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Abstract

Drug high-throughput screenings across large molecular-characterised cancer cell line
panels enable the discovery of biomarkers, and thereby, cancer precision medicine. The
ability to experimentally generate drug response data has accelerated. However, this data is
typically quantified by a summary statistic from a best-fit dose response curve, whilst
neglecting the uncertainty of the curve fit and the potential variability in the raw readouts.
Here, we model the experimental variance using Gaussian Processes, and subsequently,
leverage this uncertainty for identifying associated biomarkers with a new statistical
framework based on Bayesian testing. Applied to the Genomics of Drug Sensitivity in
Cancer, in vitro screening data on 265 compounds across 1,074 cell lines, our uncertainty
models identified 24 clinically established drug response biomarkers, and in addition
provided evidence for 6 novel biomarkers. We validated our uncertainty estimates with an
additional drug screen of 26 drugs, 10 cell lines with 8 to 9 replicates. Our method is
applicable to drug high-throughput screens without replicates, and enables robust biomarker
discovery for new cancer therapies.
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Introduction

The failure rate for new drugs entering clinical trials is in excess of 90%, with more than a
quarter of drugs failing due to lack of efficacy 2. The rapid development of technologies for
deep molecular characterisation of clinical samples holds the promise to uncover molecular
biomarkers that stratify patients towards more efficacious drugs, a cornerstone of precision
medicine. In oncology, we can identify potential biomarkers of drug response in
high-throughput screens (HTS) of patient-derived cell lines; these biomarkers need then to
be validated in patients.

Assessment of cell line drug response typically involves treatment with multiple
concentrations of the compound, followed by measurement of the amount of viable cells
after a fixed period of time for each dose, and derivation of a dose-response curve. The drug
response is commonly then summarised by measurements taken from this curve, most often
the concentration required to reduce cell viability by half i.e. IC,,, or the area under the curve
i.e. AUC. Currently the two largest in vitro drug screening studies, the Genomics of Drug
Sensitivity in Cancer (GDSC) ** and the Cancer Therapeutics Response Portal (CTRP) °
have shown that some clinically actionable biomarkers of drug response can be
concordantly discovered *¢, and that different properties and mechanisms of drug response
are best captured by different metrics dependent on the dose-response curve .

Most HTS efforts focus on increasing throughput *® and thereby often neglect experimental
replicates, which renders it impossible to correct for experimental noise, resulting in
uncertainty for the estimated drug response metrics (e.g. IC,, value). Extrapolating IC,,
values beyond the tested drug concentration range is particularly challenging and often
unaccounted for in quality control metrics ®°. Most published studies using machine learning
algorithms or mechanistic models for predicting drug response and biomarkers assume that
the measured drug responses are precise '>'2. If this assumption is not met and there is
high uncertainty in the measured drug response values, the utility of these methods for
enhancing drug development may be severely limited '>'2. Experimental noise can be
reduced by adding experimental replicates, however, this either reduces the throughput of
the screen or increases the cost. Most current models for curve fitting and describing
dose-response data have primarily assumed that cell viability has a sigmoidal relationship to
the logarithm of the dose concentrations of the drug ">'*. While some models are more
flexible by allowing many inflection points in the dose-response curve ¢, their main output
is a single drug response value that does not fully capture the uncertainty in the
measurements ’.

Gaussian processes (GP) are a flexible, probabilistic modeling technique that has been
successfully used to measure uncertainty in noisy gene expression datasets ' and has been
incorporated into machine learning prediction of cell fates '®. This technique has been shown
to cope well with regression tasks on dependent data and high dimensional covariates "%,
Instead of fitting a single function to the data, GPs allow for a flexible range of beliefs about
the function underlying the data ?'. In the case of cell line drug responses, this can be
conceptualised as fitting a range of curves that have equivalently strong fit to the data. We
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can sample from the inferred posterior distribution over functions, i.e. the variance between
these curves, to generate uncertainty estimates of quantities of interest, in our case,
properties of the dose-response such as IC,

Gaussian processes have recently been used in conjunction with neural networks to model
dose-response curves as a function of molecular markers #. The main objective in this work
was to predict drug response using the molecular measurements, and the non-linear nature
of the prediction model makes interpretation for the purpose of biomarker detection
challenging. By contrast, we aimed to develop a model that could provide interpretable
summary statistics with uncertainty estimates that can be flexibly used to improve biomarker
detection.

In this study, we therefore introduce a new GP regression approach for describing
dose-response relationships in cancer cell lines that quantifies the uncertainty of the model
fitted to measured responses for each single experiment, and we show that estimates of
IC50 values within the tested concentration range correlates with confidence intervals
obtained experimentally from replicate experiments. Subsequently, we use our new
dose-response model to identify genetic sensitivity and resistance biomarkers in standard
statistical tests (e.g. ANOVA). We demonstrate how the flexibility of the GP dose-response
modeling can be further exploited in a Bayesian framework to identify novel biomarkers. We
also describe the variation in the level of drug response uncertainty across cancer types and
drug classes. By accounting for the uncertainty in dose-response experiments, detection of
clinically-actionable biomarkers can be enhanced.

Results

1. A probabilistic framework for measuring dose-response and predicting
biomarkers

We analysed in vitro screening data on 265 compounds across 1,074 cell lines *. In those
experiments, we quantified the amount of cytotoxicity after four days of compound
treatments at each dose compared to controls (Figure 1A). The relationship between the
dose and response (decrease in cell viability) was first described using a dose-response
curve derived with a sigmoidal function (Figures 1B and 1C). This assumes that the number
of viable cells decreases at an exponential rate, then slows down and eventually plateaus at
a lower limit. Since it was costly to test all possible doses, the sigmoid function was used to
extrapolate the response at concentrations that had not been tested and to estimate overall
measures of response, such as IC,, or AUC values, for downstream analysis. However,
considering that each experiment tested only between five and nine dosage concentrations
per experiment in GDSC, and a maximum of 16 in CTRP, the tightness of fit of the
dose-response curve to the data points and therefore the level of uncertainty about the
inferred response may vary. We utilised the probabilistic nature of GP models to quantify the
uncertainty in the dose-response experiments as an alternate approach (Figure 1D). We
sampled from the fitted GP and used the posterior distribution to quantify the uncertainty in
curve fits for each experiment. We again generated summary statistics, 1C., and AUC
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values, by taking the average of the GP samples and also quantified the level of uncertainty
for these statistics (Figure 1E). The GP model has the advantage that it models outliers at
higher doses as one component of a two-component Beta mixture in the model (see
Methods). Such outliers are typically the result of an experimental failure, and cannot be
modeled using simple Gaussian noise without over-estimating the noise parameter.

After fitting the dose-response data using the sigmoid and GP models, we tested various
biomarker hypotheses by examining the association between the overall response statistics
from the models with genetic variants detected in the cell lines using a frequentist and a
Bayesian approach (Figures 1F-H). For one biomarker hypothesis, as an example, we
examined copy number alterations and point mutations in breast cancer cell lines in relation
to the measured drug response of afatinib in those cells. The GP and sigmoid estimated IC,
from cell lines treated with afatinib were significantly different in cases with and without
ERBBZ2 amplification (ANOVA g-value = 4.12e-9; Figure 11). The GP models provided an
added benefit of providing uncertainty estimates that were incorporated into a Bayesian
hierarchical model to further verify the association between ERBB2 amplification and afatinib
sensitivity (posterior probability = 0.001; Figure1J).
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Figure 1: Workflow for fitting of Gaussian Process models to dose-response curves
and estimating their uncertainty. (A) Large-scale drug screens test cell lines with different
drugs and at different doses are used to obtain dose-response data. (B) Typically, for each
drug tested in a cell line, the sigmoid model is fit to the drug-response data and (C) the
overall measures of response (IC,,, AUC, etc.) are extracted. (D) For each drug tested in a
cell line, we fit a GP model to the dose-response data. The GP allows us to sample from a
distribution of possible dose-response curves, obtaining a measure of uncertainty. (E) From
these curves, we can extract overall measures of response, such as IC,, and importantly,
their 95% confidence intervals. (F) Mutation markers for each cell line can be determined
based on presence/absence of single nucleotide polymorphisms (SNPs) in key genes. Both
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the drug response estimates and the mutation markers are used to compute (G) the
F-statistic for ANOVA, and (H) Bayesian test for biomarker association. The drug response
summary measure Yi for cell-line ¢ is modelled via a cell-line specific mean /i and standard

error 0. The mean is defined as a linear effect  of the biomarker status z: and a further
effect ¥ from any remaining covariates i, such as tissue type. The parameter ¢* is the
standard deviation of /. (I) Boxplots illustrate the differences in the estimated mean IC,, of
ERBBZ2 amplified and non-amplified breast cancer cell lines treated with afatinib. An ANOVA
test was used to test this difference in means but did not consider uncertainty in each IC,,
estimate. (J) We estimated posterior distributions of gene association using the Bayesian
model, i.e. the effect of a genetic mutation on the IC,, measurement of drug response.
Distributions centered on zero indicate no effect while distributions on either side of zero
indicate positive or negative effects of mutations on drug response.

2. Gaussian Processes provide estimates of dose-response uncertainty for
single experiments

Both GP and sigmoid curve fitting produced comparable IC., and AUC estimates. Precursor
sigmoid curve fitting methods based on Markov Chain Monte Carlo simulations enabled error
estimates in IC,, values 3, however, this was neglected in the state-of-the-art sigmoid curve
fitting '® due to missing propagation to biomarker identification. Here, we introduce the added
benefit of sampling from the GP posterior, which provides the models in-build uncertainty
obtained for these IC,, estimates. This is important for high-throughput drug screening
experiments where there is often a high number of drugs and samples tested but very few
replicate experiments. By applying the GP model to each experiment, we estimated the
standard deviation for each IC,, or AUC value based only on data points from that single
experiment. These single sample standard deviations were compared to the standard
deviations measured from here provided replicate experiments, i.e. the same drug tested
multiple times on the same cell line and at the same concentration. We applied our GP
estimation method to data from replicate experiments of 26 drugs on 10 cell lines, which
contained 260 test conditions and 8 to 9 replicates for each condition. We expected that an
estimate of the uncertainty of the summary statistic, such as the standard deviation of the
IC,, posterior samples, would be correlated with the dispersion between replicates. Here, we
refer to the variability between (mean) estimates for replicates as the observation
uncertainty, and the variability in the estimate for a single replicate as the estimation
uncertainty.

We compared observation and estimation uncertainty across replicate experiments of all 260
conditions (Figure 2A). We found two trends in the relationship between observation and
estimation uncertainty. First, for experiments where the estimated IC, lies within the
concentration range tested, the estimation uncertainty is positively correlated (Pearson
correlation = 0.84, CI [0.76, 0.89]) with the observation uncertainty. Second, for experiments
where the estimated IC, lies beyond the maximum tested concentration, we observed a
negative correlation (Pearson correlation = -0.39, CI [-0.51, -0.25]). We note that the latter
experiments require extrapolation to estimate the IC,, beyond the concentration range,
which increases the estimation uncertainty, but does not generally affect the observational
uncertainty. However, we observed that the estimation uncertainty from our GPs for
dabrafenib (BRAF inhibitor) tested in two independent studies on the same cell lines were
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comparable both within and beyond the concentration range (Figure 2B).

Since the replicate experiments were conducted in batches over a period of several months,
we verified that the observed trends held regardless of batches (Supplementary Figure
S1). Additionally, we examined the relationship between estimation uncertainty and
observation uncertainty in a number of example experiments (Figures 2C-E). In the case of
olaparib tested on PC-14, the uncertainty for the IC,, within each replicate experiment was
high, but this level of uncertainty was consistent across all replicates even beyond the max
concentration (Figures 2C and 2F). In other replicate experiments, both estimation and
observation uncertainty were low (Figures 2D and 2G), or varied depending on whether the
batch reported mostly IC,, values beyond the concentration range. Talazoparib tested in
colorectal cancer line HCT-15 is a case where observation uncertainty was high, even
though estimation uncertainty was low, and experiments in different batches showed
different estimated IC,,s from very different dose-response curves (Figures 2E and 2H).
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Figure 2: Comparison of GP estimates of uncertainty to replicate drug screening
experiments. (A) Comparison between observational uncertainty (standard deviation over
replicates of log10(IC,,) mean estimates) and estimation uncertainty (average over
replicates of log10(IC,,) standard deviation) from each replication experiment. The colour of
the points indicates whether the log10(IC,,) mean estimates were within or outside the
maximum concentration range for each assay. (B) Mean IC_,and the estimation uncertainty
from the GPs for a BRAF inhibitor (dabrafenib) tested in each cell line in two independent
studies (GDSC and CTD2). Estimation uncertainty (error bars and grey shading) were larger
beyond the max concentration in both GDSC (dashed line) and CTD2 (grey line). The point
estimates of the IC,;s from the GPs (black dots) were also comparable to the published IC,s
(red dots). (C-E) Three sets of replicate experiments, representing different amounts of
estimation and observation uncertainty. Each density represents the distribution of IC,,
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values from the Gaussian process samples from each replicate experiment. The colours
represent different experimental batches. Narrow distributions demonstrate low estimation
uncertainty and overlapping distributions demonstrate low observation uncertainty. The thick
black line represents the density obtained by pooling samples from all replicates and the
dashed line shows the maximal dosage tested. GP curve fits corresponding to the three sets
of replicate experiments showing IC,, estimates with (F) high uncertainty, (G) low
uncertainty, and (H) mix of uncertainties depending on whether estimates are made within or
beyond the max concentration. The blue areas represent the 95% confidence interval in the
curve fits and extrapolated GP curves (light grey lines) are displayed up to five times the
maximum concentration.

In order to examine the diversity of uncertainty estimates across experiments further, we
described the relationship between AUC value of GP fits with their corresponding estimation
uncertainty (Figure 3). We decided to use AUC here due to the greater uncertainty of
estimating IC,,s beyond the maximum dose concentration. Since AUCs were computed
within the tested concentration range, the estimation uncertainty for AUC was not
substantially higher for cases where IC,;s were estimated within compared to beyond the
maximum concentration (Supplementary Figure S2A). The difference between the AUC
estimates from the GP compared to the published GDSC sigmoid curve fits was greatest for
experiments showing a partial response (AUC between 0.4 and 0.9), whilst at the same time
these experiments also had the highest estimation uncertainty (Figure 3A). Our visual
examination of the raw dose-response data from those experiments revealed evidence of
poor quality readouts, for instance, where cell viability increases with increasing drug dose
(Supplementary Figure S2B). We were able to quantify the quality of these readouts by
estimating the Spearman correlation coefficient based on the raw cell viability counts and the
dose concentrations (Figure 3B). A negative Spearman correlation indicates that cell
viability decreases as dosage increases (as expected) while a positive Spearman correlation
indicates the opposite. The experiments with high estimation uncertainty from our GPs were
also the experiments with high Spearman correlation pointing to poor quality.

Next, we investigated whether there were any attributes of experiments that would
correspond to high estimation uncertainty and poor quality results. Labelling of experiments
based on cell culture conditions, dose and cancer type revealed no obvious associations
with estimation uncertainty (Supplementary Figure S3A-E). However, there was a large
spread in the uncertainty estimates for AUC when we grouped the experiments into target
pathways based on the primary targets of the tested drugs (Figure 3C; Supplementary
Figure S3F). While most drugs had similar average AUC point estimates between 0.6 and
0.8, suggesting they all had a spread of experiments showing resistance and sensitivity, the
average estimation uncertainties varied across target pathways. Interestingly, similar target
pathways (e.g. chromatin histone methylation and chromatin histone acetylation) had very
different levels of estimation uncertainty. Within each of these target pathways, we also see
different distributions of estimation uncertainties (Figure 3D). Most target pathways have a
bi-modal distribution representing compounds that have low uncertainty in the cases of clear
sensitivity or resistance, and high uncertainty in the cases of partial responders. Chromatin
histone methylation drugs in particular had a much longer right tail towards higher estimation
uncertainties that are associated with poor experimental readouts.
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Figure 3: Relationship between AUC and uncertainties estimated from GPs across all
experiments. (A) Coloured by difference between the AUC estimated by sigmoid vs GP fits.
(B) Coloured by Spearman correlation between cell viability and dose concentration in the
raw data. Poorer experiments (orange-red) result in greater uncertainty and positively
correlated with cell viability increasing with higher dose. (C) Average uncertainty and AUC
for experiments with uncertain fits (estimation uncertainty > 0.03) with drugs grouped by their
target pathway. (D) Distribution of estimation uncertainty for drugs targeting chromatin
histone methylation, chromatin histone acetylation, and mitosis.

3. Curve fits using Gaussian Processes can help identify clinically relevant
biomarkers

The IC, values are highly conconcordant for sigmoid and GP curve fittings, showing an
average weighted Pearson correlation of 0.88 (Cl [0.86; 0.90]) across individual drugs, and
cancer types (Figure 4A). Strong agreement is found when true responding cell lines were
observed in the screen (Figure 4B). For example, if >10% of cell lines responded within the
concentration range, i.e. IC,, < maximum tested concentration, then a weighted Pearson
correlation > 0.75 was consistently achieved for all drugs. We found positive correlations for
all drugs, even when comparing exclusively non-responding cell lines, where all the IC,,
values are extrapolated beyond the maximum dosage range. Drug response values are
concordantly fitted with both methods for sensitive cell lines (Figure 4C, mean log10(IC) in
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UM of 0.02 CI [-0.05; 0.09]), whilst extrapolated non-responders tend to lead to more
conservative and higher IC,, values fitted with GP (Figure 4C, mean log10(IC,) in uM of
1.10, CI [1.03; 1.18]). While the average fits from the sigmoid and GP models identify known
clinical biomarkers, there are clearly differences for individual cell lines, especially when the
IC,, value has been extrapolated beyond the dosage range, that may help identify new
biomarkers.
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Figure 4: Comparison of sigmoid and GP curve fitting. (A) Weighted Pearson correlation
of each drug within cancer types. (B) Comparing the concordance of sigmoid and GP curve
fitting when stratifying for percentage of cell lines with IC,, value lower than maximum
concentration. (C) IC,, value difference between GP and sigmoid curves. (D) Drug response
biomarker comparison based on both curve fittings. Additional biomarker examples for (E)
diffuse large B-cell ymphoma (DLBCL) treated with nutlin-3a (MDM2 inhibitor) and stratified
by TP53 mutants; (F) Low Grade Glioma (LGG) treated with daporinad (NAMPT inhibitor)
and stratified by EGFR amplification; (G) Skin cutaneous melanoma (SKCM) treated with
doramapimod (p38 & JNK2 inhibitor) and stratified with ARID2 mutations.

To highlight the overall agreement of both curve fitting methods, we systematically tested 26
clinically established biomarkers of drug response (Figure 4D, Supplementary Figure
S4A-C, Supplementary Table S1) using previously established association tests *, 24 of
which were significantly reproduced regardless of sigmoid or GP curve fitting (10% FDR).
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For example, both curve fittings captured the association of BRAF inhibitors (PLX4720,
progenitor of vemurafenib; and dabrafenib) with BRAF mutations in melanoma
(Supplementary Figure S5A-C) 2. Dabrafenib is a potent BRAF inhibitor and in addition we
detected BRAF mutations as a sensitivity marker in thyroid carcinoma (Figure 4D,
Supplementary Figure S5D). Another example are the EGFR inhibitors, afatinib and
gefitinib, that are concordantly correlated with drug sensitivity in EGFR mutant cell lines in
lung adenocarcinoma (Supplementary Figure S5E-G) %%, ERBB2(HERZ2) amplification in
breast cancer was also recapitulated as a biomarker of sensitivity to the dual EGFR/ERBB2
inhibitor lapatinib (Supplementary Figure S5H) . Among the 26 clinical biomarkers, we
consistently found drug resistance of TP53 mutants to MDM2 inhibition with nutlin-3a in five
different cancer types (Figure 4E, Supplementary Figure S5I-L). Overall, the majority of
expected clinical and preclinical biomarkers are reproduced, regardless of the drug response
curve fitting method.

We concordantly and significantly identified 6 novel (not yet clinically established) drug
sensitivity biomarkers (0.1% FDR) regardless of the applied drug response curve fitting
method. Investigating two different curve fitting algorithms, and retrieving the same
biomarkers can be considered as a test of robustness, which in our case concordantly
highlighted non-gold standard associations for prioritising experimental validation. For
example, daporinad (also known as FK866 and APO866) is a small molecule inhibitor of
nicotinamide phosphoribosyltransferase leading to inhibition of NAD+ biosynthesis. It has
been clinically tested in melanoma (ClinicalTrials.gov Identifier: NCT00432107), Refractory
B-CLL (NCT00435084) and Cutaneous T-cell Lymphoma (NCT00431912), whilst showing
anti-proliferative effect in glioblastoma cell lines #. Therapeutic potential when combining
with other drugs used to treat gliomas ??° has been suggested, while we additionally and
concordantly identify EGFR amplification as a biomarker (Figure 4F).

Another novel and concordant identified biomarker is doramapimod response (also known
as BIRB-796) in ARID2 mutant melanoma cell lines (Figure 4G). Doramapimod is a small
molecule p38 MAPK inhibitor and has been reported in different cancer types (in
combination with other drugs) including cervical cancer, paracrine tumours and myeloma
%031 ARID2 is part of chromatin remodelling complex and is involved in DNA repair in
hepatocellular carcinoma cells * and enriched in melanomas ***. In conclusion, different
curve fitting approaches lead to concordantly and novel identified biomarkers, thereby
increasing the robustness in those findings, and consequently enabling to prioritise
hypotheses.

4. Improved biomarker detection by taking into account uncertainty in a
Bayesian framework
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Figure 5: Comparison of Bayesian testing and ANOVA using the GP IC,, estimates. (A)
Scatterplot of biomarker associations with IC,, drug response. The y-axis shows the
negative log10 transformed posterior probability of a sign change in the effect under the
Bayesian testing model, while the x-axis shows the negative log10 of the g-value from
ANOVA testing. The size of the circles is proportional to the number of mutants or copy
number variations in the given type of cancer cell line. (B) GP estimates for the mean and

13


https://doi.org/10.1101/2020.05.01.072983
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.01.072983; this version posted June 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

standard deviation of the log(IC,;) from colorectal cell lines tested with BRAF inhibitor
dabrafenib, which showed significant association with BRAF mutation in the Bayesian test.
(C) Estimated IC,, and its uncertainty for skin cutaneous melanoma cell lines tested with the
immunomodulatory drug lenalidomide, which showed significant association with KRAS copy
number alteration in the ANOVA test. Black vertical lines show the location of the maximum
experimental drug dosage. Dose-response curve of the (D) MDST8 colorectal cancer cell
lines with BRAF mutation treated with dabrafenib. The black dotted line represents the
maximum concentration of the drug used to treat the cell lines. The blue area represents the
95% confidence intervals in the dose-response fits. (E) Similar to (D) but for CHL-1 skin
cutaneous melanoma cell lines with KRAS copy number alteration treated with lenalidomide.

We observed a number of cases where the Bayesian and ANOVA tests disagree (Figure
5A; Supplementary Table S2). For instance, BRAF mutations in colorectal cancer were
detected as a sensitivity biomarker for dabrafenib by the Bayesian test, but less significant
by the ANOVA test. This association had been repeatedly reported in in vitro models *° and
also found in melanoma cases %, whilst not in colorectal cancer patients due to feedback
activation of ERK-signalling mediated via EGFR ***¢. We note in Figure 5B that the
Bayesian test takes advantage of the additional information that sensitive mutant cell lines
have low estimation uncertainty, while the small number of resistant mutant cell lines have
high estimation uncertainty, causing them to have less influence on the biomarker detection.
On the other hand, the ANOVA model detected the KRAS copy number alteration as a
resistance biomarker for lenalidomide (immunomodulatory drug) partial sensitivity in skin
cutaneous melanoma (SKCM), whilst not detected by our Bayesian approach. While on the
linear IC50 scale there is some difference between the small number of mutant cell lines and
wildtypes, the Bayesian model considered that the estimated responses of the mutant cell
lines had high uncertainty (Figure 5C). While discrepancies between Bayesian and ANOVA
tests have to be taken with caution, they may highlight novel biological insights which would
be missed when applying only a single model.

Discussion

The GP approach developed in this manuscript has several advantages compared to the
traditional approach of fitting sigmoidal drug response curves. Firstly, these flexible,
non-parametric models can be used to fit a wider variety of dose-response curves than the
parametric sigmoidal models, e.g. curves of unexpected shapes may reflect biological
signals of off-target effects. Secondly, the GP models provide straightforward uncertainty
quantification of any summary statistic that can be calculated on a dose-response curve, a
fact that we take advantage of in developing our hierarchical Bayesian model for biomarker
testing. Thirdly, the GP model can deal with outlying measurements better than a sigmoidal
model, due to formulating it as a mixture model with one component representing the latent
GP process of the drug response, and the second component accounting for outliers.

In contrast to other GP-based models in Tansey et al. (2018) %, our approach is highly
interpretable, as we do not integrate the biomarkers into the model estimation in a non-linear
fashion, but instead proceed in a two-step approach that first fits our Gaussian process
model to the dose-response curves, and then uses the derived summary statistics and
uncertainty measures to perform biomarker detection. Thus we can take advantage of the
flexibility of the Gaussian process without the complexity of fitting a non-linear neural
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network to enable prediction from molecular measurements.

The increased flexibility of the GP model comes at a price. Most notably, because we do not
impose a specific functional form, there are few constraints on the behaviour of the curve
outside the range of observed dosages. This leads to the counter-intuitive behaviour that the
posterior mean estimate of drug response can go up when extrapolating beyond the
maximum dosage. Note, however, that this goes along with a commensurate increase in the
posterior variance (Figure 5D,E). In other words, the model is highlighting that extrapolation
beyond the observed dosage range is highly uncertain, and the posterior mean estimate
should not be relied on. It would be possible to constrain this behaviour by introducing
artificial data points at a high concentration, or less crudely by imposing monotonicity
constraints via virtual derivative observations *. However, these methods would limit the
flexibility of our method and lead us to underestimate the uncertainty of the posterior mean.
An alternative approach is to constrain the Gaussian process using generalized analytic slice
sampling *, which integrates the constraints into the sampling process. While theoretically
appealing, this approach is not compatible with the variational inference method that we
have chosen for our work, and would lead to an unacceptable increase in computational
burden for fitting the dose-response curves.

We have systematically compared the application of GP to sigmoid models across a
pan-cancer drug screen. We demonstrated that our GP estimates of the IC,, values and their
subsequently predicted biomarkers using ANOVA are reliable when compared to estimates
from the sigmoid models. In addition, the GP models provide useful information about the
uncertainty associated with the drug response quantification. However, there is a crucial
difference between estimation uncertainty on a single experiment and observational
uncertainty across multiple replicates of the same experiment, which incorporates
measurement error, technical and biological variation. We are interested in the former to
assess the quality of the fit, and therefore the reliability of the estimated IC,,. We
hypothesized that estimation uncertainty characterises observational uncertainty within the
dose concentration range tested, but extrapolating beyond the concentration range would be
challenging. We have verified this by applying our estimation method to a replication data set
of 26 drugs tested on 10 different cell lines, with 8 to 9 replicates for each drug-cell line
experiment. We conclude that while estimation uncertainty is a useful indicator for
within-concentration IC, values, it cannot be used as a proxy for observation uncertainty
when the IC,, is extrapolated beyond the tested concentration range. Indeed, overall drug
responses and biomarkers from independent drug screens were consistent when comparing
similar dose ranges ®. Any difference between replicate experiments may be due to batch
effects or other unobserved factors that are not necessarily reflected in the estimation error.
While previous studies have attempted to capture uncertainty by measuring the spread of
the residuals from the fitted curves, such as root mean square error, they were not able to
capture these false positive biomarkers by setting strict cutoffs *.

Our Bayesian biomarker model extends the classical ANOVA testing, since it is able to
leverage the estimation uncertainty of the IC,, values. We showed that taking estimation
uncertainty into account in the Bayesian model can lead to both inclusion and exclusion of
putative biomarkers. For example, the Bayesian model highlighted the association between
BRAF mutation in colorectal cancer and BRAF inhibitor response. Targeting BRAF signaling
has recently been confirmed as a viable option for metastatic colorectal cancer cases with
BRAF mutations “°. In contrast, the Bayesian model excluded a suggestion from ANOVA of
association between KRAS mutation with lenalidomide response in melanoma. Lenalidomide
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has thus far had no clinical success in KRAS mutant cases nor melanoma #'42.

Although we systematically tested for drug-biomarker associations, we did observe common
behaviour for certain cell types or classes of drugs. The high uncertainty in the response
estimates of chromatin histone methylation targeting compounds for instance may be due to
the large number of factors contributing to epigenetic regulation of cells **. It would be
straightforward to extend the GP model to allow for sharing information across drugs or cell
lines of similar class, by using either shared hyperparameters or a hyperprior on the
hyperparameters. We have not implemented this approach in our work here as our aim was
to show the advantage of fitting individual drug-response using GPs, and extending the
method to fitting multiple curves jointly would increase the memory and computational
requirements significantly. It is our hope to continue expanding the suite to multiple
dimensions of dose-response and biomarker prediction needed for drug combinations, which
is predominantly based on synergy modelling with either Loewe Additivity or Bliss
Independence *. In cases where multiple statistical models converge to concordant
biomarkers, this increases the reproducibility of the evidence, potential for clinical
translatability and ultimately enables precision medicine.

Methods

Drug screening

We analysed 1,074 cancer cell lines tested with 265 compounds from a high-throughput
screen resulting in 225,384 experiments that were previously published *. Compounds were
tested with 5 to 9 titration points, whilst either diluted with 4- or 2-fold, respectively. Cells
were seeded on day zero, left in the microtiter plate for 24 hours to retain linear growth, and
consecutively treated for 3 days. After those 3 days of treatment, cellTiterGlo staining is
used to quantify ATP levels within each well. In parallel, untreated cells and blank wells were
also measured to estimate and normalise cell viability.

Compounds within the replicate study were screened across a 7 point dose response curve
with a half-log dilution and 1000 fold range. The duration of drug treatment was 72 hours and
cell viability was measured using CellTiter-Glo (Promega). Each cell line and compound pair
was screened in technical triplicate, three assay plates generated simultaneously, and
across three biological replicates with 46 and 44 days between the first to second and
second to third replicates respectively. Cell viability measurements for these experiments
can be found in Supplementary Table S3.

Preprocessing

Prior to analysis, we scaled the raw observed fluorescent intensities for each drug/cell line
combination using the observations from the blank and negative control wells as follows. Let
R={r.,r,...,r,} bethe observed intensities for n dosages. Let B be the mean of the
intensities for the blank wells on the same plate as the experiment, and C be the mean of the
intensities of the negative control wells (no drug added). Then the relative cell viability V' can
be calculated as:
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For the purpose of fitting the Gaussian process models, we additionally rescale the dosages
to avoid having to adapt the length-scale hyperparameter to the maximum dosage. We
rescale the log,-transformed dosages d = {d,,d,...,d,} as follows:

r— d+1
d= max(d) + 1

Note that IC,, values have been back-transformed to the log10 drug dosage scale for
comparability with those reported in lorio et al. (2016).

Sigmoid drug response model

The GDSC estimates in lorio et al. (2016) were obtained using a sigmoid fit to the drug
response curve, using the same pre-processing of the fluorescent intensities as described
above. The particular sigmoid model used is the one described in Vis et al. (2016). In brief, if
we have shape parameter s: and position parameter Pij for cell line 7 and drug J, then cell
viability can be represented as a function of dosage d:

1
1+ exp (d;#)

f(da Si, ng) =

Note that this allows for cell line/drug specific position parameters, but shape parameters
that only vary by cell line and are shared across drugs. The position parameter Pij
corresponds to the estimated IC,, for cell line i and drug J. For full details, see Vis et al.
(2016).

Gaussian process drug response model

For simplicity, we drop the subscripts %J and present the model for a single drug and cell line
combination. We model the drug response Y via a two-component Beta mixture such that:

P(y|f7 S1, 12, Sg,’/T) = ﬂ-Betaﬂ(y|(I)_1(f)’ 81) + (1 - W)Beta“(ymg, 82)

where Beta" is the reparameterization of the Beta distribution in terms of the mean / and a
scale parameter s, and ® ! is the probit function (the inverse of the standard normal
cumulative distribution function). Component 1 represents the drug response, which is driven
by a latent Gaussian process f, while component 2 represents outliers that deviate from the
overall dose response trend. We set the scale parameters s1 = 50 and s2 = 11 and specify
p2 = 0.9 to reflect our belief that outliers will mostly be erroneous measurements of
resistance. We set m = 0.999 as we believe that outliers are rare.

We place a standard Gaussian process prior on f, such that:

P(f|d, ¥) = MVN (flm, Cy(d, d'))

where m is the mean drug response, and Cv(d, d') is a covariance function with
hyperparameters V; in practice we choose a combined linear-Matern3/2 as a flexible option,
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though other choices are possible. Information sharing across drugs and cell lines can be
achieved via common hyperparameters, or shared hyperpriors in a hierarchical model; we
choose the former for the application in this paper and empirically set the variance and
length scale parameters for the Matern to 0.2 and 0.3 respectively, and the variance
parameter for the linear kernel to 0.1.

Inference is performed using variational learning *°, via the GPFlow software “°. We choose
variational learning over alternatives such as Markov chain Monte Carlo due to its speed,
which allows us to process large drug response panels in a realistic time frame.

Calculation of summary statistics

Summary statistics of drug response can be calculated straightforwardly by sampling from

the posterior of the Gaussian process. Generally, let 9(d,¥) be a function that calculates a
summary statistic 7 from a dose-response curve with dosages d and responses Y, then we
can obtain a posterior estimate of the mean of the summary statistic by first sampling N

dose-response curves from the posterior of the GP model, and then calculating the average:

1 N
= _: : d

A similar procedure can be used to calculate the posterior estimate of the standard
deviation.

Although we can extract other response statistics from our curve fits, the most common are
the IC,, and the area under the drug response curve (AUC). On the log, dosage scale the
dosages are equally spaced, and hence AUC can be straightforwardly estimated by the
mean function:

1 n
dy)==> ym
gAUC( ,Y) n Y

where m indexes over the n dosages. For the IC,,, estimation for a single curve is
complicated by the fact that the curve may not cross the 50% viability threshold within the
observed dosage range (non-crossing sample). We therefore extrapolate the GP samples to

10 times the maximum (log,) experimental dosage and specify grcso(d, y) as:

groso(d,y) = d,,, such that y,,, = 0.5 if Jy,,, < 0.5

Note that this ignores samples where for all dosages, ¥m = 0.5: one could devise a
multivariate sufficient statistic that takes this information into account, but we have found that

in general there is a reasonable amount of correlation between grcs50(d, Y) and the number
of non-crossing samples for a given cell-line/drug combination.

Comparison of GP and sigmoid IC,, values

Concordance between IC,, values based on sigmoid and GP curve fitting is quantified with
Pearson correlation for each drug. To account for tissue specificity and the varying number
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of cell lines assessed per tissue type, we employed the average weighted Pearson
correlation (Pw) of the sigmoid-curve versus GP-curve fitted IC,, values for the individual
cancer types (7).

The weight for a given cancer type 7 was denoted as V7 — 1, where 7 is the total number
of cell lines treated with the drug within this tissue type. The following metric was applied,

N
> V/n; — Larctanh(p;)
pw = tanh | =2 ~
Z VI, — 1
i=1

where Pi is unweighted Pearson correlation within a cancer type (7 ) and a total number of
tested cancer types is N = 30. For a given drug and tissue type combination, at least 10 cell
lines need to be treated (7: = 10).

Differences in IC,, values for each drug response value j were consistently defined as

dfj = ]C50j7GP - IO50j,sigmoid

with a total number of tested cell line and drug combinations equalling to Nj = 171,937

Bayesian biomarker testing

Standard statistical approaches for testing the influence of biomarkers on drug response
mostly rely on analysis of variance (ANOVA) testing. An ANOVA can be understood as a
linear model of the dependent variable 9i (in this case, a summary measure of drug
response such as IC):

gi = a+ Pz +yxi + €

where i is an indicator variable denoting the group membership of data point :. In our
application, the data points are cell lines, Z: indicates group membership, for example the
mutation status of a given SNP, and Z: indicates any other covariates that we wish to
correct for, such as tissue type. The parameter a captures the global mean of the drug

response, while 5] captures the effect of mutation status on the drug response, 7 is the
effect of covariates, and ¢: is independent Gaussian noise.

This model, while useful, fails to account for the fact that our Gaussian process model
provides estimates o of the uncertainty (or standard error) associated with the mean IC,,
estimates Yi. In order to make use of these uncertainty estimates, we take an idea from
Bayesian meta-analysis, and integrate them via a hierarchical model:

gi ~ N(:ula 072)
pi ~ N (o + Bz + vy, 0*%)
where Hi is the mean drug response estimate for cell line 7, and o** is the variance across

cell lines (the variance of € in the ANOVA example). Note that this model can be reduced
to:
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gi ~ N(a+ Bz + yxi, 0f + 0*?)

We further specify a sparse Gaussian prior 3 ~ N(0,0.1) on the effect size parameter to
discourage false positives and reflect our prior belief that most mutations are not associated

with drug response. We also place a sparse exponential prior 0*? ~ Exp(10) to regularize
the variance parameter. Finally, & ™~ N(0,7%) is a Gaussian prior on the global mean with

standard error T ~ Gamma(l,1) Early exploratory results showed that using the
estimates of 7 directly placed too much weight on experiments with very low estimation

uncertainty, leading to unrealistic posterior estimates of the effect size B. To attenuate this,

we used a transformed estimate 7 , where the effect of parameter ¢ was explored over the
range [0,1], and empirically set to 0.25 for the results reported in this paper.

Inference in this model is performed using Hamiltonian Monte Carlo via the Stan software
package Carpenter et al. (2017). We report the posterior mode of 8 as well as the posterior

probability of observing p>0 (if the posterior mode is positive) or <0 (if the posterior
mode is negative).

Supplements

Supplementary figures

1. Supplementary Figure S1: Investigation of batch effects in the replicate data.
Supplementary Figure S2: High estimation uncertainty independent of concentration
range.

3. Supplementary Figure S3: AUC estimation uncertainty
4. Supplementary Figure S4: Comparison of sigmoid and GP curve fitting.
5. Supplementary Figure S5: Drug response biomarker comparison based on both

curve fittings.

Supplementary tables

1. Supplementary Table S1 - Summary of pharmacogenomic associations based on
ANOVA

2. Supplementary Table S2 - Pharmacogenomic associations based on Bayesian
testing of GP curve fits
3. Supplementary Table S3 - Raw and curve fitted replicate dataset

Supplementary source code

All code for curve fitting and Bayesian biomarker detection can be found at
https://github.com/FrankD/GPDrugModels.
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