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Abstract

The analysis of brain-imaging data requires complex processing pipelines to support findings on brain function

or pathologies. Recent work has shown that variability in analytical decisions, small amounts of noise, or

computational environments can lead to substantial differences in the results, endangering the trust in conclu-

sions1–7. We explored the instability of results by instrumenting a connectome estimation pipeline with Monte

Carlo Arithmetic8,9 to introduce random noise throughout. We evaluated the reliability of the connectomes,

their features10,11, and the impact on analysis12,13. The stability of results was found to range from perfectly

stable to highly unstable. This paper highlights the potential of leveraging induced variance in estimates of

brain connectivity to reduce the bias in networks alongside increasing the robustness of their applications in the

classification of individual differences. We demonstrate that stability evaluations are necessary for understanding

error inherent to brain imaging experiments, and how numerical analysis can be applied to typical analytical

workflows both in brain imaging and other domains of computational science. Overall, while the extreme variability

in results due to analytical instabilities could severely hamper our understanding of brain organization, it also

leads to an increase in the reliability of datasets.
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The modelling of brain networks, called connectomics,1

has shaped our understanding of the structure and function2

of the brain across a variety of organisms and scales over3

the last decade11, 14–18. In humans, these wiring diagrams are4

obtained in vivo through Magnetic Resonance Imaging (MRI),5

and show promise towards identifying biomarkers of disease.6

This can not only improve understanding of so-called “connec-7

topathies”, such as Alzheimer’s Disease and Schizophrenia,8

but potentially pave the way for therapeutics19–23.9

However, the analysis of brain imaging data relies on com-10

plex computational methods and software. Tools are trusted to11

perform everything from pre-processing tasks to downstream12

statistical evaluation. While these tools undoubtedly undergo13

rigorous evaluation on bespoke datasets, in the absence of14

ground-truth this is often evaluated through measures of re-15

liability24–27, proxy outcome statistics, or agreement with16

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2021. ; https://doi.org/10.1101/2020.10.15.341495doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.341495
http://creativecommons.org/licenses/by-nd/4.0/


Numerical Uncertainty in Analytical Pipelines Lead to Impactful Variability in Brain Networks — 2/20

existing theory. Importantly, this means that tools are not17

necessarily of known or consistent quality, and it is not un-18

common that equivalent experiments may lead to diverging19

conclusions1, 5–7. While many scientific disciplines suffer20

from a lack of reproducibility28, this was recently explored21

in brain imaging by a 70 team consortium which performed22

equivalent analyses and found widely inconsistent results1,23

and it is likely that software instabilities played a role.24

The present study approached evaluating reproducibility25

from a computational perspective in which a series of brain26

imaging studies were numerically perturbed in such a way27

that the plausibility of results was not affected, and the impli-28

cations of the observed instabilities on downstream analyses29

were quantified. We accomplished this through the use of30

Monte Carlo Arithmetic (MCA)8, a technique which enables31

characterization of the sensitivity of a system to small nu-32

merical perturbations. This is importantly distinct from data33

perturbation experiments where the underlying datasets are34

manipulated or pathologies may be simulated, and allows35

for the evaluation of experimental uncertainty in real-world36

settings. We explored the impact of numerical perturbations37

through the direct comparision of structural connectomes, the38

consistency of their features, and their eventual application39

in a neuroscience study. We also characterized the conse-40

quences of instability in these pipelines on the reliability of41

derived datasets, and discuss how the induced variability may42

be harnessed to increase the discriminability of datasets, in43

an approach akin to ensemble learning. Finally, we make44

recommendations for the roles perturbation analyses may play45

in brain imaging research and beyond.46

Graphs Vary Widely With Perturbations47

Prior to exploring the analytic impact of instabilities, a direct48

understanding of the induced variability was required. A sub-49

set of the Nathan Kline Institute Rockland Sample (NKIRS)50

dataset29 was randomly selected to contain 25 individuals51

with two sessions of imaging data, each of which was sub-52

sampled into two components, resulting in four samples per53

individual and 100 samples total (25×2×2 samples). Struc-54

tural connectomes were generated with canonical determinis-55

tic and probabilistic pipelines30, 31 which were instrumented56

with MCA, replicating computational noise either sparsely57

or densely throughout the pipelines4, 9. In the sparse case, a58

small subset of the libraries were instrumented with MCA, al-59

lowing for the evaluation of the cascading effects of numerical60

instabilities that may arise. In the dense case, operations are61

more uniformly perturbed and thus the law of large numbers62

suggests that perturbations will quickly offset one-another and63

only dramatic local instabilities will have propagating effects.64

Importantly, the perturbations resulting from the sparse setting65

represent a strict subset of the possible outcomes of the dense66

implementation. The random perturbations are statistically67

independent from one another across both settings and sim-68

ulations. Instrumenting pipelines with MCA increases their69

computation time, in this case by multiplication factors of70

1.2× and 7× for the sparse and dense settings, respectively4.71

The results obtained were compared to unperturbed (e.g. ref-72

erence) connectomes in both cases. The connectomes were73

sampled 20 times per sample and once without perturbations,74

resulting in a total of 8,400 connectomes. Two versions of75

the unperturbed connectomes were generated and compared76

such that the absence of variability aside from that induced77

via MCA could be confirmed.78

The stability of connectomes was evaluated through the79

normalized percent deviation from reference4 and the num-80

ber of significant digits (Figure 1). The comparisons were81

grouped according to differences across simulations, subsam-82

pling of data, sessions of acquisition, or subjects, and accord-83

ingly sorted from most to least similar. While the similarity84

of connectomes decreases as the collections become more dis-85

tinct, connectomes generated with sparse perturbations show86

considerable variability, often reaching deviations equal to87

or greater than those observed across individuals or sessions88

(Figure 1A; right). Interpretting these results with respect to89
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Figure 1. Exploration of perturbation-induced deviations from reference connectomes. (A) The absolute deviations between

connectomes, in the form of normalized percent deviation from reference. The difference in MCA-perturbed connectomes is

shown as the across MCA series, and is presented relative to the variability observed across subsamples, sessions, and subjects.

(B) The number of significant decimal digits in each set of connectomes as obtained by evaluating the complete distribution of

networks. In the case of 16, values can be fully relied upon, whereas in the case of 1 only the first digit of a value can be trusted.

Dense and sparse perturbations are shown on the left and right, respectively.

the distinct MCA environments used suggests that the tested90

pipelines may not suffer from single dominant sources of91

instability, but that nevertheless there exist minor local in-92

stabilities which may the propagate throughout the pipeline.93

Furthermore, this finding suggests that instabilities inherent94

to these pipelines may mask session or individual differences,95

limiting the trustworthiness of derived connectomes. While96

both pipelines show similar performance, the probabilistic97

pipeline was more stable in the face of dense perturbations98

whereas the deterministic was more stable to sparse perturba-99

tions (p < 0.0001 for all; exploratory). As an alternative to100

the normalized percent deviation, the stability of correlations101

between networks can be found in Supplemental Section S1.102

The number of significant digits per edge across con-103

nectomes (Figure 1B) similarly decreases alongside the de-104

creasing similarity between comparison groups. While the105

cross-MCA comparison of connectomes generated with dense106

perturbations show nearly perfect precision for many edges107

(approaching the maximum of 15.7 digits for 64-bit data),108

this evaluation uniquely shows considerable drop off in per-109

formance when comparing networks across subsamplings110

(average of < 4 digits). In addition, sparsely perturbed con-111

nectomes show no more than an average of 3 significant digits112

across all comparison groups, demonstrating a significant lim-113

itation in the reliability of independent edge weights. The114

number of significant digits across individuals did not exceed115

a single digit per edge in any case, indicating that only the116

order of magnitude of edges in naively computed groupwise117
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average connectomes can be trusted. The combination of118

these results with those presented in Figure 1A suggests that119

while specific edge weights are largely affected by instabili-120

ties, macro-scale network structure is stable.121

Sparse Perturbations Reduce Off-Target Signal122

We assessed the reproducibility of the dataset through mimick-123

ing and extending a typical test-retest experiment26 in which124

the similarity of samples across sessions were compared to125

distinct samples in the dataset (Table 1, with additional ex-126

periments and explanation of the measure and its scaling127

in Supplemental Section S2). The ability to discriminate128

connectomes across subjects (Hypothesis 1) is an essential129

prerequisite for the application of brain imaging towards iden-130

tifying individual differences18. In testing hypothesis 1, we131

observe that the dataset is discriminable with a scaled score of132

0.82 (p < 0.001; optimal score: 1.0; chance: 0.04) for both133

pipelines in the absence of MCA. We can see that inducing in-134

stabilities through MCA preserves the discriminability in the135

dense perturbtion setting, and and discriminability decreased136

slightly but remained above the unscaled reference value of137

0.65 in the sparse case. This lack of significant decrease in138

discriminability across MCA perturbations suggests its utility139

for capturing variance within datasets without compromis-140

ing the robustness and reliability of the dataset as a whole,141

and possibly suggests this technique as a cost effective and142

context-agnostic method for dataset augmentation.143

While the discriminability of individuals is essential for144

the identification of individual brain networks, it is similarly145

reliant on network similarity – or lack of discriminability –146

across equivalent acquisitions (Hypothesis 2). In this case,147

connectomes were grouped based upon session, rather than148

subject, and the ability to distinguish one session from an-149

other based on subsamples was computed within-individual150

and aggregated. Both the unperturbed and dense perturbation151

settings perfectly preserved differences between sessions with152

a score of 1.0 (p < 0.005; optimal score: 0.5; chance: 0.5),153

indicating a dominant session-dependent signal for all indi-154

viduals despite no intended biological differences. However,155

while still significant relative to chance (score: 0.85 and 0.88;156

p < 0.005 for both), sparse perturbations lead to significantly157

lower discriminability of the dataset (p < 0.005 for all). This158

reduction of the difference between sessions suggests that159

the added variance due to perturbations reduces the relative160

impact of non-biological acquisition-dependent bias inherent161

in the networks.162

Though the previous sets of experiments inextricably eval-163

uate the interaction between data acquisition and tool, the164

use of subsampling allowed for characterizing the discrim-165

inability of networks sampled from within a single acquisition166

(Hypothesis 3). While this experiment could not be evalu-167

ated using reference executions, the networks generated with168

dense perturbations showed near perfect discrimination be-169

tween subsamples, with scores of 0.99 and 1.0 (p < 0.005;170

optimal: 0.5; chance: 0.5). Given that there was no variability171

in data acquisition, due to undesired effects such as participant172

motion, or preprocessing, the ability to discriminate between173

equivalent subsamples in this experiment may only be due174

to instability or bias inherent to the pipelines. The high vari-175

ability introduced through sparse perturbations considerably176

lowered the discriminability towards chance (score: 0.71 and177

0.61; p < 0.005 for all), further supporting this as an effec-178

tive method for obtaining lower-bias estimates of individual179

connectivity.180

Across all cases, the induced perturbations maintained the181

ability to discriminate networks on the basis of meaningful bi-182

ological signal alongside a reduction in discriminability due to183

of off-target signal in the sparse perturbation setting. This re-184

sult appears strikingly like a manifestation of the well-known185

bias-variance tradeoff32 in machine learning, a concept which186

observes a decrease in bias as variance is favoured by a model.187

In particular, this highlights that numerical perturbations can188

be used to not only evaluate the stability of pipelines, but that189

the induced variance may be leveraged for the interpretation190
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Table 1. The impact of instabilities as evaluated through the discriminability of the dataset based on individual (or subject)

differences, session, and subsample. The performance is reported as mean discriminability. While a perfectly discriminable

dataset would be represented by a score of 1.0, the chance performance, indicating minimal discriminability, is 1/the number of

classes. H3 could not be tested using the reference executions due to too few possible comparisons. The alternative hypothesis,

indicating significant discrimination, was accepted for all experiments, with p < 0.005.

Unscaled Ref. Scaled Ref. Dense MCA Sparse MCA

Comparison Chance Target Det. Prob. Det. Prob. Det. Prob. Det. Prob.

H1: Across Subjects 0.04 1.0 0.64 0.65 0.82 0.82 0.82 0.82 0.77 0.75

H2: Across Sessions 0.5 0.5 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.85

H3: Across Subsamples 0.5 0.5 0.99 1.00 0.71 0.61

as a robust distribution of possible results.191

Distributions of Graph Statistics Are Reliable, But192

Individual Statistics Are Not193

Exploring the stability of topological features of connectomes194

is relevant for typical analyses, as low dimensional features are195

often more suitable than full connectomes for many analytical196

methods in practice11. A separate subset of the NKIRS dataset197

was randomly selected to contain a single non-subsampled ses-198

sion for 100 individuals (100×1×1) using the pipelines and199

instrumentation methods to generate connectomes as above.200

Connectomes were generated 20 times each, resulting in a201

dataset which also contained 8,400 connectomes with the202

MCA simulations serving as the only source of repeated mea-203

surements.204

The stability of several commonly-used multivariate graph205

features10 were explored and are presented in Figure 2. The206

cumulative density of the features was computed within in-207

dividuals and the mean cumulative density and associated208

standard error were computed for across individuals (Fig-209

ures 2A and 2B). There was no significant difference between210

the distributions for each feature across the two perturbation211

settings, suggesting that the topological features summarized212

by these multivariate features are robust across both perturba-213

tion modes.214

In addition to the comparison of distributions, the stabil-215

ity of the first 5 moments of these features was evaluated216

(Figures 2C and 2D). In the face of dense perturbations, the217

feature-moments were stable with more than 10 significant218

digits with the exception of edge weight when using the deter-219

ministic pipeline, though the probabilistic pipeline was more220

stable for all comparisons (p < 0.0001; exploratory). In stark221

contrast, sparse perturbations led to highly unstable feature-222

moments (Figure 2D), such that none contained more than223

5 significant digits of information and several contained less224

than a single significant digit, indicating a complete lack of re-225

liability. This dramatic degradation in stability for individual226

measures strongly suggests that these features may be unre-227

liable as individual biomarkers when derived from a single228

pipeline evaluation, though their reliability may be increased229

when studying their distributions across perturbations. A sim-230

ilar analysis was performed for univariate statistics which231

obtained similar findings and can be found in Supplemental232

Section S3.233

Uncertainty in Brain-Phenotype Relationships234

While the variability of connectomes and their features was235

summarized above, networks are commonly used as inputs to236

machine learning models tasked with learning brain-phenotype237

relationships18. To explore the stability of these analyses, we238

modelled the relationship between high- or low- Body Mass239

Index (BMI) groups and brain connectivity using standard di-240
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Figure 2. Distribution and stability assessment of multivariate graph statistics. (A, B) The cumulative distribution functions of

multivariate statistics across all subjects and perturbation settings. There was no significant difference between the distributions

in A and B. (C, D) The number of significant digits in the first 5 five moments of each statistic across perturbations. The dashed

red line refers to the maximum possible number of significant digits.

mensionality reduction and classification tools12, 13, and com-241

pared this to reference and random performance (Figure 3).242

The analysis was perturbed through distinct samplings of243

the dataset across both pipelines and perturbation methods.244

The accuracy and F1 score for the perturbed models varied245

from 0.520 – 0.716 and 0.510 – 0.725, respectively, rang-246

ing from at or below random performance to outperforming247

performance on the reference dataset. This large variability248

illustrates a previously uncharacterized margin of uncertainty249

in the modelling of this relationship, and limits confidence in250
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Figure 3. Variability in BMI classification across the sampling of an MCA-perturbed dataset. The dashed red lines indicate

random-chance performance, and the orange dots show the performance using the reference executions.

reported accuracy scores on singly processed datasets. The251

portion of explained variance in these samples ranged from252

88.6% -– 97.8%, similar to the reference of 90.3%, suggest-253

ing that the range in performance was not due to a gain or254

loss of meaningful signal, but rather the reduction of bias255

towards specific outcome. Importantly, this finding does not256

suggest that modelling brain-phenotype relationships is not257

possible, but rather it sheds light on impactful uncertainty that258

must be accounted for in this process, and supports the use of259

ensemble modeling techniques.260

One distinction between the results presented here and261

the previous is that while networks derived from dense pertur-262

bations had been shown to exhibit less dramatic instabilities263

in general, the results here show similar variability in clas-264

sification performance across the two methods. This consis-265

tency suggests that the desired method of instrumentation may266

vary across experiments. While sparse perturbations result267

in considerably more variability in networks directly, the two268

techniques capture similar variability when relating networks269

to this phenotypic variable. Given the dramatic reduction270

in computational overhead, a sparse instrumentation may be271

preferred when processing datasets for eventual application in272

modelling brain-phenotype relationships.273

Discussion274

The perturbation of structural connectome estimation pipelines275

with small amounts of noise, on the order of machine error,276

led to considerable variability in derived brain graphs. Across277

all analyses the stability of results ranged from nearly per-278

fectly trustworthy (i.e. no variation) to completely unreliable279

(i.e. containing no trustworthy information). Given that the280

magnitude of introduced numerical noise is to be expected281

in computational workflows, this finding has potentially sig-282

nificant implications for inferences in brain imaging as it is283

currently performed. In particular, this bounds the success of284

studying individual differences, a central objective in brain285

imaging18, given that the quality of relationships between286

phenotypic data and brain networks will be limited by the287

stability of the connectomes themselves. This issue is accen-288

tuated through the crucial finding that individually derived289

network features were unreliable despite there being no signif-290

icant difference in their aggregated distributions. This finding291

is not damning for the study of brain networks as a whole, but292

rather is strong support for the aggregation of networks, either293

across perturbations for an individual or across groups, over294

the use of individual estimates.295

Underestimated False Positive Rates While the instabil-296

ity of brain networks was used here to demonstrate the lim-297
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itations of modelling brain-phenotype relationships in the298

context of machine learning, this limitation extends to classi-299

cal hypothesis testing, as well. Though performing individual300

comparisons in a hypothesis testing framework will be accom-301

panied by reported false positive rates, the accuracy of these302

rates is critically dependent upon the reliability of the samples303

used. In reality, the true false positive rate for a test would be304

a combination of the reported confidence and the underlying305

variability in the results, a typically unknown quantity.306

When performing these experiments outside of a repeated-307

measure context, such as that afforded here through MCA, it308

is impossible to empirically estimate the reliability of samples.309

This means that the reliability of accepted hypotheses is also310

unknown, regardless of the reported false positive rate. In311

fact, it is a virtual certainty that the true false positive rate312

for a given hypothesis exceeds the reported value simply as313

a result of numerical instabilities. This uncertainty inherent314

to derived data is compounded with traditional arguments315

limiting the trustworthiness of claims33, and hampers the316

ability of researchers to evaluate the quality of results. The317

accompaniment of brain imaging experiments with direct318

evaluations of their stability, as was done here, would allow319

researchers to simultaneously improve the numerical stability320

of their analyses and accurately gauge confidence in them.321

The induced variability in derived brain networks may be322

leveraged to estimate aggregate connectomes with lower bias323

than any single independent observation, leading to learned324

relationships that are more generalizable and ultimately more325

useful.326

Cost-Effective Data Augmentation The evaluation of reli-327

ability in brain imaging has historically relied upon the expen-328

sive collection of repeated measurements choreographed by329

massive cross-institutional consortia34, 35. The finding that per-330

turbing experiments using MCA both preserved the discrim-331

inability of the dataset due to biological signal and decreased332

the discriminability due to off-target differences across ac-333

quisitions and subsamples opens the door for a promising334

paradigm shift. Given that MCA is data-agnostic, this tech-335

nique could be used effectively in conjunction with, or in336

lieu of, realistic noise models to augment existing datasets.337

While this of course would not replace the need for repeated338

measurements when exploring the effect of data collection339

paradigm or study longitudinal progressions of development340

or disease, it could be used in conjunction with these efforts to341

decrease the bias of each distinct sample within a dataset. In342

contexts where repeated measurements are typically collected343

to increase the fidelity of the dataset, MCA could potentially344

serve as an alternative solution to capture more biological vari-345

ability, with the added benefit being the savings of millions of346

dollars on data collection.347

Shortcomings and Future Questions Given the complex-348

ity of recompiling complex software libraries, pre-processing349

was not perturbed in these experiments as the instrumentation350

of the canonical workflow used in diffusion image process-351

ing would have added considerable technical complexity and352

computational overhead to the large set of experiments per-353

formed here. Other work has shown that linear registration, a354

core piece of many elements of pre-processing such as motion355

correction and alignment, is sensitive to minor perturbations7.356

It is likely that the instabilities across the entire processing357

workflow would be compounded with one another, resulting358

in even greater variability. While the analyses performed in359

this paper evaluated a single dataset and set of pipelines, ex-360

tending this work to other modalities and analyses, alongside361

the detection of local sources of instability within pipelines,362

is of interest for future projects.363

This paper does not explore methodological flexibility or364

compare this to numerical instability. Recently, the nearly365

boundless space of analysis pipelines and their impact on out-366

comes in brain imaging has been clearly demonstrated1. The367

approach taken in these studies complement one another and368

explore instability at the opposite ends of the spectrum, with369

human variability in the construction of an analysis workflow370

on one end and the unavoidable error implicit in the digital371
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representation of data on the other. It is of extreme interest372

to combine these approaches and explore the interaction of373

these scientific degrees of freedom with effects from software374

implementations, libraries, and parametric choices.375

Finally, it is important to state explicitly that the work376

presented here does not invalidate analytical pipelines used in377

brain imaging, but merely sheds light on the fact that many378

studies are accompanied by an unknown degree of uncertainty379

due to machine-introduced errors. The presence of unknown380

error-bars associated with experimental findings limits the381

impact of results due to increased uncertainty. The desired382

outcome of this paper is to motivate a shift in scientific com-383

puting – both in neuroimaging and more broadly – towards a384

paradigm that favours the explicit evaluation of the trustwor-385

thiness of claims alongside the claims themselves.386

Methods387

Dataset388

The Nathan Kline Institute Rockland Sample (NKI-RS)29
389

dataset contains high-fidelity imaging and phenotypic data390

from over 1,000 individuals spread across the lifespan. A391

subset of this dataset was chosen for each experiment to both392

match sample sizes presented in the original analyses and to393

minimize the computational burden of performing MCA. The394

selected subset comprises 100 individuals ranging in age from395

6 – 79 with a mean of 36.8 (original: 6 – 81, mean 37.8),396

60% female (original: 60%), with 52% having a BMI over 25397

(original: 54%).398

Each selected individual had at least a single session399

of both structural T1-weighted (MPRAGE) and diffusion-400

weighted (DWI) MR imaging data. DWI data was acquired401

with 137 diffusion directions in a single shell; more informa-402

tion regarding the acquisition of this dataset can be found in403

the NKI-RS data release29.404

In addition to the 100 sessions mentioned above, 25 indi-405

viduals had a second session to be used in a test-retest analysis.406

Two additional copies of the data for these individuals were407

generated, including only the odd or even diffusion direc-408

tions (64 + 9 B0 volumes = 73 in either case) such that the409

acquired data was evenly represented across both portions,410

and each subsample represented a realistic complete acquisi-411

tion. This allowed for an extra level of stability evaluation to412

be performed between the levels of MCA and session-level413

variation.414

In total, the dataset is composed of 100 subsampled ses-415

sions of data originating from 50 acquisitions and 25 indi-416

viduals for in depth stability analysis, and an additional 100417

sessions of full-resolution data from 100 individuals for sub-418

sequent analyses.419

Processing420

The dataset was preprocessed using a standard FSL36 work-421

flow consisting of eddy-current correction and alignment. The422
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MNI152 atlas37 was aligned to each session of data via the423

structural images, and the resulting transformation was ap-424

plied to the DKT parcellation38. Subsampling the diffusion425

data took place after preprocessing was performed on full-426

resolution sessions, ensuring that an additional confound was427

not introduced in this process when comparing between down-428

sampled sessions. The preprocessing described here was per-429

formed once without MCA, and thus is not being evaluated.430

Structural connectomes were generated from preprocessed431

data using two canonical pipelines from Dipy30: deterministic432

and probabilistic. In the deterministic pipeline, a constant433

solid angle model was used to estimate tensors at each voxel434

and streamlines were then generated using the EuDX algo-435

rithm31. In the probabilistic pipeline, a constrained spherical436

deconvolution model was fit at each voxel and streamlines437

were generated by iteratively sampling the resulting fiber ori-438

entation distributions. In both cases tracking occurred with 8439

seeds per 3D voxel and edges were added to the graph based440

on the location of terminal nodes with weight determined by441

fiber count.442

The random state of both pipelines was fixed for all anal-443

yses. Fixing this random state led to entirely deterministic444

repeated-evaluations of the tools, and allowed for explicit445

attribution of observed variability to limitations in tool preci-446

sion as provoked by Monte Carlo simulations, rather than the447

internal state of the algorithm.448

Perturbations449

All connectomes were generated with one reference execu-450

tion where no perturbation was introduced in the processing.451

For all other executions, all floating point operations were452

instrumented with Monte Carlo Arithmetic (MCA)8 through453

Verificarlo9. MCA simulates the distribution of errors im-454

plicit to all instrumented floating point operations (flop). This455

rounding is performed on a value x at precision t by:456

inexact(x) = x+2ex−t
ξ (1)

where ex is the exponent value of x and ξ is a uniform ran-457

dom variable in the range (− 1
2 , 1

2 ). MCA can be introduced in458

two places for each flop: before or after evaluation. Perform-459

ing MCA on the inputs of an operation limits its precision,460

while performing MCA on the output of an operation high-461

lights round-off errors that may be introduced. The former is462

referred to as Precision Bounding (PB) and the latter is called463

Random Rounding (RR).464

Using MCA, the execution of a pipeline may be performed465

many times to produce a distribution of results. Studying the466

distribution of these results can then lead to insights on the467

stability of the instrumented tools or functions. To this end,468

a complete software stack was instrumented with MCA and469

is made available on GitHub at https://github.com/470

verificarlo/fuzzy.471

The RR variant of MCA was used for all experiments.472

As was presented in4, both the degree of instrumentation (i.e.473

number of affected libraries) and the perturbation mode have474

an effect on the distribution of observed results. For this work,475

the RR-MCA was applied across the bulk of the relevant oper-476

ations (those occurring in BLAS, LAPACK, Python, Cython,477

and Numpy) and is referred to as dense perturbation. In this478

case the bulk of numerical operations were affected by MCA.479

Conversely, the case in which RR-MCA was applied480

across the operations in a small subset of operations (those481

ocurring in Python and Cython) is here referred to as sparse482

perturbation. In this case, the inputs to operations within483

the instrumented libraries were perturbed, resulting in less484

frequent, data-centric perturbations. Alongside the stated the-485

oretical differences, sparse perturbation is considerably less486

computationally expensive than dense perturbation.487

All perturbations targeted the least-significant-bit for all488

data (t = 24 and t = 53 in float32 and float64, respectively9).489

Perturbing the least significant bit importantly serves as a490

perturbation of machine error, and thus is the appropriate491

precision to be applied globally in complex pipelines. Simula-492

tions were performed 20 times for each pipeline execution for493
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the 100 sample dataset and 10 times for the repeated measures494

dataset. A detailed motivation for the number of simulations495

can be found in39.496

Evaluation497

The magnitude and importance of instabilities in pipelines498

can be considered at a number of analytical levels, namely:499

the induced variability of derivatives directly, the resulting500

downstream impact on summary statistics or features, or the501

ultimate change in analyses or findings. We explore the na-502

ture and severity of instabilities through each of these lenses.503

Unless otherwise stated, all p-values were computed using504

Wilcoxon signed-rank tests. To avoid biasing these statistics in505

this unique repeated-measures context, tests were performed506

across sets of independent observations and then the results507

were aggregated in all cases.508

Direct Evaluation of the Graphs509

The differences between perturbation-generated graphs was510

measured directly through both a direct variance quantifica-511

tion and a comparison to other sources of variance such as512

individual- and session-level differences.513

Quantification of Variability Graphs, in the form of adja-514

cency matrices, were compared to one another using three515

metrics: normalized percent deviation, Pearson correlation,516

and edgewise significant digits. The normalized percent devi-517

ation measure, defined in4, scales the norm of the difference518

between a simulated graph and the reference execution (that519

without intentional perturbation) with respect to the norm of520

the reference graph, and is defined as4:521

%Dev(A,B) =

√
m

∑
i=1

n

∑
j=1
|ai j−bi j|2/

√
m

∑
i=1

n

∑
j=1
|ai j|2, (2)

where A and B each represent a graph, and �i j are el-522

ements therein corresponding to row and column i and j,523

respectively. For these experiments, the A graph always refers524

to the reference, where B represents a perturbed value. The525

purpose of this comparison is to provide insight on the scale526

of differences in observed graphs relative to the original signal527

intensity. A Pearson correlation coefficient40 was computed528

in complement to normalized percent deviation to identify529

the consistency of structure and not just intensity between ob-530

served graphs, though the result of this experiment is shown531

only in Supplemental Section S1.532

Finally, the estimated number of significant digits, s′, for533

each edge in the graph is calculated as:534

s′ =−log10
σ

|µ|
(3)

where µ and σ are the mean and unbiased estimator of535

standard deviation across graphs, respectively. The upper536

bound on significant digits is 15.7 for 64-bit floating point537

data.538

The percent deviation, correlation, and number of signifi-539

cant digits were each calculated within a single session of data,540

thereby removing any subject- and session-effects and provid-541

ing a direct measure of the tool-introduced variability across542

perturbations. A distribution was formed by aggregating these543

individual results.544

Class-based Variability Evaluation To gain a concrete un-545

derstanding of the significance of observed variations we ex-546

plore the separability of our results with respect to understood547

sources of variability, such as subject-, session-, and pipeline-548

level effects. This can be probed through Discriminability26,549

a technique similar to ICC24 which relies on the mean of a550

ranked distribution of distances between observations belong-551

ing to a defined set of classes. The discriminability statistic is552

formalized as follows:553

Disc.= Pr(‖gi j−gi j′‖ ≤ ‖gi j−gi′ j′‖) (4)

where gi j is a graph belonging to class i that was measured554

at observation j, where i 6= i′ and j 6= j′.555

Discriminability can then be read as the probability that an556

observation belonging to a given class will be more similar to557
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other observations within that class than observations of a dif-558

ferent class. It is a measure of reproducibility, and is discussed559

in detail in26. This definition allows for the exploration of de-560

viations across arbitrarily defined classes that in practice can561

be any of those listed above. We combine this statistic with562

permutation testing to test hypotheses on whether differences563

between classes are statistically significant in each of these set-564

tings. This statistic is similar to ICC24 in a two-measurement565

setting, however, given the dependence on a rank distribution566

from all measurements, discriminability scores do not become567

meaningless by the addition of more samples which are highly568

similar to the originals, whereas ICC scores would much more569

rapidly trend towards 1, making discriminability appropriate570

in this context. The scaling properties of discriminability are571

described more fully in Supplemental Section S2.572

With this in mind, three hypotheses were defined. For573

each setting, we state the alternate hypotheses, the variable(s)574

which were used to determine class membership, and the575

remaining variables which may be sampled when obtaining576

multiple observations. Each hypothesis was tested indepen-577

dently for each pipeline and perturbation mode.578

HA1: Individuals are distinct from one another579

Class definition: Subject ID580

Comparisons: Session (1 subsample), Subsample (1581

session), MCA (1 subsample, 1 session)582

HA2: Sessions within an individual are distinct583

Class definition: Session ID | Subject ID584

Comparisons: Subsample, MCA (1 subsample)585

HA3: Subsamples are distinct586

Class definition: Subsample | Subject ID, Session ID587

Comparisons: MCA588

As a result, we tested 3 hypotheses across 6 MCA ex-589

periments and 3 reference experiments on 2 pipelines and 2590

perturbation modes, resulting in a total of 30 distinct tests.591

While results from all tests can be found within Supplemental592

Section S2, only the bolded comparisons in the list above have593

been presented in the main body of this article. Correction for594

repeated testing was performed.595

Evaluating Graph-Theoretical Metrics596

While connectomes may be used directly for some analyses,597

it is common practice to summarize them with structural mea-598

sures, that can then be used as lower-dimensional proxies599

of connectivity in so-called graph-theoretical studies11. We600

explored the stability of several commonly-used univariate601

(graphwise) and multivariate (nodewise or edgewise) features.602

The features computed and subsequent methods for compari-603

son in this section were selected to closely match those com-604

puted in10.605

Univariate Differences For each univariate statistic (edge606

count, mean clustering coefficient, global efficiency, modu-607

larity of the largest connected component, assortativity, and608

mean path length) a distribution of values across all perturba-609

tions within subjects was observed. A Z-score was computed610

for each sample with respect to the distribution of feature611

values within an individual, and the proportion of ”classically612

significant” Z-scores, i.e. corresponding to p < 0.05, was613

reported and aggregated across all subjects. There was no614

correction for multiple comparisons in these statistics, as they615

were not used to interpret a hypothesis but demonstrate the616

false-positive rate due to perturbations. The number of signifi-617

cant digits contained within an estimate derived from a single618

subject were calculated and aggregated. The results of this619

analysis can be found in Supplemental Section S3.620

Multivariate Differences In the case of both nodewise (de-621

gree distribution, clustering coefficient, betweenness central-622

ity) and edgewise (weight distribution, connection length) fea-623

tures, the cumulative density functions of their distributions624

were evaluated over a fixed range and subsequently aggre-625

gated across individuals. The number of significant digits626

for each moment of these distributions (sum, mean, variance,627

skew, and kurtosis) were calculated across observations within628
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a sample and aggregated.629

Evaluating A Brain-Phenotype Analysis630

Though each of the above approaches explores the instabil-631

ity of derived connectomes and their features, many modern632

studies employ modeling or machine-learning approaches, for633

instance to learn brain-phenotype relationships or identify dif-634

ferences across groups. We carried out one such study and ex-635

plored the instability of its results with respect to the upstream636

variability of connectomes characterized in the previous sec-637

tions. We performed the modeling task with a single sampled638

connectome per individual and repeated this sampling and639

modelling 20 times. We report the model performance for640

each sampling of the dataset and summarize its variance.641

BMI Classification Structural changes have been linked to642

obesity in adolescents and adults41. We classified normal-643

weight and overweight individuals from their structural net-644

works (using for overweight a cutoff of BMI > 2513). We645

reduced the dimensionality of the connectomes through prin-646

cipal component analysis (PCA), and provided the first N-647

components to a logistic regression classifier for predicting648

BMI class membership, similar to methods shown in12, 13.649

The number of components was selected as the minimum set650

which explained > 90% of the variance when averaged across651

the training set for each fold within the cross validation of652

the original graphs; this resulted in a feature of 20 compo-653

nents. We trained the model using k-fold cross validation,654

with k = 2,5,10, and N (equivalent to leave-one-out; LOO).655

Data & Code Provenance656

The unprocessed dataset is available through The Consortium657

of Reliability and Reproducibility (http://fcon_1000.658

projects.nitrc.org/indi/enhanced/), including659

both the imaging data as well as phenotypic data which may660

be obtained upon submission and compliance with a Data Us-661

age Agreement. The connectomes generated through simula-662

tions have been bundled and stored permanently (https://663

doi.org/10.5281/zenodo.4041549), and are made664

available through The Canadian Open Neuroscience Platform665

(https://portal.conp.ca/search, search term ”Kiar”).666

All software developed for processing or evaluation is667

publicly available on GitHub at https://github.com/668

gkpapers/2020ImpactOfInstability. Experiments669

were launched using Boutiques42 and Clowdr43 in Compute670

Canada’s HPC cluster environment. MCA instrumentation671

was achieved through Verificarlo9 available on Github at672

https://github.com/verificarlo/verificarlo.673

A set of MCA instrumented software containers is available674

on Github at https://github.com/gkiar/fuzzy.675
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S1. Graph Correlation839

The following presents a quantification of deviations of generated connectomes from the reference execution, similar to shown840

in Figure 1. However, in this case, the “percent deviation” measure was replaced with the Pearson correlation coefficient.841

The correlations between observed graphs (Figure S1) across each grouping follow the same trend to as percent deviation, as842

shown in Figure 1. However, notably different from percent deviation, there is no significant difference in the correlations843

between dense or sparse instrumentations. By this measure, the probabilistic pipeline is more stable in all cross-MCA and844

cross-directions except for the combination of sparse perturbation and cross-MCA (p < 0.0001 for all; exploratory).845

The marked lack in drop-off of performance across these settings, inconsistent with the measures show in Figure 1 is likely846

due to the nature of the measure and the structure of graphs being compared. Given that structural graphs are sparse and contain847

considerable numbers of zero-weighted edges, the presence or absense of edges dominated the correlation measure where it848

was less impactful for the others. For this reason and others44, correlation is not a commonly used measure in the context of849

structural connectivity, and thus this analysis was demoted to the supplement material.850
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Figure S1. The correlation between perturbed connectomes and their reference.
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S2. Complete Discriminability Analysis851

Table S1. The complete results from the Discriminability analysis, with results reported as mean ± standard deviation

Discriminability. As was the case in the condensed table, the alternative hypothesis, indicating significant separation across

groups, was accepted for all experiments, with p < 0.005.

Unscaled Reference Dense Perturbations Sparse Perturbations

Exp. Subj. Sess. Samp. Det. Prob. Det. Prob. Det. Prob.

1.1 All All 1 0.64±0.00 0.65±0.00 0.82±0.00 0.82±0.00 0.77±0.00 0.75±0.00

1.2 All 1 All 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.93±0.02 0.90±0.02

1.3 All 1 1 1.00±0.00 1.00±0.00 0.94±0.02 0.90±0.02

2.4 1 All All 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.88±0.12 0.85±0.12

2.5 1 All 1 1.00±0.00 1.00±0.00 0.89±0.11 0.84±0.12

3.6 1 1 All 0.99±0.03 1.00±0.00 0.71±0.07 0.61±0.05

The complete discriminability analysis includes comparisons across more axes of variability than the condensed version.852

The reduction in the main body was such that only axes which would be relevant for a typical analysis were presented. Here,853

each of Hypothesis 1, testing the difference across subjects, and 2, testing the difference across sessions, were accompanied854

with additional comparisons to those shown in the main body.855

Subject Variation Alongside experiment 1.1, that which mimicked a typical test-retest scenario, experiments 1.2 and 1.3856

could be considered a test-retest with a handicap, given a single aqcuisition per individual was compared either across857

subsamples or simulations, respectively. For this reason, it is unsurprising that the dataset achieved considerably higher858

discriminability scores.859

Session Variation Similar to subject variation, the session variation was also modelled across either both or a single860

subsample in experiments 2.4 and 2.5. In both of these cases the performance was similar, and the finding that sparse861

perturbations reduced the off-target signal was consistent.862

S2.1 Scaling of discriminability with N863

When samples were added to the dataset across perturbed executions, the discriminability statistic inflated to a plateau even864

when no information was added (e.g. the dataset was replicated). This effect is demonstrated for the reference executions and is865

shown in Figure S2. As we can see, the reference discriminability scores without data duplication (unscaled) were 0.64 and866

0.65 for the deterministic and probabilistic pipelines, respectively. After duplicating the dataset 20 times, matching the size of867

the 20-sample perturbed dataset, we can see that this (scaled) score plateaus at 0.82 for both pipelines. For consistency, in the868

main body of the text the reference execution performance was communicated as the scaled quantity.869
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Figure S2. Scaling behaviour of the discriminability statistic with data duplication.
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S3. Univariate Graph Statistics870

Figure S3 explores the stability of univariate graph-theoretical metrics computed from the perturbed graphs, including modularity,871

global efficiency, assortativity, average path length, and edge count. When aggregated across individuals and perturbations, the872

distributions of these statistics (Figures S3A and S32B) showed no significant differences between perturbation methods for873

either deterministic or probabilistic pipelines, consistent with the comparison of the cumulative density of the multivariate874

statistics compared in 2.875

However, when quantifying the stability of these measures across connectomes derived from a single session of data, the876

two perturbation methods show considerable differences. The number of significant digits in univariate statistics for dense877

perturbation instrumented connectome generation exceeded 11 digits for all measures except modularity, which contained more878

than 4 significant digits of information (Figure S3C). When detecting false-positives from the distributions of observed statistics879

for a given session, the rate (using a threshold of p = 0.05) was approximately 2% for all statistics with the exception of880

modularity which again was less stable with an approximately 10% false positive rate. The probabilistic pipeline is significantly881

more stable than the deterministic pipeline (p < 0.0001; exploratory) for all features except modularity. When similarly882

evaluating these features from connectomes generated in the sparse perturbation setting, no statistic was stable with more than883

3 significant digits or a false positive rate lower than nearly 6% (Figure S3D). The deterministic pipeline was more stable than884

the probabilistic pipeline in this setting (p < 0.0001; exploratory).885

Two notable differences between the two perturbation methods are, first, the uniformity in the stability of the statistics, and886

second, the dramatic decline in stability of individual statistics in the sparse perturbation setting despite the consistency in the887

overall distribution of values. This result is consistent with that obtained from the multivariate exploration performed in the888

body of this article. It is unclear at present if the discrepancy between the stability of modularity in the pipeline perturbation889

context versus the other statistics suggests the implementation of this measure is the source of instability or if it is implicit to890

the measure itself. The dramatic decline in the stability of features derived from sparse perturbed graphs despite no difference891

in their overall distribution both shows that while individual estimates may be unstable the comparison between aggregates or892

groups may be considered much more reliable; this finding is consistent with that presented for multivariate statistics.893
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Figure S3. Distribution and stability assessment of univariate graph statistics. (A, B) The distributions of each computed

univariate statistic across all subjects and perturbations for dense and sparse settings, respectively. There was no significant

difference between the distributions in A and B. (C, D; top) The number of significant decimal digits in each statistic across

perturbations, averaged across individuals. The dashed red line refers to the maximum possible number of significant digits. (C,

D; bottom) The percentage of connectomes which were deemed significantly different (p < 0.05) from the others obtained for

an individual.
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