may lead to diverging

1,5-7

20 conclusions While many scientific disciplines suffer

>+ from a lack of reproducibility?®, this was recently explored
22 in brain imaging by a 70 team consortium which performed
23 equivalent analyses and found widely inconsistent results',

2 and it is likely that software instabilities played a role.

25 The present study approached evaluating reproducibility
2s from a computational perspective in which a series of brain
27 imaging studies were numerically perturbed in such a way
25 that the plausibility of results was not affected, and the impli-
2o cations of the observed instabilities on downstream analyses
s were quantified. We accomplished this through the use of
31 Monte Carlo Arithmetic (MCA)S, a technique which enables
s> characterization of the sensitivity of a system to small nu-
ss merical perturbations. This is importantly distinct from data
2« perturbation experiments where the underlying datasets are
ss manipulated or pathologies may be simulated, and allows
ss for the evaluation of experimental uncertainty in real-world
o7 settings. We explored the impact of numerical perturbations
as through the direct comparision of structural connectomes, the
a9 consistency of their features, and their eventual application
0 in a neuroscience study. We also characterized the conse-
41 quences of instability in these pipelines on the reliability of
s« derived datasets, and discuss how the induced variability may
23 be harnessed to increase the discriminability of datasets, in
s« an approach akin to ensemble learning. Finally, we make
45 recommendations for the roles perturbation analyses may play

4 in brain imaging research and beyond.

.7 Graphs Vary Widely With Perturbations

ss Prior to exploring the analytic impact of instabilities, a direct
49 understanding of the induced variability was required. A sub-
so set of the Nathan Kline Institute Rockland Sample (NKIRS)
51 dataset®® was randomly selected to contain 25 individuals

s> with two sessions of imaging data, each of which was sub-

ss sampled into two components, resulting in four samples per
s« individual and 100 samples total (25 x 2 x 2 samples). Struc-
ss tural connectomes were generated with canonical determinis-

3031 which were instrumented

s tic and probabilistic pipelines
s7 with MCA, replicating computational noise either sparsely
ss or densely throughout the pipelines*”. In the sparse case, a
s small subset of the libraries were instrumented with MCA, al-
s lowing for the evaluation of the cascading effects of numerical
s instabilities that may arise. In the dense case, operations are
¢2 more uniformly perturbed and thus the law of large numbers
e suggests that perturbations will quickly offset one-another and
s« only dramatic local instabilities will have propagating effects.
ss Importantly, the perturbations resulting from the sparse setting
es represent a strict subset of the possible outcomes of the dense
&7 implementation. The random perturbations are statistically
es independent from one another across both settings and sim-
¢ ulations. Instrumenting pipelines with MCA increases their
70 computation time, in this case by multiplication factors of
71 1.2x and 7x for the sparse and dense settings, respectively*.
72 The results obtained were compared to unperturbed (e.g. ref-
73 erence) connectomes in both cases. The connectomes were
7« sampled 20 times per sample and once without perturbations,
75 resulting in a total of 8,400 connectomes. Two versions of
76 the unperturbed connectomes were generated and compared
77 such that the absence of variability aside from that induced

s via MCA could be confirmed.

79 The stability of connectomes was evaluated through the
s normalized percent deviation from reference* and the num-
e ber of significant digits (Figure 1). The comparisons were
e grouped according to differences across simulations, subsam-
s pling of data, sessions of acquisition, or subjects, and accord-
s« ingly sorted from most to least similar. While the similarity
ss of connectomes decreases as the collections become more dis-
s tinct, connectomes generated with sparse perturbations show
s7 considerable variability, often reaching deviations equal to
es or greater than those observed across individuals or sessions

e (Figure 1A; right). Interpretting these results with respect to
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Figure 1. Exploration of perturbation-induced deviations from reference connectomes. (A) The absolute deviations between

connectomes, in the form of normalized percent deviation from reference. The difference in MCA-perturbed connectomes is

shown as the across MCA series, and is presented relative to the variability observed across subsamples, sessions, and subjects.

(B) The number of significant decimal digits in each set of connectomes as obtained by evaluating the complete distribution of

networks. In the case of 16, values can be fully relied upon, whereas in the case of 1 only the first digit of a value can be trusted.

Dense and sparse perturbations are shown on the left and right, respectively.

o0 the distinct MCA environments used suggests that the tested
o1 pipelines may not suffer from single dominant sources of
o> instability, but that nevertheless there exist minor local in-
o stabilities which may the propagate throughout the pipeline.
o« Furthermore, this finding suggests that instabilities inherent
o5 to these pipelines may mask session or individual differences,
o6 limiting the trustworthiness of derived connectomes. While
o7 both pipelines show similar performance, the probabilistic
s¢ pipeline was more stable in the face of dense perturbations
s whereas the deterministic was more stable to sparse perturba-
100 tions (p < 0.0001 for all; exploratory). As an alternative to
101 the normalized percent deviation, the stability of correlations

102 between networks can be found in Supplemental Section S1.

103 The number of significant digits per edge across con-

10« nectomes (Figure 1B) similarly decreases alongside the de-
105 creasing similarity between comparison groups. While the
106 cross-MCA comparison of connectomes generated with dense
107 perturbations show nearly perfect precision for many edges
i0s (approaching the maximum of 15.7 digits for 64-bit data),
100 this evaluation uniquely shows considerable drop off in per-
110 formance when comparing networks across subsamplings
111 (average of < 4 digits). In addition, sparsely perturbed con-
112 nectomes show no more than an average of 3 significant digits
113 across all comparison groups, demonstrating a significant lim-
114 itation in the reliability of independent edge weights. The
115 number of significant digits across individuals did not exceed
116 a single digit per edge in any case, indicating that only the

117 order of magnitude of edges in naively computed groupwise
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is average connectomes can be trusted. The combination of
119 these results with those presented in Figure 1A suggests that
120 while specific edge weights are largely affected by instabili-

121 ties, macro-scale network structure is stable.

2> Sparse Perturbations Reduce Off-Target Signal

122 We assessed the reproducibility of the dataset through mimick-
12+ ing and extending a typical test-retest experiment®® in which
i2s the similarity of samples across sessions were compared to
126 distinct samples in the dataset (Table 1, with additional ex-
127 periments and explanation of the measure and its scaling
i2s in Supplemental Section S2). The ability to discriminate
12s connectomes across subjects (Hypothesis 1) is an essential
130 prerequisite for the application of brain imaging towards iden-
121 tifying individual differences!®. In testing hypothesis 1, we
122 observe that the dataset is discriminable with a scaled score of
133 0.82 (p < 0.001; optimal score: 1.0; chance: 0.04) for both
134 pipelines in the absence of MCA. We can see that inducing in-
135 stabilities through MCA preserves the discriminability in the
136 dense perturbtion setting, and and discriminability decreased
157 slightly but remained above the unscaled reference value of
136 0.65 in the sparse case. This lack of significant decrease in
139 discriminability across MCA perturbations suggests its utility
140 for capturing variance within datasets without compromis-
141 ing the robustness and reliability of the dataset as a whole,
122 and possibly suggests this technique as a cost effective and

143 context-agnostic method for dataset augmentation.

12« While the discriminability of individuals is essential for
125 the identification of individual brain networks, it is similarly
14 reliant on network similarity — or lack of discriminability —
147 across equivalent acquisitions (Hypothesis 2). In this case,
12s connectomes were grouped based upon session, rather than
149 subject, and the ability to distinguish one session from an-
150 other based on subsamples was computed within-individual
151 and aggregated. Both the unperturbed and dense perturbation

152 settings perfectly preserved differences between sessions with

is3 a score of 1.0 (p < 0.005; optimal score: 0.5; chance: 0.5),

154 indicating a dominant session-dependent signal for all indi-
1ss viduals despite no intended biological differences. However,
1ss while still significant relative to chance (score: 0.85 and 0.88;
is7 p < 0.005 for both), sparse perturbations lead to significantly
iss lower discriminability of the dataset (p < 0.005 for all). This
159 reduction of the difference between sessions suggests that
160 the added variance due to perturbations reduces the relative
is impact of non-biological acquisition-dependent bias inherent

162 in the networks.

Though the previous sets of experiments inextricably eval-

6
164 vate the interaction between data acquisition and tool, the
1es use of subsampling allowed for characterizing the discrim-
1es inability of networks sampled from within a single acquisition
ie7 (Hypothesis 3). While this experiment could not be evalu-
1es ated using reference executions, the networks generated with
1o dense perturbations showed near perfect discrimination be-
i70 tween subsamples, with scores of 0.99 and 1.0 (p < 0.005;
17+ optimal: 0.5; chance: 0.5). Given that there was no variability
172 in data acquisition, due to undesired effects such as participant
173 motion, or preprocessing, the ability to discriminate between
i74 equivalent subsamples in this experiment may only be due
175 to instability or bias inherent to the pipelines. The high vari-
176 ability introduced through sparse perturbations considerably
i77 lowered the discriminability towards chance (score: 0.71 and
176 0.61; p < 0.005 for all), further supporting this as an effec-
179 tive method for obtaining lower-bias estimates of individual

180 connectivity.

181 Across all cases, the induced perturbations maintained the
1e2 ability to discriminate networks on the basis of meaningful bi-
153 ological signal alongside a reduction in discriminability due to
1e2 of off-target signal in the sparse perturbation setting. This re-
1ss sult appears strikingly like a manifestation of the well-known
e bias-variance tradeoff>> in machine learning, a concept which
1e7 observes a decrease in bias as variance is favoured by a model.
1ss In particular, this highlights that numerical perturbations can

180 be used to not only evaluate the stability of pipelines, but that

190 the induced variance may be leveraged for the interpretation
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Table 1. The impact of instabilities as evaluated through the discriminability of the dataset based on individual (or subject)
differences, session, and subsample. The performance is reported as mean discriminability. While a perfectly discriminable
dataset would be represented by a score of 1.0, the chance performance, indicating minimal discriminability, is 1/the number of
classes. H; could not be tested using the reference executions due to too few possible comparisons. The alternative hypothesis,

indicating significant discrimination, was accepted for all experiments, with p < 0.005.

Unscaled Ref.  Scaled Ref. Dense MCA  Sparse MCA

Comparison Chance Target Det. Prob. Det. Prob. Det. Prob. Det. Prob.
Hi: Across Subjects 0.04 1.0 0.64 0.65 0.82 0.82 0.82 0.82 0.77 0.75
Hy: Across Sessions 0.5 0.5 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.85
Hj: Across Subsamples 0.5 0.5 0.99 1.00 0.71 0.61
191 as a robust distribution of possible results. 216 ity of the first 5 moments of these features was evaluated

217 (Figures 2C and 2D). In the face of dense perturbations, the
- Distributions of Graph Statistics Are Reliable, But .. feature-moments were stable with more than 10 significant
122 Individual Statistics Are Not 210 digits with the exception of edge weight when using the deter-
10« Exploring the stability of topological features of connectomes -2 ministic pipeline, though the probabilistic pipeline was more
195 is relevant for typical analyses, as low dimensional features are - stable for all comparisons (p < 0.0001; exploratory). In stark
19 often more suitable than full connectomes for many analytical --» contrast, sparse perturbations led to highly unstable feature-
1e» methods in practice'!. A separate subset of the NKIRS dataset -.; moments (Figure 2D), such that none contained more than
10e was randomly selected to contain a single non-subsampled ses- 22« 5 significant digits of information and several contained less
199 sion for 100 individuals (100 x 1 x 1) using the pipelines and :2s than a single significant digit, indicating a complete lack of re-
200 instrumentation methods to generate connectomes as above. s liability. This dramatic degradation in stability for individual
201 Connectomes were generated 20 times each, resulting in a »;; measures strongly suggests that these features may be unre-
202 dataset which also contained 8,400 connectomes with the 2 liable as individual biomarkers when derived from a single
20 MCA simulations serving as the only source of repeated mea- ».c pipeline evaluation, though their reliability may be increased
204 SUrements. 2s0 when studying their distributions across perturbations. A sim-
20s  The stability of several commonly-used multivariate graph 2s: ilar analysis was performed for univariate statistics which

205 features'®

were explored and are presented in Figure 2. The 2:2 obtained similar findings and can be found in Supplemental
207 cumulative density of the features was computed within in- 2ss Section S3.

203 dividuals and the mean cumulative density and associated

200 standard error were computed for across individuals (Fig- =2« Uncertainty in Brain-Phenotype Relationships

210 ures 2A and 2B). There was no significant difference between ..; While the variability of connectomes and their features was
211 the distributions for each feature across the two perturbation .:; summarized above, networks are commonly used as inputs to
212 settings, suggesting that the topological features summarized .;; machine learning models tasked with learning brain-phenotype
21 by these multivariate features are robust across both perturba- . relationships'®. To explore the stability of these analyses, we

214 tion modes. 23 modelled the relationship between high- or low- Body Mass

215 In addition to the comparison of distributions, the stabil- 20 Index (BMI) groups and brain connectivity using standard di-
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Figure 2. Distribution and stability assessment of multivariate graph statistics. (A, B) The cumulative distribution functions of

multivariate statistics across all subjects and perturbation settings. There was no significant difference between the distributions

in A and B. (C, D) The number of significant digits in the first 5 five moments of each statistic across perturbations. The dashed

red

line refers to the maximum possible number of significant digits.

2.1 mensionality reduction and classification tools'>!3, and com- 2 from 0.520 — 0.716 and 0.510 — 0.725, respectively, rang-

242 pared this to reference and random performance (Figure 3). 2+ ing from at or below random performance to outperforming

243

222 the dataset across both pipelines and perturbation methods.

25 performance on the reference dataset. This large variability

The analysis was perturbed through distinct samplings of 240 1llustrates a previously uncharacterized margin of uncertainty

250 in the modelling of this relationship, and limits confidence in

245 The accuracy and F1 score for the perturbed models varied
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Figure 3. Variability in BMI classification across the sampling of an MCA-perturbed dataset. The dashed red lines indicate

random-chance performance, and the orange dots show the performance using the reference executions.

251 reported accuracy scores on singly processed datasets. The
252 portion of explained variance in these samples ranged from
253 88.6% -— 97.8%, similar to the reference of 90.3%, suggest-
25« ing that the range in performance was not due to a gain or
255 loss of meaningful signal, but rather the reduction of bias
256 towards specific outcome. Importantly, this finding does not
257 suggest that modelling brain-phenotype relationships is not
253 possible, but rather it sheds light on impactful uncertainty that
25 must be accounted for in this process, and supports the use of

260 ensemble modeling techniques.

261 One distinction between the results presented here and
262 the previous is that while networks derived from dense pertur-
263 bations had been shown to exhibit less dramatic instabilities
26« in general, the results here show similar variability in clas-
265 sification performance across the two methods. This consis-
266 tency suggests that the desired method of instrumentation may
267 vary across experiments. While sparse perturbations result
265 in considerably more variability in networks directly, the two
260 techniques capture similar variability when relating networks
270 to this phenotypic variable. Given the dramatic reduction
271 in computational overhead, a sparse instrumentation may be

272 preferred when processing datasets for eventual application in

273 modelling brain-phenotype relationships.

27+ Discussion

275 The perturbation of structural connectome estimation pipelines
276 with small amounts of noise, on the order of machine error,
277 led to considerable variability in derived brain graphs. Across
275 all analyses the stability of results ranged from nearly per-
279 fectly trustworthy (i.e. no variation) to completely unreliable
2s0 (1.e. containing no trustworthy information). Given that the
231 magnitude of introduced numerical noise is to be expected
22 in computational workflows, this finding has potentially sig-
2s3 nificant implications for inferences in brain imaging as it is
254 currently performed. In particular, this bounds the success of
2s5 studying individual differences, a central objective in brain
25 imaging!®, given that the quality of relationships between
257 phenotypic data and brain networks will be limited by the
2s5 stability of the connectomes themselves. This issue is accen-
2s0 tuated through the crucial finding that individually derived
290 network features were unreliable despite there being no signif-
291 icant difference in their aggregated distributions. This finding
292 1s not damning for the study of brain networks as a whole, but
203 rather is strong support for the aggregation of networks, either
294 across perturbations for an individual or across groups, over

205 the use of individual estimates.

205 Underestimated False Positive Rates While the instabil-

297 ity of brain networks was used here to demonstrate the lim-
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205 itations of modelling brain-phenotype relationships in the
200 context of machine learning, this limitation extends to classi-
a0 cal hypothesis testing, as well. Though performing individual
01 comparisons in a hypothesis testing framework will be accom-
=02 panied by reported false positive rates, the accuracy of these
a0s rates is critically dependent upon the reliability of the samples
204 used. In reality, the true false positive rate for a test would be
05 @ combination of the reported confidence and the underlying
a0 variability in the results, a typically unknown quantity.

307 When performing these experiments outside of a repeated-
a0s measure context, such as that afforded here through MCA, it
a00 1S impossible to empirically estimate the reliability of samples.
si0 This means that the reliability of accepted hypotheses is also
s11 unknown, regardless of the reported false positive rate. In
a2 fact, it is a virtual certainty that the true false positive rate
a1z for a given hypothesis exceeds the reported value simply as
a1« a result of numerical instabilities. This uncertainty inherent
a5 to derived data is compounded with traditional arguments
sis limiting the trustworthiness of claims®?, and hampers the
s17 ability of researchers to evaluate the quality of results. The
s1s accompaniment of brain imaging experiments with direct
a0 evaluations of their stability, as was done here, would allow
a20 researchers to simultaneously improve the numerical stability
221 of their analyses and accurately gauge confidence in them.
222 The induced variability in derived brain networks may be
223 leveraged to estimate aggregate connectomes with lower bias
=2« than any single independent observation, leading to learned
a25 relationships that are more generalizable and ultimately more

326 useful.

37 Cost-Effective Data Augmentation The evaluation of reli-
a2s ability in brain imaging has historically relied upon the expen-
229 sive collection of repeated measurements choreographed by
530 massive cross-institutional consortia’*33. The finding that per-
aa1 turbing experiments using MCA both preserved the discrim-
s3> inability of the dataset due to biological signal and decreased
a33 the discriminability due to off-target differences across ac-

a3« quisitions and subsamples opens the door for a promising

a5 paradigm shift. Given that MCA 1is data-agnostic, this tech-
a3 nique could be used effectively in conjunction with, or in
a37 lieu of, realistic noise models to augment existing datasets.
333 While this of course would not replace the need for repeated
339 measurements when exploring the effect of data collection
a0 paradigm or study longitudinal progressions of development
as1 or disease, it could be used in conjunction with these efforts to
32 decrease the bias of each distinct sample within a dataset. In
33 contexts where repeated measurements are typically collected
224 to increase the fidelity of the dataset, MCA could potentially
245 serve as an alternative solution to capture more biological vari-
a6 ability, with the added benefit being the savings of millions of

347 dollars on data collection.

2s Shortcomings and Future Questions Given the complex-
as0 ity of recompiling complex software libraries, pre-processing
a3s0 was not perturbed in these experiments as the instrumentation
ss1 of the canonical workflow used in diffusion image process-
352 ing would have added considerable technical complexity and
353 computational overhead to the large set of experiments per-
a5« formed here. Other work has shown that linear registration, a
ass core piece of many elements of pre-processing such as motion
s correction and alignment, is sensitive to minor perturbations’.
ss7 It is likely that the instabilities across the entire processing
ass workflow would be compounded with one another, resulting
a0 in even greater variability. While the analyses performed in
a0 this paper evaluated a single dataset and set of pipelines, ex-
a1 tending this work to other modalities and analyses, alongside
as2 the detection of local sources of instability within pipelines,
a63 15 of interest for future projects.

s« This paper does not explore methodological flexibility or
sss compare this to numerical instability. Recently, the nearly
ass boundless space of analysis pipelines and their impact on out-
se7 comes in brain imaging has been clearly demonstrated'. The
ass approach taken in these studies complement one another and
as0 explore instability at the opposite ends of the spectrum, with
70 human variability in the construction of an analysis workflow

371 on one end and the unavoidable error implicit in the digital
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a72 representation of data on the other. It is of extreme interest .

73 to combine these approaches and explore the interaction of
a7« these scientific degrees of freedom with effects from software
375 implementations, libraries, and parametric choices.

a7s  Finally, it is important to state explicitly that the work
77 presented here does not invalidate analytical pipelines used in
a7s brain imaging, but merely sheds light on the fact that many
a79 studies are accompanied by an unknown degree of uncertainty
ss0 due to machine-introduced errors. The presence of unknown
as1 error-bars associated with experimental findings limits the
a2 impact of results due to increased uncertainty. The desired
ass outcome of this paper is to motivate a shift in scientific com-
ss« puting — both in neuroimaging and more broadly — towards a
ass paradigm that favours the explicit evaluation of the trustwor-

as thiness of claims alongside the claims themselves.

Methods

s Dataset

sss The Nathan Kline Institute Rockland Sample (NKI-RS)%
o0 dataset contains high-fidelity imaging and phenotypic data
a01 from over 1,000 individuals spread across the lifespan. A
as2 subset of this dataset was chosen for each experiment to both
203 match sample sizes presented in the original analyses and to
a0« minimize the computational burden of performing MCA. The
a0s selected subset comprises 100 individuals ranging in age from
s 6 — 79 with a mean of 36.8 (original: 6 — 81, mean 37.8),
207 60% female (original: 60%), with 52% having a BMI over 25
a0s (original: 54%).

399 Each selected individual had at least a single session
a0 of both structural T1-weighted (MPRAGE) and diffusion-
s01 weighted (DWI) MR imaging data. DWI data was acquired
02 with 137 diffusion directions in a single shell; more informa-
a0 tion regarding the acquisition of this dataset can be found in
«0: the NKI-RS data release®

405 In addition to the 100 sessions mentioned above, 25 indi-
a0s viduals had a second session to be used in a test-retest analysis.
07 Two additional copies of the data for these individuals were
s0s generated, including only the odd or even diffusion direc-
209 tions (64 + 9 BO volumes = 73 in either case) such that the
410 acquired data was evenly represented across both portions,
s11 and each subsample represented a realistic complete acquisi-
s12 tion. This allowed for an extra level of stability evaluation to
413 be performed between the levels of MCA and session-level
414 variation.

415 In total, the dataset is composed of 100 subsampled ses-
416 sions of data originating from 50 acquisitions and 25 indi-
417 viduals for in depth stability analysis, and an additional 100

418 sessions of full-resolution data from 100 individuals for sub-

419 sequent analyses.

20 Processing
.21 The dataset was preprocessed using a standard FSL3¢ work-

s22 flow consisting of eddy-current correction and alignment. The
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22 MNI152 atlas®’ was aligned to each session of data via the
s2¢ structural images, and the resulting transformation was ap-
«2s plied to the DKT parcellation®®. Subsampling the diffusion

a2 data took place after preprocessing was performed on full-

s27 resolution sessions, ensuring that an additional confound was i

425 not introduced in this process when comparing between down-
220 sampled sessions. The preprocessing described here was per-
s30 formed once without MCA, and thus is not being evaluated.
431 Structural connectomes were generated from preprocessed
+ data using two canonical pipelines from Dipy*’: deterministic
433 and probabilistic. In the deterministic pipeline, a constant
s24 solid angle model was used to estimate tensors at each voxel
135 and streamlines were then generated using the EuDX algo-
w2 rithm>!. In the probabilistic pipeline, a constrained spherical
137 deconvolution model was fit at each voxel and streamlines
s3s were generated by iteratively sampling the resulting fiber ori-
s39 entation distributions. In both cases tracking occurred with 8
a0 seeds per 3D voxel and edges were added to the graph based
a1 on the location of terminal nodes with weight determined by
42 fiber count.

443 The random state of both pipelines was fixed for all anal-
a2 yses. Fixing this random state led to entirely deterministic
s repeated-evaluations of the tools, and allowed for explicit
ass attribution of observed variability to limitations in tool preci-

447 sion as provoked by Monte Carlo simulations, rather than the

a5 internal state of the algorithm.

«s Perturbations

50 All connectomes were generated with one reference execu-
s51 tion where no perturbation was introduced in the processing.
452 For all other executions, all floating point operations were
452 instrumented with Monte Carlo Arithmetic (MCA)? through
s Verificarlo?. MCA simulates the distribution of errors im-

s55 plicit to all instrumented floating point operations (flop). This

ss6 rounding is performed on a value x at precision ¢ by:

inexact (x) = x+ 24" D

s7  where e, is the exponent value of x and & is a uniform ran-
453 dom variable in the range (f%, %). MCA can be introduced in
450 two places for each flop: before or after evaluation. Perform-
w0 ing MCA on the inputs of an operation limits its precision,
while performing MCA on the output of an operation high-
ss2 lights round-off errors that may be introduced. The former is

ss3 referred to as Precision Bounding (PB) and the latter is called

s« Random Rounding (RR).

465 Using MCA, the execution of a pipeline may be performed
46 many times to produce a distribution of results. Studying the
ss7 distribution of these results can then lead to insights on the
ses stability of the instrumented tools or functions. To this end,
a0 a complete software stack was instrumented with MCA and
470 is made available on GitHub at https://github.com/

s verificarlo/fuzzy.

a2 The RR variant of MCA was used for all experiments.
473 As was presented in*, both the degree of instrumentation (i.e.
47 number of affected libraries) and the perturbation mode have
475 an effect on the distribution of observed results. For this work,
76 the RR-MCA was applied across the bulk of the relevant oper-
477 ations (those occurring in BLAS, LAPACK, Python, Cython,

475 and Numpy) and is referred to as dense perturbation. In this

479 case the bulk of numerical operations were affected by MCA.

480 Conversely, the case in which RR-MCA was applied
ss1 across the operations in a small subset of operations (those
a2 ocurring in Python and Cython) is here referred to as sparse
ss3 perturbation. In this case, the inputs to operations within
a2« the instrumented libraries were perturbed, resulting in less
a5 frequent, data-centric perturbations. Alongside the stated the-
as6 oretical differences, sparse perturbation is considerably less

457 computationally expensive than dense perturbation.

488 All perturbations targeted the least-significant-bit for all
w0 data (f = 24 and t = 53 in float32 and float64, respectively?).
o0 Perturbing the least significant bit importantly serves as a
s01 perturbation of machine error, and thus is the appropriate

292 precision to be applied globally in complex pipelines. Simula-

493 tions were performed 20 times for each pipeline execution for
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s04 the 100 sample dataset and 10 times for the repeated measures
s95 dataset. A detailed motivation for the number of simulations

456 can be found in?°

7 Evaluation

108 The magnitude and importance of instabilities in pipelines
190 can be considered at a number of analytical levels, namely:
so0 the induced variability of derivatives directly, the resulting
sor downstream impact on summary statistics or features, or the
s02 ultimate change in analyses or findings. We explore the na-
sos ture and severity of instabilities through each of these lenses.
s0 Unless otherwise stated, all p-values were computed using
s0s Wilcoxon signed-rank tests. To avoid biasing these statistics in
s0s this unique repeated-measures context, tests were performed
s07 across sets of independent observations and then the results

s0s were aggregated in all cases.

s00 Direct Evaluation of the Graphs

si0 The differences between perturbation-generated graphs was s

511 measured directly through both a direct variance quantifica-
si2 tion and a comparison to other sources of variance such as

513 individual- and session-level differences.

s« Quantification of Variability Graphs, in the form of adja-
si5 cency matrices, were compared to one another using three
sis metrics: normalized percent deviation, Pearson correlation,
i7 and edgewise significant digits. The normalized percent devi-
518 ation measure, defined in4, scales the norm of the difference
sio between a simulated graph and the reference execution (that

s20 without intentional perturbation) with respect to the norm of

s21 the reference graph, and is defined as*:

%Dev(A,B)

Z Z|au

i=1j=

lj|/ ZZ|a,j|2 (2

i=1j=
522 where A and B each represent a graph, and [J;; are el-
s23 ements therein corresponding to row and column i and j,
s24 respectively. For these experiments, the A graph always refers

s25 to the reference, where B represents a perturbed value. The

s26 purpose of this comparison is to provide insight on the scale

s27 of differences in observed graphs relative to the original signal
s2: intensity. A Pearson correlation coefficient*® was computed
s20 in complement to normalized percent deviation to identify
s30 the consistency of structure and not just intensity between ob-
a1 served graphs, though the result of this experiment is shown
se2 only in Supplemental Section S1.

533 Finally, the estimated number of significant digits, s’, for

53¢ each edge in the graph is calculated as:

c
s = —loglom (3)

535 where u and ¢ are the mean and unbiased estimator of
s3 standard deviation across graphs, respectively. The upper
s37 bound on significant digits is 15.7 for 64-bit floating point
s3 data.

539 The percent deviation, correlation, and number of signifi-
s« cant digits were each calculated within a single session of data,
41 thereby removing any subject- and session-effects and provid-
s.2 ing a direct measure of the tool-introduced variability across

s3 perturbations. A distribution was formed by aggregating these

s4 individual results.

s.s Class-based Variability Evaluation To gain a concrete un-
se6 derstanding of the significance of observed variations we ex-
s¢7 plore the separability of our results with respect to understood
s sources of variability, such as subject-, session-, and pipeline-
5.2 level effects. This can be probed through Discriminability®®

s50 a technique similar to ICC** which relies on the mean of a
s51 ranked distribution of distances between observations belong-
ss2 ing to a defined set of classes. The discriminability statistic is

553 formalized as follows:

Disc. = Pr(||gij — gy Il < llgij — gijll) )

ss«  where g;; is a graph belonging to class i that was measured
s55 at observation j, where i # i’ and j # j'.
sss  Discriminability can then be read as the probability that an

s57 observation belonging to a given class will be more similar to
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sss other observations within that class than observations of a dif-
ss0 ferent class. It is a measure of reproducibility, and is discussed
se0 in detail in®. This definition allows for the exploration of de-
s61 viations across arbitrarily defined classes that in practice can
se2 be any of those listed above. We combine this statistic with
ss3 permutation testing to test hypotheses on whether differences
ss« between classes are statistically significant in each of these set-
ses tings. This statistic is similar to JCC?* in a two-measurement
se6 setting, however, given the dependence on a rank distribution
se7 from all measurements, discriminability scores do not become
sss meaningless by the addition of more samples which are highly
seo similar to the originals, whereas ICC scores would much more
s70 rapidly trend towards 1, making discriminability appropriate
s71 in this context. The scaling properties of discriminability are
s72 described more fully in Supplemental Section S2.

573 With this in mind, three hypotheses were defined. For
s7« each setting, we state the alternate hypotheses, the variable(s)
s75 which were used to determine class membership, and the
s76 remaining variables which may be sampled when obtaining
s77 multiple observations. Each hypothesis was tested indepen-

s7s dently for each pipeline and perturbation mode.

s7e Hap: Individuals are distinct from one another

580 Class definition: Subject ID
Comparisons: Session (I subsample), Subsample (1

session), MCA (I subsample, 1 session)

Hy»: Sessions within an individual are distinct

583

Class definition: Session ID | Subject ID

584

Comparisons: Subsample, MCA (1 subsample)

585

Hyz: Subsamples are distinct

Class definition: Subsample | Subject ID, Session ID
Comparisons: MCA

588

589 As a result, we tested 3 hypotheses across 6 MCA ex-
so0 periments and 3 reference experiments on 2 pipelines and 2
so1 perturbation modes, resulting in a total of 30 distinct tests.

se2 While results from all tests can be found within Supplemental

s03 Section S2, only the bolded comparisons in the list above have
so« been presented in the main body of this article. Correction for

sos repeated testing was performed.

ses Evaluating Graph-Theoretical Metrics

ss7 While connectomes may be used directly for some analyses,
s08 1t 1S common practice to summarize them with structural mea-
se9 sures, that can then be used as lower-dimensional proxies
s00 of connectivity in so-called graph-theoretical studies'!. We
01 explored the stability of several commonly-used univariate
e02 (graphwise) and multivariate (nodewise or edgewise) features.
03 The features computed and subsequent methods for compari-

s+ son in this section were selected to closely match those com-

s0s puted in!?

«s Univariate Differences For each univariate statistic (edge
07 count, mean clustering coefficient, global efficiency, modu-
e0s larity of the largest connected component, assortativity, and
s00 mean path length) a distribution of values across all perturba-
s10 tions within subjects was observed. A Z-score was computed
11 for each sample with respect to the distribution of feature
si2 values within an individual, and the proportion of classically
si3 significant” Z-scores, i.e. corresponding to p < 0.05, was
1« reported and aggregated across all subjects. There was no
s15 correction for multiple comparisons in these statistics, as they
16 were not used to interpret a hypothesis but demonstrate the
o7 false-positive rate due to perturbations. The number of signifi-
s1s cant digits contained within an estimate derived from a single
s1o subject were calculated and aggregated. The results of this

e20 analysis can be found in Supplemental Section S3.

2+ Multivariate Differences In the case of both nodewise (de-
e22 gree distribution, clustering coefficient, betweenness central-
e23 ity) and edgewise (weight distribution, connection length) fea-
e24 tures, the cumulative density functions of their distributions
e2s were evaluated over a fixed range and subsequently aggre-
o6 gated across individuals. The number of significant digits
27 for each moment of these distributions (sum, mean, variance,

s2s skew, and kurtosis) were calculated across observations within
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29 a sample and aggregated.

s:0 Evaluating A Brain-Phenotype Analysis
ss1 Though each of the above approaches explores the instabil-
e22 ity of derived connectomes and their features, many modern

e2s studies employ modeling or machine-learning approaches, for

s24 instance to learn brain-phenotype relationships or identify dif-

e3s ferences across groups. We carried out one such study and ex-

s3s plored the instability of its results with respect to the upstream

e37 variability of connectomes characterized in the previous sec-

s3s tions. We performed the modeling task with a single sampled
s30 connectome per individual and repeated this sampling and
ss0 modelling 20 times. We report the model performance for

e+1 each sampling of the dataset and summarize its variance.

s> BMI Classification Structural changes have been linked to
s obesity in adolescents and adults*'. We classified normal-

s« weight and overweight individuals from their structural net-

s:s works (using for overweight a cutoff of BMI > 25'3). We

ss6 reduced the dimensionality of the connectomes through prin-
s+ cipal component analysis (PCA), and provided the first N-
sss components to a logistic regression classifier for predicting
s:s BMI class membership, similar to methods shown in'> 13,
ss0 The number of components was selected as the minimum set
ss1 which explained > 90% of the variance when averaged across
es2 the training set for each fold within the cross validation of
ess the original graphs; this resulted in a feature of 20 compo-

s« nents. We trained the model using k-fold cross validation,

ess with k = 2,5,10, and N (equivalent to leave-one-out; LOO).

;s Data & Code Provenance

es7 The unprocessed dataset is available through The Consortium
sse of Reliability and Reproducibility (http://fcon_1000
e9 projects.nitrc.org/indi/enhanced/), including
ss0 both the imaging data as well as phenotypic data which may
es1 be obtained upon submission and compliance with a Data Us-
o> age Agreement. The connectomes generated through simula-
ess tions have been bundled and stored permanently (https://
664 doi.org/10.5281/zenodo.4041549), and are made

ess available through The Canadian Open Neuroscience Platform

es (https://portal.conp.ca/search,search term "Kiar”).

e7  All software developed for processing or evaluation is
ess publicly available on GitHub at https://github.com/
s0 gkpapers/2020ImpactOfInstability. Experiments
670 were launched using Boutiques*? and Clowdr*® in Compute
71 Canada’s HPC cluster environment. MCA instrumentation

s> was achieved through Verificarlo® available on Github at

o3 https://github.com/verificarlo/verificarlo.

o7 A set of MCA instrumented software containers is available

e7s on Github at https://github.com/gkiar/fuzzy.
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- S1. Graph Correlation

=20 The following presents a quantification of deviations of generated connectomes from the reference execution, similar to shown
21 in Figure 1. However, in this case, the “percent deviation” measure was replaced with the Pearson correlation coefficient.
a2 The correlations between observed graphs (Figure S1) across each grouping follow the same trend to as percent deviation, as
.2 shown in Figure 1. However, notably different from percent deviation, there is no significant difference in the correlations
s« between dense or sparse instrumentations. By this measure, the probabilistic pipeline is more stable in all cross-MCA and
s15 cross-directions except for the combination of sparse perturbation and cross-MCA (p < 0.0001 for all; exploratory).

s The marked lack in drop-off of performance across these settings, inconsistent with the measures show in Figure 1 is likely
a7 due to the nature of the measure and the structure of graphs being compared. Given that structural graphs are sparse and contain
a5 considerable numbers of zero-weighted edges, the presence or absense of edges dominated the correlation measure where it
s:c was less impactful for the others. For this reason and others**, correlation is not a commonly used measure in the context of

es0 structural connectivity, and thus this analysis was demoted to the supplement material.
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Figure S1. The correlation between perturbed connectomes and their reference.
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g1 S2. Complete Discriminability Analysis

Table S1. The complete results from the Discriminability analysis, with results reported as mean + standard deviation
Discriminability. As was the case in the condensed table, the alternative hypothesis, indicating significant separation across

groups, was accepted for all experiments, with p < 0.005.

Unscaled Reference Dense Perturbations Sparse Perturbations

Exp. Subj. Sess. Samp. | Det. Prob. Det. Prob. Det. Prob.

1.1 All All 1 0.64+0.00 0.654+0.00 | 0.824+0.00 0.82+0.00 | 0.77+£0.00 0.754+0.00
1.2 Al 1 All 1.00+£0.00 1.004£0.00 | 1.004+£0.00 1.00£0.00 | 0.93+0.02 0.904+0.02
1.3 All 1 1 1.00+£0.00 1.00£0.00 | 0.94+0.02 0.90+0.02
2.4 1 All All 1.00£0.00 1.00£0.00 | 1.00£0.00 1.00£0.00 | 0.88£0.12 0.8540.12
2.5 1 All 1 1.00£0.00 1.00£0.00 | 0.894+0.11 0.84=+0.12
3.6 1 1 All 0.99+0.03 1.00£0.00 | 0.714+0.07 0.61+£0.05

ss2  The complete discriminability analysis includes comparisons across more axes of variability than the condensed version.
ss3 The reduction in the main body was such that only axes which would be relevant for a typical analysis were presented. Here,
s« each of Hypothesis 1, testing the difference across subjects, and 2, testing the difference across sessions, were accompanied

es5 with additional comparisons to those shown in the main body.

56 Subject Variation Alongside experiment 1.1, that which mimicked a typical test-retest scenario, experiments 1.2 and 1.3
ss7 could be considered a test-retest with a handicap, given a single aqcuisition per individual was compared either across
sss subsamples or simulations, respectively. For this reason, it is unsurprising that the dataset achieved considerably higher

ss9 discriminability scores.

=0 Session Variation Similar to subject variation, the session variation was also modelled across either both or a single
ss1 subsample in experiments 2.4 and 2.5. In both of these cases the performance was similar, and the finding that sparse

a2 perturbations reduced the off-target signal was consistent.

s S2.1 Scaling of discriminability with N

s« When samples were added to the dataset across perturbed executions, the discriminability statistic inflated to a plateau even
sss When no information was added (e.g. the dataset was replicated). This effect is demonstrated for the reference executions and is
sss shown in Figure S2. As we can see, the reference discriminability scores without data duplication (unscaled) were 0.64 and
ss7 0.65 for the deterministic and probabilistic pipelines, respectively. After duplicating the dataset 20 times, matching the size of
ses the 20-sample perturbed dataset, we can see that this (scaled) score plateaus at 0.82 for both pipelines. For consistency, in the

se0 main body of the text the reference execution performance was communicated as the scaled quantity.
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Scaling of the discriminability statistic with data duplication
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Figure S2. Scaling behaviour of the discriminability statistic with data duplication.
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S3. Univariate Graph Statistics

s71 Figure S3 explores the stability of univariate graph-theoretical metrics computed from the perturbed graphs, including modularity,
s72 global efficiency, assortativity, average path length, and edge count. When aggregated across individuals and perturbations, the
e73 distributions of these statistics (Figures S3A and S32B) showed no significant differences between perturbation methods for
e74 either deterministic or probabilistic pipelines, consistent with the comparison of the cumulative density of the multivariate
a75 statistics compared in 2.

s76  However, when quantifying the stability of these measures across connectomes derived from a single session of data, the
#77 two perturbation methods show considerable differences. The number of significant digits in univariate statistics for dense
s7s perturbation instrumented connectome generation exceeded 11 digits for all measures except modularity, which contained more
e70 than 4 significant digits of information (Figure S3C). When detecting false-positives from the distributions of observed statistics
ss0 for a given session, the rate (using a threshold of p = 0.05) was approximately 2% for all statistics with the exception of
es1 modularity which again was less stable with an approximately 10% false positive rate. The probabilistic pipeline is significantly
ss2 more stable than the deterministic pipeline (p < 0.0001; exploratory) for all features except modularity. When similarly
ss3 evaluating these features from connectomes generated in the sparse perturbation setting, no statistic was stable with more than
ss4 3 significant digits or a false positive rate lower than nearly 6% (Figure S3D). The deterministic pipeline was more stable than
ss5 the probabilistic pipeline in this setting (p < 0.0001; exploratory).

886 Two notable differences between the two perturbation methods are, first, the uniformity in the stability of the statistics, and
ss7 second, the dramatic decline in stability of individual statistics in the sparse perturbation setting despite the consistency in the
sss overall distribution of values. This result is consistent with that obtained from the multivariate exploration performed in the
ss0 body of this article. It is unclear at present if the discrepancy between the stability of modularity in the pipeline perturbation
so0 context versus the other statistics suggests the implementation of this measure is the source of instability or if it is implicit to
s01 the measure itself. The dramatic decline in the stability of features derived from sparse perturbed graphs despite no difference
s92 in their overall distribution both shows that while individual estimates may be unstable the comparison between aggregates or

s0s groups may be considered much more reliable; this finding is consistent with that presented for multivariate statistics.
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Figure S3. Distribution and stability assessment of univariate graph statistics. (A, B) The distributions of each computed
univariate statistic across all subjects and perturbations for dense and sparse settings, respectively. There was no significant
difference between the distributions in A and B. (C, D; top) The number of significant decimal digits in each statistic across
perturbations, averaged across individuals. The dashed red line refers to the maximum possible number of significant digits. (C,

D; bottom) The percentage of connectomes which were deemed significantly different (p < 0.05) from the others obtained for

an individual.


https://doi.org/10.1101/2020.10.15.341495
http://creativecommons.org/licenses/by-nd/4.0/

	Graph Correlation
	Complete Discriminability Analysis
	Scaling of discriminability with N

	Univariate Graph Statistics

