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Abstract 
Drug high-throughput screenings across large molecular-characterised cancer cell line 
panels enable the discovery of biomarkers, and thereby, cancer precision medicine. The 
ability to experimentally generate drug response data has accelerated. However, this data is 
typically quantified by a summary statistic from a best-fit dose response curve, whilst 
neglecting the uncertainty of the curve fit and the potential variability in the raw readouts. 
Here, we model the experimental variance using Gaussian Processes, and subsequently, 
leverage this uncertainty for identifying associated biomarkers with a new statistical 
framework based on Bayesian testing. Applied to the Genomics of Drug Sensitivity in 
Cancer,  ​in vitro​ screening data on 265 compounds across 1,074 cell lines, our uncertainty 
models identified 24 clinically established drug response biomarkers, and in addition 
provided evidence for 6 novel biomarkers. We validated our uncertainty estimates with an 
additional drug screen of 26 drugs, 10 cell lines with 8 to 9 replicates. Our method is 
applicable to drug high-throughput screens without replicates, and enables robust biomarker 
discovery for new cancer therapies.  
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Introduction  
The failure rate for new drugs entering clinical trials is in excess of 90%, with more than a 
quarter of drugs failing due to lack of efficacy ​1,2​. The rapid development of technologies for 
deep molecular characterisation of clinical samples holds the promise to uncover molecular 
biomarkers that stratify patients towards more efficacious drugs, a cornerstone of precision 
medicine. In oncology, we can identify potential biomarkers of drug response in 
high-throughput screens (HTS) of patient-derived cell lines; these biomarkers need then to 
be validated in patients. 
 
Assessment of cell line drug response typically involves treatment with multiple 
concentrations of the compound, followed by measurement of the amount of viable cells 
after a fixed period of time for each dose, and derivation of a dose-response curve. The drug 
response is commonly then summarised by measurements taken from this curve, most often 
the concentration required to reduce cell viability by half ​i.e.​ IC​50​, or the area under the curve 
i.e.​ AUC. Currently the two largest ​in vitro​ drug screening studies, the Genomics of Drug 
Sensitivity in Cancer (GDSC) ​3,4​ and the Cancer Therapeutics Response Portal (CTRP) ​5 
have shown that some clinically actionable biomarkers of drug response can be 
concordantly discovered ​4,6​, and that different properties and mechanisms of drug response 
are best captured by different metrics dependent on the dose-response curve ​7​.  
 
Most HTS efforts focus on increasing throughput ​4,6​ and thereby often neglect experimental 
replicates, which renders it impossible to correct for experimental noise, resulting in 
uncertainty for the estimated drug response metrics (e.g. IC​50​ value). Extrapolating IC​50 
values beyond the tested drug concentration range is particularly challenging and often 
unaccounted for in quality control metrics ​8,9​. Most published studies using machine learning 
algorithms or mechanistic models for predicting drug response and biomarkers assume that 
the measured drug responses are precise ​10–12​.  If this assumption is not met and there is 
high uncertainty in the measured drug response values, the utility of these methods for 
enhancing drug development may be severely limited ​10–12​.  Experimental noise can be 
reduced by adding experimental replicates, however, this either reduces the throughput of 
the screen or increases the cost. Most current models for curve fitting and describing 
dose-response data have primarily assumed that cell viability has a sigmoidal relationship to 
the logarithm of the dose concentrations of the drug ​13,14​. While some models are more 
flexible by allowing many inflection points in the dose-response curve ​15,16​, their main output 
is a single drug response value that does not fully capture the uncertainty in the 
measurements ​7​. 
 
Gaussian processes (GP) are a flexible, probabilistic modeling technique that has been 
successfully used to measure uncertainty in noisy gene expression datasets ​17​ and has been 
incorporated into machine learning prediction of cell fates ​18​. This technique has been shown 
to cope well with regression tasks on dependent data and high dimensional covariates ​19,20​. 
Instead of fitting a single function to the data, GPs allow for a flexible range of beliefs about 
the function underlying the data ​21​.  In the case of cell line drug responses, this can be 
conceptualised as fitting a range of curves that have equivalently strong fit to the data. We 
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can sample from the inferred posterior distribution over functions, i.e. the variance between 
these curves, to generate uncertainty estimates of quantities of interest, in our case, 
properties of the dose-response such as IC​50​. 
 
Gaussian processes have recently been used in conjunction with neural networks to model 
dose-response curves as a function of molecular markers ​22​. The main objective in this work 
was to predict drug response using the molecular measurements, and the non-linear nature 
of the prediction model makes interpretation for the purpose of biomarker detection 
challenging. By contrast, we aimed to develop a model that could provide interpretable 
summary statistics with uncertainty estimates that can be flexibly used to improve biomarker 
detection. 
 
In this study, we therefore introduce a new GP regression approach for describing 
dose-response relationships in cancer cell lines that quantifies the uncertainty of the model 
fitted to measured responses for each single experiment, and we show that estimates of 
IC50 values within the tested concentration range correlates with confidence intervals 
obtained experimentally from replicate experiments. Subsequently, we use our new 
dose-response model to identify genetic sensitivity and resistance biomarkers in standard 
statistical tests (e.g. ANOVA). We demonstrate how the flexibility of the GP dose-response 
modeling can be further exploited in a Bayesian framework to identify novel biomarkers. We 
also describe the variation in the level of drug response uncertainty across cancer types and 
drug classes. By accounting for the uncertainty in dose-response experiments, detection of 
clinically-actionable biomarkers can be enhanced. 
 

Results 
 

 
1. A probabilistic framework for measuring dose-response and predicting 
biomarkers 
 
We analysed ​in vitro​ screening data on 265 compounds across 1,074 cell lines ​4​. In those 
experiments, we quantified the amount of cytotoxicity after four days of compound 
treatments at each dose compared to controls (​Figure 1A​). The relationship between the 
dose and response (decrease in cell viability) was first described using a dose-response 
curve derived with a sigmoidal function (​Figures 1B and 1C​). This assumes that the number 
of viable cells decreases at an exponential rate, then slows down and eventually plateaus at 
a lower limit. Since it was costly to test all possible doses, the sigmoid function was used to 
extrapolate the response at concentrations that had not been tested and to estimate overall 
measures of response, such as IC​50​ or AUC values, for downstream analysis. However, 
considering that each experiment tested only between five and nine dosage concentrations 
per experiment in GDSC, and a maximum of 16 in CTRP, the tightness of fit of the 
dose-response curve to the data points and therefore the level of uncertainty about the 
inferred response may vary. We utilised the probabilistic nature of GP models to quantify the 
uncertainty in the dose-response experiments as an alternate approach (​Figure 1D​). We 
sampled from the fitted GP and used the posterior distribution to quantify the uncertainty in 
curve fits for each experiment​. ​We again generated summary statistics, IC​50​ and AUC 
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values, by taking the average of the GP samples and also quantified the level of uncertainty 
for these statistics (​Figure 1E ​). The GP model has the advantage that it models outliers at 
higher doses as one component of a two-component Beta mixture in the model (​see 
Methods ​). Such outliers are typically the result of an experimental failure, and cannot be 
modeled using simple Gaussian noise without over-estimating the noise parameter. 
 
After fitting the dose-response data using the sigmoid and GP models, we tested various 
biomarker hypotheses by examining the association between the overall response statistics 
from the models with genetic variants detected in the cell lines using a frequentist and a 
Bayesian approach (​Figures 1F-H​). For one biomarker hypothesis, as an example, we 
examined copy number alterations and point mutations in breast cancer cell lines in relation 
to the measured drug response of afatinib in those cells. The GP and sigmoid estimated IC​50 
from cell lines treated with afatinib were significantly different in cases with and without 
ERBB2 ​amplification (ANOVA q-value = 4.12e-9; ​Figure 1I​). The GP models provided an 
added benefit of providing uncertainty estimates that were incorporated into a Bayesian 
hierarchical model to further verify the association between ​ERBB2​ amplification and afatinib 
sensitivity (posterior probability = 0.001; ​Figure1J​).  
 

 
 
Figure 1: ​ ​Workflow for fitting of Gaussian Process models to dose-response curves 
and estimating their uncertainty. ​ ​(A)​ Large-scale drug screens test cell lines with different 
drugs and at different doses are used to obtain dose-response data. ​(B) ​Typically, for each 
drug tested in a cell line, the sigmoid model is fit to the drug-response data and ​(C)​ the 
overall measures of response (IC​50​, AUC, etc.) are extracted.​ (D) ​For each drug tested in a 
cell line, we fit a GP model to the dose-response data. The GP allows us to sample from a 
distribution of possible dose-response curves, obtaining a measure of uncertainty. ​(E) ​From 
these curves, we can extract overall measures of response, such as IC​50​, and importantly, 
their 95% confidence intervals. ​(F) ​Mutation markers for each cell line can be determined 
based on presence/absence of single nucleotide polymorphisms (SNPs) in key genes. Both 
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the drug response estimates and the mutation markers are used to compute ​(G) ​the 
F-statistic for ANOVA, and ​(H) ​Bayesian test for biomarker association. The drug response 
summary measure  for cell-line  is modelled via a cell-line specific mean  and standard 
error . The mean is defined as a linear effect  of the biomarker status  and a further 
effect  from any remaining covariates , such as tissue type. The parameter  is the 
standard deviation of . ​(I) ​Boxplots illustrate the differences in the estimated mean IC​50​ of 
ERBB2​ amplified and non-amplified breast cancer cell lines treated with afatinib. An ANOVA 
test was used to test this difference in means but did not consider uncertainty in each IC​50 
estimate. ​(J) ​We estimated posterior distributions of gene association using the Bayesian 
model, ​i.e.​ the effect of a genetic mutation on the IC​50​ measurement of drug response. 
Distributions centered on zero indicate no effect while distributions on either side of zero 
indicate positive or negative effects of mutations on drug response. 
 
2. Gaussian Processes provide estimates of dose-response uncertainty for 
single experiments 
 
Both GP and sigmoid curve fitting produced comparable IC​50​ and AUC estimates. Precursor 
sigmoid curve fitting methods based on Markov Chain Monte Carlo simulations enabled error 
estimates in IC​50​ values ​3​, however, this was neglected in the state-of-the-art sigmoid curve 
fitting ​16​ due to missing propagation to biomarker identification. Here, we introduce the added 
benefit of sampling from the GP posterior, which provides the models in-build uncertainty 
obtained for these IC​50​ estimates. This is important for high-throughput drug screening 
experiments where there is often a high number of drugs and samples tested but very few 
replicate experiments. By applying the GP model to each experiment, we estimated the 
standard deviation for each IC​50​ or AUC value based only on data points from that single 
experiment. These single sample standard deviations were compared to the standard 
deviations measured from here provided replicate experiments, ​i.e.​ the same drug tested 
multiple times on the same cell line and at the same concentration. We applied our GP 
estimation method to data from replicate experiments of 26 drugs on 10 cell lines, which 
contained 260 test conditions and 8 to 9 replicates for each condition. We expected that an 
estimate of the uncertainty of the summary statistic, such as the standard deviation of the 
IC​50​ posterior samples, would be correlated with the dispersion between replicates. Here, we 
refer to the variability between (mean) estimates for replicates as the observation 
uncertainty, and the variability in the estimate for a single replicate as the estimation 
uncertainty.  

We compared observation and estimation uncertainty across replicate experiments of all 260 
conditions (​Figure 2A​). We found two trends in the relationship between observation and 
estimation uncertainty. First, for experiments where the estimated IC​50​ lies within the 
concentration range tested, the estimation uncertainty is positively correlated (Pearson 
correlation = 0.84, CI [0.76, 0.89]) with the observation uncertainty. Second, for experiments 
where the estimated IC​50​ lies beyond the maximum tested concentration, we observed a 
negative correlation (Pearson correlation = -0.39, CI [-0.51, -0.25]). We note that the latter 
experiments require extrapolation to estimate the IC​50​ beyond the concentration range, 
which increases the estimation uncertainty, but does not generally affect the observational 
uncertainty. However, we observed that the estimation uncertainty from our GPs for 
dabrafenib (BRAF inhibitor) tested in two independent studies on the same cell lines were 
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comparable both within and beyond the concentration range (​Figure 2B​).  

Since the replicate experiments were conducted in batches over a period of several months, 
we verified that the observed trends held regardless of batches (​Supplementary Figure 
S1​). Additionally, we examined the relationship between estimation uncertainty and 
observation uncertainty in a number of example experiments (​Figures 2C-E​). In the case of 
olaparib tested on PC-14, the uncertainty for the  IC​50​ within each replicate experiment was 
high, but this level of uncertainty was consistent across all replicates even beyond the max 
concentration (​Figures 2C and 2F​). In other replicate experiments, both estimation and 
observation uncertainty were low (​Figures 2D and 2G​), or varied depending on whether the 
batch reported mostly IC​50​ values beyond the concentration range. Talazoparib tested in 
colorectal cancer line HCT-15 is a case where observation uncertainty was high, even 
though estimation uncertainty was low, and experiments in different batches showed 
different estimated IC​50​s from very different dose-response curves (​Figures 2E and 2H​).  
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Figure 2: Comparison of GP estimates of uncertainty to replicate drug screening 
experiments.​ ​(A)​ Comparison between observational uncertainty (standard deviation over 
replicates of log10(IC​50​) mean estimates) and estimation uncertainty (average over 
replicates of log10(IC​50​) standard deviation) from each replication experiment. The colour of 
the points indicates whether the log10(IC​50​) mean estimates were within or outside the 
maximum concentration range for each assay. ​(B)​ Mean IC​50 ​and the estimation uncertainty 
from the GPs for a BRAF inhibitor (dabrafenib) tested in each cell line in two independent 
studies (GDSC and CTD2). Estimation uncertainty (error bars and grey shading) were larger 
beyond the max concentration in both GDSC (dashed line) and CTD2 (grey line). The point 
estimates of the IC​50​s from the GPs (black dots) were also comparable to the published IC​50​s 
(red dots). ​(C-E)​ Three sets of replicate experiments, representing different amounts of 
estimation and observation uncertainty. Each density represents the distribution of IC​50 
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values from the Gaussian process samples from each replicate experiment. The colours 
represent different experimental batches. Narrow distributions demonstrate low estimation 
uncertainty and overlapping distributions demonstrate low observation uncertainty. The thick 
black line represents the density obtained by pooling samples from all replicates and the 
dashed line shows the maximal dosage tested.​ ​GP curve fits corresponding to the three sets 
of replicate experiments showing IC​50​ estimates with ​(F)​ high uncertainty, ​(G) ​low 
uncertainty, and ​(H) ​mix of uncertainties depending on whether estimates are made within or 
beyond the max concentration. The blue areas represent the 95% confidence interval in the 
curve fits and extrapolated GP curves (light grey lines) are displayed up to five times the 
maximum concentration.  
 
 
In order to examine the diversity of uncertainty estimates across experiments further, we 
described the relationship between AUC value of GP fits with their corresponding estimation 
uncertainty (​Figure 3​). We decided to use AUC here due to the greater uncertainty of 
estimating IC​50​s beyond the maximum dose concentration. Since AUCs were computed 
within the tested concentration range, the estimation uncertainty for AUC was not 
substantially higher for cases where IC​50​s were estimated within compared to beyond the 
maximum concentration (​Supplementary Figure S2A​). The difference between the AUC 
estimates from the GP compared to the published GDSC sigmoid curve fits was greatest for 
experiments showing a partial response (AUC between 0.4 and 0.9), whilst at the same time 
these experiments also had the highest estimation uncertainty (​Figure 3A​). Our visual 
examination of the raw dose-response data from those experiments revealed evidence of 
poor quality readouts, for instance, where cell viability increases with increasing drug dose 
(​Supplementary Figure S2B ​). We were able to quantify the quality of these readouts by 
estimating the Spearman correlation coefficient based on the raw cell viability counts and the 
dose concentrations (​Figure 3B​). A negative Spearman correlation indicates that cell 
viability decreases as dosage increases (as expected) while a positive Spearman correlation 
indicates the opposite. The experiments with high estimation uncertainty from our GPs were 
also the experiments with high Spearman correlation pointing to poor quality.  
 
Next, we investigated whether there were any attributes of experiments that would 
correspond to high estimation uncertainty and poor quality results. Labelling of experiments 
based on cell culture conditions, dose and cancer type revealed no obvious associations 
with estimation uncertainty (​Supplementary Figure S3A-E​). However, there was a large 
spread in the uncertainty estimates for AUC when we grouped the experiments into target 
pathways based on the primary targets of the tested drugs (​Figure 3C; Supplementary 
Figure S3F ​). While most drugs had similar average AUC point estimates between 0.6 and 
0.8, suggesting they all had a spread of experiments showing resistance and sensitivity, the 
average estimation uncertainties varied across target pathways. Interestingly, similar target 
pathways (e.g. chromatin histone methylation and chromatin histone acetylation) had very 
different levels of estimation uncertainty. Within each of these target pathways, we also see 
different distributions of estimation uncertainties (​Figure 3D​). Most target pathways have a 
bi-modal distribution representing compounds that have low uncertainty in the cases of clear 
sensitivity or resistance, and high uncertainty in the cases of partial responders. Chromatin 
histone methylation drugs in particular had a much longer right tail towards higher estimation 
uncertainties that are associated with poor experimental readouts. 
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Figure 3: Relationship between AUC and uncertainties estimated from GPs across all 
experiments.​ ​(A)​ Coloured by difference between the AUC estimated by sigmoid vs GP fits. 
(B)​ Coloured by Spearman correlation between cell viability and dose concentration in the 
raw data. Poorer experiments (orange-red) result in greater uncertainty and positively 
correlated with cell viability increasing with higher dose. ​(C)​ Average uncertainty and AUC 
for experiments with uncertain fits (estimation uncertainty > 0.03) with drugs grouped by their 
target pathway. ​(D)​ Distribution of estimation uncertainty for drugs targeting chromatin 
histone methylation, chromatin histone acetylation, and mitosis. 
 
 
3. Curve fits using Gaussian Processes can help identify clinically relevant 
biomarkers 
 
The IC​50​ values are highly conconcordant for sigmoid and GP curve fittings, showing an 
average weighted Pearson correlation of 0.88 (CI [0.86; 0.90]) across individual drugs, and 
cancer types (​Figure 4A​). Strong agreement is found when true responding cell lines were 
observed in the screen (​Figure 4B​). For example, if >10% of cell lines responded within the 
concentration range, ​i.e.​ IC​50​ < maximum tested concentration, then a weighted Pearson 
correlation > 0.75 was consistently achieved for all drugs. We found positive correlations for 
all drugs, even when comparing exclusively non-responding cell lines, where all the IC​50 
values are extrapolated beyond the maximum dosage range. Drug response values are 
concordantly fitted with both methods for sensitive cell lines (​Figure 4C​, mean log10(IC​50​) in 
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µM of 0.02 CI [-0.05; 0.09]), whilst extrapolated non-responders tend to lead to more 
conservative and higher IC​50​ values fitted with GP (​Figure 4C ​, mean log10(IC​50​) in µM of 
1.10, CI [1.03; 1.18]). While the average fits from the sigmoid and GP models identify known 
clinical biomarkers, there are clearly differences for individual cell lines, especially when the 
IC​50​ value has been extrapolated beyond the dosage range, that may help identify new 
biomarkers. 
 

 
Figure 4: Comparison of sigmoid and GP curve fitting. (A) ​ Weighted Pearson correlation 
of each drug within cancer types. ​(B)​ Comparing the concordance of sigmoid and GP curve 
fitting when stratifying for percentage of cell lines with IC​50​ value lower than maximum 
concentration. ​(C)​ IC​50​ value difference between GP and sigmoid curves. ​(D)​ Drug response 
biomarker comparison based on both curve fittings. Additional biomarker examples for ​(E) 
diffuse large B-cell lymphoma (DLBCL) treated with nutlin-3a (MDM2 inhibitor) and stratified 
by ​TP53​ mutants; ​(F) ​ Low Grade Glioma (LGG) treated with daporinad (NAMPT inhibitor) 
and stratified by ​EGFR​ amplification; ​(G)​ Skin cutaneous melanoma (SKCM) treated with 
doramapimod (p38 & JNK2 inhibitor) and stratified with ​ARID2​ mutations.  
 
To highlight the overall agreement of both curve fitting methods, we systematically tested 26 
clinically established biomarkers of drug response (​Figure 4D, Supplementary Figure 
S4A-C, Supplementary Table S1 ​) using previously established association tests ​4​, 24 of 
which were significantly reproduced regardless of sigmoid or GP curve fitting (10% FDR). 
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For example, both curve fittings captured the association of BRAF inhibitors (PLX4720, 
progenitor of vemurafenib; and dabrafenib) with ​BRAF​ mutations in melanoma 
(​Supplementary Figure S5A-C ​) ​23​. Dabrafenib is a potent BRAF inhibitor and in addition we 
detected ​BRAF​ mutations as a sensitivity marker in thyroid carcinoma (​Figure 4D​, 
Supplementary Figure S5D ​). Another example are the EGFR inhibitors, afatinib and 
gefitinib, that are concordantly correlated with drug sensitivity in ​EGFR​ mutant cell lines in 
lung adenocarcinoma (​Supplementary Figure S5E-G​) ​24,25​. ​ERBB2 ​(​HER2​) amplification in 
breast cancer was also recapitulated as a biomarker of sensitivity to the dual EGFR/ERBB2 
inhibitor lapatinib (​Supplementary Figure S5H​) ​26​. Among the 26 clinical biomarkers, we 
consistently found drug resistance of ​TP53​ mutants to MDM2 inhibition with nutlin-3a in five 
different cancer types (​Figure 4E, Supplementary Figure S5I-L ​). Overall, the majority of 
expected clinical and preclinical biomarkers are reproduced, regardless of the drug response 
curve fitting method.  
 
We concordantly and significantly identified 6 novel (not yet clinically established) drug 
sensitivity biomarkers (0.1% FDR) regardless of the applied drug response curve fitting 
method. Investigating two different curve fitting algorithms, and retrieving the same 
biomarkers can be considered as a test of robustness, which in our case concordantly 
highlighted non-gold standard associations for prioritising experimental validation. For 
example, daporinad (also known as FK866 and APO866) is a small molecule inhibitor of 
nicotinamide phosphoribosyltransferase leading to inhibition of NAD+ biosynthesis. It has 
been clinically tested in melanoma (ClinicalTrials.gov Identifier: NCT00432107), Refractory 
B-CLL (NCT00435084) and Cutaneous T-cell Lymphoma (NCT00431912), whilst showing 
anti-proliferative effect in glioblastoma cell lines ​27​. Therapeutic potential when combining 
with other drugs used to treat gliomas ​28,29​ has been suggested, while we additionally and 
concordantly identify ​EGFR​ amplification as a biomarker (​Figure 4F​).  
 
Another novel and concordant identified biomarker is doramapimod response (also known 
as BIRB-796) in ​ARID2​ mutant melanoma cell lines (​Figure 4G​). Doramapimod is a small 
molecule p38 MAPK inhibitor and has been reported in different cancer types (in 
combination with other drugs) including cervical cancer, paracrine tumours and myeloma 
30,31​. ARID2 is part of chromatin remodelling complex and is involved in DNA repair in 
hepatocellular carcinoma cells ​32​ and enriched in melanomas ​33,34​. In conclusion, different 
curve fitting approaches lead to concordantly and novel identified biomarkers, thereby 
increasing the robustness in those findings, and consequently enabling to prioritise 
hypotheses.  
 
 
4. Improved biomarker detection by taking into account uncertainty in a 
Bayesian framework  
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Figure 5: Comparison of Bayesian testing and ANOVA using the GP IC ​50​ estimates.​ ​(A) 
Scatterplot of biomarker associations with IC​50​ drug response. The y-axis shows the 
negative log10 transformed posterior probability of a sign change in the effect under the 
Bayesian testing model, while the x-axis shows the negative log10 of the q-value from 
ANOVA testing. The size of the circles is proportional to the number of mutants or copy 
number variations in the given type of cancer cell line. ​(B)​ GP estimates for the mean and 
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standard deviation of the log(IC​50​) from colorectal cell lines tested with BRAF inhibitor 
dabrafenib, which showed significant association with ​BRAF​ mutation in the Bayesian test. 
(C)​ Estimated IC​50​ and its uncertainty for skin cutaneous melanoma cell lines tested with the 
immunomodulatory drug lenalidomide, which showed significant association with ​KRAS ​copy 
number alteration in the ANOVA test. Black vertical lines show the location of the maximum 
experimental drug dosage. Dose-response curve of the ​(D) ​MDST8 colorectal cancer cell 
lines with ​BRAF​ mutation treated with dabrafenib. The black dotted line represents the 
maximum concentration of the drug used to treat the cell lines. The blue area represents the 
95% confidence intervals in the dose-response fits. ​(E)​ Similar to ​(D)​ but for CHL-1 skin 
cutaneous melanoma cell lines with ​KRAS ​copy number alteration treated with lenalidomide.  
 
We observed a number of cases where the Bayesian and ANOVA tests disagree (​Figure 
5A; Supplementary Table S2 ​). For instance, ​BRAF​ mutations in colorectal cancer were 
detected as a sensitivity biomarker for dabrafenib by the Bayesian test, but less significant 
by the ANOVA test. This association  had been repeatedly reported in ​in vitro​ models ​4,5​ and 
also found in melanoma cases ​23​, whilst not in colorectal cancer patients due to feedback 
activation of ERK-signalling mediated via ​EGFR​ ​35,36​. We note in ​Figure 5B ​ that the 
Bayesian test takes advantage of the additional information that sensitive mutant cell lines 
have low estimation uncertainty, while the small number of resistant mutant cell lines have 
high estimation uncertainty, causing them to have less influence on the biomarker detection. 
On the other hand, the ANOVA model detected the ​KRAS ​copy number alteration as a 
resistance biomarker for lenalidomide (immunomodulatory drug) partial sensitivity in skin 
cutaneous melanoma (SKCM), whilst not detected by our Bayesian approach. While on the 
linear IC50 scale there is some difference between the small number of mutant cell lines and 
wildtypes, the Bayesian model considered that the estimated responses of the mutant cell 
lines had high uncertainty (​Figure 5C​). While discrepancies between Bayesian and ANOVA 
tests have to be taken with caution, they may highlight novel biological insights which would 
be missed when applying only a single model.  
 

Discussion 

The GP approach developed in this manuscript has several advantages compared to the 
traditional approach of fitting sigmoidal drug response curves. Firstly, these flexible, 
non-parametric models can be used to fit a wider variety of dose-response curves than the 
parametric sigmoidal models, e.g. curves of unexpected shapes may reflect biological 
signals of off-target effects. Secondly, the GP models provide straightforward uncertainty 
quantification of any summary statistic that can be calculated on a dose-response curve, a 
fact that we take advantage of in developing our hierarchical Bayesian model for biomarker 
testing. Thirdly, the GP model can deal with outlying measurements better than a sigmoidal 
model, due to formulating it as a mixture model with one component representing the latent 
GP process of the drug response, and the second component accounting for outliers. 

In contrast to other GP-based models in Tansey et al. (2018) ​22​, our approach is highly 
interpretable, as we do not integrate the biomarkers into the model estimation in a non-linear 
fashion, but instead proceed in a two-step approach that first fits our Gaussian process 
model to the dose-response curves, and then uses the derived summary statistics and 
uncertainty measures to perform biomarker detection. Thus we can take advantage of the 
flexibility of the Gaussian process without the complexity of fitting a non-linear neural 
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network to enable prediction from molecular measurements. 

The increased flexibility of the GP model comes at a price. Most notably, because we do not 
impose a specific functional form, there are few constraints on the behaviour of the curve 
outside the range of observed dosages. This leads to the counter-intuitive behaviour that the 
posterior mean estimate of drug response can go up when extrapolating beyond the 
maximum dosage. Note, however, that this goes along with a commensurate increase in the 
posterior variance (​Figure 5D​,​E​). In other words, the model is highlighting that extrapolation 
beyond the observed dosage range is highly uncertain, and the posterior mean estimate 
should not be relied on. It would be possible to constrain this behaviour by introducing 
artificial data points at a high concentration, or less crudely by imposing monotonicity 
constraints via virtual derivative observations ​37​. However, these methods would limit the 
flexibility of our method and lead us to underestimate the uncertainty of the posterior mean. 
An alternative approach is to constrain the Gaussian process using generalized analytic slice 
sampling ​38​, which integrates the constraints into the sampling process. While theoretically 
appealing, this approach is not compatible with the variational inference method that we 
have chosen for our work, and would lead to an unacceptable increase in computational 
burden for fitting the dose-response curves.  

We have systematically compared the application of GP to sigmoid models across a 
pan-cancer drug screen. We demonstrated that our GP estimates of the IC​50​ values and their 
subsequently predicted biomarkers using ANOVA are reliable when compared to estimates 
from the sigmoid models. In addition, the GP models provide useful information about the 
uncertainty associated with the drug response quantification. However, there is a crucial 
difference between estimation uncertainty on a single experiment and observational 
uncertainty across multiple replicates of the same experiment, which incorporates 
measurement error, technical and biological variation. We are interested in the former to 
assess the quality of the fit, and therefore the reliability of the estimated IC​50​. We 
hypothesized that estimation uncertainty characterises observational uncertainty within the 
dose concentration range tested, but extrapolating beyond the concentration range would be 
challenging. We have verified this by applying our estimation method to a replication data set 
of 26 drugs tested on 10 different cell lines, with 8 to 9 replicates for each drug-cell line 
experiment. We conclude that while estimation uncertainty is a useful indicator for 
within-concentration IC​50​ values, it cannot be used as a proxy for observation uncertainty 
when the IC​50​ is extrapolated beyond the tested concentration range. Indeed, overall drug 
responses and biomarkers from independent drug screens were consistent when comparing 
similar dose ranges ​8​. Any difference between replicate experiments may be due to batch 
effects or other unobserved factors that are not necessarily reflected in the estimation error. 
While previous studies have attempted to capture uncertainty by measuring the spread of 
the residuals from the fitted curves, such as root mean square error, they were not able to 
capture these false positive biomarkers by setting strict cutoffs ​39​.  

Our Bayesian biomarker model extends the classical ANOVA testing, since it is able to 
leverage the estimation uncertainty of the IC​50​ values. We showed that taking estimation 
uncertainty into account in the Bayesian model can lead to both inclusion and exclusion of 
putative biomarkers. For example, the Bayesian model highlighted the association between 
BRAF​ mutation in colorectal cancer and BRAF inhibitor response. Targeting BRAF signaling 
has recently been confirmed as a viable option for metastatic colorectal cancer cases with 
BRAF​ mutations ​40​. In contrast, the Bayesian model excluded a suggestion from ANOVA of 
association between ​KRAS​ mutation with lenalidomide response in melanoma. Lenalidomide 
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has thus far had no clinical success in ​KRAS​ mutant cases nor melanoma ​41,42​.  

Although we systematically tested for drug-biomarker associations, we did observe common 
behaviour for certain cell types or classes of drugs. The high uncertainty in the response 
estimates of chromatin histone methylation targeting compounds for instance may be due to 
the large number of factors contributing to epigenetic regulation of cells ​43​. It would be 
straightforward to extend the GP model to allow for sharing information across drugs or cell 
lines of similar class, by using either shared hyperparameters or a hyperprior on the 
hyperparameters. We have not implemented this approach in our work here as our aim was 
to show the advantage of fitting individual drug-response using GPs, and extending the 
method to fitting multiple curves jointly would increase the memory and computational 
requirements significantly. It is our hope to continue expanding the suite to multiple 
dimensions of dose-response and biomarker prediction needed for drug combinations, which 
is predominantly based on synergy modelling with either Loewe Additivity or Bliss 
Independence ​44​. In cases where multiple statistical models converge to concordant 
biomarkers, this increases the reproducibility of the evidence, potential for clinical 
translatability and ultimately enables precision medicine.  

 

Methods 

 
Drug screening 
 
We analysed 1,074 cancer cell lines tested with 265 compounds from a high-throughput 
screen resulting in 225,384 experiments that were previously published ​4​. Compounds were 
tested with 5 to 9 titration points, whilst either diluted with 4- or 2-fold, respectively. Cells 
were seeded on day zero, left in the microtiter plate for 24 hours to retain linear growth, and 
consecutively treated for 3 days. After those 3 days of treatment, cellTiterGlo staining is 
used to quantify ATP levels within each well. In parallel, untreated cells and blank wells were 
also measured to estimate and normalise cell viability.  
 
Compounds within the replicate study were screened across a 7 point dose response curve 
with a half-log dilution and 1000 fold range. The duration of drug treatment was 72 hours and 
cell viability was measured using CellTiter-Glo (Promega). Each cell line and compound pair 
was screened in technical triplicate, three assay plates generated simultaneously, and 
across three biological replicates with 46 and 44 days between the first to second and 
second to third replicates respectively. Cell viability measurements for these experiments 
can be found in ​Supplementary Table S3​. 
 
Preprocessing 

 
Prior to analysis, we scaled the raw observed fluorescent intensities for each drug/cell line 
combination using the observations from the blank and negative control wells as follows. Let 

 be the observed intensities for ​n​ ​dosages. Let B be the mean of ther , ..., }R = { 1 r2 rn  
intensities for the blank wells on the same plate as the experiment, and C be the mean of the 
intensities of the negative control wells (no drug added). Then the relative cell viability can 
be calculated as: 
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V  = R − B
C − B  

 
For the purpose of fitting the Gaussian process models, we additionally rescale the dosages 
to avoid having to adapt the length-scale hyperparameter to the maximum dosage. We 
rescale the log ​2​-transformed dosages as follows:d , ..., }d = { 1 d2 dn  
 

d′ = d + 1
max(d) + 1   

 
Note that IC​50​ values have been back-transformed to the log10 drug dosage scale for 
comparability with those reported in Iorio et al. (2016). 
 
Sigmoid drug response model 
 
The GDSC estimates in Iorio et al. (2016) were obtained using a sigmoid fit to the drug 
response curve, using the same pre-processing of the fluorescent intensities as described 
above. The particular sigmoid model used is the one described in Vis et al. (2016). In brief, if 
we have shape parameter  and position parameter   for cell line  and drug , then cell 
viability can be represented as a function of dosage : 
 

 
 

Note that this allows for cell line/drug specific position parameters, but shape parameters 
that only vary by cell line and are shared across drugs. The position parameter  
corresponds to the estimated IC​50​ for cell line  and drug . For full details, see Vis et al. 
(2016).  
 
Gaussian process drug response model 
 
For simplicity, we drop the subscripts  and present the model for a single drug and cell line 
combination. We model the drug response  via a two-component Beta mixture such that: 
 

 
 
where  is the reparameterization of the Beta distribution in terms of the mean  and a 
scale parameter , and  is the probit function (the inverse of the standard normal 
cumulative distribution function). Component 1 represents the drug response, which is driven 
by a latent Gaussian process , while component 2 represents outliers that deviate from the 
overall dose response trend. We set the scale parameters  and  and specify 

 to reflect our belief that outliers will mostly be erroneous measurements of 
resistance. We set  as we believe that outliers are rare. 
 
We place a standard Gaussian process prior on , such that: 
 

 
 
where  is the mean drug response, and  is a covariance function with 
hyperparameters ; in practice we choose a combined linear-Matern3/2 as a flexible option, 
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though other choices are possible. Information sharing across drugs and cell lines can be 
achieved via common hyperparameters, or shared hyperpriors in a hierarchical model; we 
choose the former for the application in this paper and empirically set the variance and 
length scale parameters for the Matern to 0.2 and 0.3 respectively, and the variance 
parameter for the linear kernel to 0.1. 
 
Inference is performed using variational learning ​45​, via the GPFlow software ​46​. We choose 
variational learning over alternatives such as Markov chain Monte Carlo due to its speed, 
which allows us to process large drug response panels in a realistic time frame. 
 
Calculation of summary statistics 
 
Summary statistics of drug response can be calculated straightforwardly by sampling from 
the posterior of the Gaussian process. Generally, let  be a function that calculates a 
summary statistic  from a dose-response curve with dosages  and responses , then we 
can obtain a posterior estimate of the mean of the summary statistic by first sampling  
dose-response curves from the posterior of the GP model, and then calculating the average: 
 

 
 
A similar procedure can be used to calculate the posterior estimate of the standard 
deviation.  
 
Although we can extract other response statistics from our curve fits, the most common are 
the IC​50​ and the area under the drug response curve (AUC). On the log ​2​ dosage scale the 
dosages are equally spaced, and hence AUC can be straightforwardly estimated by the 
mean function: 
 

  
 
where  indexes over the  dosages. For the IC​50​, estimation for a single curve is 
complicated by the fact that the curve may not cross the 50% viability threshold within the 
observed dosage range (non-crossing sample). We therefore extrapolate the GP samples to 
10 times the maximum (log ​2​) experimental dosage and specify  as: 
 

 
 
Note that this ignores samples where for all dosages, ; one could devise a 
multivariate sufficient statistic that takes this information into account, but we have found that 
in general there is a reasonable amount of correlation between  and the number 
of non-crossing samples for a given cell-line/drug combination. 
 
Comparison of GP and sigmoid IC ​50​ values 
 
Concordance between IC​50 values based on sigmoid and GP curve fitting is quantified with              
Pearson correlation for each drug. To account for tissue specificity and the varying number              
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of cell lines assessed per tissue type, we employed the average weighted Pearson             
correlation ( ) of the sigmoid-curve versus GP-curve fitted IC​50 values for the individual             
cancer types ( ). 

The weight for a given cancer type was denoted as , where is the total number                  
of cell lines treated with the drug within this tissue type. The following metric was applied, 

 

 

where  is unweighted Pearson correlation within a cancer type ( ) and a total number of 
tested cancer types is . For a given drug and tissue type combination, at least 10 cell 
lines need to be treated ( ). 

Differences in IC​50​ values for each drug response value ​j​ were consistently defined as  

 

with a total number of tested cell line and drug combinations equalling to . 

 
Bayesian biomarker testing 
 
Standard statistical approaches for testing the influence of biomarkers on drug response 
mostly rely on analysis of variance (ANOVA) testing. An ANOVA can be understood as a 
linear model of the dependent variable  (in this case, a summary measure of drug 
response such as IC​50​): 
 

 
 
where  is an indicator variable denoting the group membership of data point . In our 
application, the data points are cell lines,  indicates group membership, for example the 
mutation status of a given SNP, and  indicates any other covariates that we wish to 
correct for, such as tissue type. The parameter  captures the global mean of the drug 
response, while  captures the effect of mutation status on the drug response,  is the 
effect of covariates, and  is independent Gaussian noise. 
 
This model, while useful, fails to account for the fact that our Gaussian process model 
provides estimates  of the uncertainty (or standard error) associated with the mean IC​50 
estimates . In order to make use of these uncertainty estimates, we take an idea from 
Bayesian meta-analysis, and integrate them via a hierarchical model: 
 

 
 

 
where  is the mean drug response estimate for cell line , and  is the variance across 
cell lines (the variance of  in the ANOVA example).​ ​Note that this model can be reduced 
to: 
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We further specify a sparse Gaussian prior  on the effect size parameter to 
discourage false positives and reflect our prior belief that most mutations are not associated 
with drug response. We also place a sparse exponential prior  to regularize 
the variance parameter. Finally,  is a Gaussian prior on the global mean with 
standard error . Early exploratory results showed that using the 
estimates of  directly placed too much weight on experiments with very low estimation 
uncertainty, leading to unrealistic posterior estimates of the effect size . To attenuate this, 
we used a transformed estimate , where the effect of parameter  was explored over the 
range [0,1], and empirically set to 0.25 for the results reported in this paper. 
 
Inference in this model is performed using Hamiltonian Monte Carlo via the Stan software 
package Carpenter et al. (2017). We report the posterior mode of  as well as the posterior 
probability of observing  (if the posterior mode is positive) or  (if the posterior 
mode is negative). 
 

Supplements 
Supplementary figures 

1. Supplementary Figure S1: Investigation of batch effects in the replicate data. 
2. Supplementary Figure S2: High estimation uncertainty independent of concentration 

range. 
3. Supplementary Figure S3: AUC estimation uncertainty 
4. Supplementary Figure S4: Comparison of sigmoid and GP curve fitting. 
5. Supplementary Figure S5: Drug response biomarker comparison based on both          

curve fittings.  
 

Supplementary tables 
1. Supplementary Table S1 - Summary of pharmacogenomic associations based on 

ANOVA 
2. Supplementary Table S2 - Pharmacogenomic associations based on Bayesian 

testing of GP curve fits 
3. Supplementary Table S3 - Raw and curve fitted replicate dataset 

 

Supplementary source code 

All code for curve fitting and Bayesian biomarker detection can be found at 
https://github.com/FrankD/GPDrugModels​. 

 

20 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.05.01.072983doi: bioRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=g_i%20%5Csim%20%5Cmathcal%7BN%7D(%5Calpha%20%2B%20%5Cbeta%20z_i%20%2B%20%5Cgamma%20x_i%2C%20%5Csigma%5E2_i%20%2B%20%5Csigma%5E%7B*2%7D)%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%20%5Csim%20%5Cmathcal%7BN%7D(0%2C0.1)%0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma%5E%7B*2%7D%20%5Csim%20Exp(10)%0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%20%5Csim%20%5Cmathcal%7BN%7D(0%2C%5Ctau%5E2)%0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau%20%5Csim%20Gamma(1%2C1)%0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma_i%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma_i%5Ec%0
https://www.codecogs.com/eqnedit.php?latex=c%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%20%3E%200%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%20%3C%200%0
https://github.com/FrankD/GPDrugModels
https://doi.org/10.1101/2020.05.01.072983
http://creativecommons.org/licenses/by/4.0/


Acknowledgements  
The M.J.G. laboratory is supported by the Wellcome Trust (206194). D.W. is supported by              

the NIHR Sheffield Biomedical Research Centre, Rosetrees Trust (ref: A2501), and the            

Academy of Medical Sciences Springboard (ref: SBF004/1052). We thank Benjamin Sidders           

and Oliver Stegle for feedback on the methodology.  

Competing interests 

Jonathan Dry is an employee of AstraZeneca. 

 

 

References 
1. Cook, D. ​et al.​ Lessons learned from the fate of AstraZeneca’s drug pipeline: a 

five-dimensional framework. ​Nat. Rev. Drug Discov.​ ​13​, 419–431 (2014). 

2. Arrowsmith, J. & Miller, P. Phase II and Phase III attrition rates 2011–2012. ​Nat. Rev. 

Drug Discov.​ ​12​, 569–569 (2013). 

3. Garnett, M. J. ​et al. ​ Systematic identification of genomic markers of drug sensitivity in 

cancer cells. ​Nature​ ​483​, 570–575 (2012). 

4. Iorio, F. ​et al. ​ A Landscape of Pharmacogenomic Interactions in Cancer. ​Cell​ ​166​, 

740–754 (2016). 

5. Rees, M. G. ​et al. ​ Correlating chemical sensitivity and basal gene expression reveals 

mechanism of action. ​Nat. Chem. Biol.​ ​12​, 109–116 (2016). 

6. Seashore-Ludlow, B. ​et al.​ Harnessing Connectivity in a Large-Scale Small-Molecule 

Sensitivity Dataset. ​Cancer Discov.​ ​5 ​, 1210–1223 (2015). 

7. Fallahi-Sichani, M., Honarnejad, S., Heiser, L. M., Gray, J. W. & Sorger, P. K. Metrics 

other than potency reveal systematic variation in responses to cancer drugs. ​Nat. Chem. 

Biol.​ ​9 ​, 708–714 (2013). 

21 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.05.01.072983doi: bioRxiv preprint 

http://paperpile.com/b/cwxmnQ/RlwQ
http://paperpile.com/b/cwxmnQ/RlwQ
http://paperpile.com/b/cwxmnQ/RlwQ
http://paperpile.com/b/cwxmnQ/RlwQ
http://paperpile.com/b/cwxmnQ/RlwQ
http://paperpile.com/b/cwxmnQ/RlwQ
http://paperpile.com/b/cwxmnQ/RlwQ
http://paperpile.com/b/cwxmnQ/RlwQ
http://paperpile.com/b/cwxmnQ/6V5H
http://paperpile.com/b/cwxmnQ/6V5H
http://paperpile.com/b/cwxmnQ/6V5H
http://paperpile.com/b/cwxmnQ/6V5H
http://paperpile.com/b/cwxmnQ/6V5H
http://paperpile.com/b/cwxmnQ/6V5H
http://paperpile.com/b/cwxmnQ/2wpz
http://paperpile.com/b/cwxmnQ/2wpz
http://paperpile.com/b/cwxmnQ/2wpz
http://paperpile.com/b/cwxmnQ/2wpz
http://paperpile.com/b/cwxmnQ/2wpz
http://paperpile.com/b/cwxmnQ/2wpz
http://paperpile.com/b/cwxmnQ/2wpz
http://paperpile.com/b/cwxmnQ/2wpz
http://paperpile.com/b/cwxmnQ/aZBA
http://paperpile.com/b/cwxmnQ/aZBA
http://paperpile.com/b/cwxmnQ/aZBA
http://paperpile.com/b/cwxmnQ/aZBA
http://paperpile.com/b/cwxmnQ/aZBA
http://paperpile.com/b/cwxmnQ/aZBA
http://paperpile.com/b/cwxmnQ/aZBA
http://paperpile.com/b/cwxmnQ/aZBA
http://paperpile.com/b/cwxmnQ/x2DH
http://paperpile.com/b/cwxmnQ/x2DH
http://paperpile.com/b/cwxmnQ/x2DH
http://paperpile.com/b/cwxmnQ/x2DH
http://paperpile.com/b/cwxmnQ/x2DH
http://paperpile.com/b/cwxmnQ/x2DH
http://paperpile.com/b/cwxmnQ/x2DH
http://paperpile.com/b/cwxmnQ/x2DH
http://paperpile.com/b/cwxmnQ/mPiq
http://paperpile.com/b/cwxmnQ/mPiq
http://paperpile.com/b/cwxmnQ/mPiq
http://paperpile.com/b/cwxmnQ/mPiq
http://paperpile.com/b/cwxmnQ/mPiq
http://paperpile.com/b/cwxmnQ/mPiq
http://paperpile.com/b/cwxmnQ/mPiq
http://paperpile.com/b/cwxmnQ/mPiq
http://paperpile.com/b/cwxmnQ/6N8Y
http://paperpile.com/b/cwxmnQ/6N8Y
http://paperpile.com/b/cwxmnQ/6N8Y
http://paperpile.com/b/cwxmnQ/6N8Y
http://paperpile.com/b/cwxmnQ/6N8Y
http://paperpile.com/b/cwxmnQ/6N8Y
http://paperpile.com/b/cwxmnQ/6N8Y
https://doi.org/10.1101/2020.05.01.072983
http://creativecommons.org/licenses/by/4.0/


8. Haverty, P. M. ​et al. ​ Reproducible pharmacogenomic profiling of cancer cell line panels. 

Nature​ ​533​, 333–337 (2016). 

9. Haibe-Kains, B. ​et al.​ Inconsistency in large pharmacogenomic studies. ​Nature​ ​504​, 

389–393 (2013). 

10. Costello, J. C. ​et al.​ A community effort to assess and improve drug sensitivity prediction 

algorithms. ​Nat. Biotechnol.​ ​32​, 1202–1212 (2014). 

11. Menden, M. P. ​et al.​ Community assessment to advance computational prediction of 

cancer drug combinations in a pharmacogenomic screen. ​Nature Communications​ vol. 

10 (2019). 

12. Silverbush, D. ​et al.​ Cell-Specific Computational Modeling of the PIM Pathway in Acute 

Myeloid Leukemia. ​Cancer Res.​ ​77​, 827–838 (2017). 

13. Dawson, D. A. ​et al.​ Evaluation of an asymmetry parameter for curve-fitting in 

single-chemical and mixture toxicity assessment. ​Toxicology​ ​292​, 156–161 (2012). 

14. Wang, Y., Jadhav, A., Southal, N., Huang, R. & Nguyen, D.-T. A grid algorithm for high 

throughput fitting of dose-response curve data. ​Curr. Chem. Genomics​ ​4 ​, 57–66 (2010). 

15. Di Veroli, G. Y. ​et al. ​ Combenefit: an interactive platform for the analysis and 

visualization of drug combinations. ​Bioinformatics​ ​32​, 2866–2868 (2016). 

16. Vis, D. J. ​et al. ​ Multilevel models improve precision and speed of IC50 estimates. 

Pharmacogenomics​ ​17​, 691–700 (2016). 

17. Lopez-Lopera, A. F. & Alvarez, M. A. Switched Latent Force Models for 

Reverse-Engineering Transcriptional Regulation in Gene Expression Data. ​IEEE/ACM 

Trans. Comput. Biol. Bioinform.​ ​16​, 322–335 (2019). 

18. Boukouvalas, A., Hensman, J. & Rattray, M. BGP: identifying gene-specific branching 

dynamics from single-cell data with a branching Gaussian process. ​Genome Biol.​ ​19​, 65 

(2018). 

19. Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning. 

22 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.05.01.072983doi: bioRxiv preprint 

http://paperpile.com/b/cwxmnQ/6AFr
http://paperpile.com/b/cwxmnQ/6AFr
http://paperpile.com/b/cwxmnQ/6AFr
http://paperpile.com/b/cwxmnQ/6AFr
http://paperpile.com/b/cwxmnQ/6AFr
http://paperpile.com/b/cwxmnQ/6AFr
http://paperpile.com/b/cwxmnQ/6AFr
http://paperpile.com/b/cwxmnQ/iL69
http://paperpile.com/b/cwxmnQ/iL69
http://paperpile.com/b/cwxmnQ/iL69
http://paperpile.com/b/cwxmnQ/iL69
http://paperpile.com/b/cwxmnQ/iL69
http://paperpile.com/b/cwxmnQ/iL69
http://paperpile.com/b/cwxmnQ/iL69
http://paperpile.com/b/cwxmnQ/iL69
http://paperpile.com/b/cwxmnQ/L574
http://paperpile.com/b/cwxmnQ/L574
http://paperpile.com/b/cwxmnQ/L574
http://paperpile.com/b/cwxmnQ/L574
http://paperpile.com/b/cwxmnQ/L574
http://paperpile.com/b/cwxmnQ/L574
http://paperpile.com/b/cwxmnQ/L574
http://paperpile.com/b/cwxmnQ/L574
http://paperpile.com/b/cwxmnQ/B4j4
http://paperpile.com/b/cwxmnQ/B4j4
http://paperpile.com/b/cwxmnQ/B4j4
http://paperpile.com/b/cwxmnQ/B4j4
http://paperpile.com/b/cwxmnQ/B4j4
http://paperpile.com/b/cwxmnQ/B4j4
http://paperpile.com/b/cwxmnQ/B4j4
http://paperpile.com/b/cwxmnQ/36SZ
http://paperpile.com/b/cwxmnQ/36SZ
http://paperpile.com/b/cwxmnQ/36SZ
http://paperpile.com/b/cwxmnQ/36SZ
http://paperpile.com/b/cwxmnQ/36SZ
http://paperpile.com/b/cwxmnQ/36SZ
http://paperpile.com/b/cwxmnQ/36SZ
http://paperpile.com/b/cwxmnQ/36SZ
http://paperpile.com/b/cwxmnQ/VRSN
http://paperpile.com/b/cwxmnQ/VRSN
http://paperpile.com/b/cwxmnQ/VRSN
http://paperpile.com/b/cwxmnQ/VRSN
http://paperpile.com/b/cwxmnQ/VRSN
http://paperpile.com/b/cwxmnQ/VRSN
http://paperpile.com/b/cwxmnQ/VRSN
http://paperpile.com/b/cwxmnQ/VRSN
http://paperpile.com/b/cwxmnQ/pB3j
http://paperpile.com/b/cwxmnQ/pB3j
http://paperpile.com/b/cwxmnQ/pB3j
http://paperpile.com/b/cwxmnQ/pB3j
http://paperpile.com/b/cwxmnQ/pB3j
http://paperpile.com/b/cwxmnQ/pB3j
http://paperpile.com/b/cwxmnQ/Wp7r
http://paperpile.com/b/cwxmnQ/Wp7r
http://paperpile.com/b/cwxmnQ/Wp7r
http://paperpile.com/b/cwxmnQ/Wp7r
http://paperpile.com/b/cwxmnQ/Wp7r
http://paperpile.com/b/cwxmnQ/Wp7r
http://paperpile.com/b/cwxmnQ/Wp7r
http://paperpile.com/b/cwxmnQ/Wp7r
http://paperpile.com/b/cwxmnQ/bXPs
http://paperpile.com/b/cwxmnQ/bXPs
http://paperpile.com/b/cwxmnQ/bXPs
http://paperpile.com/b/cwxmnQ/bXPs
http://paperpile.com/b/cwxmnQ/bXPs
http://paperpile.com/b/cwxmnQ/bXPs
http://paperpile.com/b/cwxmnQ/bXPs
http://paperpile.com/b/cwxmnQ/1G7l
http://paperpile.com/b/cwxmnQ/1G7l
http://paperpile.com/b/cwxmnQ/1G7l
http://paperpile.com/b/cwxmnQ/1G7l
http://paperpile.com/b/cwxmnQ/1G7l
http://paperpile.com/b/cwxmnQ/1G7l
http://paperpile.com/b/cwxmnQ/1G7l
http://paperpile.com/b/cwxmnQ/CGTY
http://paperpile.com/b/cwxmnQ/CGTY
http://paperpile.com/b/cwxmnQ/CGTY
http://paperpile.com/b/cwxmnQ/CGTY
http://paperpile.com/b/cwxmnQ/CGTY
http://paperpile.com/b/cwxmnQ/CGTY
http://paperpile.com/b/cwxmnQ/CGTY
http://paperpile.com/b/cwxmnQ/BKNi
https://doi.org/10.1101/2020.05.01.072983
http://creativecommons.org/licenses/by/4.0/


(2005) doi:​10.7551/mitpress/3206.001.0001 ​. 

20. Shi, J. Q. & Choi, T. Gaussian Process Regression Analysis for Functional Data. (2011) 

doi:​10.1201/b11038 ​. 

21. Tian, L. ​et al.​ Gaussian process emulators for quantifying uncertainty in CO2 spreading 

predictions in heterogeneous media. ​Computers & Geosciences​ vol. 105 113–119 

(2017). 

22. Tansey, W. ​et al. ​ Dose-response modeling in high-throughput cancer drug screenings: 

A case study with recommendations for practitioners. (2018). 

23. Chapman, P. B. ​et al.​ Improved Survival with Vemurafenib in Melanoma with BRAF 

V600E Mutation. ​New England Journal of Medicine​ vol. 364 2507–2516 (2011). 

24. Yang, J. C.-H. ​et al. ​ LUX-Lung 3: A randomized, open-label, phase III study of afatinib 

versus pemetrexed and cisplatin as first-line treatment for patients with advanced 

adenocarcinoma of the lung harboring EGFR-activating mutations. ​Journal of Clinical 

Oncology​ vol. 30 LBA7500–LBA7500 (2012). 

25. Tamura, K. & Fukuoka, M. Gefitinib in non-small cell lung cancer. ​Expert Opin. 

Pharmacother.​ ​6 ​, 985–993 (2005). 

26. Konecny, G. E. ​et al. ​ Activity of the Dual Kinase Inhibitor Lapatinib (GW572016) against 

HER-2-Overexpressing and Trastuzumab-Treated Breast Cancer Cells. ​Cancer Res. 

66​, 1630–1639 (2006). 

27. Zhang, L.-Y. ​et al.​ Anti-proliferation effect of APO866 on C6 glioblastoma cells by 

inhibiting nicotinamide phosphoribosyltransferase. ​Eur. J. Pharmacol.​ ​674​, 163–170 

(2012). 

28. Lucena-Cacace, A., Umeda, M., Navas, L. E. & Carnero, A. NAMPT as a 

Dedifferentiation-Inducer Gene: NAD+ as Core Axis for Glioma Cancer Stem-Like Cells 

Maintenance. ​Front. Oncol.​ ​9 ​, (2019). 

29. Lucena-Cacace, A., Otero-Albiol, D., Jiménez-García, M. P., Peinado-Serrano, J. & 

23 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.05.01.072983doi: bioRxiv preprint 

http://paperpile.com/b/cwxmnQ/BKNi
http://dx.doi.org/10.7551/mitpress/3206.001.0001
http://paperpile.com/b/cwxmnQ/BKNi
http://paperpile.com/b/cwxmnQ/wmaR
http://paperpile.com/b/cwxmnQ/wmaR
http://dx.doi.org/10.1201/b11038
http://paperpile.com/b/cwxmnQ/wmaR
http://paperpile.com/b/cwxmnQ/ctKt
http://paperpile.com/b/cwxmnQ/ctKt
http://paperpile.com/b/cwxmnQ/ctKt
http://paperpile.com/b/cwxmnQ/ctKt
http://paperpile.com/b/cwxmnQ/ctKt
http://paperpile.com/b/cwxmnQ/ctKt
http://paperpile.com/b/cwxmnQ/ctKt
http://paperpile.com/b/cwxmnQ/xiD3
http://paperpile.com/b/cwxmnQ/xiD3
http://paperpile.com/b/cwxmnQ/xiD3
http://paperpile.com/b/cwxmnQ/xiD3
http://paperpile.com/b/cwxmnQ/fVBZ
http://paperpile.com/b/cwxmnQ/fVBZ
http://paperpile.com/b/cwxmnQ/fVBZ
http://paperpile.com/b/cwxmnQ/fVBZ
http://paperpile.com/b/cwxmnQ/fVBZ
http://paperpile.com/b/cwxmnQ/fVBZ
http://paperpile.com/b/cwxmnQ/1d7k
http://paperpile.com/b/cwxmnQ/1d7k
http://paperpile.com/b/cwxmnQ/1d7k
http://paperpile.com/b/cwxmnQ/1d7k
http://paperpile.com/b/cwxmnQ/1d7k
http://paperpile.com/b/cwxmnQ/1d7k
http://paperpile.com/b/cwxmnQ/1d7k
http://paperpile.com/b/cwxmnQ/1d7k
http://paperpile.com/b/cwxmnQ/wAoF
http://paperpile.com/b/cwxmnQ/wAoF
http://paperpile.com/b/cwxmnQ/wAoF
http://paperpile.com/b/cwxmnQ/wAoF
http://paperpile.com/b/cwxmnQ/wAoF
http://paperpile.com/b/cwxmnQ/wAoF
http://paperpile.com/b/cwxmnQ/UZak
http://paperpile.com/b/cwxmnQ/UZak
http://paperpile.com/b/cwxmnQ/UZak
http://paperpile.com/b/cwxmnQ/UZak
http://paperpile.com/b/cwxmnQ/UZak
http://paperpile.com/b/cwxmnQ/UZak
http://paperpile.com/b/cwxmnQ/UZak
http://paperpile.com/b/cwxmnQ/UZak
http://paperpile.com/b/cwxmnQ/ueRb
http://paperpile.com/b/cwxmnQ/ueRb
http://paperpile.com/b/cwxmnQ/ueRb
http://paperpile.com/b/cwxmnQ/ueRb
http://paperpile.com/b/cwxmnQ/ueRb
http://paperpile.com/b/cwxmnQ/ueRb
http://paperpile.com/b/cwxmnQ/ueRb
http://paperpile.com/b/cwxmnQ/ueRb
http://paperpile.com/b/cwxmnQ/ueRb
http://paperpile.com/b/cwxmnQ/mwtq
http://paperpile.com/b/cwxmnQ/mwtq
http://paperpile.com/b/cwxmnQ/mwtq
http://paperpile.com/b/cwxmnQ/mwtq
http://paperpile.com/b/cwxmnQ/mwtq
http://paperpile.com/b/cwxmnQ/mwtq
http://paperpile.com/b/cwxmnQ/mwtq
http://paperpile.com/b/cwxmnQ/fZYs
https://doi.org/10.1101/2020.05.01.072983
http://creativecommons.org/licenses/by/4.0/


Carnero, A. NAMPT overexpression induces cancer stemness and defines a novel 

tumor signature for glioma prognosis. ​Oncotarget​ ​8 ​, 99514 (2017). 

30. Jin, X. ​et al. ​ The p38 MAPK inhibitor BIRB796 enhances the antitumor effects of VX680 

in cervical cancer. ​Cancer Biol. Ther.​ ​17​, 566–576 (2016). 

31. Yasui, H. ​et al.​ BIRB 796 enhances cytotoxicity triggered by bortezomib, heat shock 

protein (Hsp) 90 inhibitor, and dexamethasone via inhibition of p38 mitogen-activated 

protein kinase/Hsp27 pathway in multiple myeloma cell lines and inhibits paracrine 

tumour growth. ​Br. J. Haematol.​ ​136​, 414–423 (2007). 

32. Oba, A. ​et al. ​ ARID2 modulates DNA damage response in human hepatocellular 

carcinoma cells. ​J. Hepatol.​ ​66​, 942–951 (2017). 

33. Hodis, E. ​et al.​ A Landscape of Driver Mutations in Melanoma. ​Cell​ ​150​, 251 (2012). 

34. Ding, L. ​et al.​ Clonal Architectures and Driver Mutations in Metastatic Melanomas. ​PLoS 

One​ ​9 ​, e111153 (2014). 

35. Prahallad, A. ​et al.​ Unresponsiveness of colon cancer to BRAF(V600E) inhibition 

through feedback activation of EGFR. ​Nature​ ​483​, 100–103 (2012). 

36. Corcoran, R. B. ​et al.​ Combined BRAF, EGFR, and MEK Inhibition in Patients with 

BRAFV600E-Mutant Colorectal Cancer. ​Cancer Discovery​ vol. 8 428–443 (2018). 

37. Riihimäki, J. & Vehtari, A. Gaussian processes with monotonicity information. in 

Proceedings of the thirteenth international conference on artificial intelligence and 

statistics​ 645–652 (jmlr.org, 2010). 

38. Tansey, W., Tosh, C. & Blei, D. M. Relational Dose-Response Modeling for Cancer 

Drug Studies. (2019). 

39. Cokelaer, T. ​et al.​ GDSCTools for mining pharmacogenomic interactions in cancer. 

Bioinformatics​ ​34​, 1226–1228 (2018). 

40. Kopetz, S. ​et al. ​ Encorafenib, Binimetinib, and Cetuximab in V600E-Mutated Colorectal 

Cancer. ​N. Engl. J. Med.​ ​381​, 1632–1643 (2019). 

24 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.05.01.072983doi: bioRxiv preprint 

http://paperpile.com/b/cwxmnQ/fZYs
http://paperpile.com/b/cwxmnQ/fZYs
http://paperpile.com/b/cwxmnQ/fZYs
http://paperpile.com/b/cwxmnQ/fZYs
http://paperpile.com/b/cwxmnQ/fZYs
http://paperpile.com/b/cwxmnQ/fZYs
http://paperpile.com/b/cwxmnQ/KmCK
http://paperpile.com/b/cwxmnQ/KmCK
http://paperpile.com/b/cwxmnQ/KmCK
http://paperpile.com/b/cwxmnQ/KmCK
http://paperpile.com/b/cwxmnQ/KmCK
http://paperpile.com/b/cwxmnQ/KmCK
http://paperpile.com/b/cwxmnQ/KmCK
http://paperpile.com/b/cwxmnQ/KmCK
http://paperpile.com/b/cwxmnQ/WoEb
http://paperpile.com/b/cwxmnQ/WoEb
http://paperpile.com/b/cwxmnQ/WoEb
http://paperpile.com/b/cwxmnQ/WoEb
http://paperpile.com/b/cwxmnQ/WoEb
http://paperpile.com/b/cwxmnQ/WoEb
http://paperpile.com/b/cwxmnQ/WoEb
http://paperpile.com/b/cwxmnQ/WoEb
http://paperpile.com/b/cwxmnQ/WoEb
http://paperpile.com/b/cwxmnQ/WoEb
http://paperpile.com/b/cwxmnQ/9GDs
http://paperpile.com/b/cwxmnQ/9GDs
http://paperpile.com/b/cwxmnQ/9GDs
http://paperpile.com/b/cwxmnQ/9GDs
http://paperpile.com/b/cwxmnQ/9GDs
http://paperpile.com/b/cwxmnQ/9GDs
http://paperpile.com/b/cwxmnQ/9GDs
http://paperpile.com/b/cwxmnQ/9GDs
http://paperpile.com/b/cwxmnQ/fI1m
http://paperpile.com/b/cwxmnQ/fI1m
http://paperpile.com/b/cwxmnQ/fI1m
http://paperpile.com/b/cwxmnQ/fI1m
http://paperpile.com/b/cwxmnQ/fI1m
http://paperpile.com/b/cwxmnQ/fI1m
http://paperpile.com/b/cwxmnQ/fI1m
http://paperpile.com/b/cwxmnQ/jmSi
http://paperpile.com/b/cwxmnQ/jmSi
http://paperpile.com/b/cwxmnQ/jmSi
http://paperpile.com/b/cwxmnQ/jmSi
http://paperpile.com/b/cwxmnQ/jmSi
http://paperpile.com/b/cwxmnQ/jmSi
http://paperpile.com/b/cwxmnQ/jmSi
http://paperpile.com/b/cwxmnQ/jmSi
http://paperpile.com/b/cwxmnQ/ufZe
http://paperpile.com/b/cwxmnQ/ufZe
http://paperpile.com/b/cwxmnQ/ufZe
http://paperpile.com/b/cwxmnQ/ufZe
http://paperpile.com/b/cwxmnQ/ufZe
http://paperpile.com/b/cwxmnQ/ufZe
http://paperpile.com/b/cwxmnQ/ufZe
http://paperpile.com/b/cwxmnQ/ufZe
http://paperpile.com/b/cwxmnQ/yVDp
http://paperpile.com/b/cwxmnQ/yVDp
http://paperpile.com/b/cwxmnQ/yVDp
http://paperpile.com/b/cwxmnQ/yVDp
http://paperpile.com/b/cwxmnQ/yVDp
http://paperpile.com/b/cwxmnQ/yVDp
http://paperpile.com/b/cwxmnQ/0JfE
http://paperpile.com/b/cwxmnQ/0JfE
http://paperpile.com/b/cwxmnQ/0JfE
http://paperpile.com/b/cwxmnQ/0JfE
http://paperpile.com/b/cwxmnQ/a0FM
http://paperpile.com/b/cwxmnQ/a0FM
http://paperpile.com/b/cwxmnQ/Vn3b
http://paperpile.com/b/cwxmnQ/Vn3b
http://paperpile.com/b/cwxmnQ/Vn3b
http://paperpile.com/b/cwxmnQ/Vn3b
http://paperpile.com/b/cwxmnQ/Vn3b
http://paperpile.com/b/cwxmnQ/Vn3b
http://paperpile.com/b/cwxmnQ/Vn3b
http://paperpile.com/b/cwxmnQ/OM3A
http://paperpile.com/b/cwxmnQ/OM3A
http://paperpile.com/b/cwxmnQ/OM3A
http://paperpile.com/b/cwxmnQ/OM3A
http://paperpile.com/b/cwxmnQ/OM3A
http://paperpile.com/b/cwxmnQ/OM3A
http://paperpile.com/b/cwxmnQ/OM3A
http://paperpile.com/b/cwxmnQ/OM3A
https://doi.org/10.1101/2020.05.01.072983
http://creativecommons.org/licenses/by/4.0/


41. Gandhi, A. K. ​et al. ​ Immunomodulatory Effects in a Phase II Study of Lenalidomide 

Combined with Cetuximab in Refractory KRAS-Mutant Metastatic Colorectal Cancer 

Patients. ​PLoS One​ ​8 ​, (2013). 

42. Glaspy, J. ​et al. ​ Results of a multicenter, randomized, double-blind, dose-evaluating 

phase 2/3 study of lenalidomide in the treatment of metastatic malignant melanoma. 

Cancer​ ​115​, 5228–5236 (2009). 

43. Michalak, E. M., Burr, M. L., Bannister, A. J. & Dawson, M. A. The roles of DNA, RNA 

and histone methylation in ageing and cancer. ​Nat. Rev. Mol. Cell Biol.​ ​20​, 573–589 

(2019). 

44. Vlot, A. H. C., Aniceto, N., Menden, M. P., Ulrich-Merzenich, G. & Bender, A. Applying 

synergy metrics to combination screening data: agreements, disagreements and pitfalls. 

Drug Discov. Today​ ​24​, 2286–2298 (2019). 

45. Hensman, J., Fusi, N. & Lawrence, N. D. Gaussian processes for Big data. in 

Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence 

282–290 (AUAI Press, 2013). 

46. Matthews, A. G. de G. ​et al. ​ GPflow: A Gaussian Process Library using TensorFlow. 

Journal of Machine Learning Research​ ​18​, 1–6 (2017). 

 

25 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.05.01.072983doi: bioRxiv preprint 

http://paperpile.com/b/cwxmnQ/pX51
http://paperpile.com/b/cwxmnQ/pX51
http://paperpile.com/b/cwxmnQ/pX51
http://paperpile.com/b/cwxmnQ/pX51
http://paperpile.com/b/cwxmnQ/pX51
http://paperpile.com/b/cwxmnQ/pX51
http://paperpile.com/b/cwxmnQ/pX51
http://paperpile.com/b/cwxmnQ/pX51
http://paperpile.com/b/cwxmnQ/pX51
http://paperpile.com/b/cwxmnQ/9xzi
http://paperpile.com/b/cwxmnQ/9xzi
http://paperpile.com/b/cwxmnQ/9xzi
http://paperpile.com/b/cwxmnQ/9xzi
http://paperpile.com/b/cwxmnQ/9xzi
http://paperpile.com/b/cwxmnQ/9xzi
http://paperpile.com/b/cwxmnQ/9xzi
http://paperpile.com/b/cwxmnQ/9xzi
http://paperpile.com/b/cwxmnQ/S4MW
http://paperpile.com/b/cwxmnQ/S4MW
http://paperpile.com/b/cwxmnQ/S4MW
http://paperpile.com/b/cwxmnQ/S4MW
http://paperpile.com/b/cwxmnQ/S4MW
http://paperpile.com/b/cwxmnQ/S4MW
http://paperpile.com/b/cwxmnQ/S4MW
http://paperpile.com/b/cwxmnQ/S6lX
http://paperpile.com/b/cwxmnQ/S6lX
http://paperpile.com/b/cwxmnQ/S6lX
http://paperpile.com/b/cwxmnQ/S6lX
http://paperpile.com/b/cwxmnQ/S6lX
http://paperpile.com/b/cwxmnQ/S6lX
http://paperpile.com/b/cwxmnQ/vGPH
http://paperpile.com/b/cwxmnQ/vGPH
http://paperpile.com/b/cwxmnQ/vGPH
http://paperpile.com/b/cwxmnQ/vGPH
http://paperpile.com/b/cwxmnQ/hbXT
http://paperpile.com/b/cwxmnQ/hbXT
http://paperpile.com/b/cwxmnQ/hbXT
http://paperpile.com/b/cwxmnQ/hbXT
http://paperpile.com/b/cwxmnQ/hbXT
http://paperpile.com/b/cwxmnQ/hbXT
http://paperpile.com/b/cwxmnQ/hbXT
https://doi.org/10.1101/2020.05.01.072983
http://creativecommons.org/licenses/by/4.0/

