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Abstract 

Cryo-electron tomography provides the opportunity for unsupervised discovery of endogenous complexes 

in situ. This process usually requires particle picking, clustering and alignment of subtomograms to produce 

an average structure of the complex. When applied to heterogeneous samples, template-free clustering 

and alignment of subtomograms can potentially lead to the discovery of structures for unknown endogenous 

complexes. However, such methods require useful scoring functions to measure the quality of aligned 

subtomogram clusters, which can be compromised by contaminations from misclassified complexes and 

alignment errors.  To our knowledge, a comprehensive survey to assess the effectiveness of scoring 

functions for ranking the quality of subtomogram clusters does not exist yet. Here, we provide such a study 

and assess a total of 15 scoring functions for evaluating the quality of the subtomogram clusters, which 

differ in the amount of structural misalignments and contaminations due to misclassified complexes. We 

assessed both experimental and simulated subtomograms as ground truth data sets. Our analysis shows 

that the robustness of scoring functions varies largely. Most scores are sensitive to the signal-to-noise ratio 

of subtomograms and often require Gaussian filtering as preprocessing for improved performance. Two 
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scoring functions, Spectral SNR-based Fourier Shell Correlation and Pearson Correlation in the Fourier 

domain with missing wedge correction, show a robust ranking of subtomogram clusters even without any 

preprocessing and irrespective of SNR levels of subtomograms. Of these two scoring functions, Spectral 

SNR-based Fourier Shell Correlation was fastest to compute and is a better choice for handling large 

numbers of subtomograms. Our results provide a guidance for choosing a scoring function for template-

free approaches to detect complexes from heterogeneous samples. 

1. Introduction 

Cryo-electron tomography (CryoET) has evolved as a promising tool to explore the world within a cell 

at molecular resolution (Guichard et al., 2010; Kürner et al., 2004; Nicastro et al., 2005). These studies 

have revealed the cytoskeleton organization (Chakraborty et al., 2020), assembly and disassembly of 

bacterial flagella motor (Kaplan et al., 2019), structures of actin networks and other cellular components 

(Beck and Baumeister, 2016; Gan et al., 2019; Medalia et al., 2002), membrane-associated 

macromolecules (Dunstone and de Marco, 2017) and native structures and organization of the cytoplasmic 

translation machinery, as well as nucleosome chains and filaments of the nuclear lamina in situ (Mahamid 

et al., 2016).  

With the advancement and increased automation of CryoET, it has become easier to collect a vast amount 

of tomograms in a short period. Thus, we require automated methods for the analysis of these tomograms 

as well. Over the last few years, various efforts have been made to extract relevant information from 

tomograms by semi-automated and fully-automated methods. These include use of neural-networks (Che 

et al., 2018; Chen et al., 2017; Yu and Frangakis, 2011), template-based detection (Beck et al., 2009; Böhm 

et al., 2000; Lebbink et al., 2007) and template-free pattern mining (Frazier et al., 2017; Martinez-Sanchez 

et al., 2020; Xu et al., 2011, 2012, 2019). Template-based and neural-network-based methods are 

successful in detecting complexes in tomograms. However, they are limited to discover only those 

complexes for which structures are already known. Template-free unsupervised methods stand out as they 

are capable of identifying structures of unknown complexes in tomograms.  
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We previously developed the Multi-Pattern Pursuit (MPP) (Xu et al., 2019), which allows large-scale 

template-free detection of macromolecular structures in tomograms of heterogeneous samples. The 

method performs unsupervised clustering of subtomograms into different structural classes and uses an 

iterative optimization process to select the best combination of alternative clustering results. The underlying 

structure is then retrieved by averaging the aligned subtomograms in each cluster. MPP and all other 

methods based on unsupervised subtomogram clustering require an effective scoring function for robust 

quality assessment of clusters and filtering out of unreliable results. Such a quality score can distinguish 

the homogeneous and well-aligned subtomogram clusters from contaminated and misaligned clusters. 

A variety of scoring functions have been developed for cryo-Electron Microscopy (cryoEM) density fitting 

(Vasishtan and Topf, 2011). These scoring functions measure how well the atomic structure of a complex 

fits into its electron density maps. Similarly, scoring functions have been used to compare the alignments 

between 3D electron microscopy volumes (Joseph et al., 2017). However, currently, not much attention 

has been devoted to scoring functions for assessing the overall quality of a subtomogram cluster, a set of 

aligned 3D subtomograms that likely contain the same underlying complex. Averaging these subtomograms 

produces the structure of the complex. The quality of subtomogram clusters depends on the alignment 

errors among subtomograms and whether or not all the subtomograms in a cluster contain the same 

underlying complex. These clusters of subtomograms could have been generated by supervised 

classification and alignment methods or from unsupervised (i.e., reference-free) clustering methods from 

cryo-electron tomograms of purified complexes, cell lysates or native cellular landscapes. 

In contrast to template-based methods, clusters from unsupervised methods cannot be assessed by 

comparison to known template structures as the template might be unknown. So they must be evaluated 

by cross-comparison of the similarity of aligned subtomograms. Here, we tested 15 scoring functions and 

compared their ability to rank the quality of subtomogram clusters without knowledge of template structures. 

The quality of clusters is ranked higher when they; i) are homogenous in terms of their complex composition, 

and ii) constituent subtomograms are well-aligned to each other. Scoring functions were tested on sets of 

both simulated and experimental ground truth subtomograms. For simulated tomograms, we chose five 

complexes of varying size and shape from the Protein Data Bank (PDB) (Berman et al., 2000) to realistically 
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simulate subtomograms in various different orientations and at three different SNRs (0.001, 0.01, 0.1 - 

Methods section). For the test on experimental subtomograms, we used a set of ~800kDa GroEL14 and 

GroEL14/GroES7 subtomograms that have been used in other studies as quasi-standard in the field (Section 

2.1). 

2. Methods 

2.1 Data preparation 

2.1.1 Simulated data 

As a test set, we used five protein complexes (Table 1) with varying sizes and shapes. Atomic structures 

of all the five complexes were converted into density maps using the pdb2vol program in the situs package 

(Wriggers et al., 1999) at 0.4 nm voxel spacing and bandpass filtered at 2 nm. We generated ground truth 

data sets following a previously established approach for the realistic simulation of the tomographic image 

reconstruction process. It allows the inclusion of noise, tomographic distortions due to missing wedge, and 

electron-optical factors such as Contrast Transfer Function (CTF) and Modulation Transfer Function (MTF) 

(Beck et al., 2009; Förster et al., 2008; Nickell et al., 2005; Pei et al., 2016; Xu et al., 2019). The density 

maps served as input for realistically simulating the cryo-electron imaging process with a noise-factor-SNR 

(SNR: Signal-to-Noise Ratio) of 0.001, 0.01, 0.1 and tilt angle range ±60°. Following a well-established 

procedure, subtomograms were simulated with voxel size = 0.4 nm, the spherical aberration = 2.2 mm, the 

defocus value = -7 µm, the voltage = 300 kV, the MTF corresponding to a realistic electron detector, defined 

as sinc(πω/2) where ω is the fraction of the Nyquist frequency. Finally, we use a back-projection algorithm 

(Nickell et al., 2005) to generate a subtomogram from the individual 2D micrographs generated at the 

various tilt angles (Beck et al., 2009; Xu et al., 2011). For each protein complex, we generated 1000 

subtomograms, each containing a randomly rotated complex. After simulation, the density values of each 

simulated image were normalized to zero mean and unit variance. 
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Target complex 
PDB ID 

Contaminant 
complex PDB IDs 

1F1B 2BO9 1A1S 

1FNT 1BXR 3DY4 

2GHO 1QO1 2H12 

2GLS 1KP8 1VPX 

2REC 1VPX 1VRG 

 

Table 1: PDB IDs of complexes used to generate clusters. First column shows PDB IDs of the target 

complex in the cluster and second and third column contains PDB ID of complexes with which target 

complex is contaminated with. 

2.1.2 Experimental Data 

We used experimental subtomograms previously established as benchmark sets in various studies of 

subtomogram alignment and classification(Förster et al., 2008; Heumann et al., 2011; Hrabe et al., 2012; 

Scheres et al., 2009; Xu and Alber, 2012; Yu and Frangakis, 2011). Förster et al., (2008) collected 

tomograms of ∼800 kDa GroEL14 and GroEL14/GroES7 complexes and extracted 786 subtomograms for 

these complexes (GroEL14: 214 subtomograms and GroEL14/GroES7: 572 subtomograms). We used the 

same set of subtomograms, which we aligned by PyTom (Hrabe et al., 2012) using the default parameters 

and imposed 7-fold symmetry. Out of these 572 aligned GroEL14/GroES7 subtomograms, 500 

subtomograms were used to generate primary cluster for computing scores. This primary subtomogram 

cluster was then contaminated with GroEL14 subtomograms. The voxel density values were normalized with 

zero mean and unit variance for all the 786 subtomograms individually. 

2.2 Generation of Subtomogram Clusters 

We define a subtomogram cluster as a set of aligned subtomograms, which upon averaging, will 

produce the electron density map of the underlying complex. Such clusters can be produced by supervised 

or unsupervised clustering methods to identify and align target subtomograms. We created a large set of 

different subtomogram clusters of varying quality. The subtomogram cluster quality depends on the level 

of misalignments, i.e., the amount of alignment errors for subtomograms in a cluster and the level of 
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contamination, i.e., the number of subtomograms in a cluster that does not contain the target complex. 

Contamination is a result of misclassification or clustering error. Benchmark sets of simulated 

subtomograms were generated for varying levels of SNRs. In the following section, we first define how 

misalignments and contaminations were emulated for subtomogram clusters. 

2.2.1 Misalignment 

To generate misalignments in a subtomogram cluster, we rotated all the subtomograms in a cluster 

from their initial correctly aligned orientation with Euler angles that were sampled from a normal distribution 

ℕ(0, 𝑠𝑑) with zero-mean and a defined standard deviation (sd). The range of rotational angles is 

[−180°, 180°] for each Euler angle. At a standard deviation of 
𝑚

3
 approximately 99.7% of sampled Euler 

angles are within the range [−𝑚, 𝑚] degrees (Supplemental Figure 1). For example, a misalignment = 27 

means that subtomograms were rotated in each Euler direction with angles sampled from a normal 

distribution ℕ(0,
27

3
), which selects ~99.7% angles between [−27°, 27°]. In this paper, we test the scoring 

functions on subtomogram clusters with misalignments for each Euler angle ranging from 0 to 54 degrees. 

2.2.2 Contamination 

In both supervised classification and unsupervised clustering of subtomograms, complexes of different 

types but similar shapes or sizes may be falsely co-assigned to the same cluster. To assess scoring 

functions for their ability to detect contamination, clusters occupied with predominantly one complex c1 were 

contaminated with another complex c2, of similar size or shape. Clusters were generated with varying levels 

of contamination, defined as the percentage of the cluster size (i.e., number of subtomograms in a cluster). 

For instance, at contamination level p, p% of subtomograms in a cluster (containing subtomograms of 

complex c1) were replaced with subtomograms containing complex c2. 

2.2.3 Simulated benchmark set 

For each of the five complexes, clusters were generated with misalignment values m ranging from [0, 

54] degrees with a step of 5.4. Also, subtomogram clusters for each complex were contaminated with 

another complex with contamination percentage p ranging from [0, 40] with a step of 10. For each 
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subtomogram cluster, we tested the assessment for contamination with two different contamination 

complexes. Moreover, all clusters were simulated for three different SNR = {0.001, 0.01 and 0.1} (Table 1 

and Supplementary Figure 2). In total, we generated a benchmark set of 550 subtomogram clusters with 

varying quality in terms of misalignment and levels of contamination. Each cluster contained a total of 500 

subtomograms. 

2.2.4 Experimental benchmark set 

Subtomogram clusters were generated for GroEL14/GroES7 using the same misalignment and 

contamination range as applied for simulated subtomograms. GroEL14/GroES7 clusters were contaminated 

with GroEL14. In total, a benchmark set of 55 subtomogram clusters were generated. 

2.3 Voxel Regions 

We define three different regions of voxels in a subtomogram for computing the individual scores (Figure 

1). 

2.3.1 Global 

The global score is computed from all the voxels in the subtomogram (Figure 1). 

2.3.2 Contoured 

The contoured score is computed from a subset of voxels with density values above a threshold. We 

select all the voxels with density values higher than one-and-half times the standard deviation (> 1.5 𝜎). 

The score between two aligned subtomograms is then calculated from the union of selected voxels in both 

subtomograms. This step reduces the contribution of noise and focuses on voxels likely to be part of the 

target complex. 

2.3.3 Overlap 

The threshold is applied as in the contoured score. The score between two aligned subtomograms is 

calculated from the intersection of selected voxels in both subtomograms. 
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Figure 1: Voxel regions. Schematic representation of global, contoured and overlap regions (highlighted 

in red) used for computing scores between two subtomograms. 

2.4 Scoring Functions 

In this section, we define the scoring functions for quality assessment of subtomogram clusters. The 

density values of each subtomogram image are normalized to zero mean and unit variance. 

2.4.1 SFSC: Spectral SNR-based Fourier Shell Correlation 

SFSC measures the SNR from the variance in the voxel intensities at all spatial frequencies, as 

previously introduced in the MPP method (Xu et al., 2019). SFSC uses all the subtomograms in the cluster 

and considers missing wedge effects, one of the major distortions in cryoET, due to a limited range of 

angles to capture tilt series. 

Say cluster 𝐶 of size 𝑛 contains the set of aligned subtomograms {𝑓1, 𝑓2 … 𝑓𝑛}, with Fourier Transforms 

{𝐹1, 𝐹2 … 𝐹𝑛} and corresponding binary missing wedge masks {𝑀1, 𝑀2 … 𝑀𝑛}. The Spectral-Signal-to-Noise 

Ratio (Spectral-SNR or SSNR) 𝜂𝑟 at frequency 𝑟 is defined as: 

𝜂𝑟 =
∫ 𝑀̂(𝜉)|𝜇(𝜉)|2 

||𝜉|−𝑟|<Δ𝑟

∫ 𝜎2(𝜉)
 

||𝜉|−𝑟|

 

where Δ𝑟 = 1, 𝜉 ∈ ℝ3 is location in Fourier space, 𝑀̂ is sum of missing wedge masks: 
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𝑀̂(𝜉) = ∑ 𝑀𝑖(𝜉)
𝑖

 

𝜇(𝜉) =
∑ 𝑀𝑖(𝜉)𝐹𝑖(𝜉)𝑖

𝑀̂(𝜉)
 

and 

𝜎2(𝜉) =
∑ 𝑀𝑖(𝜉)|𝑀𝑖(𝜉)𝐹𝑖(𝜉) − 𝜇(𝜉)|2

𝑖

𝑀̂(𝜉) − 1
 

Given the SSNR (𝜂𝑟) at frequency 𝑟, FSC (𝜁𝑟) can be estimated as: 

𝜁𝑟 =
𝜂𝑟

2 + 𝜂𝑟
 

Then SFSC is defined as sum of FSC over all frequencies: 

𝜁 = ∑ 𝜁𝑟
𝑟

 

The higher the value of 𝜁 (SFSC), the higher is quality of a subtomogram cluster. 

The SFSC score is computed from the set of all individual subtomograms, while all other scores are 

calculated from pairwise comparisons of subtomograms in the same cluster. 

2.4.2 gPC: Global Pearson Correlation 

gPC is the global Pearson correlation score and uses all the voxels in both subtomograms to calculate 

the cross-correlation. The gPC between a pair of subtomograms (𝑋, 𝑌) is calculated as follows: 

𝑔𝑃𝐶(𝑋, 𝑌) =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋 𝜎𝑌
=

∑  (𝑋𝑖 − 𝜇𝑋)(𝑌𝑖 − 𝜇𝑌)𝑖

√∑  (𝑋𝑖 − 𝜇𝑋)2
𝑖 √∑  (𝑌𝑖 − 𝜇𝑌)2

𝑖

 

where 𝑋𝑖 and 𝑌𝑖 are density values for the 𝑖𝑡ℎ voxel of subtomograms 𝑋 and 𝑌, respectively. 𝜇𝑋 and 𝜇𝑌 are 

mean density values over corresponding voxel region in each subtomogram. 

Because each subtomogram is normalized to zero mean and unit variance (𝜇𝑋 = 𝜇𝑌 = 0 and 𝜎𝑋  = 𝜎𝑌 = 1) 

𝜌 = 𝑐𝑜𝑣(𝑋, 𝑌). gPC is directly proportional to the cross-correlation function (CCF).  
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𝑔𝑃𝐶(𝑋, 𝑌) =
∑ 𝑋𝑖𝑌𝑖𝑖

𝑁
 ∝ ∑ 𝑋𝑖𝑌𝑖

𝑖

= 𝐶𝐶𝐹(𝑋, 𝑌) 

The gPC score and all following scores are calculated by randomly picking 10% of all possible pairs of 

subtomograms in a cluster. The total score is then defined as the average over all the pairwise scores. We 

show separately that for the gPC and all following scores, a random selection of 10% of pairs is sufficient 

to capture the population mean by comparing 10% and 50% of all possible pairs. Due to increased time 

complexity for computing 50% pairs (62375 pairs), we show this test for only one structure (PDB ID: 2GHO), 

contaminated with structures (PDB IDs: 1QO1, 2H12) at SNR = 0.01, misalignment = 21.6 degrees and 

contamination range [0, 30] percentage. Supplementary Table 1 shows the resulting scoring value for few 

scoring functions for 10% and 50% pairs. We observed that 10% of subtomogram pairs are sufficient to 

capture the same amount of information as 50% subtomogram pairs. 

2.4.3 cPC: Contoured Pearson Correlation 

cPC is calculated as defined in gPC. However, only the union of voxels in both subtomograms with 

density values larger than the threshold (𝑋𝑖 , 𝑌𝑖 > 1.5 𝜎) are considered.  

2.4.4 oPC: Overlap Pearson Correlation 

oPC is calculated as defined in gPC. However, only the intersection of voxels from both subtomograms 

with density values larger than the threshold (𝑋𝑖 , 𝑌𝑖 > 1.5 𝜎) are considered. 

2.4.5 FPC: Pearson correlation in Fourier space 

We computed the Pearson correlation in the Fourier Space as well. Say 𝐹(𝑋) and 𝐹(𝑌) are Fourier 

Transforms of subtomogram 𝑋 and 𝑌 respectively. Then Pearson Correlation in Fourier space is computed 

as: 

𝐹𝑃𝐶(𝑋, 𝑌) =
∑  (𝐹𝑖(𝑋) − 𝜇𝐹(𝑋))(𝐹𝑖(𝑌) − 𝜇𝐹(𝑌))𝑖

√∑  (𝐹𝑖(𝑋) − 𝜇𝐹(𝑋))2
𝑖 √∑  (𝐹𝑖(𝑌) − 𝜇𝐹(𝑌))2

𝑖
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where 𝐹𝑖(𝑋) and 𝐹𝑖(𝑌) are values at 𝑖𝑡ℎ voxel of Fourier Transforms of subtomograms 𝑋 and 𝑌, respectively. 

𝜇𝐹(𝑋) and 𝜇𝐹(𝑌) are mean intensity values of voxels in Fourier Transforms. 

2.4.6 FPCmw: Pearson correlation in Fourier space with missing wedge correction 

We also calculated the Pearson correlation in Fourier space with missing wedge correction. The 

missing wedge mask in Fourier’s space is defined as the intersection of missing wedge masks of both 

subtomograms. Say 𝐹(𝑋) and 𝐹(𝑌) are Fourier Transforms and 𝑀(𝑋) and 𝑀(𝑌) are binary missing wedge 

masks of subtomogram 𝑋 and 𝑌 respectively, then FPCmw score can be written as: 

𝐹𝑃𝐶𝑚𝑤(𝑋, 𝑌) =
∑ 𝑀𝑖(𝑋)𝑀𝑖(𝑌)(𝐹𝑖(𝑋) − 𝜇𝐹(𝑋))(𝐹𝑖(𝑌) − 𝜇𝐹(𝑌))𝑖

√∑ 𝑀𝑖(𝑋)𝑀𝑖(𝑌)(𝐹𝑖(𝑋) − 𝜇𝐹(𝑋))2
𝑖 √∑ 𝑀𝑖(𝑋)𝑀𝑖(𝑌)(𝐹𝑖(𝑌) − 𝜇𝐹(𝑌))2

𝑖

 

where, 

𝜇𝐹(𝑋) =  
∑ 𝑀𝑖(𝑋)𝑀𝑖(𝑌)𝐹𝑖(𝑋)𝑖

𝑀̂
 

𝜇𝐹(𝑋) =  
∑ 𝑀𝑖(𝑋)𝑀𝑖(𝑌)𝐹𝑖(𝑌)𝑖

𝑀̂
 

𝑀̂ =  ∑ 𝑀𝑖(𝑋)𝑀𝑖(𝑌)

𝑖

 

Overall we have five Pearson correlation scores computed, i.e. gPC, cPC, oPC, FPC and FPCmw. 

2.4.7 gMI: Global Mutual Information 

Mutual information scores were previously used (i) to improve the alignment of class-averages in Single 

Particle Analysis (SPA) (Shatsky et al., 2009), (ii) to fit crystal structures in cryo-density maps and (iii) to 

assess structures determined by cryo-electron microscopy (Joseph et al., 2017; Vasishtan and Topf, 2011). 

Here we define a mutual information score to calculate the quality of a subtomogram cluster. The density 

values of all voxels in the desired voxel region were divided into k number of bins. The number of bins k 

was defined following the Sturges rule (Sturges et al., 1926) as: 
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𝑘 = 𝑖𝑛𝑡(1 + log2 𝑛) 

where 𝑛 is the total number of voxels. 

Marginal entropies were then calculated for both the subtomograms 𝑋 and 𝑌 as 

𝐻𝑋 =  − ∑ 𝑝𝑥 ∗ log2 𝑝𝑥

𝑘𝑥

𝑥=1

 

𝐻𝑌 =  − ∑ 𝑝𝑦 ∗ log2 𝑝𝑦

𝑘𝑦

𝑦=1

 

where 𝑝𝑥  and 𝑝𝑦 are the probabilities of finding a voxel with density values for bins 𝑥 and 𝑦 in the 

corresponding subtomograms. 𝑘𝑥 and 𝑘𝑦 are the number of bins into which subtomogram 𝑋 and 𝑌 were 

divided. The joint entropy was computed as 

𝐻𝑋𝑌 =  − ∑ ∑ 𝑝𝑥𝑦 ∗ log2 𝑝𝑥𝑦

𝑘𝑦

𝑦=1

𝑘𝑥

𝑥=1

 

where 𝑝𝑥𝑦 is the probability of finding the pair of bins 𝑥, 𝑦 in the aligned set of subtomograms. The joint 

entropy is minimum when there is no difference between subtomogram X and Y. Then gMI was calculated 

using all voxels in the subtomograms as: 

𝑔𝑀𝐼(𝑋, 𝑌) = 𝐻𝑋 + 𝐻𝑌 − 𝐻𝑋𝑌 

MI was calculated for all the three regions in a subtomogram as well, i.e., global, contoured, overlap. Also, 

if subtomograms X and Y are normalized to have zero means and unit standard deviations, 𝐻𝑋 and 𝐻𝑌 are 

approximately equal and constant for any pair of subtomograms containing the same structure and SNR. 

Therefore, mutual information, in that case, is inversely proportional to joint entropy. 

2.4.8 cMI: Contoured mutual Information 

cMI score is calculated as defined in gMI. However, only the union of voxels in both subtomograms 

with density values larger than the threshold (𝑋𝑖 , 𝑌𝑖 > 1.5 𝜎) are considered. 
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2.4.9 oMI: Overlap mutual Information 

oMI score is calculated as defined in gMI. However, only the intersection of voxels in both 

subtomograms with density values larger than the threshold (𝑋𝑖 , 𝑌𝑖 > 1.5 𝜎) are considered. oMI has also 

been used before but called Local Mutual Information (Joseph et al., 2017). 

2.4.10 NMI: Normal Mutual Information 

We also calculated a normalized version of the mutual information sore. The NMI score is calculated 

as: 

𝑁𝑀𝐼(𝑋, 𝑌) =
𝐻𝑋 + 𝐻𝑌

𝐻𝑋𝑌
 

where HX and HY as the marginal entropies calculated from subtomograms X and Y and HXY is the joint 

entropy. The statistical power of estimated probabilities decreases as the overlap between subtomograms 

decreases. But NMI (Studholme et al., 1999) make gMI more robust to overlap volume. 

2.4.11 gNLSF: Global Normalized Least Square Function 

Least Square Function (LSF) between two subtomograms is defined by the difference between the 

density values of corresponding voxels in the two aligned subtomograms. 

𝐿𝑆𝐹(𝑋, 𝑌) = ∑ (𝑋𝑖 − 𝑌𝑖)2

𝑖
 

where 𝑋𝑖 and 𝑌𝑖 are voxel densities at 𝑖𝑡ℎ voxel of subtomograms 𝑋 and 𝑌 respectively. For global Least 

Square Function (gLSF), the score comes out to be directly proportional to cross correlation function. 

𝑔𝐿𝑆𝐹(𝑋, 𝑌) = ∑ 𝑋𝑖
2 − 2𝑋𝑖𝑌𝑖 + 𝑌𝑖

2

𝑖
 

= ∑ 𝑋𝑖
2 + 𝑌𝑖

2

𝑖
− 2 ∑ 𝑋𝑖𝑌𝑖

𝑖
 

=  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 2𝐶𝐶𝐹(𝑋, 𝑌) 

∝ 𝐶𝐶𝐹(𝑋, 𝑌) 
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The gNLSF score is then defined by min-max normalization of gLSF and by a subtraction from 1 to define 

a score that increases with quality.  

𝑔𝑁𝐿𝑆𝐹(𝑋, 𝑌) = 1 − 𝑚𝑖𝑛𝑚𝑎𝑥 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑔𝐿𝑆𝐹 

2.4.12 cNLSF: Contoured Normalized Least Square Function 

cNLSF score is calculated as define in gNLSF. However, only the union of voxels in both subtomograms 

with density values larger than the threshold (𝑋𝑖 , 𝑌𝑖 > 1.5 𝜎) are considered.  

2.4.13 oNLSF: Overlap Normalized Least Square Function 

oNLSF score is calculated as defined in gNLSF. However, only the intersection of voxels in both 

subtomograms with density values larger than the threshold (𝑋𝑖 , 𝑌𝑖 > 1.5 𝜎) are considered. 

2.4.14 DLSF: Difference Least Square Function 

The DLSF score is similar to LSF. However, instead of using density values, it uses the difference of 

density values between the pairs of corresponding voxels in the two subtomograms. 

𝐷𝐿𝑆𝐹(𝑋, 𝑌) = ∑ ((𝑋𝑖 − 𝑋𝑗) − (𝑌𝑖 − 𝑌𝑗))
2

𝑖,𝑗
 

where (𝑖, 𝑗) is the pair of voxels, 𝑋𝑖, 𝑋𝑗, 𝑌𝑖, 𝑌𝑗 are density values at voxel indices 𝑖 and 𝑗 for subtomograms 

𝑋 and 𝑌. As the number of all possible voxel pairs can be very expensive to compute, we only used 10,000 

randomly selected voxel pairs that have density values higher than a particular threshold. Here we chose 

that threshold to be the standard deviation of voxel densities in a subtomogram. Similar to LSF, DLSF also 

represents the difference between the subtomograms, so after min-max normalization of the score, we 

subtract it from 1. DLSF we mention throughout Results section is: 

𝐷𝐿𝑆𝐹 = 1 − 𝑚𝑖𝑛𝑚𝑎𝑥 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐷𝐿𝑆𝐹  

2.4.15 OS: Overlap Score 

The overlap score is defined as the fraction of contoured voxel regions that are part of the intersection 

of both subtomograms. 
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𝑂𝑆(𝑋, 𝑌) =
𝑣𝑜𝑙𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑋, 𝑌)

min(𝑣𝑜𝑙𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑒𝑑(𝑋), 𝑣𝑜𝑙𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑒𝑑(𝑌))
 

where 𝑣𝑜𝑙𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑒𝑑 is the volume of contoured regions in a subtomogram and 𝑣𝑜𝑙𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑋, 𝑌) is the volume 

for overlap regions in subtomograms 𝑋 and 𝑌 (contour and overlap regions are defined as previously 

described). 

In total, we compared fifteen variations of five scoring functions (Table 2). 

Scoring Function Global Contoured Overlap 
Significant 

Voxels 

Spectral SNR-based Fourier 
Shell Correlation 

SFSC    

Pearson Correlation 

gPC 

FPC 

FPCmw 

cPC oPC  

Mutual Information 
gMI 

NMI 
cMI oMI  

Least Square Function gNLSF cNLSF oNLSF DLSF 

Overlap Score   OS  

 

Table 2: Acronyms of all the scoring functions and their variations based on voxel regions used for 

computing scores (Section 2.4). 

2.5 Estimation of effective-SNR 

2.5.1 Simulated Data 

We estimated the effective-SNR as previously described (Frank and Al-Ali, 1975; Xu et al., 2019). At 

each SNR level, we sample 10,000 pairs of aligned subtomograms for each of the five complexes. For each 

pair of subtomograms, we calculate the Pearson correlation of their voxel densities and then estimate a 

corresponding SNR according to (Frank and Al-Ali, 1975): 

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 − 𝑆𝑁𝑅 =  

∑
𝑐𝑝

1 − 𝑐𝑝

𝑁
𝑝=1

𝑁
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where, N is the number of pairs of aligned subtomograms and 𝑐𝑝 is the Pearson correlation between 

subtomograms in pair p. To estimate the effective-SNR at given simulated SNR level, we averaged the 

effective-SNR for each of the five complexes. This procedure gives effective-SNR of 0.002, 0.01 and 0.08 

for simulated SNR levels of 0.001, 0.01 and 0.1, respectively (Supplementary Table 2). 

2.5.2 Experimental Data 

Similar to estimating the effective SNR for simulated subtomograms, we chose 10,000 pairs for aligned 

GroEL14/GroES7 experimental subtomograms and another 10,000 pairs for GroEL14 experimental 

subtomograms. The effective-SNR for GroEL14/GroES7 turns out to be ~0.115 and for GroEL14 ~0.113. 

2.6 Gaussian Filtering of subtomograms 

As a preprocessing step to score computation, subtomograms were filtered using a Gaussian filter with 

two kernel values (σ = 1 and σ = 2). Gaussian filtering blurs the density values in the subtomogram and 

emphasizes the voxels containing underlying structure while removing density variance from other voxels 

(Supplementary Figure 3B). We used python package Scipy to filter the 3D subtomograms (Virtanen et al., 

2020). 

3. Results 

The quality of a subtomogram cluster depends on various factors that include: (i) subtomogram 

misalignments and (ii) cluster contamination. Subtomogram misalignments (i.e., alignment errors) are non-

optimal alignments of two subtomograms, which result from low accuracy in alignment programs, in 

particular for subtomograms of low resolution and with high noise levels. Cluster contamination (i.e., 

assignment error) occurs when subtomograms with structures other than the target complex are classified 

into the same cluster. This can be the result of errors in classification programs due to subtomograms with 

low resolution and higher noise levels. 

To assess each scoring function for correctly ranking the quality of subtomogram clusters based on 

misalignment and contamination errors we compute the Spearman’s rank correlation coefficient (ρ) 

between the predicted subtomogram cluster quality and the amount of actual error in the clusters. 
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Spearman’s correlation of ρ = 1 indicates that the quality score is strictly monotonic and the scoring function 

values decrease with increasing errors in the subtomogram clusters. The main criteria to categorize the 

scoring function as useful will be its ability to correctly rank the clusters in the order of their actual quality. 

3.1 Assessment against Misalignment 

We first assess the scoring function performance when only alignment errors are introduced in clusters, 

i.e., contamination = 0 for perfectly homogeneous clusters. Each cluster contains a total of 500 

subtomograms. We generated 11 clusters for each of the five benchmark complexes, and each sampled 

with an increasing range of misalignments from 0 to 54° (step size = 5.4 degrees, Section 2.2, 

Supplementary Figure 1). Because the angles for misalignments are sampled randomly from a normal 

distribution, we repeated the process three times and averaged the scores over the three replicates. 

Figure 2 shows each scoring function’s performance to rank the quality of clusters for an example complex 

(PDB ID: 1FNT) with subtomograms at SNR = 0.001 and increasing misalignment errors. The effective-

SNR in our experimental subtomograms is estimated to be ~0.11 (Section 2.5.2), and therefore an SNR of 

0.001 for simulated subtomograms represents a challenging test case. To allow comparison, scores were 

min-max normalized to the range [0, 1]. To compute Spearman’s correlation (ρ), we ranked the zero 

misalignments as the highest rank for each scoring function. 
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Figure 2: Assessment against misalignment: A) Cluster averages of example complex (PDB ID: 1FNT) 

with no contamination and with misalignment increasing from 0 (Far left) to 54 degrees (Far right). B) Line 

plots showing min-max normalized score values on y-axis varying with misalignment on x-axis for clusters 

constituting 1FNT alone. Legend in each subplot mentions the scoring function and its performance in 

Spearman’s correlation to rank clusters based on misalignment. Scores that have Spearman’s correlation 

above the cutoff of 0.95 are shown with subplots with red outline. 

Table 3 lists the Spearman’s correlations ρ for all scoring functions averaged over all benchmark 

complexes. The scoring functions differ greatly in their performance, with Spearman’s correlations ρ ranging 

from 1.0 to -0.93. Five scoring functions (SFSC, gPC, gNLSF, FPC and FPCmw (Section 2.4) stand out 

as they show excellent performance with averaged Spearman’s correlations ρ > 0.95 over the entire 

benchmark set, indicating that clusters can be well ranked by their ground truth quality. We noticed that all 

scoring functions that depend on segmented subtomogram regions (i.e., contoured and overlap regions) 
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do not perform well for subtomograms at such low SNR value (SNR = 0.001). That is because thresholding 

for selecting candidate voxel regions cannot always correctly identify the volume containing the actual 

structure of the complex (Supplementary Figure 3A). Preprocessing can improve the thresholding for 

segmenting regions of the actual target complex even for very low SNR subtomograms (Section 3.3). Global 

and Overlap Mutual Information fail to rank clusters with subtomograms at such high noise levels. Mutual 

Information is inversely proportional to the joint entropy of two subtomograms containing the same 

underlying structure (Section 2.4.7). If subtomograms are perfectly aligned, their joint entropy is lower 

compared to misaligned subtomograms, i.e., the Mutual Information is higher for aligned subtomograms. 

This holds true only when bins with voxel intensity values of the target complex have higher probabilities 

than those of other regions in the subtomogram. But at very high noise levels, probabilities are more 

widespread across intensity bins. The performance of the mutual information score will improve by 

increasing the SNR of subtomograms or by preprocessing individual subtomograms. The ρ values of gMI 

and oMI improve when subtomograms are generated at higher SNR or after Gaussian filtering of 

subtomograms (Sections 3.3, 3.5). 

Target 
complex 

1FNT 1F1B 2REC 2GLS 2GHO Average ρ 

SFSC 1.00 0.98 0.99 0.99 0.99 0.99 ± 0.01 

gPC 0.98 0.99 0.99 0.99 1.00 0.99 ± 0.01 

cPC -0.75 -0.54 -0.32 -0.51 -0.78 -0.58 ± 0.17 

oPC 0.51 0.98 0.33 0.79 0.69 0.66 ± 0.22 

FPC 0.98 1.00 0.99 0.99 0.99 0.99 ± 0.01 

FPCmw 0.99 1.00 1.00 1.00 1.00 1.00 ± 0.00 

gMI -0.85 -0.83 -0.72 -0.78 -0.93 -0.82 ± 0.07 

cMI 0.88 0.39 0.09 0.81 0.59 0.55 ± 0.29 

oMI -0.83 -0.75 -0.55 -0.70 -0.85 -0.73 ± 0.11 

NMI -0.85 -0.83 -0.72 -0.78 -0.93 -0.82 ± 0.07 

gNLSF 0.98 0.99 0.99 0.99 1.00 0.99 ± 0.01 

cNLSF 0.86 0.87 0.59 0.81 0.95 0.82 ± 0.12 

oNLSF 0.82 0.74 0.41 0.76 0.85 0.71 ± 0.16 

DLSF 0.86 0.85 0.59 0.72 0.93 0.79 ± 0.12 

OS -0.79 -0.71 -0.43 -0.62 -0.79 -0.67 ± 0.13 
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Table 3: Assessment against misalignment: Spearman’s correlation (ρ) of Scoring functions vs. 

Misalignment for homogeneous clusters (i.e., contamination = 0). ρ for each target complex (shown with 

PDB ID) is mentioned separately in each column and last column shows the average ρ for scoring function 

over the five target complexes. Rows with bold text shows scores that performed well, i.e. had average ρ > 

0.95. All values of ρ are rounded to 2 decimal places. Subtomograms were simulated at SNR = 0.001 and 

scores were computed without Gaussian filtering. 

 

Figure 3: Assessment of cluster contamination: A) Cluster averages of example target complex (PDB 

ID: 1FNT) with no misalignment and contaminated with one of its assigned contaminant complex (PDB ID: 

1BXR), with contamination level increasing from 0 (Far left) to 40% (Far right). B) Line plots shows min-

max normalized score values on y-axis varying with contamination (assignment error) on x-axis for clusters 

constituting target complex (PDB ID: 1FNT) and contaminated with contaminant complex (PDB ID: 1BXR). 

Legend in each subplot mentions the scoring function and its performance in Spearman’s correlation to 

rank clusters based on contamination. Because we have only five sample points to compute ρ, we lower 
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the threshold and select those functions as well-performing that have ρ > 0.85. Scores that have 

Spearman’s correlation above the cutoff of 0.85 are shown with subplots with red outline. 

Target 
complex 

1FNT 1F1B 2REC 2GLS 2GHO 
Average ρ 

Contaminant 
complex 

1BXR 3DY4 2BO9 1A1S 1VRG 1VPX 1KP8 1VPX 1QO1 2H12 

SFSC 1.00 1.00 1.00 1.00 1.00 0.90 0.90 0.70 1.00 0.90 0.94 ± 0.09 

gPC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ± 0.00 

cPC 0.60 1.00 0.50 -0.20 0.90 0.50 0.40 0.80 0.80 0.90 0.62 ± 0.33 

oPC 1.00 0.90 1.00 -0.70 -0.60 0.80 0.20 0.50 0.90 -0.70 0.33 ± 0.69 

FPC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ± 0.00 

FPCmw 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.99 ± 0.03 

gMI -0.30 0.90 -0.30 -0.70 0.70 -0.30 0.10 0.90 0.00 0.80 0.18 ± 0.57 

cMI -0.10 -0.30 -0.70 0.60 -0.90 -0.70 0.70 0.40 -0.50 -0.70 -0.22 ± 0.56 

oMI 0.10 0.90 0.30 -0.70 0.90 0.20 0.10 0.90 0.60 0.90 0.42 ± 0.50 

NMI -0.30 0.90 -0.30 -0.70 0.70 -0.30 0.10 0.80 -0.10 0.80 0.16 ± 0.56 

gNLSF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ± 0.00 

cNLSF 0.30 -1.00 0.30 0.90 -0.70 -0.10 0.30 -0.90 0.30 -0.30 -0.09 ± 0.59 

oNLSF -0.10 -1.00 -0.10 1.00 -0.70 -0.20 0.30 -0.50 0.30 -0.70 -0.17 ± 0.56 

DLSF 0.30 -0.90 0.30 0.90 -0.70 -0.20 -0.10 -0.90 0.30 -0.90 -0.19 ± 0.64 

OS 0.30 1.00 0.30 -0.50 0.90 0.50 0.30 0.90 0.60 0.80 0.51 ± 0.42 

 

Table 4: Assessment of cluster contamination: Spearman’s correlation (ρ) of Scoring functions vs. 

Contamination for perfectly aligned clusters (i.e., misalignment = 0). ρ for each target-contaminant complex 

pair is mentioned separately in each column and last column shows the average ρ for scoring function over 

all the ten target-contaminant complex pairs. Rows with bold text shows scores that performed well, i.e. 

had average ρ > 0.85. All values of ρ are rounded to 2 decimal places. Subtomograms were simulated at 

SNR = 0.001 and scores were computed without Gaussian filtering. 

3.2 Assessment of Cluster Contamination 

We now assess scoring functions with respect to cluster contamination, which can result from 

assignment errors. Clusters of a benchmark complex were contaminated with subtomograms containing 

other structures (Section 2.2). We generated 5 clusters per benchmark complex, which varied in the level 

of contamination ranging from 0 to 40% contamination. We first assess these clusters without containing 

any alignment errors. Figure 3 depicts the min-max normalized scores for an example complex (PDB ID: 

1FNT) contaminated with another complex (PDB ID: 1BXR). Also, the scores SFSC, gPC, gNLSF, FPC 

and FPCmw showed the best performance in predicting the quality of the contaminated clusters (Table 4). 

Most scoring functions that depend on segmented subtomogram regions and scores based on mutual 
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information fail to rank the quality of clusters accurately. This observation may be a result of the low SNR 

of 0.001, which reduces the quality of subtomogram thresholding and subsequently, the performance of 

scores relying on segmented subtomogram (Supplementary Figure 3A). 

3.3 Effect of Gaussian Filtering 

Next, we test if preprocessing of subtomograms with Gaussian filtering improves the performance of 

scoring functions, in particular for subtomograms with low SNR values. We test Gaussian filtering with two 

different kernels (σ = 1 and 2, Section 2.6). Applying a Gaussian kernel enhances the global structural 

features of the complex against background noise for subtomograms with low SNR of 0.001 

(Supplementary Figure 3B). However, with an increase in σ, naturally, the structures also lose their high-

resolution features. At very low SNR (SNR = 0.001), Gaussian filtering improves the automatic thresholding 

of subtomograms to detect contoured and overlap regions (Section 2.3, Supplementary Figure 3A). It, 

therefore, improves the performances for some of the scoring functions (Table 5). 

The scores (gPC, gNLSF, FPC and FPCmw), which performed well without applying Gaussian filtering, 

maintain their good performance. The scores cPC, oMI, cNLSF, DLSF and OS, which failed to rank the 

quality of subtomogram clusters without Gaussian filter preprocessing, now show sufficiently improved 

Spearman’s correlation with ρ > 0.95 for assessment against misalignment and ρ > 0.85 for assessment of 

cluster contamination (Table 5). Therefore, these scores can rank clusters in the desired order of quality 

based on subtomogram misalignments and cluster contamination. In general, scores based on Mutual 

Information (gMI, cMI) fail across all Gaussian kernel settings for both misalignment and contamination 

tests, except for the overlap based Mutual information score (oMI), which shows reasonable improvements 

when applying a Gaussian filter (Table 5). Some scores only perform well with a narrow window of Gaussian 

kernel value. For instance, oPC (overlap Pearson correlation) performs best using Gaussian kernels with 

an intermediate value ( = 1), and lose their performance with larger kernel values (Table 5). This holds 

true for both misalignment and contamination tests. SFSC decreases in performance when applying a 

Gaussian kernel with relatively high  values because SFSC measures the variance of voxel intensities 

between the constituent subtomograms of the cluster (Table 5). With an increase in , the variation in high-
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frequency structural features is lost. So, SFSC works well when subtomograms are not preprocessed using 

a Gaussian filter. 

Scoring 
Fucntions 

Against Misalignment Against Contamination 

No 
Gaussian 
filtering 

Gaussian 
kernel = 1 

Gaussian 
kernel = 2 

No 
Gaussian 
filtering 

Gaussian 
kernel = 1 

Gaussian 
kernel = 2 

SFSC 0.99 0.98 0.55 0.94 0.92 0.39 

gPC 0.99 0.99 1.00 1.00 1.00 1.00 

cPC -0.58 0.99 0.99 0.62 0.97 0.93 

oPC 0.66 0.95 0.07 0.33 0.50 0.38 

FPC 0.99 1.00 1.00 1.00 1.00 1.00 

FPCmw 1.00 1.00 1.00 0.99 1.00 1.00 

gMI -0.82 -0.77 0.76 0.18 0.39 0.78 

cMI 0.55 -0.03 0.01 -0.22 -0.46 0.11 

oMI -0.73 0.95 1.00 0.42 0.97 0.92 

NMI -0.82 -0.75 0.72 0.16 0.44 0.86 

gNLSF 0.99 0.95 0.99 1.00 0.84 0.95 

cNLSF 0.82 0.97 0.98 -0.09 0.76 0.87 

oNLSF 0.71 -0.79 -0.18 -0.17 -0.47 -0.10 

DLSF 0.79 0.91 0.97 -0.19 0.39 0.86 

OS -0.67 0.97 1.00 0.51 0.97 0.93 

 

Table 5: Effect of Gaussian Filtering: Column 2-4: Spearman’s correlation (ρ) of Scoring functions vs. 

Misalignment for homogeneous clusters (i.e., contamination = 0). Column 5-7: Spearman’s correlation (ρ) 

of Scoring functions vs. Contamination for perfectly aligned clusters (i.e., misalignment = 0). ρ values are 

average over all the 10 target-contaminant complex pairs (Table 1, Supplementary Figure 2). Cells with 

bold text shows average ρ values that are above the cut-off, average ρ > 0.95 for misalignment and average 

ρ > 0.85 for contamination. All values of ρ are rounded to 2 decimal places. Subtomograms were simulated 

at SNR = 0.001 and Gaussian filtered with σ = 1 and 2. 

3.4 Varying Misalignment and Contamination simultaneously 

In our analysis so far, we tested scores with respect to misalignments or contamination separately. 

Now, we want to assess how scoring functions perform when misalignments and contaminations are 

introduced simultaneously. We assess the performance by calculating the average Spearman’s correlation 

ρ for a given score across all ten target-contaminant pairs (note that each of the five benchmark complexes 
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is tested with two different contaminant complexes, Section 2.2, Table 1, and Supplementary Figure 2). We 

first calculate the Spearman’s correlation of scores for their ability to rank clusters of varying levels of 

misalignments at each level of contamination (from 0 to 40%) and subtomograms simulated with relatively 

low SNR level (SNR=0.001) (Figure 4A). We observed that SFSC showed excellent performance for 

ranking clusters against misalignment errors across all contamination levels (Figure 4A). Scoring functions 

based on the global Pearson correlation function (gPC), and its Fourier-based variants with (FPCmw) and 

without missing wedge corrections (FPC), and global Least Square Function (gNLSF) also showed 

excellent performance ρ > 0.95 against misalignment except at highest contamination level of 40% (Figure 

4A). All other scoring functions perform very poorly in comparison.  

Next, we assessed the scores for their ability to rank clusters with varying levels of contamination at each 

level of misalignment error ranging from 0 to 54 degrees (Figure 5A). Also here, SFSC, gPC, FPCmw, FPC 

and gNLSF show excellent performance to rank contamination across all levels of misalignments, except 

for the highest misalignment error of 54 degrees, at which FPC and FPCmw drop performance below our 

threshold level of ρ = 0.85. All other scores perform very poorly across all misalignment ranges and 

therefore, cannot rank correctly cluster quality (Figure 5A). 

Preprocessing of subtomograms with Gaussian filters (= 2) improves the performance for those scoring 

functions that rely on segmented subtomograms. Particularly, cPC and oMI show dramatic improvements 

at  = 2 for ranking misalignments across all levels of contamination even at SNR=0.001 (Supplementary 

Figure 4C). However, these scores perform much poorer for the ranking of contamination errors, especially 

when larger levels of misalignment errors are present (Supplementary Figure 4D). cNLSF, OS and DLSF 

scores perform better in their ability to rank clusters with varying levels of contamination only for lower levels 

of misalignment errors but fail to rank cluster contaminations across all levels of misalignments 

(Supplementary Figure 4D). Global scores based on Pearson correlations in real and Fourier space (gPC, 

FPC and FPCmw) retain their good performance with Gaussian filtering at high misalignment and 

contamination levels. Also, as seen earlier, SFSC’s performance slightly decreases with increasing  in 

Gaussian filtering due to loss in voxel-density variations (Supplementary Figure 4). These observations 

confirm that SFSC scores work best without subtomogram preprocessing with Gaussian filters. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.23.125823doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.125823
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.23.125823doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.23.125823
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: Assessment against Misalignment. Spearman’s correlation ρ (y-axis) of scoring functions (x-

axis) on simulated subtomograms without Gaussian filtering. Individual panel is a scatter plot of Spearman’s 

correlation (ρ) of scoring functions vs. misalignment for clusters at different contamination levels. Clusters 

generated with the target complex can be contaminated with other complexes (Table 1, Section 2.2.2). So, 

each point is average ρ across all the ten target-contaminant complex pairs, except for contamination = 0, 

where it is averaged over only five target complexes. Red dashed line shows a cutoff value of 0.95. 

Subtomograms simulated at different SNR levels are shown in separate panels: (A) SNR = 0.001 (B) 

SNR=0.01 (C) SNR = 0.1. 

3.5 Assessment against SNR 

Signal-to-Noise-Ratio (SNR) is one of the important factors that affect the performance of scoring 

functions. So, we simulated subtomograms at three different SNRs [0.001, 0.01 and 0.1]. Once 

subtomograms were simulated at a given target SNR value, we also computed the effective-SNR for all 

subtomograms as described previously (Xu et al., 2019). The effective-SNR levels for target SNR 0.001, 

0.01 and 0.1 turn out to be 0.002, 0.01 and 0.08, respectively (Section 2.5), which indicates that the 

simulation process adds the required amount of noise to the subtomograms. We showed that at low SNR 

levels (SNR=0.001), only 5 out of 15 scoring functions are capable to rank clusters based on misalignment 

and contamination errors. With increasing SNR levels, we observe improved performances for scoring 

functions that rely on threshold-based segmentation of contoured and overlap voxel regions even without 

Gaussian filtering preprocessing. At the highest SNR = 0.1, almost all scoring functions (SFSC, gPC, cPC, 

FPC, FPCmw, oMI, gNLSF, cNLSF, DLSF and OS) show excellent performance and are all equally 

competent to distinguish the amount of misalignment in the clusters across all contamination levels (Figure 

4C). cPC, oMI, cNLSF, DLSF and OS show excellent performance in ranking misalignments across all 

contamination levels (Figure 4C). However, for the ranking of contamination levels, these scores fail when 

high levels of misalignment errors are present (Figure 5C). oPC and oNLSF still perform very poorly across 

all contamination and error levels (Figure 5C). 
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Figure 5: Assessment for cluster Contamination. Spearman’s correlation ρ (y-axis) of scoring functions 

(x-axis) on simulated subtomograms without Gaussian filtering. Individual panel is a scatter plot of 

Spearman’s correlation (ρ) of scoring functions vs. contamination for clusters with different misalignment 

errors. Clusters generated with the target complex and contaminated with other complexes can still have a 

varying amount of misalignment within the subtomograms (Supplementary Figure 1, Section 2.2.1). Each 

point is average ρ across all the ten target-contaminant complex pairs. Red dashed line shows a cutoff 

value of 0.85. Subtomograms simulated at different SNR levels are shown in separate panels: (A) SNR = 

0.001 (B) SNR=0.01 (C) SNR = 0.1. 

As expected, gMI, oMI, cMI and NMI scores, which are based on mutual information, also increase in ρ 

with increasing SNR (Figure 4). However, at intermediate and low SNR, all three scores still fail to rank 

clusters reliably. At the highest SNR=0.1, only the oMI score reaches an acceptable Spearman’s correlation 

ρ > 0.95 threshold for ranking misalignments across all levels of contamination (Figure 4C). gMI, oMI and 

NMI can rank clusters based on contamination errors only if low levels of misalignment errors are present 

(Figure 5C). The cMI score fails to rank clusters even at the highest SNR levels. We also observed that the 

Overlap score (OS), can perform well at the highest SNR level and ranks well misalignments across all 

contamination levels (Figure 4C). With an improved signal component in the subtomograms, the 

thresholding for selecting accurate overlap voxel regions improves. So, misalignment among 

subtomograms can easily be recognized by the Overlap score (OS). Also, our complexes have non-

spherical shapes, and complexes with a more spherical distribution of electron density will remain 

indistinguishable for overlap scores across different alignment errors. However, contaminations can only 

be ranked by the OS score when relatively low levels of misalignment errors are present (Figure 5BC). 

The SFSC, gPC, FPC and FPCmw scores still outperform all other scoring functions even at high SNR 

levels (Figure 4 and Figure 5). Gaussian filtering with σ = 2 for subtomograms at SNR = 0.1, improves the 

Spearman’s correlation against contamination for many scores but only cPC and oPC show performance 

above our cut-off of ρ > 0.85. 
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3.6 Assessment on Experimental Subtomograms 

To further assess the scoring functions with experimental subtomograms, we chose to generate 

clusters of GroEL14/GroES7, contaminated with GroEL14 (Section 2.1.2). We repeated the complete analysis 

with the experimental data. As it is challenging to know the exact SNR of experimental subtomograms, we 

estimated the effective-SNR (Xu et al., 2019). For aligned experimental subtomograms, the effective-SNR 

is ~0.11 for both GroEL14 and GroEL14/GroES7 complexes (Section 2.5), similar to the highest SNR level of 

simulated subtomograms. 

 

Figure 6: Assessment on experimental subtomograms: Scatter plot showing Spearman’s correlation 

(y-axis) of scoring functions (x-axis) on experimental subtomograms without Gaussian filtering. Clusters 
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were generated using subtomograms of GroEL14/GroES7 and contaminated with GroEL14. Each scatter 

point is a ρ value. A) Spearman’s correlation of Scoring functions vs. Misalignment at different 

contamination levels. Red dashed line shows threshold value 0.95. B) Spearman’s correlation of Scoring 

functions vs. Contamination at different misalignment levels. Red dashed line shows threshold value 0.85. 

We observed that all scoring functions performed well for ranking misalignments across all contamination 

levels except oNLSF, which shows a weak performance similar to its performance with simulated 

subtomograms at SNR = 0.1 (Figure 6A). Similar to our results on simulated subtomograms, the ranking of 

cluster contamination across different levels of misalignments is more challenging. gPC, FPC, gMI, oMI 

and gNLSF rank contamination well only for clusters with relatively low misalignment errors and fail at 

increasing levels of misalignments. cMI, cNLSF, oNLSF, and DLSF score all show negative Spearman 

ranking across all levels of misalignments (Figure 6B). 

Overall, SFSC, FPCmw, cPC, oPC, NMI and OS show excellent performance above the threshold of ρ > 

0.85 also for ranking contamination at various levels of misalignments (Figure 6B). It is interesting to note 

that the Fourier-based Pearson correlation score works well only with missing wedge corrections (FPCmw) 

but performs much worse without missing wedge corrections (FPC) at high levels of misalignments. 

3.7 Time Complexity 

The time complexity of scoring functions varies based on the type of computations required. Fourier 

Space-based scores require computing the Fourier Transform of each subtomogram, whereas all the 

mutual information variants need to bin the voxel densities first. The time complexity reported here is on a 

single-core machine, with all the 500 (cluster size) subtomograms and 500 masks loaded in the memory, 

that is, I/O operations are not included in the time complexity measurements. Gaussian filtering or any other 

preprocessing step increases the time complexity further. Table 6 shows the time required to compute each 

score without Gaussian filtering for a cluster with 500 subtomograms. SFSC shows the best computational 

efficiency and is computationally more efficient by orders of magnitudes compared to almost all other 

scores. gPC and gNLSF are linearly proportional to one another without Gaussian filtering and produce the 

same results, but gNLSF takes one-fifth the time required by gPC, so gNLSF can be used instead of gPC 
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to save time. As all the pairwise computations are independent, calculations are parallelizable on multi-core 

machines. SFSC can also be computed in parallel (Xu et al., 2019). 

Score Time (in s) 

SFSC 28.70 

gPC 261.84 

cPC 497.96 

oPC 426.82 

FPC 1047.05 

FPCmw 985.62 

gMI 1353.70 

cMI 1584.96 

oMI 1689.41 

NMI 1369.82 

gNLSF 52.91 

cNLSF 476.84 

oNLSF 408.29 

DLSF 13190.03 

OS 380.24 

 

Table 6: Time complexity: Time required to compute score values on cluster size of 500 subtomograms 

and with subtomogram and mask of size 913 voxels. Time was computed without Gaussian filtering, on 

single core computer and with all the files already loaded in the memory. 

4. Discussions 

We compared fifteen scoring functions to test their ability to rank the quality of subtomogram clusters, 

which vary in the amount of misalignment and contaminations errors. Such clusters can readily be 

generated by unsupervised clustering methods from tomograms containing a heterogeneous set of 

complexes. Misalignment errors are a result of non-optimal alignments of subtomograms to each other and 

contaminations are a result of assignment errors, which assign subtomograms containing non-target 

complexes to subtomogram clusters. We require that a well-performing scoring function should be able to 

rank or distinguish clusters in their order of quality according to the amount of misalignment and 

contamination errors. We assessed the scoring functions over a wide range of SNR levels for simulated 

subtomograms and on an experimental benchmark dataset.  
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Overall, we observe a large variation in the performance of scoring functions. Only five scoring functions 

(SFSC, gPC, FPCmw, FPC and gNLSF) can rank clusters robustly across all variable conditions and SNR 

levels. 

We found that Spectral SNR-based Fourier Shell Correlation (SFSC) showed the best performance to 

rank alignment as well as contamination errors across all conditions without the need for subtomogram 

preprocessing. Moreover, SFSC shows other advantages. Its computation was the fastest among all the 

scoring functions, in some cases by several orders of magnitudes. SFSC is directly computed from all the 

subtomograms of the cluster and therefore does not require computation of pairwise scores from randomly 

selected pairs of subtomograms. That means it is free from potential biases from a limited sampling of all 

pairwise combinations of subtomograms when calculating the quality score of large clusters. Moreover, 

SFSC performs well for subtomograms with low SNR levels even without Gaussian blurring of 

subtomogram. 

Scores based on global Pearson correlation (gPC, FPCmw and FPC) show robust performance for both 

against misalignment (ρ > 0.95) and contamination (ρ > 0.85) across all conditions, while Pearson’s 

correlation scores based on segmented/contoured subtomograms (cPC, oPC) fail for subtomograms at low 

SNR levels, in particular for ranking clusters based on contaminations while also containing larger levels of 

misalignment errors. Preprocessing with Gaussian filtering can improve their performance, but not to a 

sufficient level for robustly ranking these clusters. Although Pearson correlation scores with (FPCmw) and 

without missing wedge correction (FPC) can both rank experimental clusters based on misalignments, only 

missing wedge corrected scores (FPCmw) can rank clusters on contamination over all levels of 

misalignments (Figure 6B). SFSC and FPCmw utilize missing wedge information (Section 2.4.1 and 2.4.6), 

which gives these scores an advantage by constricting their computation to only valid missing wedge masks 

and ignoring frequency regions that are missing in missing wedge mask. 

Scores based on contoured subtomograms are unreliable at lower noise levels 

Scores based on mutual information are highly sensitive to SNR levels and fail to rank simulated 

clusters at low SNR levels. Among all mutual information-based scores, only the overlap Mutual 
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Information (oMI) performs above our threshold (ρ > 0.95) for ranking misalignments, but only at the 

highest SNR level of SNR = 0.1 or after Gaussian filtering with σ = 2 for subtomograms with lower SNR. In 

previous studies (Joseph et al., 2017; Vasishtan and Topf, 2011), mutual information-based scores 

performed much better when applied to the ranking of atomic structures fitted into density maps from cryo-

electron microscopy. This is because the 3D volumes used in previous studies have density values 

concentrated on the target complex regions, i.e., almost no noise component in the 3D-EM volumes. 

Because mutual information uses the probability of density values in different bins, applications without high 

noise levels generate distinct probability profiles. In our analysis of subtomograms containing high noise 

levels and missing wedge effects, mutual information fails unless we focus only on the overlap regions, 

which ensures density values are considered only from voxels that contain the target complex. This is only 

reliably possible either at high SNR level or after Gaussian filtering. Like most other scores, NMI was able 

to rank the experimental subtomograms with a relatively high SNR level. 

We also conclude that preprocessing of subtomograms with Gaussian filters improves the performance of 

some scoring functions that depend on contoured and overlap voxel regions and decreases the 

performance of scores like SFSC that are dependent on the global variation of voxel intensities. Applying 

Gaussian filters to all subtomograms adds further to the time complexity. Moreover, scoring functions like 

oPC perform well only in a certain window of Gaussian filtering, which introduces uncertainty in determining 

the optimal  value when performing a quality assessment of subtomogram clusters. So using scores that 

perform well without Gaussian filtering seems to be a better choice. 

Conclusion 

With increasing subtomogram SNR, the performance of most scoring functions improves. Because it 

is always challenging to determine the exact SNR level of subtomograms, it is recommended to choose a 

scoring function that performs robustly over a wide range of SNR levels and ideally without the need for 

preprocessing. Although it will require further testing and analysis, our analysis shows that SFSC might be 

a useful choice for determining the cluster quality of 3D images that are prone to high noise levels. Also it 

is the fastest method and performs well without the need for preprocessing. In general, the choice of the 

scoring function is dependent on the context and goal of the problem statement. We believe the analysis 
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done in this paper, will help users to choose a relevant function for their problems, as we move towards 

unsupervised methods in cryo-electron tomography. 
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Supplementary Figures and Tables 

 

Supplementary Figure 1: Example histogram of 5000 angles selected for misalignment = 27 degrees. 

Angles are selected from normal distribution ℕ (0,
27

3
) i.e., a zero-mean normal distribution with s.d. of 

27

3
. 

Choosing s.d. of 
27

3
, makes sure we choose approximately 99.7 percent of angles within the range 

[−27°, 27°]. Green dash lines mark −27° and 27° covering 99.72% of angles and red dashed curve shows 

the ground Gaussian distribution. 
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Supplementary Figure 2: Structures of target complexes used for generating clusters and contaminant 

complexes used for contaminating the clusters of target complexes. PDB IDs of each complex are 

mentioned below the structure (Table 1). 
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Supplementary Figure 3: A) Segmented masks of subtomograms simulated for example complex (PDB 

ID: 1FNT) with varying SNR levels and Gaussian filtered with σ = 1 and 2. Only center slices of 

subtomograms and segmented masks are shown. B) Center slice of subtomograms simulated for example 

complex (PDB ID: 1FNT) with varying SNR levels and Gaussian filtered with σ in range 1 to 5. 
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Supplementary Figure 4: Assessment against misalignment and contamination simultaneously with 

Gaussian Filtering at SNR = 0.001: Scatter plot showing Spearman’s correlation ρ (y-axis) of scoring 

functions (x-axis) on simulated subtomograms at SNR = 0.001 and Gaussian filtered with σ = 1 and 2. Each 

point is average ρ across all the ten target-contaminant complex pairs. (A, C) Spearman’s correlation ρ of 

scoring functions vs. misalignment at different contamination levels. Red dashed line shows threshold value 

0.95 (A: σ = 1, C: σ = 2). (B, D) Spearman’s correlation of scoring functions vs. contamination at different 

misalignment levels. Red dashed line shows threshold value 0.85 (B: σ = 1, D: σ = 2). 
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Contamination 0 10 20 30 

Percentage of 
Pairs 

10 50 10 50 10 50 10 50 

S
c
o

re
s
 

gPC 0.008 0.008 0.007 0.007 0.006 0.006 0.005 0.005 

cPC -0.629 -0.629 -0.631 -0.631 -0.633 -0.633 -0.634 -0.634 

oPC 0.059 0.059 0.052 0.051 0.044 0.045 0.039 0.04 

FPC 0.011 0.011 0.009 0.009 0.007 0.008 0.006 0.006 

FPCmw 0.015 0.015 0.012 0.013 0.01 0.011 0.009 0.009 

gMI 0.048 0.048 0.047 0.048 0.047 0.047 0.046 0.048 

oMI 0.058 0.058 0.057 0.057 0.057 0.057 0.056 0.057 

OS 0.093 0.093 0.092 0.092 0.091 0.092 0.091 0.091 

 

Supplementary Table 1: Absolute score values for few of the scoring functions before min-max 

normalization computed for pair 2GHO (target complex) and 1QO1 (contaminant complex) at SNR 0.01, 

misalignment = 21.6 degrees and contamination range [0, 30]. Within each contamination column, sub 

column shows scores computed for either 10% (12,475 pairs) or 50% (62,375 pairs) of randomly selected 

subtomogram pairs from all possible subtomogram pairs (124,750 pairs) from cluster of size 500 

subtomograms. 

 

PDB 
Simulated SNR 

0.1 0.01 0.001 

1F1B 0.0792 0.0105 0.0023 

1FNT 0.0655 0.0093 0.0014 

2GHO 0.0747 0.01 0.0025 

2GLS 0.0731 0.0093 0.002 

2REC 0.0819 0.0104 0.0017 

effective-SNR 0.0791 0.0099 0.0018 

After Round-off 0.08 0.01 0.002 

 

Supplementary Table 2: effective-SNR for each of the five benchmark complexes computed for different 

simulated SNR levels. Last two rows show average and rounded effective-SNR for each SNR level. 
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