

1 A shift to shorter cuticular hydrocarbons accompanies sexual isolation among *Drosophila americana*
2 group populations

3

4 Jeremy S. Davis^{1, 2*}, Matthew J. Pearcy¹, Joanne Y. Yew³, Leonie C. Moyle¹

5 ¹Dept. of Biology, Indiana University, Bloomington, IN, USA 47405

6 ²Dept. of Biology, University of Kentucky, Lexington, KY, USA 40508

7 ³Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822

8

9 *Corresponding author: J.Davis@uky.edu

10

11 RRH: Sexual isolation and chemical signal evolution

12

13 **Abstract**

14 Because sensory signals often evolve rapidly, they could be instrumental in the emergence of
15 reproductive isolation between species. However, pinpointing their specific contribution to isolating
16 barriers, and the mechanisms underlying their divergence, remains challenging. Here we demonstrate
17 sexual isolation due to divergence in chemical signals between two populations of *Drosophila americana*
18 (SC and NE) and one population of *D. novamexicana*, and dissect its underlying phenotypic and genetic
19 mechanisms. Mating trials revealed strong sexual isolation between *Drosophila novamexicana* males
20 and SC *Drosophila americana* females, as well as more moderate bi-directional isolation between *D.*
21 *americana* populations. Mating behavior data indicates SC *D. americana* males have the highest
22 courtship efficiency and, unlike males of the other populations, are accepted by females of all species.
23 Quantification of cuticular hydrocarbon (CHC) profiles—chemosensory signals that are used for species
24 recognition and mate finding in *Drosophila*—shows that the SC *D. americana* population differs from the
25 other populations primarily on the basis of compound carbon chain-length. Moreover, manipulation of
26 male CHC composition via heterospecific perfuming—specifically perfuming *D. novamexicana* males
27 with SC *D. americana* males—abolishes their sexual isolation from these *D. americana* females. Of a set
28 of candidates, a single gene—elongase CG17821—had patterns of gene expression consistent with a
29 role in CHC differences between species. Sequence comparisons indicate *D. novamexicana* and our
30 Nebraska (NE) *D. americana* population share a derived CG17821 truncation mutation that could also
31 contribute to their shared “short” CHC phenotype. Together, these data suggest an evolutionary model
32 for the origin and spread of this allele and its consequences for CHC divergence and sexual isolation in
33 this group.

34

35 **Introduction**

36 Sensory signals can act as sexual cues that are critical for intraspecific mate evaluation and
37 reproductive success. Moreover, because they are frequently among the most rapidly evolving species
38 differences (Smadja and Butlin 2009, Seddon et al 2013, Wilkins et al 2013), divergence in sensory sexual
39 signals might often contribute to the earliest stages of reproductive isolation, in the form of prezygotic
40 barriers between lineages (Butlin et al 2012, Ritchie 2007). Among all such sexual signals, nowhere is the
41 diversity more evident than those acting as premating traits, including coloration and other visual
42 signals, acoustic signals, and complex pheromone blends. However, convincingly demonstrating the
43 connection between such sensory signal divergence and emerging reproductive isolation can be
44 challenging because it requires, first, identification and demonstration of the direct role of specific
45 signals mediating sexual isolation between species and, second, understanding the specific mechanistic
46 changes that have given rise to lineage differences in this signal.

47 Among insects, sexual signals draw on three primary sensory modalities—visual, auditory, and
48 chemosensory—and most species likely use a combination of all three modalities to identify potential
49 mates. Of these, many insect chemosensory signals primarily consist of cuticular hydrocarbons (CHCs)—
50 a broad group of carbon-chain compounds important for many essential functions including sex
51 pheromone signaling, but also environmental adaptation (Blomquist and Bagnères 2010, Chung and
52 Carroll 2015, Yew and Chung 2017). Unlike many auditory and visual cues, CHCs are produced and
53 received by both males and females, making them potentially important for both male and female mate
54 choice or species recognition. Indeed, studies on *Drosophila* chemical communication, particularly in the
55 *melanogaster* subgroup—have detected clear evidence for sexual isolation based on male choice of
56 female CHCs (Coyne et al. 1995, Billeter et al. 2009), while work in other species has demonstrated
57 female choice of species-specific male CHC profiles (Coyne et al. 2002, Mas and Jallon 2005, Curtis et al.
58 2013, Dyer et al. 2014). Elements of the biochemical pathways of CHC production and the underlying

59 genes are also relatively well understood in *D. melanogaster* (Pardy et al 2018). Accordingly, single
60 genes contributing to species-specific CHC differences have been implicated as causes of reproductive
61 isolation in several cases, including between *D. melanogaster* and *D. simulans* (desatF: Legendre et al.
62 2008) and *D. serrata* and *D. birchii* (mFAS: Chung et al. 2014). This framework provides an excellent
63 resource for identifying candidate genes for sensory sexual signal variation in other *Drosophila* systems.

64 Here we use the *Drosophila americana* group to investigate how species variation in CHC
65 profiles contributes to reproductive isolation, and to identify the underlying chemical and genetic
66 changes that may comprise this variation. This group includes two closely related (MRCA ~0.5 mya,
67 Morales-Hojas et al. 2008) species—*D. novamexicana* and *D. americana*—that occupy distinct
68 geographic and environmental habitats (Davis and Moyle 2019). *D. americana* is broadly distributed in
69 the United States from the east coast to the Rocky Mountains, and exhibits significant phenotypic and
70 genetic variation among populations throughout (e.g., Caletka and McAllister 2004, Davis and Moyle
71 2019), while *D. novamexicana* is localized to the arid southwestern US. Both species have been noted as
72 being associated with—and exclusively collected near—willow species of the genus *Salix*, though the
73 exact nature of this association is not known (Blight and Romano 1953, McAllister 2002). Classical
74 mating studies (Spieth 1951) have documented population-specific variation in reproductive isolation
75 between members of this group (see supplemental Table S1 and below). Prior analysis has also shown
76 qualitative differences in CHC composition between males (Bartelt et al. 1986), however the
77 contribution of hydrocarbons to premating isolation has not been assessed. With three populations
78 from this group, one *D. novamexicana* population and two *D. americana* populations—one southern
79 (South Carolina, hereafter SC) and one western (Nebraska, hereafter NE)—here we use a combination of
80 mating and behavioral studies, chemical analysis and manipulation, and gene expression and sequence
81 variation analyses to assess the role of CHCs in reproductive isolation. Together, our data suggest that
82 evolution of a male sexual signal—an overall shift in the relative abundance of longer versus shorter

83 cuticular hydrocarbons, due to novel mutation in an elongase gene—has produced complete premating
84 isolation between derived males and females from species that retain the ancestral trait and preference,
85 as proposed in classical models (Kaneshiro 1976, 1980) of the evolution of asymmetric sexual isolation.

86

87 **Results**

88 *SC D. americana females discriminate against heterospecific males in mating trials*

89 We found clear evidence of moderate to strong sexual isolation between SC *D. americana* and
90 the other two populations (Table 1). Mating rate (average proportion of females mated, in 4x4 mating
91 trials) ranged from very high in intrapopulation crosses and some interpopulation crosses, to <50% in
92 interpopulation combinations of female SC *D. americana* with each of the other species. Notably, *D.*
93 *novamexicana* males were never successful in mating with SC *D. americana* females, indicating strong
94 sexual isolation in this cross direction between these populations. In contrast, mating rate in the
95 reciprocal cross was 70%. The other pairing with mating rates at or below 50% involved both reciprocal
96 directions between *D. americana* populations. Across all cross combinations in the 4x4 mating trials, we
97 found that female identity (Kruskal-Wallis test: $\chi^2(2) = 8.99, P = 0.012$), but not male identity (Kruskal-
98 Wallis test: $\chi^2(2) = 0.80, P = 0.67$), significantly affected success. Post-hoc comparisons confirmed no
99 pairwise differences in male mating rate between any populations (Table S2). In contrast, the copulation
100 rate of SC *D. americana* females was significantly lower on average than both NE *D. americana* ($P\text{-adj} =$
101 0.025) and *D. novamexicana* ($P\text{-adj} = 0.042$), whereas NE *D. americana* and *D. novamexicana* females did
102 not differ ($P\text{-adj} = 0.15$). Together, these results indicate that SC *D. americana* females discriminate
103 against heteropopulation males more strongly than do females of the other two populations, with the
104 greatest discrimination against *D. novamexicana* males. This discrimination produces strongly
105 asymmetric sexual isolation between SC *D. americana* and *D. novamexicana*, while premating isolation
106 between the two *D. americana* populations is bi-directional and more moderate. Importantly, this

107 strong asymmetric isolation reiterates results documented by Spieth (1951, Table S1), using similar 4x4
108 mating experiments with 2 *D. novamexicana* and 9 *D. americana* lines—including the NE *D. americana*
109 and *D. novamexicana* populations used here. In this prior analysis, males from *D. novamexicana* showed
110 little to no mating success with southeastern *D. americana* populations (previously referred to as *D. a.*
111 *texana*) (0-12.5% mating frequency; Table S1), while *D. novamexicana* females were more receptive in
112 the reciprocal cross (mating frequency of 46.7-86.5%; Table S1). The consistency of these results 70
113 years apart suggests isolation observed here is not a bi-product of long-term laboratory culture, but
114 instead reflects differences present in the natural populations from which these lines were collected.

115

116 *SC D. americana males have greater courtship efficiency and mating success*

117 We video-recorded single-pair matings for each cross combination to evaluate population
118 differences in courtship strategies and whether these differed in interpopulation pairings. Three male
119 courtship behaviors were quantified from these 1x1 trials—display rate, tapping rate, and licking rate.
120 All three behaviors showed similar patterns of among-population variation, when each was evaluated
121 for the effect of male population, female population, or their interaction, using 2-way ANOVAs. Males
122 significantly differed with respect to display-rate ($F(2, 36) = 3.76, P = 0.03$) and tap-rate ($F(2, 36) = 4.76,$
123 $P = 0.017$), but only marginally for lick-rate ($F(2, 36) = 2.67, P = 0.083$). For all three behaviors, this
124 difference is due to SC *D. americana* males exhibiting higher rates (Tukey HSD post-hoc tests; Figure 1,
125 supplementary Table S3). In contrast, we detected no female identity effects on male behavioral rate
126 (display-rate: $F(2, 42) = 1.83, P = 0.18$; tap-rate $F(2, 36) = 0.58, P = 0.56$; lick-rate: $F(2, 36) = 0.43, P =$
127 0.65), or any female x male interactions (display-rate: $F(2, 36) = 0.72, P = 0.58$; tap-rate $F(2, 36) = 0.45, P$
128 $= 0.77$; lick-rate: $F(2, 36) = 0.65, P = 0.63$). Because behavior rates are dependent on copulation latency,
129 and not simply the total number of behavioral events, these rates approximate the efficiency with which
130 each courtship behavior results in a mating. Taken together, our results indicate that SC *D. americana*

131 males have greater courtship efficiency (in terms of display and tap rates), and that males do not
132 significantly vary these behavioral rates depending on female population identity.

133 The single pair mating assays also broadly reiterated the patterns of moderate to strong sexual
134 isolation we observed for SC *D. americana* in 4x4 trials. As with our 4x4 mating assay, *D. novamexicana*
135 males never mated with SC *D. americana* females when paired individually, while mating rate between
136 the two *D. americana* populations was moderately reduced in both directions. A logistic regression
137 assessing how mating rate varied based on male identity, female identity, and their interaction showed
138 a significant interaction effect only (males: $\chi^2(2) = 2.97, P = 0.28$; females: $\chi^2(2) = 2.52, P = 0.23$;
139 males*females: $\chi^2(4) = 12.67, P = 0.013$)—a difference from 4x4-mating trials where female population
140 identity was the primary predictor of mating rate. This variation between the assays appears to be
141 driven by female NE *D. americana* accepting fewer *D. novamexicana* males in 1x1 trials (20%) compared
142 to 4x4 trials (100%, Table 1), suggesting that male density within mating trials might affect copulation
143 success in this particular species combination. Finally, copulation latency differed marginally based on
144 both male identity (ANOVA: $F(2) = 3.14, P = 0.055$) and the male by female interaction ($F(4) = 2.48, P =$
145 0.062), but did not differ based on female species identity ($F(2) = 0.68, P = 0.5147$). Post-hoc tests
146 suggest that the marginal male population effect is likely due to lower copulation latency in SC *D.*
147 *americana* males relative to *D. novamexicana* males (Table S4).

148
149 *Populations and sexes differ in CHC composition*
150 We found that both populations and sexes within populations showed different and distinctive
151 CHC profiles, with the largest differences detected between SC *D. americana* and the other two lines
152 (Figure 2). Across all samples ($n=5$ replicate samples for each identity) we detected 8 alkene compounds
153 (2 of which are sex-specific) and 4 methyl-branched alkane compounds present in at least one
154 population. A principal component analysis of profiles from unmanipulated flies (unmanipulated-PCA or
155 ‘U-PCA’) summarizing the primary axes of CHC profile composition found that 95.3% of compound

156 variation across all samples was explained by the first three principal components (U-PC1 to 3). Of these,
157 CHC composition varied significantly for both population and sex for U-PC1 (pop: $F(2, 429.29)$, $P <$
158 0.0001; sex: $F(1, 46.97)$, $P < 0.0001$) and U-PC2 (pop: $F(2, 10.54)$, $P = 0.00043$; sex: $F(1, 181.69)$, $P <$
159 0.0001), but had no sex or population effect for U-PC3 (pop: $F(2, 0.31)$, $P = 0.737$; sex: $F(1, 0.57)$, $P =$
160 0.458)(Figure 2). Notably, SC *D. americana* of both sexes differed from the other two populations along
161 the U-PC1 axis (Tukey HSD; Nov-SC: $P\text{-adjust} < 0.0001$; NE-SC: $P\text{-adjust} < 0.0001$; Nov-NE: $P\text{-adjust} =$
162 0.28), which also explains most of the CHC variation between samples (69.9%). U-PC1 was positively
163 loaded for most of the shorter carbon chain length compounds in both alkene and methyl-branched
164 alkane classes of compounds, and negative values were strongly loaded for the compounds with longer
165 carbon chain length (Table S5); consequently, this axis can be interpreted as a composite of average
166 compound length across the CHC profile as a whole (Figure 2). Accordingly, both sexes of SC *D.*
167 *americana* had a higher abundance of longer-chain alkenes and methyl-branched alkanes than did either
168 NE *D. americana* or *D. novamexicana*.

169 In contrast to U-PC1, U-PC2 appeared to primarily differentiate sexes within populations, but
170 also NE *D. americana* males from males of the other two populations. This axis was most heavily loaded
171 for two compounds: C21:1 and Me-C28, followed by C27:1 and Me-C26, with much smaller loadings for
172 all other compounds (Table S5). C21:1 is a male-specific compound that is not detected in females; Me-
173 C28, Me-26, and C27:1 abundance was also consistently different between sexes, with males always
174 having more of these CHCs than females within each population (Figure 2). Therefore, negative U-PC2
175 values can be interpreted as primarily representing more male-specific profiles, while positive U-PC2
176 values correspond to more female-like profiles. With respect to the detected species difference in U-
177 PC2, post-hoc tests reveal that this was driven by NE *D. americana* (Tukey HSD; Nov-SC: $P\text{-adjust} = 0.99$;
178 NE-SC: $P\text{-adjust} = 0.0062$; Nov-NE: $P\text{-adjust} = 0.0088$). Furthermore, we find that abundance of the
179 individual male-specific compound C21:1 differs between NE *D. americana* and males of the other two

180 populations, but not between *D. novamexicana* and SC *D. americana* (Tukey HSD; Nov-SC: *P-adjust* =
181 0.98; NE-SC: *P-adjust* = 0.016; Nov-NE: *P-adjust* = 0.022). (Results from tests of individual compound
182 differences can be found in Table S6).

183
184 *Interpopulation perfuming influences SC D. americana female acceptance of intra- and inter-population*
185 *males*

186 We found that patterns of sexual isolation could be modified by specifically changing the CHC
187 profiles of males of different populations. To do this, we used perfuming assays to manipulate the
188 pheromone profile of males by co-housing them with either intra- or inter-population males, and then
189 evaluated how this manipulation influenced mating rates among populations. For these analyses, we
190 focused on two pairings in two separate, analogous experiments—*D. novamexicana* and SC *D.*
191 *americana* (“Nov-SC pair”), and the *D. americana* population pair (“NE-SC pair”— because SC *D.*
192 *americana* shows the strongest sexual isolation from the two other populations, and the largest
193 differences in CHC composition. Within each perfuming experiment, we generated four combinations of
194 target and donor male identities: each population perfumed by same-population males (control) and
195 each population perfumed by hetero-population males. Each class of perfumed males was evaluated for
196 mating rate specifically with SC *D. americana* females, because these females were the most
197 discriminating against heteropopulation males in our previous mating assays (Table 2). The observed
198 mating rate of males perfumed with same-population males (the control manipulation) was similar to
199 that observed in unperfumed mating trials: *D. novamexicana* and NE *D. americana* males perfumed with
200 their own population performed poorly with SC *D. americana* females, relative to SC *D. americana*
201 perfumed with their own males, which had a 100% mating rate (Table 2). In strong contrast, hetero-
202 population perfumed males showed altered mating rates relative to control perfumed males. For Nov-
203 SC pairings, *D. novamexicana* males perfumed with SC *D. americana* males successfully mated with SC *D.*
204 *americana* females 94% of the time, a significantly higher mating rate than *D. novamexicana* males

205 perfumed with their own males (25%; Mann-Whitney U-test: $U = 0, P = 0.025$). (Note that copulation
206 success between conspecific perfumed *D. novamexicana* males and SC *D. americana* remains low (25%)
207 but differs from the complete mating isolation observed in unperfumed trials, possibly because of
208 changes in behavior due to male-male co-housing during the perfuming manipulation.) The reciprocal
209 treatment also showed a significant effect of perfume source: male SC *D. americana* perfumed with *D.*
210 *novamexicana* males displayed copulation success of 19%, significantly lower success compared to
211 conspecific-perfumed SC *D. americana* (100%, Mann-Whitney U-test: $U = 0, P = 0.018$). For NE-SC
212 pairings, SC *D. americana* male mating rate was also significantly reduced when perfumed with NE *D.*
213 *americana* males (50%), compared to same-population perfumed SC *D. americana* males (100%, Mann-
214 Whitney U-test: $U = 0, P = 0.018$). In contrast, mating rate of NE *D. americana* males perfumed with SC
215 *D. americana* males increased slightly (56%), but did not significantly differ from the control (same-
216 population-perfumed) males (44%, Mann-Whitney U-test: $U = 5.5, P = 0.54$).

217 Overall, these results indicate that perfuming males with heteropopulation CHCs influences the
218 frequency of successful copulation with SC *D. americana* females. SC *D. americana* males perfumed with
219 profiles of either *D. novamexicana* or NE *D. americana* had significantly reduced mating rates with their
220 own females. Conversely, perfuming *D. novamexicana* males with SC *D. americana* males significantly
221 increased their mating rate with *D. americana* females, almost completely reversing the pattern of
222 sexual isolation observed for unmanipulated males. This large shift in mating rate for heteropopulation-
223 perfumed *D. novamexicana* indicates that differences in male CHC profiles play a critical role in sexual
224 isolation in the Nov-SC pair. In contrast with the three other classes of heteropopulation-perfumed
225 males, perfuming NE *D. americana* with SC *D. americana* males did not significantly change their mating
226 rate. It possible that this manipulation might have been less effective at altering the CHC profile of NE *D.*
227 *americana* males (see next section), and/or that mating isolation in the NE-SC pair might depend on
228 more complex factors than a simple shift in CHC composition alone (see Discussion).

229

230 *Perfuming shifts CHC composition towards the donor male profile*

231 Using CHCs extracted from an additional set of perfumed males (see Methods), we confirmed
232 that our heteropopulation perfuming manipulation produced quantitative changes in composite male
233 CHC profiles in both the Nov-SC and NE-SC pairs, by shifting male CHCs closer to the donor male profile.
234 PCAs were performed separately for each pairing (N-PCA for the Nov-SC pair, and A-PCA for the NE-SC
235 pair, hereafter), as were analyses of differences among classes of perfumed males. In both cases, of the
236 first three PCs of CHC composition, PC1 (i.e. N-PC1 or A-PC1) varied by both donor and target male
237 identity (Table S7), indicating that perfuming significantly shifted CHC profiles along the primary axis of
238 variation in both perfuming experiments. Nonetheless, the specific donor-target manipulation that was
239 most successful in this regard differed between the Nov-SC and NE-SC pairs. In the Nov-SC pair, *D.*
240 *novamexicana* males perfumed with SC *D. americana* males significantly differed in CHC composition
241 from control (*D. novamexicana*) perfumed samples (N-PC1) ($t(5.9) = -2.8, P = 0.031$); however,
242 heteropopulation-perfumed SC *D. americana* did not differ from same-population SC *D. americana*-
243 perfumed samples along the same axis ($t(3.53) = 1.91, P = 0.14$). In contrast, in the NE-SC pair, SC *D.*
244 *americana* perfumed with NE *D. americana* showed a significant shift in A-PC1 ($t(4.85) = 4.23, P =$
245 0.0088), but there was no significant shift for SC-perfumed NE *D. americana* compared to same-
246 population-perfumed controls ($t(4.68) = 0.055, P = 0.96$). The difference between these pairs might be
247 attributed to high variation seen among samples in some groups (in particular same-population
248 perfumed SC *D. americana*). Regardless, it is clear from these results that this perfuming assay can
249 produce significant, detectable differences in CHC profiles after heteropopulation perfuming, most
250 notably in *D. novamexicana* males.

251

252 *Patterns of gene expression and sequence variation implicate an elongase gene that contributes to CHC*
253 *variation between species*

254 From among a set of 23 candidate genes whose orthologs have functions related to cuticular
255 hydrocarbon variation, both transcriptome and sequence comparisons implicated one specific elongase
256 locus as potentially causal in CHC composition differences between our species. Using whole-
257 transcriptome RNA-seq data from the same three populations (previously generated in Davis and Moyle
258 2020), we found that 3 of our candidate genes in males and 2 candidates in females were in the upper
259 10th percentile of genes most differentially expressed between populations (i.e. they showed a stronger
260 species effect than 90% of all 11301 expressed genes in the transcriptome dataset) (Table 3). Of these
261 candidate genes, only CG17821 showed elevated gene expression specifically in SC *D. americana*
262 compared to the other two populations; this pattern was observed in both sexes but is more
263 pronounced in females (Figure 3).

264 Closer inspection of our CG17821 sequences revealed that alleles in NE *D. americana* and *D.*
265 *novamexicana* share a thymine insertion mutation that causes a premature stop codon 4 amino acids
266 upstream of the end of the gene, compared to the annotated gene model in outgroup *D. virilis* and the
267 allele in our SC *D. americana* stock (Figure 3); these four terminal amino acids are not present in RNA
268 transcripts for either NE *D. americana* and *D. novamexicana*. Among our three lines, this suggests an
269 association between the truncated protein product of CG17821 and the “short” CHC phenotype we
270 observe. This association is further supported by additional CHC and sequence data from another *D.*
271 *americana* population, originally collected in Anderson, IN (species stock center line 15010-0951.00,
272 henceforth IN *D. americana*). Lamb et al. 2020 characterized CHC divergence between females from this
273 IN *D. americana* stock and another *D. novamexicana* line (species stock center 15010-1031.04). The
274 profile for the *D. novamexicana* line had no long compounds (>C30), a low abundance of C29
275 compounds, and presence of multiple short alkenes (<C27), consistent with the “short” CHC profile we

276 observe for our *D. novamexicana* line. Likewise, the IN *D. americana* profile they observed is broadly
277 consistent with the “long” profile we observed in SC *D. americana*, as both show presence of
278 compounds longer than 30 carbons, a high abundance of C29 length alkenes, and absence of
279 compounds shorter than 27 carbons. In addition, using a genome assembly from the same IN *D.*
280 *americana* stock (Kim et al. 2020), we found that this population also has the non-truncated allele of
281 CG17821. These data are consistent with our inference that truncation of this allele could contribute to
282 the difference between “long” and “short” CHC phenotypes among populations in this group.

283

284 *Evolutionary history of elongase CG17821*

285 Several lines of evidence indicate that CG17821 has a complex evolutionary history within the *D.*
286 *americana* subgroup, that likely includes post-speciation introgression. The presence of the non-
287 truncated allele in outgroup *D. virilis* (Figure 3) indicates that the truncated allele is derived from a
288 thymine insertion mutation event that took place within the *D. americana* subgroup. Moreover, *D.*
289 *novamexicana* and our western *D. americana* (NE) line share an identical derived allele at CG17821,
290 indicating an evolutionary history at this locus that disagrees with expected phylogenetic relationships
291 among these three taxa (i.e., where the two *D. americana* populations are expected to be most closely
292 related). Gene trees for each of our 23 candidate genes confirmed that CG17821 has a topology that is
293 discordant with the expected species relationships, placing NE *D. americana* as sister to *D.*
294 *novamexicana* rather than grouping it with SC *D. americana* (Figure 3). Four other CHC candidate genes
295 also show this discordant topology, most notably CG18609 which is located immediately downstream
296 (within 1kB) of CG17821, according to the annotated genome of *D. virilis* (Figure 3). For 4 out of 5 of
297 these loci—including both CG17821 and CG18609—using the allele from the IN *D. americana* stock
298 instead produces a genealogy where the *D. americana* populations group together, as expected from
299 the species tree (Figure 3).

300 The observation of phylogenetically discordant sites can be due to several factors, notably
301 incomplete lineage sorting (ILS) or post-speciation introgression (see also Discussion). Two lines of
302 evidence strongly support introgression. First, evidence from SNP variants, across the whole
303 transcriptome and specifically at CG17821, is more consistent with introgression between *D.*
304 *novamexicana* and our western *D. americana* (NE) population—as determined by Patterson’s D-statistic
305 (Durand et al. 2011). In particular, we found that genome-wide, of 34441 total SNPs detected in 11301
306 loci within the transcriptome dataset (Davis and Moyle 2020), 14902 supported *D. americana*
307 populations as sister (in accordance with the species tree), 13372 SNPs grouped *D. novamexicana* and
308 NE *D. americana*, and 6167 grouped *D. novamexicana* with SC *D. americana*. The significant excess of
309 shared variants between *D. novamexicana* and our NE *D. americana* line ($D = 0.369$, $P < 0.0001$), is
310 consistent with a history of introgression between the progenitors of these two populations. Second,
311 gene tree topologies at and around CG17821 also indicate this specific genomic region shares recent
312 ancestry between *D. novamexicana* and NE *D. americana* due to introgression. CG17821, the adjacent
313 downstream CHC candidate CG18609, and the next nearest gene (*List*, a neurotransmitter located ~14
314 kB downstream) all display shared derived SNPs between *D. novamexicana* and the NE *D. americana*
315 line, and discordant gene tree topologies that group these two lines as sister taxa. In contrast,
316 topologies for the next two nearest up- or down-stream genes in this region reflect the species tree,
317 indicating that recent shared ancestry between *D. novamexicana* and the NE *D. americana* extends
318 across a genomic window between 18 and 68 kB long around the specific region containing CG17821
319 (Figure 3C). Estimates of linkage disequilibrium (LD) from *D. melanogaster* autosomes indicate that most
320 LD decays within 200 base pairs, and r^2 (the correlation between SNPs) decreases to <0.1 within a 1 kB
321 window (Franssen et al. 2015); therefore, the size of the putatively-introgressed window observed here
322 is well outside the range expected under ILS, as discordant ancestry due to sorting from ancestral
323 variation is expected in small blocks (Hudson and Coyne 2002, Gao et al. 2015). Note that inversions

324 could also be responsible for capturing ancestrally-segregating variation in larger genomic regions than
325 expected from LD measures, and populations within this group are known to differ in the
326 presence/absence of inversions, including at the specific genomic region containing these genes (Reis et
327 al 2015). However, the inversion at this location is only present in southern *D. americana* (i.e., within the
328 “*D. a. texana*” chromosomal form) to the exclusion of NE *D. americana*, *D. novamexicana*, and *D. virilis*,
329 and therefore could not be responsible for the patterns of discordant variation we observe for these
330 genes here. Coupled with genetic and phenotypic evidence above, these results indicate introgression of
331 these genes between *D. novamexicana* and western *D. americana*—and not ILS—is most likely
332 responsible for their shared allele at CG17821 and therefore potentially for their similarity in “short”
333 CHC phenotypes.

334 We also evaluated whether there was evidence of elevated protein evolution at CG17821,
335 CG18609 or any other of our candidate genes, based on estimates of the ratio of nonsynonymous to
336 synonymous substitutions (d_N/d_S) at these loci, compared to a genome-wide average rate estimated
337 from our transcriptome-wide dataset (see Methods). For 4397 genes transcriptome-wide, the median
338 and mean d_N/d_S were 0.065 and 0.0991, respectively (± 0.133 s.d.) (Figure S3). Of our candidate genes,
339 only three had an estimated d_N/d_S greater than 1 standard deviation above this mean, including the two
340 candidates within the putatively introgressed region—CG17821 ($d_N/d_S = 0.284$) and CG18609 ($d_N/d_S =$
341 0.249)—as well as CG6660 ($d_N/d_S = 0.38714$)(full results in supplementary Table S8). Notably, these rates
342 of protein change fall within the top 8% of all genes analyzed (Figure S3, all gene data reported in
343 supplementary file). While these estimates are below the threshold for unambiguous evidence of
344 positive selection ($d_N/d_S > 1$), only 9 genes in the whole dataset met this criterion. Of the three candidate
345 loci that exhibit elevated protein evolution, CG6660 does not show patterns of genealogical, allelic, or
346 gene expression variation that match our observed CHC phenotypic variation (Figure 3A/B, and above).
347 For both CG17821 and CG18609, we also estimated d_N/d_S using just *D. virilis* and SC *D. americana*

348 sequence comparisons, to determine if elevated protein evolution in these genes is solely driven by the
349 branch leading to the *D. novamexicana*-NE *D. americana* allele, or if this pattern is more general across
350 the clade. We found our estimate of d_N/d_S was still modestly elevated between *D. virilis* and SC *D.*
351 *americana* ($d_N/d_S = 0.284$) even when this branch was removed—indicating CG17821 has experienced
352 consistently elevated protein evolution across the whole clade. In contrast, CG18609 protein evolution is
353 estimated to be lower ($d_N/d_S = 0.147$) when just considering divergence between *D. virilis* and SC *D.*
354 *americana*, suggesting that most of the accelerated protein evolution in this gene occurred after the
355 split of the *D. novamexicana*/NE *D. americana* lineage. The timing of elevated protein evolution in
356 CG18609 therefore also generally coincides with CHC profile differences observed here and, like
357 CG17821, CG18609 is also an elongase. However, CG18609 does not show patterns of gene expression
358 that match the “long” versus “short” CHC phenotypes we observe (instead, its expression is significantly
359 reduced in NE *D. americana*; Figure 3A) so while it’s possible that this tandem elongase gene also plays a
360 role in CHC phenotype divergence, it is unlikely to be responsible for the primary axis of CHC variation
361 described here.

362 Finally, we note that our d_N/d_S analysis also revealed two odorant binding proteins (OBPs)—to
363 be among the fastest evolving loci in our transcriptome-wide dataset: the orthologs of *Obp99d* (second
364 fastest in our dataset; $d_N/d_S = 1.589$), and *Obp56g* (40th fastest; $d_N/d_S = 0.689$) (see supplementary file).
365 OBPs are thought to facilitate olfactory processing by chaperoning odorants to the olfactory receptor
366 neurons or terminating neuron activity by clearing odorants from the surrounding (Sun et al. 2018). OBP
367 genes have been previously shown to evolve quite rapidly in multiple insect groups (Foret and Maleszka
368 2006), although rates in these specific OBPs are lower across 6 species in the *Drosophila melanogaster*
369 group ($d_N/d_S > 0.24$; Vieira et al. 2007) than we detect here. Notably, both these OBPs are known to
370 expressed in chemosensory organs in *D. melanogaster*—including adult labellum (*Obp56g*; Galindo and
371 Smith 2001), antenna and maxillary palps (*Obp99d*; Hekmat-Scafe et al. 2002), and wing sensilla (both

372 loci; He et al. 2019)—consistent with roles in pheromone perception. Moreover, one of these loci—
373 *Obp56g*—is a known seminal fluid protein in the *D. melanogaster* group (Findlay et al 2008), that also
374 changes in expression within females specifically in response to mating (McGraw et al. 2004). Given
375 these roles, the elevated rates we observe here suggest both genes might contribute to variation in
376 behavioral responses to pheromone and other sexual stimuli among our species (see also discussion).

377

378 **Discussion**

379 Identifying genetic and evolutionary mechanisms involved in the earliest steps of reproductive
380 isolation between species is essential for understanding the factors that drive speciation. Evolutionary
381 divergence in sexual signals may be an especially potent contributor to this process (Schemske 2000,
382 Coyne and Orr 2004, Ritchie 2007, Schluter et al. 2009, van Doorn et al. 2009). However, demonstrating
383 the connection between sensory signal divergence and emerging reproductive isolation can be
384 challenging, as it requires identification and demonstration of the direct role of specific signals
385 mediating sexual isolation between species and knowledge of the specific mechanistic changes that
386 have given rise to lineage differences in this signal. Here we have demonstrated that sexual isolation
387 between laboratory populations in the *D. americana* group is based on female choice of male chemical
388 signals, and identified both the specific phenotypic shift between species in pheromone chemistry as
389 well as a genetic variant likely contributing to this phenotypic change and the mating isolation that
390 results from it. Together these data support a clear role for sensory signal divergence in the evolution of
391 premating isolating barriers between populations in this closely related group, and provide insight into
392 how relatively simple genetic and phenotypic mechanisms can cause strong isolation even at early
393 stages of evolutionary divergence.

394

395 *Female choice of male CHC variation is responsible for isolation between *D. novamexicana* and SC *D. americana**

396

397 Differences in copulation success between populations are the product of variation in male

398 choice (via differences in courtship intensity and copulation attempts, depending upon female identity),

399 female choice (via differences in acceptance rates of males, depending upon their identity), or a

400 combination of these factors. Disentangling these alternatives is critical for identifying the specific trait

401 and corresponding preference variation responsible for the emergence of prezygotic species barriers.

402 Here we showed that female choice of a male sensory signal results in strong sexual isolation among *D.*

403 *americana* group populations, specifically SC *D. americana* female preference for CHC profiles of their

404 own males and rejection of males with alternative profiles. The role of CHCs is exceptionally clear in the

405 case of premating isolation between male *D. novamexicana* and female SC *D. americana*: strong sexual

406 isolation in this cross can be almost entirely reversed by perfuming *D. novamexicana* males with SC *D.*

407 *americana* male CHCs. In contrast, we find little evidence for differential male preference of females,

408 even though female CHC profiles are also divergent between populations. Instead, our behavioral data

409 indicates that males did not alter their courtship behavior in response to female species identity.

410 Interestingly, these observations also suggest evidence for female choice of male courtship behaviors,

411 whereby SC *D. americana* male courtship consistently induced females to copulate sooner than

412 courtship behaviors of other population males. Moreover, our finding of strong asymmetric mating

413 isolation between male *D. novamexicana* and specific (southeastern) populations of *D. americana*

414 recapitulates patterns of isolation described in this group more than 70 years ago (Spieth 1951, Table

415 S1), indicating that these mating isolation patterns reflect natural variation among populations from

416 which these lines were collected.

417 These findings fit within a body of studies that have identified either male or female choice of

418 sensory signals as critical for sexual isolation among *Drosophila* species (patterns reviewed Yukilevich

419 and Patterson 2019). In *Drosophila melanogaster*, many studies have found that male choice of specific
420 female CHC compounds play a role in isolation between closely related heterospecifics (Coyne et al
421 1995, Billeter et al. 2009) as well as between intraspecific populations (Wu et al. 1995, Hollocher et al.
422 1997, Yukilevich and True 2008). Such patterns of CHC-mediated male mate-discrimination have also
423 been associated with allelic variation in CHC elongases. For example, *D. sechellia* reproductive isolation
424 from closely related *D. simulans* results from male mate-discrimination based on female CHC profiles
425 (Shahandeh et al. 2017) and the CHC elongase *eloF* has been demonstrated to inhibit interspecific
426 mating in the same species (Combs et al. 2018). Female choice of male CHC variation has received
427 comparably less mechanistic attention, however has been demonstrated as a prezygotic barrier in
428 several *Drosophila* groups, most notably between *D. santomea* and *D. yakuba* (Coyne et al. 2002, Mas
429 and Jallon 2005), between the mycophagous *D. subquadrata* and *D. recens* (Curtis et al. 2013, Dyer et al.
430 2013), and between *D. mojavensis* males reared on different cactus substrates (Havens and Etges 2013).
431 Our results therefore complement a growing body of evidence that shows female choice can be an
432 important factor dictating patterns of sexual isolation among closely related *Drosophila* populations and
433 species.

434

435 *CHC divergence and the role of Elongases*

436 Dissecting the finer details of phenotypic divergence in sensory signals can help pinpoint
437 underlying mechanisms and associated genes responsible, and more clearly demonstrate how these
438 signal changes contribute to isolation between populations. Here we found that CHC divergence
439 between our lines occurs primarily on the basis of compound length, with *D. novamexicana* and NE *D.*
440 *americana* profiles both having similar enrichment of shorter compounds (“short” phenotype) compared
441 to an enrichment of longer compounds for SC *D. americana* (“long” phenotype). These differences in
442 abundance of shorter- versus longer-chain compounds were observed across both sexes, and across

443 both alkenes and methyl-branched alkanes (Figure 2, Table S6). In contrast, we find no evidence for
444 variation in other features such as double bond or methyl branch location or number. These features
445 themselves suggest that the striking difference between ‘shorter’ and ‘longer’ profile phenotypes could
446 be due to variation in fatty-acid elongase activity, which globally influences the carbon chain length of
447 CHC precursors, and therefore can have consistent downstream effects on both alkenes and methyl-
448 branched alkanes, because both are modified after the elongation step (Pardy et al. 2018).

449 Strikingly, analyses of gene expression and sequence variation revealed that CG17821 and
450 CG18609—two putative fatty-acid elongases (Szafer-Glusman et al. 2008, Gaudet et al. 2011)—could
451 functionally contribute to our observed variation between longer and shorter CHC profiles. Sequences at
452 both loci are identical between NE *D. americana* and *D. novamexicana*, differ from SC and IN *D.*
453 *americana* lines, and show modestly elevated protein evolution on the branch leading to *D.*
454 *novamexicana/NE D. americana*, all of which broadly coincide with our observed differences between
455 “short” versus “long” CHC phenotypes. The variation we observed at CG17821 is particularly interesting,
456 because we observe a thymine insertion mutation that results in premature truncation of CG17821
457 specifically in *D. novamexicana* and NE *D. americana* (Figure 3) and because our gene expression data
458 also indicates reduced expression of the CG17821 allele specifically in these lines. In the latter case,
459 while we might expect gene expression differences to be tissue-specific (that is, observed specifically in
460 the oenocytes: the CHC-producing organs), our data indicate that the population-specific expression
461 signal at this locus is strong enough to detect from whole-body transcriptome data. Both observed
462 sequence and expression changes at CG17821 could individually produce a greater abundance of short
463 CHC products either by lowering elongase protein levels or reducing enzyme activity. Therefore,
464 although our current data cannot differentiate which change may have occurred first (or whether they
465 are pleiotropic), either could produce the pattern of phenotypic difference observed between
466 populations. Overall, these data suggest allelic variation in CG17821 primarily underlies the major axis of

467 CHC divergence observed between SC *D. americana* and the other populations, consistent with a
468 hypothesis of a simple underlying basis for chain length variation. Moreover, because this axis of CHC
469 divergence appears primarily responsible for sexual isolation between *D. novamexicana* and SC *D.*
470 *americana*, this points to a large role for simple allelic change at this genomic location in the emergence
471 of a strong isolating barrier between these two populations.

472

473 *The evolutionary history of CHC divergence and consequences for past and future sexual isolation in this*
474 *group*

475 Together, our data demonstrate sexual isolation between SC *D. americana* and *D. novamexicana*
476 is due to CHC divergence in compound length and suggest that variation between truncated and non-
477 truncated alleles of the elongase CG17821 contribute to this phenotypic variation. Moreover, both
478 genome-wide SNP variation, as well as localized variation specifically around this locus (Figure 3C),
479 indicate that this phenotypic variation involves a history of introgression. These data point to a model
480 hypothesis for the evolutionary history of transitions involved in the change in CHC profiles between
481 species and, potentially, in the emergence and expression of sexual isolation that depends upon this
482 phenotype.

483 First, the distribution of both “long” versus “short” CHC phenotypes (shown here and in Lamb et
484 al. 2020), and allelic variation CG17821, indicate that the “short” phenotype and the CG17821 truncated
485 allele are derived states that arose within the *D. americana* group. This shift most likely occurred in
486 western lineages that gave rise to contemporary *D. novamexicana*. The evolutionary forces responsible
487 for the persistence and spread of this phenotype are not yet known. The relationship between variation
488 in environmental factors, insect stress physiology, and features of CHC length and branching is known to
489 be complex. Prior work has associated aspects of CHC divergence with abiotic variation such as latitude
490 (Frentiu and Chenoweth 2010, Rajpurohit et al. 2017, but see Gibbs et al. 2003), and physiological traits

491 such as desiccation resistance (reviewed Chung and Carroll 2015), that suggest a role for natural
492 selection in shaping CHC composition, but the specific sources(s) of selection can be challenging to
493 pinpoint. In the *D. americana* group, species habitats are differentiated primarily on the basis of water
494 availability and these two species, as well as populations within them, differ in key physiological traits
495 such as desiccation resistance (Davis and Moyle 2019). However, sexual selection might also contribute
496 to shaping evolution at CHC loci—as evidenced by the importance of CHC variation for mating success
497 outlined here and elsewhere. We also find evidence that two odorant binding proteins (OBPs)—*Obp99d*
498 and *Obp56g*—are rapidly evolving across this group. OBPs are known to be important for mediating
499 olfactory behavioral responses during sexual interactions (Laughlin et al. 2008, Leal 2013, Sun et al.
500 2018) as well as host-plant preference (Matsuo et al. 2007, Comeault et al. 2017). Therefore these loci
501 could be evolving due to natural selection, sexual selection, or both, including in response to changes in
502 pheromone profiles described here, or to other factors such as this group’s close but little investigated
503 habitat association with willow (*Salix* sp.) trees (Blight and Romano 1953, McAllister 2002, personal
504 observations). Interestingly, our analysis indicates that the elongase CG17821 has experienced
505 modestly elevated protein evolution across the whole *D. virilis* sub-clade; this suggested history of
506 sustained selection indicates this locus might have played important roles in long-term CHC-mediated
507 adaptive divergence across this group. In comparison, the downstream elongase CG18609 has evidence
508 of elevated protein change primarily on the branch leading to *D. novamexicana*/NE *D. americana*,
509 possibly suggesting that this acceleration occurred after impactful changes to CG17821.

510 Based on our data associating phenotypic divergence with sexual isolation, the appearance of
511 this new CHC phenotype would have reduced sexual compatibility between derived “short” males and
512 females with strong preferences for the “long” ancestral CHC profile. Persistence of this phenotype
513 would have required a broadening of female preference to accommodate males with the derived
514 (“short” CHC) pheromone phenotype (e.g., as has been observed, for example, in male *Ostrinia* moths;

515 Roelofs et al. 2002). Our data support this expectation, as *D. novamexicana* females are more accepting
516 of both (putatively derived) *D. novamexicana* and (ancestral) SC *D. americana* male CHC phenotypes,
517 while SC *D. americana* females discriminate against derived “short” CHC phenotypes. Interestingly, this
518 model for the evolution of asymmetric sexual isolation is broadly consistent with Kaneshiro’s (1976,
519 1980) model for peripatric speciation. Kaneshiro observed that females from derived populations
520 frequently have broad preferences for both derived and ancestral male phenotypes; he proposed that
521 this was due to relaxed selection on narrow female preferences in genetically bottlenecked island
522 populations, where founder effects have led to the loss of elements of male courtship. Although
523 Kaneshiro’s model explicitly invokes genetic drift in male trait evolution, our observations indicate his
524 model for the origin of sexual isolation asymmetry could extend more generally to any case where
525 evolutionary change affects a trait important for male sexual signaling. In the case described here,
526 evolutionary change in male CHC profiles (possibly due to selection acting on a CHC elongase gene(s)),
527 accompanied by an apparent broadening of female preferences for these profiles in derived
528 populations, has resulted in the emergence of strong premating asymmetry specifically between
529 females with ancestral trait preferences and males with derived trait values—akin to the model outlined
530 by Kaneshiro.

531 Intriguingly, our data also support the subsequent movement of this CHC phenotype from *D.*
532 *novamexicana* into western *D. americana* lineages. One possible explanation for shared variation in the
533 CG17821-CG18609 locus and CHC phenotypes is that this arose from segregating ancestral variation
534 present in both *D. americana* and *D. novamexicana* (that is, is due to ILS). Prior evidence (Caletka and
535 McAllister 2004) as well as data here indicates that some observed site discordance between
536 populations of *D. americana* and *D. novamexicana* is consistent with ILS. However, our analysis strongly
537 supports the additional occurrence of introgression between *D. novamexicana* and western *D.*
538 *americana*, including specifically of this trait from *D. novamexicana* into western *D. americana*

539 populations. Both their significant excess of shared genome-wide variation (as indicated by the D-
540 statistic), and a genomic region of at least 18 kB of shared recent ancestry surrounding
541 CG17821/CG18609 that accompanies a similar shift to the “short” CHC phenotype in western *D.*
542 *americana*, support this inference. Note also that while *D. novamexicana* and *D. americana* are reported
543 to be allopatric, limited and sporadic field collections of *D. novamexicana* mean there is an incomplete
544 understanding of the density and extent of this species’ historical range. As a result, this species could
545 have been in closer geographical contact with western *D. americana* populations during the period since
546 their initial split (~500KYA), which could help explain evidence for introgression after speciation inferred
547 here. Recent work (Sramkowski et al. 2020) describing rare *D. novamexicana*-like pigmentation alleles in
548 geographically disparate *D. americana* populations, similarly suggests evidence of more recent gene
549 exchange between these species.

550 Given the effect of the “short” CHC phenotype on sexual isolation between *D. novamexicana*
551 and the SC *D. americana* population, this introgression is expected to have consequences for
552 reproductive isolation among *D. americana* lineages. Interestingly, our data indicate that, even though
553 NE *D. americana* shows the general shift to shorter chain CHC length associated with the introgressed
554 region, its current patterns of sexual isolation differ from those seen in *D. novamexicana*. One
555 explanation might be that this introgression-mediated shift in CHCs occurred on a novel *D. americana*
556 genomic background, with potential consequences for the expression of introgressed CHC-affecting loci,
557 and therefore for patterns and strengths of CHC-mediated isolation. A concrete example of these
558 background effects can be seen for CG18609, where NE *D. americana* shares the *D. novamexicana* allele
559 but nonetheless exhibits significantly reduced expression of this locus compared to the other two
560 lineages (Figure 3A). A differential history of allelic exchange (with *D. novamexicana*) across the range of
561 *D. americana*, plus variable genomic background effects on the expression of CHC loci, could contribute
562 to the more complex mating relationships observed here, and elsewhere, among *D. americana*

563 populations. For example, Spieth's mating analyses (Table S1) identified up to 10-fold variation in mating
564 success among nine disparate populations of *D. americana*. The possibility that this variation is
565 influenced by differential gene exchange with *D. novamexicana* (including of loci with major effects on a
566 signaling phenotype) is testable with work examining mating success between geographically diverse *D.*
567 *americana* populations—particularly between eastern and western populations—and its covariation
568 with CHC phenotypic and genotypic variation.

569 Regardless of the collateral consequences for isolation among *D. americana* populations, our
570 data clearly support the role of divergent cuticular hydrocarbon profiles—specifically a general shift in
571 carbon chain length—in sexual isolation between our *D. novamexicana* and SC *D. americana*
572 populations. They also implicate a potentially causal role for the gene CG17821 in determining CHC
573 phenotype via a global change in CHC elongation activity early in the generation of these compounds.
574 These data provide a strong example of how a recently derived allele in a single gene with large
575 phenotypic effects on a sexual signal could underpin asymmetric sexual isolation between closely
576 related species. Moreover, they suggest multiple (behavioral, biochemical, and molecular) lines of
577 evidence that chemosensory processes are evolving rapidly and dynamically across this group.

578 **Methods**

579 *Experimental Fly stocks*

580 Three stocks were obtained from the University of California San Diego Drosophila Species Stock
581 Center (DSSC): a *Drosophila novamexicana* stock from San Antonio, NM (15010-1031.08); and two *D.*
582 *americana* stocks, one from Chadron, NE (15010-0951.06, NE *D. americana* throughout); and one from
583 Jamestown, SC, (15010-1041.29, SC *D. americana* throughout). All stocks were originally collected
584 between 1946 and 1953. *D. americana* has sometimes been divided into two subspecies according to
585 presence (*D. americana americana*) or absence (*D. a. texana*) of a chromosomal fusion of the X- and 4-
586 chromosomes that shows a distinct latitudinal cline (McAllister 2002), however because sub-specific
587 differences apart from this fusion have not been consistently supported, our two lines are treated as
588 populations from within a single heterogeneous species here. The *D. novamexicana* and NE *D.*
589 *americana* populations used here are the same as those collected and used by Spieth 1951. All fly stocks
590 were reared on standard cornmeal media prepared by the Bloomington Drosophila Stock Center (BDSC)
591 at Indiana University, and were kept at room temperature (~22 °C). Every assay in this study used virgins
592 isolated within 8 hours of eclosion and aged for 7 days prior to the start of experiments, similar to the 8
593 days used by Spieth (1951).

594

595 *4x4 unperfumed mating assay*

596 We performed trials in which four virgin males and four virgin females were paired and
597 observed for mating behavior, following the design used by Spieth (1951) which allows for behavioral
598 interactions that might not otherwise be observed in similar single-pair assays. Within each trial, all
599 males are from a single population, as are all females, so are no-choice with respect to the genotype of a
600 mating partner; crosses are varied by pairing males and females of alternative lines. For each trial, 4
601 males and 4 females were transferred to a single vial without anesthetization and observed for 3 hours.

602 The number and duration of each copulation event was recorded for each trial. This assay was repeated
603 for a total of 5 replicates for each possible population combination, in reciprocal (i.e., 9 cross types, each
604 of $N = 5$). Each trial used 7-day old virgins and testing was started within 30 minutes of lights on in the
605 morning.

606

607 *Courtship behavior assay*

608 To quantify and evaluate differences in courtship behaviors between cross types, flies were
609 observed in single pair (no-choice) mating assays. We used a modified FlyPi setup—that combines a
610 Raspberry Pi (Raspberry Pi Foundation, Cambridge, UK), pi camera, and 3D printed parts (Chagas et al.
611 2017)—to record courtship behaviors. Assays were performed in a modified cell culture plate consisting
612 of six 3 cm-diameter culture wells, each with a small amount of cornmeal media in the bottom, that
613 allowed six total crosses to be recorded simultaneously. For each assay, individual virgin male and
614 female flies of a given cross were aspirated without anesthetization to a cell culture well; after 6 total
615 crosses were set up, the plate was videotaped for a contiguous 3-hour period. The six cross
616 combinations assessed in any particular video trial were randomized to account for variance that might
617 otherwise be explained by date. As in the 4x4 mating assay, we performed 5 replicates of all possible
618 population combinations in reciprocal.

619 Behavioral features were analyzed and scored manually by the same individual to avoid
620 subjective variation among researchers. Three courtship behaviors—male display events, male tapping
621 events, and male licking events—in addition to copulation were scored in each 1x1 trial using the
622 following criteria. A male “display” was counted when a male performed a combination of back and
623 forth movements and occasional wing flicks while maintaining sustained orientation in front of and
624 facing the female. “Tapping” events were defined when a male used his tarsus to touch the abdomen of
625 the female when oriented behind her. “Licking” events were defined when the male’s mouthparts

626 contacted the female genital arch. For male display, tapping, and licking events, individual events were
627 scored separately only if a different behavior (including sitting still/walking away) was observed
628 between instances of the defined behavior. This criterion minimized overcounting of discrete behavioral
629 events, especially those with difficult to view aspects such as number of times a male extruded
630 mouthparts during a contiguous licking event. In addition to these behaviors, copulation success and
631 latency to copulation were also recorded for each trial. Note that females also engage in tapping and
632 other behaviors, but because these appear to be less consistent and are more difficult to observe and
633 score, they were not addressed in this study.

634

635 *Extraction and quantification of cuticular hydrocarbons*

636 Cuticular hydrocarbons were extracted from pooled samples by placing five 7-day old virgin flies
637 of a single sex and species identity in a 1.8 mL glass vial (Wheaton 224740 E-C Clear Glass Sample Vials)
638 with 120 μ L of hexane (Sigma Aldrich, St Louis, MO, USA) spiked with 10 μ g/mL of hexacosane (Sigma
639 Aldrich). After 20 minutes, 100 μ L of the solution was removed to a sterilized 1.8 mL glass vial (Wheaton
640 224740 E-C Clear Glass Sample Vials) and allowed to evaporate overnight under a fume hood. Extracts
641 were stored at -20 °C until analysis. Five replicate samples consisting of 5 flies per sample (25 flies total)
642 were prepared for each sample type, and all replicates were extracted on the same day.

643 Gas chromatography mass spectrometry (GC/MS) analysis was performed on a 7820A GC
644 system equipped with a 5975 Mass Selective Detector (Agilent Technologies, Inc., Santa Clara, CA, USA)
645 and a HP-5ms column ((5%-Phenyl)-methylpolysiloxane, 30 m length, 250 μ m ID, 0.25 μ m film thickness;
646 Agilent Technologies, Inc.). Electron ionization (EI) energy was set at 70 eV. One microliter of the sample
647 was injected in splitless mode and analyzed with helium flow at 1 mL/ min. Two different temperature
648 gradients were used depending on the sample type. For CHC analysis of unmanipulated males and
649 females of each species, the following parameters were used: column was set at 50 °C for 0 min,

650 increased to 210 °C at a rate of 35 °C/min, then increased to 280 °C at a rate of 3 °C/min. The MS was set
651 to detect from m/z 33 to 500. For analysis of samples from perfuming trials, the parameters were
652 modified to increase resolution and sensitivity for less abundant compounds: the column was set at 40
653 °C and held for 3 min, increased to 200 °C at a rate of 35 °C/min, then increased to 280 °C at a rate of 3
654 °C/min and held for 15 minutes. Chromatograms and spectra were analyzed using MSD ChemStation
655 (Agilent Technologies, Inc.). CHCs were identified on the basis of retention time and electron ionization
656 fragmentation pattern. Compounds are identified in this study as: CXX:Y for alkenes or Me-CXX for
657 methyl-branched alkanes, where XX indicates the length of the carbon chain, and Y indicates number of
658 double bonds, e.g. C21:1 is a 21-carbon alkene with a single double bond.

659 The abundance of each compound was quantified by normalizing the area under each CHC peak
660 to the area of the hexacosane signal using homebuilt peak selection software (personal correspondence,
661 Dr. Scott Pletcher, Univ. of Michigan).

662

663 *Perfuming manipulation and mating assay*

664 'Perfuming' involves co-housing target flies in vials filled predominantly with flies of a desired
665 donor identity, so that the CHC profile of the target flies is altered via physical transfer of CHCs from
666 donor flies (Coyne et al. 1994, Dyer et al. 2014, Serrato-Capuchina et al. 2020). Perfuming was
667 performed by placing 2 'target' males with 15 'donor' males within a single vial. All males were 1-day old
668 virgins when perfuming vials were established, and the wings of donor males were removed (under
669 anesthetic) to distinguish them from target males. For the hetero-population perfuming treatments,
670 target males were co-housed with donor males of a different population; same-population (control)
671 treatments paired donor and target males of the same identity. Following 7 days of perfuming, 4 male
672 flies from the same perfuming conditions were transferred (without anesthetization) to vials containing
673 4 female SC *D. americana*. Within each experiment (Nov-SC, or NE-SC), we ran one trial of each

674 perfuming condition (2 heterospecific-perfumed types, and 2 conspecific-perfumed types) in parallel on
675 the same day (four 4x4 trials in total).

676 For CHC analysis, males were perfumed as described for the perfumed mating assay, for both
677 Nov-SC and NE-SC experimental pairs, with the exception that 2-3 target males (rather than just 2) were
678 co-housed with 15-18 donor males, enabling 2 parallel perfuming vials to generate 5 target male flies
679 per identity, for each individual CHC extraction. This was then replicated 4 times for each identity to
680 reach N=4 biological replicates for this analysis.

681

682 *Candidate gene selection*

683 Our candidate list was generated by searching Flybase ([Flybase.org](https://flybase.org)) for annotated *Drosophila*
684 *melanogaster* genes with one of the protein-coding domains (as identified by InterProt) that have
685 known functions in CHC synthesis (Pardy et al. 2018): “fatty acid desaturase”, “fatty acid desaturase
686 domain”, “Cyp4g”, “ELO family”, or “fatty-acid-synthase”—resulting in an initial list of 34 genes. To this
687 we added the pigmentation genes *ebony* and *tan* as they have been shown to alter CHC variation among
688 both *D. melanogaster* (Massey et al. 2019) and *D. americana* group species (Lamb et al. 2020). With
689 these 36 genes, we identified orthologs in *Drosophila virilis* (via Flybase using OrthoDB v9.1, Zdobnov et
690 al. 2017) and then evaluated whether each of these loci had transcript expression in our three
691 populations. To do so, we used the BLASTn function of BLAST+ version 2.6.0 (Camacho et al. 2009) to
692 search for matches between the *D. virilis* orthologs and previously published whole-body transcriptome
693 data generated from the same three populations using RNA-seq (Davis and Moyle 2020). Our analyses
694 used only gene expression data from the control (ambient) conditions for both males and females from
695 this study, and excluded any desiccation stress treatment data. Of the 36 initial genes (listed in Table
696 S9), 30 were found to have unambiguous 1-to-1 orthologs in *D. virilis* and, of these, 23 had transcripts
697 present within the Davis and Moyle (2020) dataset. This final set of 23 genes was used to evaluate gene

698 expression and sequence variation among our three lines. For downstream analyses, we also identified
699 alleles of these 23 loci in a genome assembly of *D. americana* Anderson (15010-0951.00, also referred to
700 as A01) generated by Kim et al. 2020, using the BLASTn function of BLAST+ version 2.6.0 (Camacho et al.
701 2009) with 1/-1 match/mismatch scoring parameters, and retaining the top BLAST hits for each locus.

702

703 *Statistical Analyses*

704 All statistical analyses and figure construction in this study was performed with R version 3.4.3.
705 For the unperfumed 4x4 mating dataset, we used Kruskal-Wallis tests to compare copulation success
706 within 3 hours of observation with male or female species identity (one test for each sex). In addition,
707 we used Wilcoxon rank sum tests to perform post-hoc pairwise comparisons for each sex to evaluate
708 which species differed from one another in female acceptance of males or in male courtship success of
709 females. We also calculated the reproductive isolation index RI_1 for prezygotic barriers as defined by
710 Sobel and Chen (2014). This index is appropriate for comparisons between no-choice tests, and
711 described by the equation $RI_1 = 1 - (\text{heterospecific success})/(\text{conspecific success})$.

712 In 1x1 mating trials, mating rate was evaluated using a logistic regression with a chi-square test.

713 For copulation latency, a 2-way ANOVA was performed with latency in minutes as the dependent
714 variable, to test for the effects of male identity, female identity, and their interaction. This was followed
715 by a post-hoc Tukey HSD in which we assessed which male identities (populations) were specifically
716 different for copulation latency. For each of the three courtship behaviors (displays, tappings and
717 lickings), we converted the count data for each trial to a rate per unit time within a trial, by dividing the
718 recorded counts for each trait by the latency to copulation (in minutes) or, if no copulation occurred, the
719 maximum amount of observed time (180 minutes). Describing male behaviors in terms of rates accounts
720 for differences among males in their courtship efficiency; for example, it allows us to differentiate males
721 that performed fewer courtship behaviors because they were rapidly accepted by a female, from males

722 that displayed lower courtship intensity across the total 3 hour monitored period. For each of the three
723 behavior rates (display-rate, tap-rate, lick-rate) as dependent variables, we performed an ANOVA with
724 male identity, female identity, and their interaction as independent variables.

725 The perfumed 4x4 mating experiment was analyzed using planned contrasts that compared the
726 mating success of males that had the same target identity but different (con- versus hetero-specific)
727 donor perfumes, when paired with SC *D. americana* females. This enabled us to specifically assess the
728 effects of donor perfume variation on mating success of a given target male species. Each pairwise test
729 was performed using a non-parametric Mann-Whitney U test.

730 Our primary analyses of differences in CHC composition were done after summarizing major
731 axes of variation in CHC phenotypes using a set of Principal Component Analyses (PCA). Separate PCAs
732 were performed on each CHC experiment within this study: one PCA for the initial (unperfumed)
733 parental populations (denoted U-PCA), and one PCA for each of the perfumed experimental pairs—Nov-
734 SC (N-PCA) and NE-SC (A-PCA)(Figure S2). Within each dataset, a one-way ANOVA was used on each of
735 the first 3 PCs to examine effects of sex and species (for the unperfumed dataset) or male perfume
736 identity (in each perfuming study) on CHC composition. Additionally, for the perfumed datasets, T-tests
737 were used to compare differences in PC values between target males that were paired with different
738 (con- and hetero-specific) donor males to assess the effects of our perfuming manipulation on major
739 axes of CHC variation. Factor loadings for N-PC an A-PC analyses, as well as individual compound
740 differences in perfuming pairs can be found in in the supplement (Tables S10, S11, S12 and Figures S1,
741 S2).

742 For all gene expression analyses, expression is quantified in transcripts per million (TPM), and
743 therefore is normalized within each sample. Here we analyzed datasets separated by sex, as Davis and
744 Moyle (2020) showed that the majority of genes have differential expression based on sex, whereas our
745 primary interest here is in differences between species that might be implicated in female mating

746 choices and male CHC profile variation. With the dataset for each sex, we ran one-way ANOVAs on TPM
747 of every expressed locus (11301 genes total)—including our 23 target candidate genes—to determine
748 loci for which gene expression varied by population. Each gene was ranked according to their resulting
749 *F*-value (Table 3; un-corrected *P*-values are given in the supplement (Table S13)). This allowed us to
750 evaluate which candidate genes had more pronounced expression differences between populations,
751 compared to all other genes in the dataset. Candidate genes with greater differential expression
752 between populations than the majority of the transcriptome could suggest these genes impact observed
753 phenotypic differences, even if the number of tests performed make finding significance at alpha = 0.05
754 difficult.

755 We also estimated rates of nonsynonymous to synonymous substitutions (d_N/d_S) for 4397 genes
756 in this transcriptome-wide dataset, to quantify molecular evolution transcriptome-wide in this group
757 and to evaluate evidence for positive selection specifically in candidate loci. We used a pipeline for
758 obtaining genome-wide estimates of d_N/d_S modified from Wu et al. 2018. First, as in Davis and Moyle
759 2020, transcript sequences from each population were aligned to the *D. virilis* reference genome
760 (Flybase version 1.7, www.flybase.org) to identify loci with expression in the populations studied here.
761 Then, for each gene with transcripts present in all populations and coding sequence (CDS) annotated in
762 the *D. virilis* reference, a consensus fasta was generated for each line (population) for the longest splice
763 variant of a given gene. These consensus fasta sequences were then aligned to each other using PRANK
764 (Löytynoja & Goldman, 2005) with codons enforced and ten bootstrap replicates, allowing us to obtain
765 orthologous gene sequence alignments among the three populations used here and the *D. virilis*
766 outgroup. We then calculated d_N/d_S from these aligned sequences in PAML v4.9 (Yang 2007) using model
767 M0 in CodeML—a maximum likelihood model for codon substitution. As PAML uses a tree-based model
768 for computing d_N/d_S that is sensitive to use of the correct gene tree for a given gene (Mendes et al.,
769 2016) consensus gene trees were constructed individually for each gene using RAxML v8.3 with the

770 GTRGAMMA model with 100 bootstraps (Stamatakis, 2014). Lastly, for both CG17821 and CG18609—
771 genes with shared derived alleles for NE *D. americana* and *D. novamexicana*—we also computed the
772 d_N/d_S value using only sequences for *D. virilis* and SC *D. americana* to determine if observed estimates of
773 protein evolution in these genes is limited to the derived pair or if this pattern is consistent across the
774 clade. Full results of d_N/d_S for each gene are reported in the supplementary file, with annotation of any
775 known function of orthologs (according to Flybase) for the 100 loci with the highest estimated rates of
776 protein evolution.

777 To evaluate possible introgression of candidate gene alleles between populations in this group,
778 we constructed additional gene trees for each candidate gene using orthologs from the Anderson IN *D.*
779 *americana* genome (from Kim et al. 2020) in place of our western (NE) *D. americana* sequences using
780 RAxML v8.3 (Stamatakis, 2014), with alignments created using PRANK. Additional gene trees were
781 generated in the same manner for neighboring genes within 50 kbp around CG17821/CG18609, to
782 estimate size of a window of shared ancestry.

783 To assess evidence for genome-wide introgression, we used our transcriptome data in
784 conjunction with the *D. virilis* genome to generate a genome-wide set of SNPs for our three focal
785 populations and the *D. virilis* outgroup. To do so, we used bcftools (Li 2011) to generate a VCF (variant
786 calling format) file and call SNP sites between the 4 taxa after filtering for low depth and masking
787 heterozygous sites from individual taxa. With this, we calculated Patterson's *D*-statistic (Durand et al.
788 2011) using the Dtrios program from Dsuite (Malinsky et al. 2020) to calculate the 3 taxa *D*-statistic as
789 well as an overall *P*-value using standard errors generated from the default 20 jackknife blocks. We used
790 (((SC *americana*, NE *americana*), *novamexicana*), *virilis*)(figure 3B top tree) as the expected species tree
791 topology for this analysis.

792

793 **Acknowledgements**

794 We would like to thank Matthew Gibson for help with implementing molecular evolution analyses, Zinan
795 Wang for advice about candidate gene selection, Bernard Kim for sequencing the *Drosophila americana*
796 genome and providing assemblies, Scott Pletcher for sharing hydrocarbon analysis software, and
797 Jonathan Massey for connecting JSD and LCM with JYY.

798 This work was supported by the IU Department of Biology (LCM, JSD), the Department of Defense
799 United States Army Research Office (Grant No. W911NF1610216) and the National Institutes of Health
800 (Grant No. 1P20GM125508) awarded to JYY. The GC/ MS analysis was performed in the UHM Microbial
801 Genetics and Analytical Laboratory (supported by NIH Grant No. 1P20GM125508).

802

803

804 **Table 1: Copulation rates and latency for each cross in unperfumed 4x4 and 1x1 mating trials. Isolation**
805 **index included is RI₁ as defined by Sobel and Chen (2014), and uses values from the 4x4 mating trials.**

Female species	Male species	4x4 trials		1x1 trials	
		Mating rate ^a (mean \pm SE)	Mating rate ^a (mean)	Cop. latency (mean \pm SE) ^b	Isolation Index (RI ₁)
<i>D. novamexicana</i>	<i>D. novamexicana</i>	0.90 \pm 0.06	1.00	69.89 \pm 22.73	
	NE <i>D. americana</i>	0.69 \pm 0.12	0.60	147.48 \pm 27.00	0.233
	SC <i>D. americana</i>	0.71 \pm 0.18	0.60	83.63 \pm 39.70	0.211
NE <i>D. americana</i>	<i>D. novamexicana</i>	1.00 \pm 0	0.20	158.33 \pm 21.67	0
	NE <i>D. americana</i>	1.00 \pm 0	0.60	123.46 \pm 29.01	
	SC <i>D. americana</i>	0.50 \pm 0.18	0.60	99.42 \pm 34.74	0.5
SC <i>D. americana</i>	<i>D. novamexicana</i>	0.00 \pm 0	0.00	180 \pm 0	1
	NE <i>D. americana</i>	0.40 \pm 0.14	0.60	99.42 \pm 34.74	0.52
	SC <i>D. americana</i>	0.85 \pm 0.06	0.80	50.32 \pm 33.07	

^a n = 5, rate is a proportion out of maximum possible matings (4 or 1)

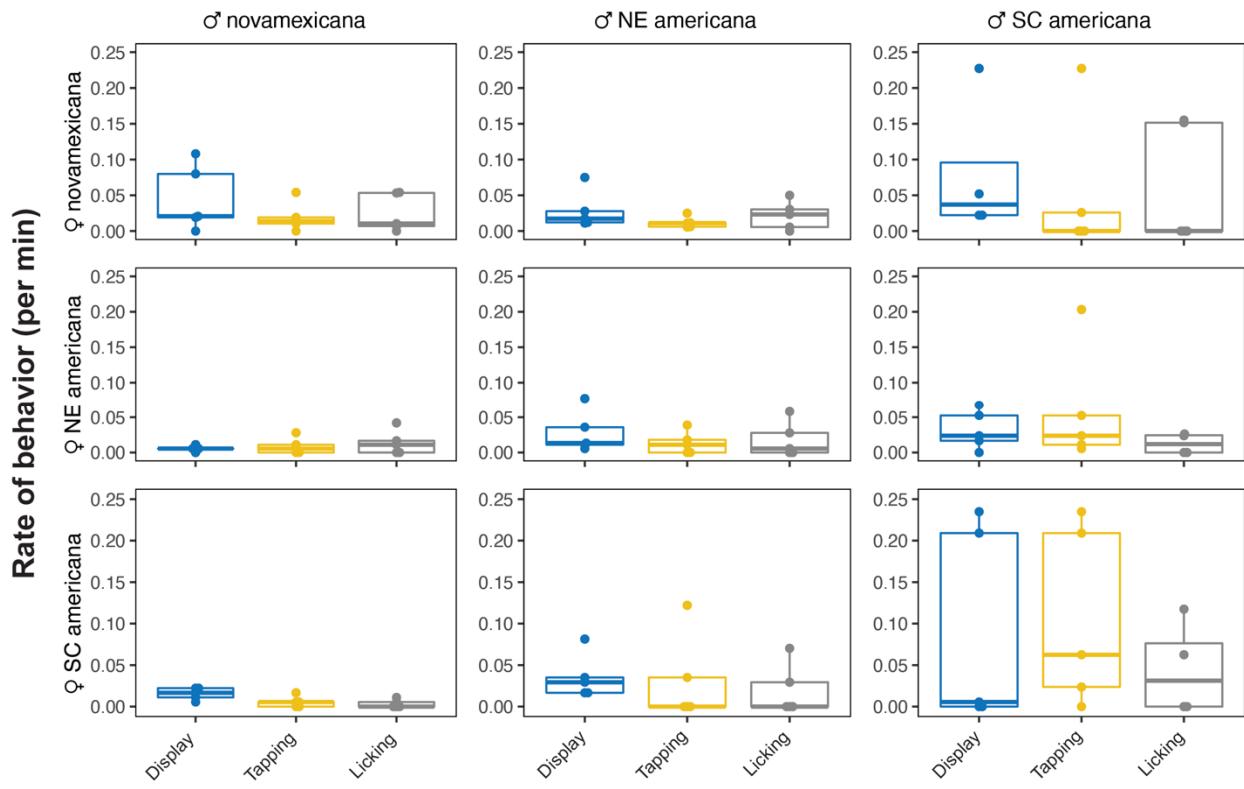
^b n = 5, units are in minutes. Unmated trials are scored as a latency of 180 min—the maximum time observed.

806
807
808
809

Table 2: Mean copulation success (number of matings out of 4 per trial) with SC *D. americana* females for each perfuming identity in manipulated (perfumed) 4x4 mating assays.

Target male	Donor male	Copulation success (Mean \pm SE)	Pairwise Mann-Whitney U test		
			Nov-SC pair	U-score	P-value
<i>D. novamexicana</i>	<i>D. novamexicana</i>	0.25 \pm 0.15	} 0	0.0247	
	SC <i>D. americana</i>	0.94 \pm 0.063			
SC <i>D. americana</i>	SC <i>D. americana</i>	1.00 \pm 0	} 0	0.018	
	<i>D. novamexicana</i>	0.19 \pm 0.063			
NE-SC pair					
NE <i>D. americana</i>	NE <i>D. americana</i>	0.44 \pm 0.12	} 5.5	0.54	
NE <i>D. americana</i>	SC <i>D. americana</i>	0.56 \pm 0.12			
SC <i>D. americana</i>	SC <i>D. americana</i>	1.00 \pm 0	} 0	0.018	
SC <i>D. americana</i>	NE <i>D. americana</i>	0.50 \pm 0.063			

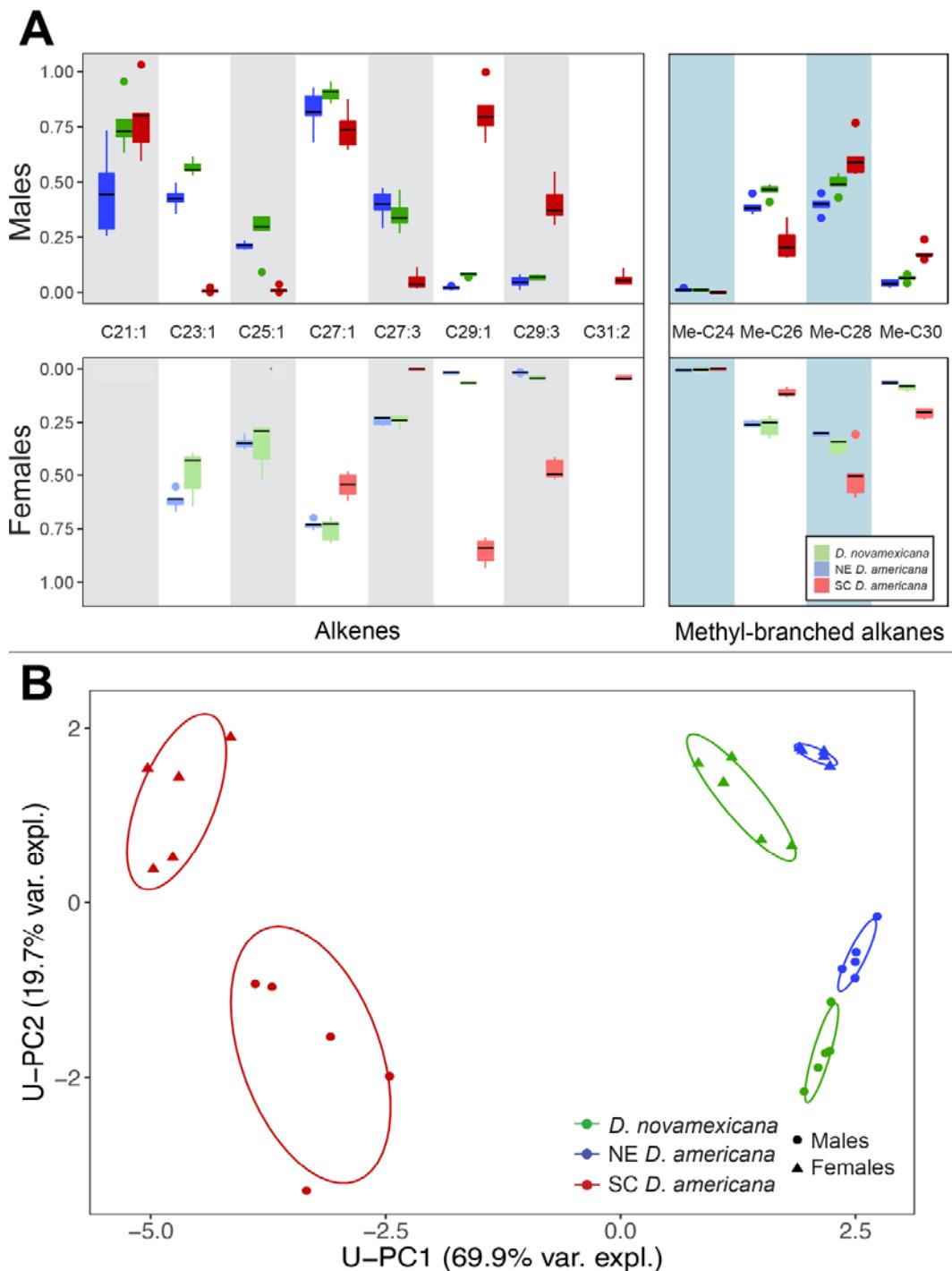
Note: n = 5 for all crosses


810
811

812 **Table 3: Molecular evolution (d_N/d_S) and species differences in quantitative gene expression for 23**
 813 **candidate genes associated with CHC function, analyzed separately by sex, with F -value of ANOVA test**
 814 **and rank compared to all genes in dataset. d_N/d_S of all genes reported in supplementary file.**

Candidate gene	<i>D. virilis</i> ortholog	InterProt domain	Males		Females	
			d_N/d_S ^a	F -value ^b	Rank %ile ^b	F -value ^b
Cyp4g1	GJ15981	Cyp4g	0.0469	0.143	95%	0.158
Cyp4g15	GJ19152	Cyp4g	0.0862	2.07	33%	1.05
Cyt-b5-r	Cyt-b5-r	fatty-acid desaturase	0.0001	2.32	29%	0.736
ifc	GJ15437	fatty-acid desaturase	0.0266	0.122	96%	0.74
CG17928	GJ17306	fatty-acid desaturase	0.133	1.09	56%	0.0233
CG8630	GJ10413	fatty-acid desaturase	0.118	3.48	19%	1.46
CG9743	GJ10408	fatty-acid desaturase	0.0712	2.83	24%	1.75
desat2	desat2	fatty-acid desaturase	0.0780	0.216	93%	0.903
Baldspot	GJ12451	elongase	0.0280	0.814	68%	0.916
bond	GJ24166	elongase	0.0503	0.710	53%	0.949
ELOVL	GJ24115	elongase	0.0291	9.61	6%	2.67
CG5326	GJ24664	elongase	0.0081	4.14	16%	0.138
CG17821	GJ22070	elongase	0.284	3.50	19%	17.2
CG18609	GJ22071	elongase	0.249	8.19	7%	1.85
CG30008	GJ22296	elongase	0.151	2.19	31%	4.33
CG31522	GJ24118	elongase	0.0422	0.744	71%	0.380
CG31523	GJ24117	elongase	0.0410	6.57	9%	0.0481
CG33110	GJ24167	elongase	0.0178	0.466	83%	0.436
CG6660	GJ14350	elongase	0.387	1.15	54%	1.20
FASN1	GJ21736	fatty-acid-synthase	0.0274	1.42	46%	0.526
FASN2	GJ21725	fatty-acid-synthase	0.0979	1.83	37%	1.02
ebony	GJ14444	pigment	0.0280	0.673	33%	1.15
tan	GJ14875	pigment	0.0269	1.49	45%	0.347

^aBold genes in this column indicate d_N/d_S values over 1 standard deviation from mean d_N/d_S value of 4397 genes analyzed.


^bBold genes in these columns indicate genes in the top 10% of differentially expressed genes within sex.

816
817
818
819
820
821

Figure 1: Male courtship behavior rates in 1x1 mating assays across all cross types. Points represent individual trials, with boxes showing quartiles and the mean as a solid bar. Males (columns) show significant differences in display rate and tap rate, and marginal differences in lick rate. Rates did not differ based on female identity (rows) or male x female interaction (see results). Bar and whiskers indicate mean and standard error (SE).

822

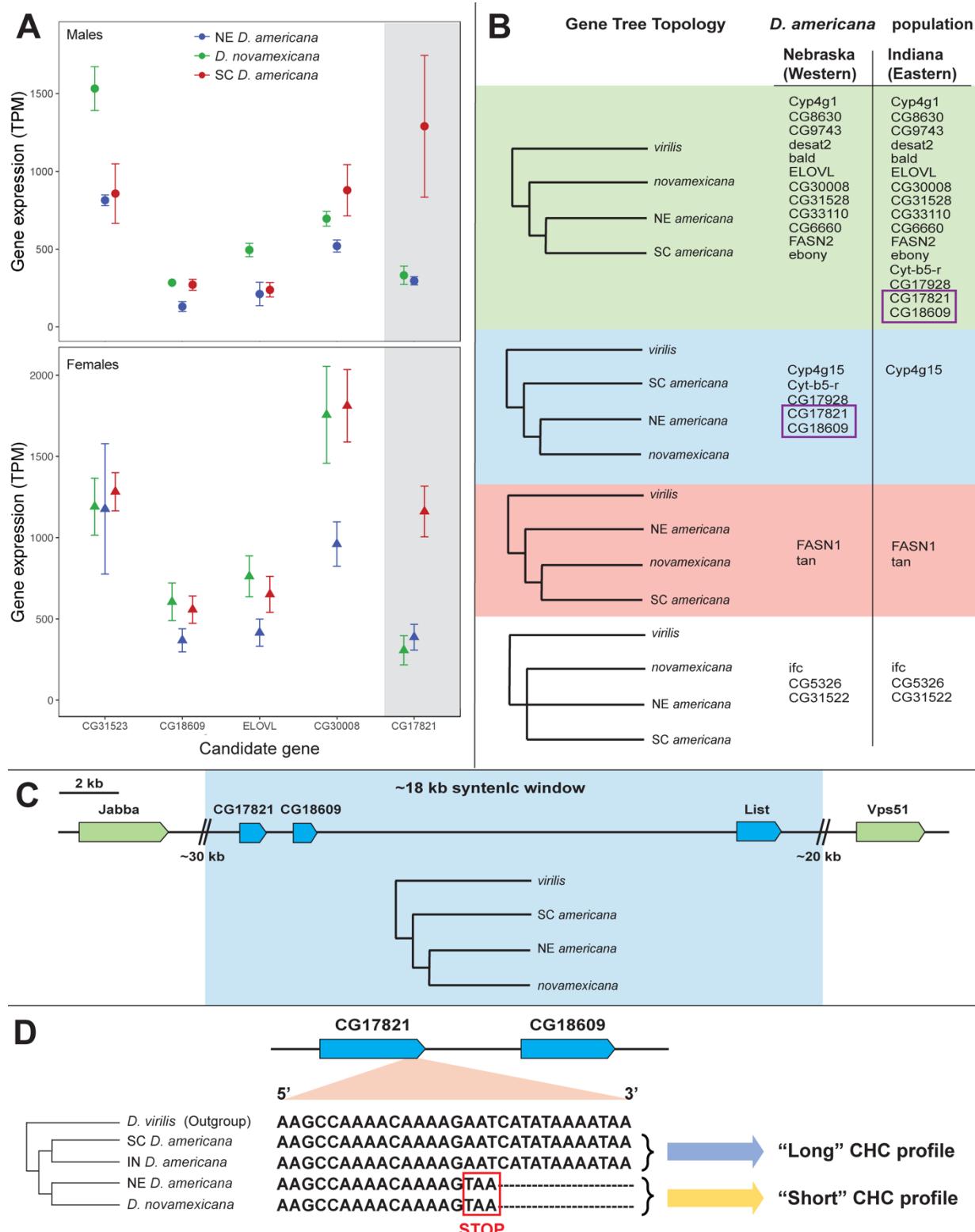
823

824

825

826

827


828

829

830

Figure 2: Cuticular hydrocarbon composition of unmanipulated males and females of each species stock. A) Relative log-scale abundance of compounds for males (upper) and females (lower), for each major compound type (line = mean, box = central quartile, whiskers = S.E.). $n = 5$ samples for each sex and line. Test statistics for species differences are in Table S3. B) First two principal components (U-PC1 and U-PC2) of composite CHC variation among males (circle) and females (triangle), with percent of total variance explained. Ellipses indicate 90% bivariate normal density for each species-sex group. Species and sex significantly influenced both U-PC1 and U-PC2.

831

832

833 **Figure 3: CHC candidate gene expression, genealogical relationships, and sequence variation among *D. americana* group lines. A) Gene expression variation showing mean and standard error between focal**

834

835 species lines for candidate genes with the largest differences in either males (upper, circles) or
836 females (lower, triangles). Gene expression is measured in transcripts per million (TPM, n = 3 for each
837 sample). B) Gene tree topologies for all 23 candidate genes using either western (NE) or eastern (IN)
838 populations for NE *D. americana*. C) Schematic of loci (green/blue boxes) in the genomic window
839 surrounding candidates CG17821 and CG18609. Blue boxes indicate a genealogy that groups the NE *D.*
840 *americana* population with *D. novamexicana*; gene topology of shaded blue region displayed below
841 line. Green boxes indicate loci with genealogies matching the expected species tree. D) 3' terminal
842 nucleotides and occurrence of inferred ancestral and derived (truncated) allele in CG17821 among
843 lineages with sequence data.

844 **References**

845 Bartelt, R. J., Arnold, M. T., Schaner, A. M., & Jackson, L. L. (1986). Comparative Analysis of Cuticular
846 Hydrocarbons in the *Drosophila virilis* Species Group. *Comparative Biochemistry and Physiology*,
847 83B(4), 731–742.

848 Basolo, A. L. (1995). Phylogenetic evidence for the role of a pre-existing bias in sexual selection.
849 *Proceedings. Biological Sciences*, 259(1356), 307–311.

850 Baxter, C., Mentlik, J., Shams, I., & Dukas, R. (2018). Mating success in fruit flies: courtship interference
851 versus female choice. *Animal Behaviour*, 138, 101–108.

852 Billeter, J. C., Atallah, J., Krupp, J. J., Millar, J. G., & Levine, J. D. (2009). Specialized cells tag sexual and
853 species identity in *Drosophila melanogaster*. *Nature*, 461(7266), 987–991.

854 Blight, W. C., & Romano, A. (1953). Notes on a Breeding Site of *Drosophila americana* Near St. Louis,
855 Missouri. *The American Naturalist*, 87(833), 111–112.

856 Blomquist G. J., Bagnères A. G. (2010) Insect hydrocarbons: biology, biochemistry, and chemical ecology.
857 Cambridge University Press, New York

858 Bontonou, G., & Wicker-Thomas, C. (2014). Sexual Communication in the *Drosophila* Genus. *Insects*,
859 5(2), 439–458.

860 Butlin, R., Debelle, A., Kerth, C., Snook, R. R., Beukeboom, L. W., Castillo Cajas, R. F., Diao, W., Maan, M.
861 E., Paolucci, S., Weissing, F. J., van de Zande, L., Hoikkala, A., Geuverink, E., Jennings, J., Kankare,
862 M., Knott, K. E., Tyukmaeva, V. I., Zoumadakis, C., Ritchie, M. G., ... Schilthuizen, M. (2012). What
863 do we need to know about speciation? *Trends in Ecology & Evolution*, 27(1), 27–39.

864 Caletka, B. C., & McAllister, B. F. (2004). A genealogical view of chromosomal evolution and species
865 delimitation in the *Drosophila virilis* species subgroup. *Molecular Phylogenetics and Evolution*,
866 33(3), 664–670.

867 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009).
868 BLAST+: Architecture and applications. *BMC Bioinformatics*, 10, 1–9.

869 Chung, H., & Carroll, S. B. (2015). Wax, sex and the origin of species: Dual roles of insect cuticular
870 hydrocarbons in adaptation and mating. *BioEssays*, 822–830.

871 Chung, H., Loehlin, D., Dufour, H., Vaccarro, K., Millar, J. G., & Carroll, S. B. (2014). A Single Gene Affects
872 Both Ecological Divergence and Mate Choice in *Drosophila*. *Science*, 257082.

873 Combs, P. A., Krupp, J. J., Khosla, N. M., Bua, D., Petrov, D. A., Levine, J. D., & Fraser, H. B. (2018). Tissue-
874 Specific cis-Regulatory Divergence Implicates eloF in Inhibiting Interspecies Mating in *Drosophila*.
875 *Current Biology*, 28(24), 3969–3975.e3.

876 Coyne, J. A., Kim, S. Y., Chang, A. S., Lachaise, D., & Elwyn, S. (2002). Sexual isolation between two sibling
877 species with overlapping ranges: *Drosophila santomea* and *Drosophila yakuba*. *Evolution*, 56(12),
878 2424–2434.

879 Coyne, J. A., & Oyama, R. (1995). Localization of pheromonal sexual dimorphism in *Drosophila*
880 *melanogaster* and its effect on sexual isolation. *Proceedings of the National Academy of Sciences of*
881 *the United States of America*, 92(21), 9505–9509.

882 Coyne, J. A., & Orr, H. A., 2004. *Speciation*. Sinauer Associates, Sunderland, MA

883 Coyne, J. A., Crittenden, A. P., & Maht, K. (1994). Genetics of a Pheromonal Difference Contributing to
884 Reproductive Isolation in *Drosophila*. *Science*, 265(5177), 1461–1464.

885 Curtis, S., Sztepanacz, J. L., White, B. E., Dyer, K. a., Rundle, H. D., & Mayer, P. (2013). Epicuticular
886 Compounds of *Drosophila subquinaria* and *D. recens*: Identification, Quantification, and Their Role
887 in Female Mate Choice. *Journal of Chemical Ecology*, 39(5), 579–590.

888 Davis, J. S., & Moyle, L. C. (2020). Constitutive and plastic gene expression variation associated with
889 desiccation resistance differences in the *Drosophila americana* species group. *Genes*, 11(146).

890 Davis, J. S., & Moyle, L. C. (2019). Desiccation resistance and pigmentation variation reflects bioclimatic
891 differences in the *Drosophila americana* species complex. *BMC Evolutionary Biology*, 19(1), 1–14.

892 Durand, E. Y., Patterson, N., Reich, D., & Slatkin, M. (2011). Testing for ancient admixture between
893 closely related populations. *Molecular Biology and Evolution*, 28(8), 2239–2252.

894 Dyer, K. a, White, B. E., Sztepanacz, J. L., Bewick, E. R., & Rundle, H. D. (2014). Reproductive character
895 displacement of epicuticular compounds and their contribution to mate choice in *Drosophila*
896 *subquinaria* and *Drosophila recens*. *Evolution; International Journal of Organic Evolution*, 68, 1163–
897 1175.

898 Findlay, G. D., Yi, X., MacCoss, M. J., & Swanson, W. J. (2008). Proteomics reveals novel *Drosophila*
899 seminal fluid proteins transferred at mating. *PLoS Biology*, 6(7), 1417–1426.

900 Franssen, S. U., Nolte, V., Tobler, R., & Schlotterer, C. (2015). Patterns of linkage disequilibrium and long
901 range hitchhiking in evolving experimental *drosophila melanogaster* populations. *Molecular*
902 *Biology and Evolution*, 32(2), 495–509.

903 Frentiu, F. D., & Chenoweth, S. F. (2010). Clines in cuticular hydrocarbons in two *Drosophila* species with
904 independent population histories. *Evolution*, 64(6), 1784–1794.

905 Gaertner, B. E., Ruedi, E. A., McCoy, L. J., Moore, J. M., Wolfner, M. F., & Mackay, T. F. C. (2015).
906 Heritable variation in courtship patterns in *drosophila melanogaster*. *G3: Genes, Genomes,*
907 *Genetics*, 5(4), 531–539.

908 Gao, Z., Przeworski, M., & Sella, G. (2015). Footprints of ancient-balanced polymorphisms in genetic
909 variation data from closely related species. *Evolution*, 69(2), 431–446.

910 Gaudet, P., Livstone, M. S., Lewis, S. E., & Thomas, P. D. (2011). Phylogenetic-based propagation of
911 functional annotations within the Gene Ontology consortium. *Briefings in Bioinformatics*, 12(5),
912 449–462.

913 Gibbs, A. G., Fukuzato, F., & Matzkin, L. M. (2003). Evolution of water conservation mechanisms in
914 *Drosophila*. *The Journal of Experimental Biology*, 206, 1183–1192.

915 Havens, J. A., & Etges, W. J. (2013). Premating isolation is determined by larval rearing substrates in
916 cactophilic *Drosophila mojavensis*. IX. Host plant and population specific epicuticular hydrocarbon
917 expression influences mate choice and sexual selection. *Journal of Evolutionary Biology*, 26(3),
918 562–576.

919 He, Z., Luo, Y., Shang, X., Sun, J. S., & Carlson, J. R. (2019). Chemosensory sensilla of the *Drosophila* wing
920 express a candidate ionotropic pheromone receptor. *PLoS Biology*, 17(5), 1–27.

921 Hekmat-Scafe, D. S., Scafe, C. R., McKinney, A. J., & Tanouye, M. A. (2002). Genome-Wide analysis of the
922 odorant-binding protein gene family in *Drosophila melanogaster*. *Genome Research*, 12(9), 1357–
923 1369.

924 Hoikkala, A., & Lumme, J. (1987). The Genetic Basis of Evolution of the Male Courtship Sounds in the
925 *Drosophila virilis* Group. *Evolution*, 41(4), 827–845.

926 Hollocher, H., Ting, C. T., Wu, M. L., & Wu, C. I. (1997). Incipient speciation by sexual isolation in
927 *Drosophila melanogaster*: Extensive genetic divergence without reinforcement. *Genetics*, 147(3),
928 1191–1201.

929 Hudson, R. R., & Coyne, J. A. (2002). Mathematical Consequences of the Genealogical Species. *Evolution*,
930 56(8), 1557–1565.

931 Jezovit JA, Levine JD, Schneider J. Phylogeny, environment and sexual communication across the
932 *Drosophila* genus. *J Exp Biol.* 2017;220(Pt 1):42-52.

933 Kaneshiro, K. Y. (1980). Sexual Isolation, Speciation and the Direction of Evolution. *Evolution*, 34(3), 437–
934 444.

935 Kaneshiro, K. Y. (1976). Ethological Isolation and Phylogeny in the Planitibia Subgroup of Hawaiian
936 *Drosophila*. *Evolution*, 30(4), 740.

937 Kim, B. Y., Wang, J. R., Miller, D. E., Barmina, O., Delaney, E., Thompson, A., Comeault, A. A., Peede, D.,
938 Agostino, E. R. R. D., Aguilar, J. M., Haji, D., Matsunaga, T., Armstrong, E. E., Zych, M., et. Al. (2020).
939 Highly contiguous assemblies of 101 drosophilid genomes Bernard. *BioRxiv*.

940 Lamb, A. M., Wang, Z., Simmer, P., Chung, H., Patricia, J., States, U., Lansing, E., States, U., Biology, E.,
941 Program, B., Lansing, E., States, U., Biology, E., Program, B., Arbor, A., States, U., & Wittkopp, P. J.
942 (2020). ebony affects pigmentation divergence and cuticular hydrocarbons in *Drosophila*
943 *americana* and *D. novamexicana*. *Frontier in Ecology and Evolution*, 8(June), 1–23.

944 Laughlin, J. D., Ha, T. S., Jones, D. N. M., & Smith, D. P. (2008). Activation of Pheromone-Sensitive
945 Neurons Is Mediated by Conformational Activation of Pheromone-Binding Protein. *Cell*, 133(7),
946 1255–1265.

947 Leal, W. S. (2013). Odorant reception in insects: Roles of receptors, binding proteins, and degrading
948 enzymes. *Annual Review of Entomology*, 58, 373–391.

949 Legendre, A., Miao, X. X., Da Lage, J. L., & Wicker-Thomas, C. (2008). Evolution of a desaturase involved
950 in female pheromonal cuticular hydrocarbon biosynthesis and courtship behavior in *Drosophila*.
951 *Insect Biochemistry and Molecular Biology*, 38(2), 244–255.

952 Löytynoja, A., & Goldman, N. (2005). An algorithm for progressive multiple alignment of sequences with
953 insertions. *Proceedings of the National Academy of Sciences of the United States of America*,
954 102(30), 10557–10562.

955 Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and
956 population genetical parameter estimation from sequencing data. *Bioinformatics*, 27(21), 2987–
957 2993.

958 Malinsky, M., Matschiner, M., & Svardal, H. (2020). Dsuite - fast D-statistics and related admixture
959 evidence from VCF files. *BioRxiv*, 1–16.

960 Mas, F., & Jallon, J. M. (2005). Sexual isolation and cuticular hydrocarbon differences between
961 *Drosophila santomea* and *Drosophila yakuba*. *Journal of Chemical Ecology*, 31(11), 2747–2752.

962 Massey, J. H., Rice, G. R., Firdaus, A. S., Chen, C. Y., Yeh, S. D., Stern, D. L., & Wittkopp, P. J. (2020). Co-
963 evolving wing spots and mating displays are genetically separable traits in *Drosophila*. *Evolution*,
964 74(6), 1098–1111.

965 Massey, J. H., Akiyama, N., Bien, T., Dreisewerd, K., Wittkopp, P. J., Yew, J. Y., & Takahashi, A. (2019).
966 Pleiotropic Effects of ebony and tan on Pigmentation and Cuticular Hydrocarbon Composition in
967 *Drosophila melanogaster*. *Frontiers in Physiology*, 10.

968 Matsuo, T., Sugaya, S., Yasukawa, J., Aigaki, T., & Fuyama, Y. (2007). Odorant-binding proteins OBP57d
969 and OBP57e affect taste perception and host-plant preference in *Drosophila sechellia*. *PLoS
970 Biology*, 5(5), 0985–0996.

971 McAllister, B. F. (2002). Chromosomal and allelic variation in *Drosophila americana* : selective
972 maintenance of a chromosomal cline. *Genome*, 45(1), 13–21.

973 McGraw, L. A., Gibson, G., Clark, A. G., & Wolfner, M. F. (2004). Genes Regulated by Mating, Sperm, or
974 Seminal Proteins in Mated Female *Drosophila melanogaster* Lisa. *Current Biology*, 14, 1509–1514.

975 Morales-Hojas, R., Reis, M., Vieira, C. P., & Vieira, J. (2011). Resolving the phylogenetic relationships and
976 evolutionary history of the *Drosophila virilis* group using multilocus data. *Molecular Phylogenetics
977 and Evolution*, 60(2), 249–258.

978 Pardy, J. A., Rundle, H. D., Bernards, M. A., & Moehring, A. J. (2018). The genetic basis of female
979 pheromone differences between *Drosophila melanogaster* and *D. simulans*. *Heredity*, 122(1), 93–
980 109.

981 Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T., &
982 Reich, D. (2012). Ancient admixture in human history. *Genetics*, 192(3), 1065–1093.

983 Rajpurohit, S., Hanus, R., Vrkoslav, V., Behrman, E. L., Bergeland, A. O., Petrov, D. A., Cvacka, J., &
984 Schmidt, P. S. (2017). Adaptive dynamics of cuticular hydrocarbon in *Drosophila*. *Journal of*
985 *Evolutionary Biology*, 30(1), 66–80.

986 Reis, M., Vieira, C. P., Lata, R., Posnien, N., & Vieira, J. (2018). Origin and consequences of chromosomal
987 inversions in the virilis group of *Drosophila*. *Genome Biology and Evolution*, 10(12), 3152–3166.

988 Ritchie, M. G. (2007). Sexual Selection and Speciation. *Annual Review of Ecology, Evolution, and*
989 *Systematics*, 38(1), 79–102.

990 Roelofs, W. L., Liu, W., Hao, G., Jiao, H., Rooney, A. P., & Linn, C. E. (2002). Evolution of moth sex
991 pheromones via ancestral genes. *Proceedings of the National Academy of Sciences of the United*
992 *States of America*, 99(21), 13621–13626.

993 Ruedi, E. A., & Hughes, K. A. (2008). Natural genetic variation in complex mating behaviors of male
994 *Drosophila melanogaster*. *Behavior Genetics*, 38(4), 424–436.

995 Schemske, D. W. (2000). UNDERSTANDING THE ORIGIN OF SPECIES. *Evolution*, 54(3), 1069–1073.

996 Schluter, D. (2009). Evidence for Ecological Speciation and Its Alternative. *Science*, 323(5915), 737–741.

997 Seddon, N., Botero, C. A., Tobias, J. A., Dunn, P. O., MacGregor, H. E. A., Rubenstein, D. R., Uy, J. A. C.,
998 Weir, J. T., Whittingham, L. A., & Safran, R. J. (2013). Sexual selection accelerates signal evolution
999 during speciation in birds. *Proceedings of the Royal Society B: Biological Sciences*, 280(1766).

1000 Serrato-Capuchina, A., Schwochert, T. D., Zhang, S., & Roy, B. (2020). Pure species discriminate against
1001 hybrids in the *Drosophila melanogaster* species subgroup. *bioRxiv*

1002 Shahandeh, M. P., Pischedda, A., & Turner, T. L. (2018). Male mate choice via cuticular hydrocarbon
1003 pheromones drives reproductive isolation between *Drosophila* species. *Evolution*, 72(1), 123–135.

1004 Smadja, C., & Butlin, R. K. (2009). On the scent of speciation: The chemosensory system and its role in
1005 premating isolation. *Heredity*, 102(1), 77–97.

1006 Sobel, J. M., & Chen, G. F. (2014). Unification of methods for estimating the strength of reproductive
1007 isolation. *Evolution*, 68(5), 1511–1522.

1008 Spieth, H. T. (1951). Mating behavior and sexual isolation in the *Drosophila virilis* species group.
1009 *Behaviour*, 3(2), 105–145.

1010 Sramkoski, L. L., McLaughlin, W. N., Cooley, A. M., Yuan, D. C., & Wittkopp, P. J. (2020). Genetic
1011 architecture of a body color cline in *Drosophila americana*. *BioRxiv*.

1012 Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large
1013 phylogenies. *Bioinformatics*, 30(9), 1312–1313.

1014 Sun, J. S., Xiao, S., & Carlson, J. R. (2018). The diverse small proteins called odorant-binding proteins.
1015 *Open Biology*, 8(12).

1016 Szafer-Glusman, E., Giansanti, M. G., Nishihama, R., Bolival, B., Pringle, J., Gatti, M., & Fuller, M. T.
1017 (2008). A Role for Very-Long-Chain Fatty Acids in Furrow Ingression during Cytokinesis in
1018 *Drosophila* Spermatocytes. *Current Biology*, 18(18), 1426–1431.

1019 Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of
1020 progressive multiple sequence alignment through sequence weighting, position-specific gap
1021 penalties and weight matrix choice. *Nucleic Acids Research*, 22(22), 4673–4680.

1022 Tomaru, M., Doi, M., Higuchi, H., & Oguma, Y. (2000). Courtship song recognition in the *Drosophila*
1023 *melanogaster* complex: Heterospecific songs make females receptive in *D. melanogaster*, but not
1024 in *D. sechellia*. *Evolution*, 54(4), 1286–1294.

1025 van Doorn, G. S., Edelaar, P., & Weissing, F. J. (2009). On the Origin of Species by Natural and Sexual
1026 Selection. *Science*, 581(December), 1704–1708.

1027 Vieira, F. G., Sánchez-Gracia, A., & Rozas, J. (2007). Comparative genomic analysis of the odorant-binding
1028 protein family in 12 *Drosophila* genomes: Purifying selection and birth-and-death evolution.
1029 *Genome Biology*, 8(11).

1030 Wang, Z., Cui, Y., Song, L., & Fang, F. (2016). The hysteresis model of piezoelectric micro-positioning
1031 stage based on threshold optimization. *PLoS Biology*, 38(3), 437–440.

1032 Wilkins, M. R., Seddon, N., & Safran, R. J. (2013). Evolutionary divergence in acoustic signals: Causes and
1033 consequences. *Trends in Ecology and Evolution*, 28(3), 156–166.

1034 Wu, C. I., Hollocher, H., Begun, D. J., Aquadro, C. F., Xu, Y., & Wu, M. L. (1995). Sexual isolation in
1035 *Drosophila melanogaster*: A possible case of incipient speciation. *Proceedings of the National
1036 Academy of Sciences of the United States of America*, 92(7), 2519–2523.

1037 Wu, M., Kostyun, J. L., Hahn, M. W., & Moyle, L. C. (2018). Dissecting the basis of novel trait evolution in
1038 a radiation with widespread phylogenetic discordance. *Molecular Ecology*,

1039 Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. *Molecular Biology and Evolution*,
1040 24(8), 1586–1591.

1041 Yew, J. Y., & Chung, H. (2017). *Drosophila* as a holistic model for insect pheromone signaling and
1042 processing. *Current Opinion in Insect Science*, 24, 15–20.

1043 Yukilevich, R., & Peterson, E. K. (2019). The evolution of male and female mating preferences in
1044 *Drosophila* speciation. *Evolution*, 73(9), 1759–1773.

1045 Yukilevich, R., & True, J. R. (2008). Incipient sexual isolation among cosmopolitan *Drosophila*
1046 *melanogaster* populations. *Evolution*, 62(8), 2112–2121.

1047 Zdobnov, E. M., Tegenfeldt, F., Kuznetsov, D., Waterhouse, R. M., Simao, F. A., Ioannidis, P., Seppey, M.,
1048 Loetscher, A., & Kriventseva, E. V. (2017). OrthoDB v9.1: Cataloging evolutionary and functional
1049 annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. *Nucleic Acids*
1050 *Research*, 45(D1), D744–D749.

1051